人类染色体的识别与核型分析(精选)

合集下载

人类染色体核型分析

人类染色体核型分析

新生儿期
新生儿期的染色体核型与成人相似,但在这个阶段可能会 出现一些短暂的、非特异性的变化,如染色体的浓缩和分 散等。
青春期及成年期
在青春期及成年期,染色体核型保持相对稳定。然而,随 着年龄的增长,染色体的端粒会逐渐缩短,这可能与细胞 衰老和某些疾病的发生有关。
04 异常人类染色体核型分类 及临床表现
THANKS FOR WATCHING
感谢您的观看
人类染色体核型分析
contents
目录
• 染色体与核型基本概念 • 染色体核型分析技术与方法 • 正常人类染色体核型特征描述 • 异常人类染色体核型分类及临床表现 • 染色体核型异常与遗传病关系探讨 • 总结与展望
01 染色体与核型基本概念
染色体定义及结构特点
染色体定义
染色体是细胞内具有遗传信息的 物质,在细胞分裂时呈现为棒状 或线状结构。
信号检测
通过荧光显微镜或共聚焦 显微镜检测杂交信号,实 现对特定染色体或基因的 定位和定量分析。
基因组测序技术
DNA提取和读
对测序数据进行生物信息学分析,包括 序列比对、变异检测、基因注释等,以 揭示染色体的结构和变异情况。利用高通量测序平台对进行测序, 获得大量的DNA序列数据。
03 正常人类染色体核型特征 描述
常染色体核型特征
染色体数量
正常人类体细胞中有22对常染色 体,共46条。
染色体形态
常染色体形态相对较大,呈线状或 棒状,着色较深。
着丝粒位置
常染色体的着丝粒位于染色体中央 或稍偏一端。
性染色体核型特征
染色体数量
正常人类体细胞中有1对性染色 体,男性为XY,女性为XX。
核型分析
在显微镜下观察染色体的 数量、形态和结构,进行 核型分析和比对。

人类染色体核型报告解读(精选)PPT文档共68页

人类染色体核型报告解读(精选)PPT文档共68页
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最Байду номын сангаас出的人谈话。——笛卡儿
人类染色体核型报告解 读(精选)
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
Thank you

人类染色体G带核型分析

人类染色体G带核型分析

人类染色体G带核型分析摘要人类染色体G带核型分析是一项重要的遗传学检测方法,可以帮助鉴定染色体异常,为临床诊断和疾病预后提供重要依据。

本文将介绍人类染色体G带核型分析的原理、操作步骤和临床应用,并探讨其在遗传疾病研究中的意义。

引言人类染色体是一条条长短不一的DNA分子,其中包含了人类遗传信息的全部。

染色体异常可以导致不同的遗传疾病和癌症的发生。

人类染色体G带核型分析是一种常用的染色体检测方法,利用一种特殊染色技术对染色体进行染色,然后通过显微镜观察和分析染色体的形态和数量,从而鉴定染色体异常。

方法样本采集与培养人类染色体G带核型分析需要获取患者的外周血、羊水或胎盘组织等样本。

对于外周血样本,使用抗凝血管采集一定数量的血液。

对于羊水或胎盘组织样本,可以在妊娠期间进行采集。

采集的样本需要进行细胞培养,目的是获取足够数量的细胞进行分析。

细胞处理细胞培养后,采用适当的方法和药物对细胞进行处理,停止细胞分裂并保留染色体的形态。

常用的方法包括用胆碱能抑制剂停止细胞有丝分裂、用高渗溶液进行裂解和固定等。

染色体染色和显微镜观察经过处理的细胞用一种特殊染料(一般为吉姆萨染料)进行染色。

染色后,通过显微镜观察细胞的染色体形态和数量。

根据染色体的形态和大小,可以对染色体进行鉴定,并进行核型分析。

数据分析与结果解读通过显微镜观察,可以得到染色体的形态和数量信息。

根据染色体的数量和形态,可以判断是否存在染色体异常,如染色体缺失、染色体重复或染色体结构异常等。

根据结果,可以进行遗传辅助诊断,帮助确定疾病诊断和预后。

临床应用人类染色体G带核型分析在临床诊断中具有广泛的应用。

其主要应用包括:遗传疾病的诊断人类染色体G带核型分析可以帮助确定染色体异常与遗传疾病的关系。

例如,唐氏综合征、爱德华氏综合征和Patau综合征等遗传性疾病都与特定的染色体异常有关。

通过染色体核型分析,可以准确诊断这些疾病,为咨询和治疗提供依据。

复杂遗传疾病的研究对于一些复杂的遗传疾病,人类染色体G带核型分析可以帮助鉴定潜在的遗传因素。

试验五人类染色体的观察及核型分析

试验五人类染色体的观察及核型分析

F 19-20

中央

不与其它组相混
人体细胞染色体的主要形态特征及分组
组 染色体号 号 形态大小 着丝粒位置 随体 次缢痕 鉴别要求
G 21-22 Y
最小
近端
21、22有 Y无
21、22号与Y相区分
人外周血前中期G显带核型
人类男性G带核型
人类染色体G显带示意图 口诀: 一秃二蛇三蝶飘 四像鞭炮五黑腰 六号短臂小白脸 七上八下九苗条 十号长臂三条带 十一低来十二高 十三四五一个样 着色深带一二一 十六长臂近点深 十七远端带脚镣 十八人小肚皮大 十九中间一点腰 二十头重脚底轻 二十一像葫芦瓢 二十二一点Y黑脚, Xpq一担挑
正常女性非显带染色体
正常男性非显带染色体
1.根据国际体制的规定,正常女性核型的描述方式是________。 A. 46XX B. 46,XX C. 46;XX D. 46.XX E. 46XX 2.人类染色体的分组主要依据是________。 A.染色体的大小 B.染色体的类型 C.性染色体的类型 D.染色体着丝粒的位置 E.染色体的长度和着丝粒的位置 3.在核型中的每对染色体,其中一条来自父方的精子,一条来自母方的卵子, 在形态结构上基本相同,称为_______。 A.染色单体 B.染色体 C.姐妹染色单体 D.非姐妹染色单体 E.同源染色体 4.根据Denver体制,X染色体列入_______。 A. A组 B. B组 C. C组 D. D组 E. G组 5.根据Denver体制,Y染色体列入_______。 A. C组 B. D组 C. E组 D. F组 E. G组 6.一个正常男性核型中,具有随体的染色体是________。 A.端着丝粒染色体 B.中央着丝粒染色体 C.亚中着丝粒染色体 D.近端着丝粒染色体(除Y染色体) E. Y染色体

实验十 人类染色体G显带技术及G带核型分析

实验十 人类染色体G显带技术及G带核型分析

实验十人类染色体G显带技术及G带核型分析实验目的1、初步掌握染色体G带标本的制备技术。

2、了解人类染色体的G显带的带型特征。

实验用品1、材料:常规方法制备的中期人类染色体标本(标本片龄不超过30天为宜)。

2、器材:显微镜、恒温培养箱、烤箱、恒温水浴箱、冰箱、染色缸、小镊子、玻片架、香柏油、二甲苯、擦镜纸、吸水纸。

3、试剂:0.125%胰蛋白酶溶液、0.02%EDTA溶液、胰蛋白酶一EDTA混合液、0.85%生理盐水、蒸馏水、Giemsa原液、Giemsa稀释液、1/15mol /L磷酸缓冲液。

实验原理人们将用各种不同的方法,以及用不同的染料处理染色体标本后,使每条染色体上出现明暗相间,或深浅不同带纹的技术称为显带技术(banding technique)。

本世纪70年代以来,显带技术得到了很大发展,且在众多的显带技术中(Q带、G带、C带、R带、T 带),G带是目前被广泛应用的一种带型。

因为它主要是被Giemsa染料染色后而显带,故称之为G显带技术,其所显示的带纹分布在整个染色体上。

研究发现,人染色体标本经胰蛋白酶、Na0H、柠檬酸盐或尿素等试剂处理后,再用Giemsa染色,可使每条染色体上显示出深浅交替的横纹,这就是染色体的G带。

每条染色体都有其较为恒定的带纹特征,所以G显带后,可以较为准确的识别每条染色体,并可发现染色体上较细微的结构畸变。

关于G显带的机理目前有多种说法,例如,Lee等(1973)认为染色体上与DNA结合疏松的组蛋白易被胰蛋白酶分解掉,染色后这些区段成为浅带,而那些组蛋白和DNA结合牢固的区段可被染成深带。

有人认为,染色体显带现象是染色体本身存在着带的结构。

比如用相差显微镜观察未染色的染色体时,就能直接观察到带的存在。

用特殊方法处理后,再用染料染色,则带更加清楚,随显带方法不同,显出来的带特点也不一样,说明带的出现又与染料特异结合有关。

一般认为,易着色的阳性带为含有AT多的染色体节段,相反,含GC多的染色体段则不易着色。

人类染色体G带观察与核型分析

人类染色体G带观察与核型分析

人类染色体G带观察与核型分析一、实验目的掌握人类体细胞染色体组型分析的方法二、实验原理○1核型:染色体组型又称核型,是指将动物、植物、真菌等的某一个体或某一分类群(亚种、种、属等)的体细胞内的整套染色体,按它们相对恒定的特征排列起来的图像。

核型模式图是指将一个染色体组的全部染色体逐个按其特征绘制下来,再按长短、形态等特征排列起来的图像。

核型( karyotype )是指一个细胞内的整套染色体按照一定的顺序排列起来所构成的图像,通常是将显微摄影得到的染色体照片剪贴面成。

正常细胞的核型能代表个体的核型。

组型( idiogram )是以模式图的方式表示,它是通过对许多细胞染色体的测量取其平均值绘制而成的,是理想的、模式化的染色体组成。

它代表了一物种染色体组型的特征,核型的研究对人类医学遗传研究及临床应用,对探讨动植物起源、物种间亲缘关系、鉴定远缘杂种等方面都有重大意义。

○2带染色技术也称为改良的 iemsa 染色法。

因用 iemsa 染色,所以称为带。

它是目前应用最广泛的染色体分带技术之一。

染色体标本放到37℃胰酶中是带显示的一种预处理方式,它可以从染色体上抽取蛋白质特定的成分,从而经 iemsa 染色后获得良好一致的分带类型。

带的形成与 iemsa 染料的组成及染色特性分不开。

iemsa 染料即噻嗪-曙红染料,染色首先取决于两个噻嗪分子同DNA 的结合,在此基础上它们结合一个曙红分子,其次取决于一个有助于染料沉淀物积累的疏水环境。

通过胰前预处理可以使阴性带区的疏水蛋白被除去或使它们的构型变为更疏水状态。

从而造成了染色体蛋白质的差异,这种差异就是明暗相间的染色体带。

染色体带技术为染色体遗传病诊断、杂种细胞检定、特殊细胞株标记、染色体的识别等开创了一系列检测方法,大大加速了染色体研究的进展。

○3对任何一个染色体的基本形态学特征来说,重要的参数有3个:描述染色体的三个参数: 1.相对长度:指单个染色体长度与包括X(或Y)染色体在内的单倍染色体总长之比,以百分率表示。

人类染色体和染色体的识别

人类染色体和染色体的识别
n 每个基因长度不等,从102bp(a珠蛋白 基因)~2x106bp(抗肌萎缩蛋白基因)。
n 估计平均每3000bp为一个基因,每条染 色体可能代表几个或几百个基因
G显带深染带富含AT,富含长分散 DNA序列(long interspersed sequence, LINES)是DNA的重复区域,不编码表达 基因.
nR-显带:反G带 nQ-显带:荧光显带,同G显带带纹 nT-显带:末端显带 nC-显带:着丝粒显带
NOR:特异显示近端着丝粒染色体的核仁 组织区
R显带
Q-显带:荧光显带,同G显带带纹
T-显带:末端显带
C-显带:着丝粒显带
NOR:特异显示近端着丝粒染色体
三、人类细胞遗传学研究进展
(一)染色体高分辨显带
1949年,加拿大细胞学家Barr等人,在雌 猫神经原细胞核中发现一种浓缩小体,但在雄 猫中看不到这种结构。
进一步研究发现,除猫以外,其它雌性哺乳 动物(包括人类)也同样存在这种显示性别差 异的结构,称为Barr小体,既X染色质。
正常女性的间期细胞核中紧贴核膜内缘有一 个染色较深,约为1微米大小的椭圆形小体, 既X染色质。
➢正常女性有两条X染色体,男性只有一条 X染色体(和一条Y),X染色体有数量 差异。那么,位于X染色体上的基因产物 是否存在差异昵?为什么只有女性才有X 染色质而男性没有?为什么某一种X连锁 的突变基因纯合子女性的病情并不比半 合子的男性严重?
➢1961年,英国的遗传学家Mrry Lyon等 四人,根据各自的实验提出了X染色体失 活假说,后称为Lyon 假说,来解释上述 问题。
图 6-1 人类染色体核型模式图(非显带)
表6—1 人类非显带染色体核型分组及形态特征(Denver 体制)

实验四人类染色体的识别与核型分析

实验四人类染色体的识别与核型分析

实验四人类染色体‎的识别与核‎型分析一、实验目的1.学习染色体‎核型的分析‎方法;2.了解人类染‎色体的特征‎。

二、实验原理1.染色体组型‎(核型)是指生物体‎细胞所有可‎测定的染色‎体表型特征‎的总称。

包括:染色体的总‎数,染色体组的‎数目,组内染色体‎基数,每条染色体‎的形态、长度、着丝粒的位‎置,随体或次缢‎痕等。

染色体组型‎是物种特有‎的染色体信‎息之一,具有很高的‎稳定性和再‎现性。

组型分析能‎进行染色体‎分组外,还能对染色‎体的各种特‎征做出定量‎和定性的描‎述,是研究染色‎体的基本手‎段之一。

利用这一方‎法可以鉴别‎染色体结构‎变异、染色体数目‎变异,同时也是研‎究物种的起‎源、遗传与进化‎,细胞遗传学‎,现代分类学‎的重要手段‎。

2.人类的单倍‎体染色体组‎(n=23)上约有30‎000-40000‎个结构基因‎。

平均每条染‎色体上有上‎千个基因。

各染色体上‎的基因都有‎严格的排列‎顺序,各基因间的‎毗邻关系也‎是较为恒定‎的。

人类的24种染色‎体形成了2‎4个基因连‎锁群,所以,染色体上发‎生任何数目‎异常、甚至是微小‎的结构变异‎,都必将导致‎许多获某些‎基因的增加‎或减少,从而产生临‎床效应。

染色体异常‎常表现为具‎有多种畸形‎的综合征,称为染色体‎综合征,其症状表现‎为多发畸形‎、智力低下和‎生长发育异‎常,此外还可看‎到一些特征‎性皮肤纹理‎改变。

染色体畸变‎还将导致胎‎儿死产或流‎产。

染色体病已‎成为临床上‎较常见的危‎害较为严重‎的病种之一‎,染色体病的‎检查、诊断已经成‎为临床实验‎室检查的重‎要内容。

1960年‎,在美国De‎n ver市‎召开了第一‎届国际遗传‎学会议,讨论并确定‎正常人核型‎(karyo‎t ype)的基本特点‎即D env‎e r体制,并成为识别‎人类各种染‎色体病的基‎础。

按照Den‎v er 体制‎,将待测细胞‎的染色体进‎行分析和确‎定是否正常‎,以及异常特‎点即为核型‎分析。

人类染色体核型分析

人类染色体核型分析

八下
九苗条 十号长臂三条带 十一低 十二高 Xpq一肩挑 十八人小肚皮大
十三十四十五号 三个一样一二一
十六长臂近点深 二十一 像葫芦瓢
十七远 端带脚镣
二十二一点 Y黑腰
十九中间一点腰
二十头重脚底轻
#
13
#
14
三、实验内容
1、非显带人染色体标本形态观察
低倍镜观察标本片 寻找分散良好染色体
先计数染色体总数
10
Y 染色体:形态和大小,
跟G 组染色体相似。它有以
下几个特征:
①它的两条染色单体一般不 作分叉状,几乎是平行的; ② 一般来说,它比第21、 22染色体要长一些; ③没 有随体。④长臂的端部模糊 不清,呈“细毛状”。
#
11
2、显带染色体核型分析
#
12
一秃
二蛇
三蝶飞
四像鞭炮
五黑腰
七上 六号短臂小白脸
中等大小,近端着丝粒染
色体,它们的一个重要的
形态特征是随体。
#
9
E组(No16~18): No16:最大,中央着丝 粒No17:中等大小,亚 中着丝粒,短臂看得很 清楚;No18:最小,其 短臂很小。 F组(No19~20):小 的中央着丝粒染色体。 G组(No21~22 +Y):最 小,近端着丝粒。在No21 和22染色体的短臂上可见到 随体。No22比No21要大些。 #
#
20
剪贴方法: (1)水平划线 (2)着丝粒在横线上,短臂朝上,长臂朝下。
#
21
#
7
A组(No1~3) 最大,着丝粒在中部或 几乎在中部。
No1:中央着丝粒
No2:亚中着丝粒 No3: 中央着丝粒

实验八+人类染色体核型分析

实验八+人类染色体核型分析

实验八人类染色体核型分析一、实验原理在19世纪后半期许多生物学家用显微镜观察到了染色体, 1875年Edwar.Strasburge.描绘了活的植物细胞的有丝分裂, 1879年, Walthe.Flemming随之从两栖类幼体的固定和染色组织中描绘有丝分裂的过程。

他创造了今天常用来描述有丝分裂过程的述语, W.Waldeyer 将有丝分裂中期可观察到的主要结构命名为染色体, Theodo.Boveri和walte.S.Sutton在1902年将遗传物质和染色体联系起来。

随着细胞学技术的改善, 在许多动物和植物细胞内观察和研究了染色体。

尽管如此, 人类染色体的研究进展却很慢, 因为研究材料不容易得到,还有被应用于植物和动物细胞的技术不能够用于人类, 当人类细胞离体培养生长时这些困难就解决了。

培养中的分裂细胞能够用碱性的秋水仙素处理, 使染色体不受分裂细胞纺锤体的影响, 接着在培养中的细胞暴露在低渗溶液中, 这种低渗溶液可以引起细胞膨胀, 因此可以单独观察和数出细胞的染色体。

当徐道觉和A.Levan(在1956年)采用这些技术培养人肺胚胎组织细胞时,人类染色体数目被确定为2n=46,在英国,研究生殖巢组织的C...Ford不久就确认了这个观察结果,确定人类染色体数目为46的其它研究是以骨髓和皮肤活组织的细胞培养物为基础的,人类染色体的数目有重要意义研究在1959年,那时J.Lejeune和他的合作者将机能失调的唐氏综合症归因于不正常的染色体数目。

从此以后,许多主要的生理和精神错乱都与人类染色体的畸变联系起来了。

对人类染色体的研究通常使用血液白细胞, 这种血液白细胞能很方便获得、培养, 并诱导有丝分裂(实验七), 当一切准备适当, 可看见各种各样长度的人类染色体(最长约10um, 最短约2um)和不同位置的着丝粒(主要的狭窄区)。

二、实验目的1.根据大小, 着丝粒位置和随体的有无描述人类染色体的形态。

遗传学课件遗传学实验-人类染色体核型分析

遗传学课件遗传学实验-人类染色体核型分析

[3] Smith J, Johnson M, Levine A. Karyotyping in clinical practice.
American Journal of Human Genetics, 2017, 91(6): 987-998.
附录:相关图表和数据
图1
人类染色体核型图谱
表1
染色体异常类型及临床表现
障碍等问题。
倒位
染色体倒位是指染色体局部发 生倒转的现象,可能导致胎儿 智力障碍、生长发育迟缓等问 题。
缺失
染色体缺失是指染色体部分缺 失的现象,可能导致胎儿智力 障碍、生长发育迟缓等问题。
重复
染色体重复是指染色体部分重 复的现象,可能导致胎儿智力 障碍、生长发育迟缓等问题。
染色体异常的遗传机制
染色体异常的遗传机制主要包括基因突变和染色体畸变。基因突变是指在基因序 列中发生碱基对的增添、缺失或替换等现象,可能导致胎儿发育畸形、智力障碍 等问题。
实验材料准备
准备好染色体标本、显微镜、染色剂、载玻片、 盖玻片、显微操作器等实验器材和试剂。
实验环境设置
确保实验室环境整洁、无尘,并保持适宜的温度 和湿度。
实验人员要求
实验人员应具备基本的遗传学知识和实验技能, 熟悉实验操作流程和注意事项。
实验操作流程
01
02
03
04
标本制备
采用适当的细胞培养和固定方 法,制备染色体标本。
遗传学课件-人类染色体核型 分析
目录
• 人类染色体介绍 • 染色体核型分析技术 • 人类染色体核型异常 • 染色体核型异常与疾病 • 实验操作和注意事项 • 参考文献和附录
01
人类染色体介绍
染色体的组成和功能

人类染色体的识别与核型分析(精选)

人类染色体的识别与核型分析(精选)

人类染色体的识别与核型分析应用人类染色体分析,为诊断疾病、探讨病因和发病机制,针对具体情况采取必要的措施提供了科学的依据。

因此染色体的研究已成为临床医学中一个不可缺少的组成部分。

人类染色体分析与鉴定是否可靠,直接关系到遗传咨询和产前诊断的准确性。

因此如何准确识别染色体,鉴别正常与异常染色体是十分必要的。

(一)染色体的命名和常用命名符号人类细胞遗传学标准化国际命名体制(ISCN1985)包括了1960年、1963年、1968年、1971年、1978年、1981年、1985年7次人类细胞遗传学国际命名会议的结果。

主要决议的文本是人类细胞遗传学的国际法规,为了简便地记述人类染色体及染色体畸变,制定了统一的命名符号,详见表13-5。

表13-5染色体常用命名符号表示符号说明表示符号说明ace→bcen:::csctdelderdirdicdisdup无着丝粒片段从→到断裂着丝粒断裂断裂与重接染色体染色单体缺失衍生染色体正位双着丝粒体远侧端重复/+-?minmospph1przqrrcprearec将不同的细胞分开多余丢失不能确定微小点嵌合体染色体短臂费城染色体粉碎染色体长臂环形染色体相互易位重排重组染色体(续表)表示符号说明表示符号说明eendffrafemghiinvmalmar互换内复制断片脆性位点女性裂隙次缢痕等臂染色体插入倒位男性标记染色体robsscettantertrivar;罗伯逊易位随体姊妹染色单体互换易位串联易位染色体末端三射体三着丝粒体染色体可变区在涉及一个以上染色体重排中,用来分开各染色体1.非显带染色体的命名:一个典型的中期染色体由2条姊妹染色单体组成,2条姊妹染色单体借着丝粒(次缢痕)相连,着丝粒将染色体分为长臂和短臂,根据着丝粒在染色体上所处的位置不同分为中着丝粒、亚中着丝粒和近端着丝粒染色体。

人类的1号、9号、16号染色体长臂近着丝粒端有1个次缢痕。

在近端着丝粒染色体上,常借1个纤细的染色质丝连接上1粒状结构称随体。

实验四人类染色体的识别及核型分析

实验四人类染色体的识别及核型分析

实验四人类染色体的识别及核型分析引言:人类染色体是人类细胞中的遗传物质,负责传递和保存人类遗传信息。

人类染色体共有23对,分为22对体染色体和一对性染色体。

通过对人类染色体的识别和核型分析可以帮助人们了解人类基因组的结构和功能,以及相关的遗传疾病。

一、人类染色体的识别:1.细胞培养和准备:从人群体内采集细胞样本,如口腔上皮细胞、皮肤细胞等。

将细胞样本培养在含有培养基和适宜温度的培养皿中,使细胞得到良好生长。

2.细胞处理:培养细胞到足够的数量后,停止细胞分裂,使染色体得以固定。

常用的处理方法有醋酸乙酯加热法和免疫细胞化学法。

-醋酸乙酯加热法:将细胞溶胀后,加入冷甲醇-冷醋酸乙酯(3:1)混合液,使染色体得以固定。

然后将固定后的细胞涂片中加入碘化钾并加热,使染色体显色。

-免疫细胞化学法:利用特异性的抗原-抗体反应,将标记染色剂连接到染色体上,使其显色。

3.显微镜观察:将染色后的细胞涂片放置在显微镜下观察,通过显微镜的放大倍数和聚焦调节,可以看到显色的染色体。

二、核型分析:1.统计染色体数目:统计观察到的染色体个数,人类正常细胞染色体数目为46个。

2.染色体排序:将染色体按照一定次序进行排列,通常按照染色体大小和带纹特征,可分为7组:1,2,3,4,5,6和X,Y。

对于体染色体,按照从大到小的顺序编号;对于性染色体,女性为XX,男性为XY。

3.染色体的异常分析:检测并分析染色体的异常,如染色体数目异常、染色体结构改变等。

常见的染色体异常有单体、三体、四体等。

4.矫正:如果在染色实验中发现了染色体数目异常或者结构异常的情况,可以进行矫正。

通过进一步的实验,如细胞分裂抑制剂的使用等,可以获得更准确的核型结果。

结论:通过对人类染色体的识别和核型分析,我们可以了解人类基因组的结构和功能,以及与染色体异常相关的遗传疾病。

这些分析对于遗传学研究、遗传疾病的诊断和治疗等方面都具有重要的意义和应用价值。

人类染色体核型分析

人类染色体核型分析

人类染色体核型分析正常核型分析:人类染色体核型是指胚胎及成人细胞中的染色体数目、形态和大小的组合情况。

人类正常核型为46,其中有22对常染色体和1对性染色体。

常染色体是指除了性染色体以外的其他染色体,按从大到小顺序分为1~22号染色体,其中1~22对染色体构成了每个人的基因组。

性染色体分为X和Y两种。

女性的核型为46,XX,男性的核型为46,XY。

在正常核型分析中,常用的技术是染色体核型分析。

该技术通常使用外周血细胞或胚胎细胞作为样本,通过染色体的捕获、染色、显微观察和图像分析等步骤,可以得到染色体的数目、形态和大小等信息。

异常核型分析:异常核型分析是指对染色体异常进行鉴定和分析。

在人类中,染色体异常主要包括染色体数目异常和结构异常两种。

染色体数目异常是指染色体数目增加或减少的情况。

最常见的染色体数目异常是唐氏综合征,即三体综合征,患者的核型为47,XY或47,XX,+21、唐氏综合征是由于第21对染色体出现三个而非两个的情况,导致患者出现智力发育迟缓、面容特殊、心脏疾病等症状。

结构异常是指染色体的部分区域发生缺失、重复、倒位、转座等改变。

常见的结构异常有易位、缺失和重复。

染色体易位是指两个或多个染色体间一部分染色体片段的交换。

缺失是指染色体上的一部分缺失。

重复是指染色体上的一个或多个区域出现重复。

染色体核型的异常往往与遗传性疾病和先天性疾病有关。

通过对染色体核型的分析,可以为相关疾病的诊断、预防和治疗提供重要参考依据。

总结起来,人类染色体核型分析是通过对正常和异常染色体核型的分析,来对疾病进行诊断、预防和治疗的一项重要技术。

它不仅有助于了解人类染色体的结构和功能,也为人类遗传学和医学研究提供了重要工具。

解读人类染色体核型分析报告

解读人类染色体核型分析报告

解读人类染色体核型分析报告一、什么是染色体?染色体是生物遗传物质——是染色质的特殊表现形态,它仅出现在细胞分裂中期,染色质在细胞分裂中期形成的特殊形态称为染色体。

染色体是生物细胞遗传学的主要研究对象。

不同的物种染色体的数目是不相同的,人染色体是46条,大猩猩染色体是48条,鸡染色体是70条。

一般情况下各种生物的染色体数目和形态都是恒定的,染色体是种的标志,同一物种染色体数目相同,但其中一对染色体(我们称之为“性染色体”)决定生物体的性别,即存在雌性生物与雄性生物染色体形态差异。

人染色体是46条,23对,其中决定男女性别的一对染色体我们称之为‘性染色体’,其它22对称之为‘常染色体”。

核型分析主要研究染色体的数目与形态,所以人类染色体核型分析报告主要内容是报告研究对象的染色体数目与形态是否正常(包括性染色体).二、报告解读案例一:染色体核型46,XX解读:这是一例染色体数目与形态未见异常的女性染色体报告。

该染色体核型的染色体数目是46(与正常人数目一致),性染色体是XX(与正常女性染色体一致),并且未见到异常染色体形态结构。

案例二:染色体核型46,XY解读:这是—例染色体数目与形态未见异常的男性染色体报告。

该染色体核型的染色体数日是46(与正常人数目一致),性染色体是XY(与正常男性染色钵一致).并且未见到异常染色体形态结构。

案例三:染色体核型为45,X解读:该染色体核型的染色体数目是45(比正常人少了一条),性染色体是X(比正常女性丢失了一条X染色体)。

这是典型先天性卵巢发育不全综合征,又称特纳综合征的染色体核型。

临床表现为女性青春期外生殖器仍保持幼稚型外阴,闭经,体型矮小,蹼颈,肘外翻等。

案例四:染色体核型为47,XXX解读:该染色体核型的染色体数目是47(比正常多了—条),性染色体是XXX(比正常女性多了—条X染色体)。

这是XXX综合征,又称超雌综合征或X三体综合征的染色体核型。

表型大多数如正常女性,身体发育正常或稍差,乳腺发育不良,卵巢功能异常,月经失调或闭经,有生育能力或不育,智力发育迟缓甚至精神异常。

实验四人类染色体的识别与核型分析 (1)

实验四人类染色体的识别与核型分析 (1)

实验四人类染色体的识别与核型分析一、实验目的1.学习染色体核型的分析方法;2.了解人类染色体的特征。

二、实验原理1.染色体组型(核型)是指生物体细胞所有可测定的染色体表型特征的总称。

包括:染色体的总数,染色体组的数目,组内染色体基数,每条染色体的形态、长度、着丝粒的位置,随体或次缢痕等。

染色体组型是物种特有的染色体信息之一,具有很高的稳定性和再现性。

组型分析能进行染色体分组外,还能对染色体的各种特征做出定量和定性的描述,是研究染色体的基本手段之一。

利用这一方法可以鉴别染色体结构变异、染色体数目变异,同时也是研究物种的起源、遗传与进化,细胞遗传学,现代分类学的重要手段。

2.人类的单倍体染色体组(n=23)上约有30000-40000个结构基因。

平均每条染色体上有上千个基因。

各染色体上的基因都有严格的排列顺序,各基因间的毗邻关系也是较为恒定的。

人类的24种染色体形成了24个基因连锁群,所以,染色体上发生任何数目异常、甚至是微小的结构变异,都必将导致许多获某些基因的增加或减少,从而产生临床效应。

染色体异常常表现为具有多种畸形的综合征,称为染色体综合征,其症状表现为多发畸形、智力低下和生长发育异常,此外还可看到一些特征性皮肤纹理改变。

染色体畸变还将导致胎儿死产或流产。

染色体病已成为临床上较常见的危害较为严重的病种之一,染色体病的检查、诊断已经成为临床实验室检查的重要内容。

1960年,在美国Denver市召开了第一届国际遗传学会议,讨论并确定正常人核型(karyotype)的基本特点即Denver体制,并成为识别人类各种染色体病的基础。

按照Denver体制,将待测细胞的染色体进行分析和确定是否正常,以及异常特点即为核型分析。

人类染色体分组及形态特征见表1。

表1 人类染色体分组及形态特征(非显带标本)组别染色体序号形态大小着丝粒位置次缢痕随体I号染色体常见A 1-3 最大M(1、3)SM(2)B 4-5 次大SM中等SM 9号染色体常见C 6-12,X(介于7-8之间)D 13-15 中等ST 有E 16-18 小M(16)16号染色体常见SMF 19-20 次小MG 21-22,Y 最小ST 有(22、21)A组:1-3号,可以区分。

人类G显带染色体核型分析

人类G显带染色体核型分析

人类G显带染色体核型分析引言人类基因组中的染色体是遗传信息的主要载体。

其中,性染色体在性别决定中起着重要的作用。

在人类中,性别由两种类型的性染色体决定:XX对应女性,XY对应男性。

正常情况下,人类的细胞核中共有46条染色体,其中44条为非性染色体,另外2条为性染色体。

本文将对人类G显带染色体核型进行分析。

G显带染色体G显带染色体技术是一种常用的染色体核型分析方法,它使用某些特定的染色剂对染色体进行染色,以便更好地观察和研究染色体的形态和结构。

G显带染色技术具有高分辨率和高对比度的特点,可以清晰地显示出染色体上的各种条纹和细节,有助于鉴定染色体异常和进行核型分析。

人类G显带染色体核型人类的G显带染色体核型是指对人类细胞中的染色体进行G显带染色后所观察到的染色体图型。

正常情况下,人类的核型为46,XX或46,XY,表示每个细胞核中都包含有22对自动染色体和一对性染色体。

其中,自动染色体按照从长到短的顺序编号为1-22号染色体,性染色体用X和Y表示,女性的核型为46,XX,男性的核型为46,XY。

核型异常与疾病关联核型异常是指染色体在数量或结构上发生异常变化。

在人类中,核型异常与一些遗传性疾病的发生和发展密切相关。

例如,唐氏综合征是由于21号染色体的三体性引起的,患者的核型为47,XX(+21)或47,XY(+21)。

爱德华综合征也是一种常见的核型异常疾病,其核型为47,XXY。

核型异常的检测对于某些疾病的早期诊断和预防具有重要意义。

G显带染色体核型分析的步骤进行G显带染色体核型分析需要经过以下几个步骤:1. 细胞培养和处理首先,需要从被检测的样本中提取出细胞,常用的样本包括外周血、羊水、胎盘组织等。

然后,将提取得到的细胞进行培养,使其增殖到一定数量。

接下来,使用适当的方法处理细胞,使其进入到有利于显带形成的状态。

2. G显带染色处理后的细胞要进行G显带染色。

染色方法一般采用G显带染色试剂盒,其中的染色剂对染色体具有亲和力。

人类染色体的识别及核型分析

人类染色体的识别及核型分析

人类染色体的识别及核型分析人类染色体的识别及核型分析一直是遗传学和医学领域的重要研究内容。

染色体是生物体内储存遗传信息的主要结构,它们的异常会导致多种疾病,如唐氏综合症、染色体异常等。

因此,对人类染色体的识别及核型分析具有重要的理论和实际意义。

本文将详细介绍人类染色体的识别方法和核型分析技术。

人类染色体识别的方法主要包括染色体观察、核型分析和分子遗传学方法。

染色体观察是最基本的方法,通过直接观察染色体的形态和数量来判断是否有染色体异常。

这可以通过显微镜下染色体的结构特征、染色体带分析、核型分析和染色体画图等技术来实现。

染色体带分析是一种常用的方法,可以使用各种染色剂对染色体进行着色,并根据染色体上的不同带纹来识别染色体的类型。

核型分析是确定染色体数量和结构的方法,通过计数染色体的数量,并观察其带纹图案,从而确定核型的类型。

另外,染色体画图是将染色体的形态特征展示在图上,通常配合核型分析,可以更直观地显示染色体的结构。

分子遗传学方法是一种高效且准确的识别染色体的方法,包括荧光原位杂交(FISH)和基因组微阵列分析(CGH)。

FISH是一种常用的技术,它通过标记具有特定序列的探针,与待测样本中的染色体特异序列发生互补杂交,从而标记特定染色体或染色体区域。

FISH技术可用于检测染色体异常、染色体重排及部分基因扩增或缺失等。

CGH是一种高通量全基因组检测方法,可以检测得到全部或部分染色体的大的扩增或缺失。

CGH技术主要通过比较待测样品的DNA和对照DNA的荧光信号强度来判断染色体的异常情况。

核型分析是对染色体数量和结构的综合评估,可以通过核型分析来判断是否存在染色体异常。

核型分析的方法主要包括常规细胞培养和染色体制备、胚胎分期和染色体分析等。

常规细胞培养是指在培养基中培养活细胞,使其进入有丝分裂期,然后对细胞进行取样,制备出细胞的染色体。

胚胎分期是通过观察胚胎的形态特征来判断其发育阶段,然后对其进行染色体分析。

人类体细胞染色体核型分析

人类体细胞染色体核型分析

人类体细胞染色体核型分析哲学1701班 李鹿鸣 U201716565核型是将一个细胞内的染色体按照一定的顺序排列起来所构成的图像。

通常是用显微摄影得到的染色体照片剪贴而成。

正常细胞的核型能代表个体的核型。

由于染色体是遗传物质单位----基因的载体,核型代表了种属的特征,对于探讨人类遗传病的机制和动植物起源,物种间亲缘关系,鉴定远缘杂种等方面都具有重要的意义。

一、实验目的了解和掌握人类体细胞染色体分析方法二、实验原理人类细胞有丝分裂中期染色体形态典型,便于分析,一般都分析中期分裂相。

中期染色体已经纵裂为二个染色单体,但是着丝粒还未分离,所以两条染色单体相连于一着丝粒,着丝粒在标本上为一淡染区。

从着丝粒向两端就是染色体的“两臂”,凡着丝粒不在中央者,必然将染色体分隔成短臂和长臂。

根据着丝粒的不同,可将染色体分为中部着丝粒染色体,亚中部着丝粒染色体,亚端部着丝粒染色体,端部着丝粒染色体。

在一些亚端部着丝粒染色体中,除去着丝粒以外,有时还能看到一段稍窄的淡染区,叫次缢痕。

对任何一个染色体的基本形态学特征来说,很重要的参数有4个。

1. 相对长度,指单个染色体长度与包括X 染色体(或Y 染色体)在内的单倍染色体总长之比,以百分率(或千分率)表示。

2. 臂指数:指长臂同短臂的比率,即按Levan (1964)的标准划分:臂指数在1.0~1.7之间为中部着丝粒染色体;其臂指数在1.7~3.0之间这亚中部着丝粒染色体;臂指数在3.0~7.0之间为亚端部着丝粒染色体;臂指数大于7.0者为端部着丝粒染色体。

3. 着丝粒指数,指短臂占整条染色体长度的比率,它决定着丝粒的相对位置。

按Levan (1964)的划分标准,着丝粒指数在50.0~37.5之间为中部着丝粒染色体,指数在37.5~25.0之间为亚中部着丝粒染色体,指数在25.0~12.5之间为亚端部着丝粒染色体,指数在12.5~0.0之间为端部着丝粒染色体。

4. 染色体臂数,是根据着丝粒的位置来确定,着丝粒位于染色体端部,为端部着丝粒100%的总总长Y X 常染色体每条染色体长度相对⨯+=或单倍长度%100⨯=该条染色体长度短臂长度着丝粒指数短臂长度长臂长度臂率=染色体,其臂数可作为一个。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人类染色体的识别与核型分析应用人类染色体分析,为诊断疾病、探讨病因和发病机制,针对具体情况采取必要的措施提供了科学的依据。

因此染色体的研究已成为临床医学中一个不可缺少的组成部分。

人类染色体分析与鉴定是否可靠,直接关系到遗传咨询和产前诊断的准确性。

因此如何准确识别染色体,鉴别正常与异常染色体是十分必要的。

(一)染色体的命名和常用命名符号人类细胞遗传学标准化国际命名体制(ISCN1985)包括了1960年、1963年、1968年、1971年、1978年、1981年、1985年7次人类细胞遗传学国际命名会议的结果。

主要决议的文本是人类细胞遗传学的国际法规,为了简便地记述人类染色体及染色体畸变,制定了统一的命名符号,详见表13-5。

表13-5染色体常用命名符号表示符号说明表示符号说明ace→bcen:::csctdelderdirdicdisdup无着丝粒片段从→到断裂着丝粒断裂断裂与重接染色体染色单体缺失衍生染色体正位双着丝粒体远侧端重复/+-?minmospph1przqrrcprearec将不同的细胞分开多余丢失不能确定微小点嵌合体染色体短臂费城染色体粉碎染色体长臂环形染色体相互易位重排重组染色体(续表)表示符号说明表示符号说明eendffrafemghiinvmalmar互换内复制断片脆性位点女性裂隙次缢痕等臂染色体插入倒位男性标记染色体robsscettantertrivar;罗伯逊易位随体姊妹染色单体互换易位串联易位染色体末端三射体三着丝粒体染色体可变区在涉及一个以上染色体重排中,用来分开各染色体1.非显带染色体的命名:一个典型的中期染色体由2条姊妹染色单体组成,2条姊妹染色单体借着丝粒(次缢痕)相连,着丝粒将染色体分为长臂和短臂,根据着丝粒在染色体上所处的位置不同分为中着丝粒、亚中着丝粒和近端着丝粒染色体。

人类的1号、9号、16号染色体长臂近着丝粒端有1个次缢痕。

在近端着丝粒染色体上,常借1个纤细的染色质丝连接上1粒状结构称随体。

根据大小递减的次序和着丝粒的位置,把1个细胞内的46个染色体分为A、B、C、D、E、F、G共7组。

A组:包括1~3号染色体,为大的中着丝粒染色体,根据大小和着丝粒的位置易于区分。

B组:包括4~5号染色体,为大的亚中着丝粒染色体,彼此之间不易区分。

C组:包括6~12号和X染色体,为中等大小,亚中着丝粒染色体,X染色体相当于该组较大染色体。

D组:包括13~15号染色体,为中等大小的带有随体的近端着丝粒染色体。

E组:包括16~18号染色体,为较短的中着丝粒(16号)和亚中着丝粒染色体(17号、18号)。

F组:包括19~20号染色体,为短的中着丝粒染色体。

G组:包括21~22号和Y染色体,21号、22号染色体为短的带随体的近端着丝粒染色体,Y染色体类似这些染色体但无随体。

在间期细胞核中,女性的2条X染色体中有1条处于失活状态,呈一种特殊的深染的块状结构,称为X染色质(又称X小体或Barr小体)。

男性Y染色体长臂具有强荧光着色性称Y染色质(又称Y小体)。

(1)数目畸变的命名:在记述一个核型时,记载的第一项是染色体总数(包括性染色体),然后是一个逗号,后面是性染色体组成。

正常女性核型为46,XX;正常男性的核型为46,XY。

下面是异常核型记述举例:45,X:表示45个染色体,X为性染色体。

47,XXY:表示47个染色体,XXY为性染色体。

49,XXXXY:表示49个染色体,XXXXY为性染色体。

①“+”号和“-”号的使用:“+”或“-”号在专用符号之前表示增加或减少整个染色体;在专用符号之后表示染色体、染色体臂或染色体区的长度增加或减少。

常染色体只在不正常时才加以标明,因此如果常染色体出现数目畸变,就在性染色体的符号后面,增加的或减少的常染色体分组字母或号数之前加上“+”号或“-”号,例如:45,XX,-G:表示45个染色体,XX为性染色体,G组缺1个染色体。

48,XXY,+G:表示48个染色体,XXY为性染色体,G组多1个染色体。

47,XY,+21:表示47个染色体,XY为性染色体,21号染色体多1个。

46,XY,+18,-21:表示46个染色体,XY为性染色体,18号染色体多1个,21号染色体少1个。

46,XY,1q+:表示46个染色体,XY为性染色体,1号染色体长臂的长度增加了。

47,XY,+14p+:表示47个染色体,XY性染色体,增加了1个14号染色体,且短臂的长度增加了。

②“?”号的使用:问号(?)通常用来表示“不确定”,假如认为所丢失的或额外的染色体可能是属于某一组,但是不能确定,便可以在这个组的符号前面或有时在染色体号码前面加上问号(?),例如:45,XX,-?G:表示45个染色体,XX为性染色体,1个可能是属于G组的染色体丢失。

45,XX,-?8:表示45个染色体,XX为性染色体,1个丢失的染色体可能是8号染色体。

另外一个例子,描述1个X染色质为阳性的女性核型,具有1个额外的小的近端着丝粒染色体可以根据所得资料描述为:47,XX,+?G;47,XX,+G;47,XX,+?21;或47,XX,+21。

③多倍体的描述:三倍体或多倍体细胞应该明确标出染色体数目和作进一步说明,例如:69,XXY:具有69个染色体的三倍体(单倍体是1n=23,3n=69,正常人为二倍体,2n=46),性染色体为XXY。

70,XXY,+G:具有70个染色体的三倍体,性染色体为XXY,G组染色体多了1个。

④核内复制的描述:1个核内复制的中期细胞可以在核型符号前面加上“end”这个缩写符号,例如:end46,XX。

假如要描述这种核内复制的倍数,就可以用阿拉伯数字写在“end”的前面表示。

如2end46,XX;4end46,XX。

⑤染色体嵌合体的描述:在染色体嵌合体中,不同细胞系的染色体构成,不管所研究的个体细胞类型的频率如何,皆按数目的次序列出。

核型符号用斜线(/)或竖线分开,例如:45,X/46,XY:两种细胞系的嵌合,一种细胞系具有45个染色体和1个X性染色体,另一种具有46个染色体,性染色体是XY。

46,XY/47,XY,+G:1个正常男性细胞系和1个具有1个额外G组染色体的细胞系的染色体嵌合体。

45,X/46,XX/47,XXX:为三个细胞系的嵌合体。

(2)结构畸变的命名:染色体的短臂用小写的英文字母“p”表示,长臂用小写的英文字母“q”表示,随体用小写的英文字母“s”表示,次缢痕用小写的英文字母“h”表示,而着丝粒用英文缩写“cen”表示。

一切用于结构畸变的符号都置于所涉及的1条或多条染色体名称之前,而重排的1条或多条染色体则总是写在括号内。

具体情况如下:①染色体臂间倒位的表示方法:染色体臂间倒位用p+q-或p-q+来表示,并写在括号内,在其前面加上“inv”。

例如:inv(Dp+q-)表示D组1条染色体的长臂与短臂之间发生了倒位。

②染色体易位的表示方法:染色体易位用小写英文字母“t”及它所涉及的染色体写在括号内表示。

例如:46,XY,t(Bp-;Dq+)或46,XY,t(Bp+;Dq-):意思是B组1个染色体的短臂与D组1个染色体的长臂之间平衡的相互易位。

如果涉及1个性染色体及1个常染色体之间的易位应像下面这样表示。

例如:46,X,t(Xq+;16p-):表示1个女性核型,1个X染色体的长臂与16号染色体的短臂之间相互的易位。

46,X,t(Yq+;16p-):表示1个男性核型,Y染色体的长臂与16号染色体的短臂之间相互的易位。

46,X,t(Yp-;16q+):表示1个男性核型,Y染色体的短臂与16号染色体的长臂之间相互易位。

正常性染色体仍写在染色体数的后面,其他的与易位有关的性染色体则写在括号内,并置于常染色体前面。

③“;”分号的使用及罗氏易位(又称罗伯逊易位)的表示:2个染色体结构发生了改变,且易位是平衡的,则在括号内用分号(;)将染色体分开。

在着丝粒融合型的易位中,只有1个易位染色体,分号就省略了。

例如:45,XX,-G,-D,+t(DqGq):表示45个染色体,XX为性染色体,D组及G组各丢失1个染色体。

但这2个缺少的染色体长臂结合,形成了1个易位染色体。

如果需要,平衡的罗氏易位以及全臂易位的核型描述都可以精简,例如上例可以描述为:45,XX,t(DqGq)。

然而当1个着丝粒融合型的易位染色体产生了2个染色体中的部分重复,可以这样描写:46,XX,-D,+t(DqGq):表示46个染色体,性染色体为XX,D组染色体丢失1个,这个染色体长臂同G组染色体长臂结合。

由于有4个正常的G组染色体,所以就形成了1个G组染色体的部分三体。

假如在少数情况下,发生含有相互易位的小的染色体,可以这样描述:46,XX,-D,-G,+t(DpGp),+t(DqGq):表示46个染色体,性染色体为XX,D组、G组染色体各丢失1个,多了1个由D组染色体的短臂与G组染色体的短臂相互易位形成的染色体,以及1个由D 组染色体的长臂与G组染色体的长臂相互易位形成的染色体。

④染色体次缢痕及随体的描述:次缢痕长度或随体的增减,皆可引起染色体臂长度的增减,其表示方法是将“h”或“s”写在臂的符号和“+”或“-”号之间。

重复的染色体结构是用相应的符号重写来表示,例如:46,XX,21PSS:表示1个女性核型的21号染色体短臂具有2个随体。

46,XY,18PS:表示1个男性核型的18号染色体短臂附有1个随体。

46,XX,21pSqS:表示1个女性核型的21号染色体的短臂和长臂各附有1个随体。

46,XY,16qh+:表示1个男性核型的16号染色体长臂次缢痕增加了。

46,XY,21pS+:表示1个男性核型的21号染色体短臂随体增大了。

⑤等臂染色体的描述:等臂染色体用小写的英文字母“i”表示,写在有关的染色体的前面。

例如:46,X,i(Xq):表示女性核型,46个染色体,其中包括1个正常的X染色体和1个由X染色体长臂形成的等臂染色体。

⑥环形染色体的描述:环形染色体用小写的英文字母“r”表示,写在有关的染色体的前面。

例如:46,XX,r(16):表示女性核型,46个染色体,其中包括1个16号环形染色体。

⑦对标记染色体及着丝粒的描述:当任何一个形态上可分辨的异常染色体不能完全描述出来时,都可以用符号“mar”表示。

如染色体的一部分可以辨识,可以用简明系统记述核型。

疑问号(?)表示不能辨认的节段。

例如:46,XX,t(12;?)(q15;?)表示该核型包括1个重排的12号染色体,其长臂12q15带以远的节段不能辨认。

2.显带染色体的命名:按照国际命名体制,染色深者(或亮者)称深带(亮带),染色浅者(或暗者)称浅带(暗带),每一个染色体是由一系列连续的深浅宽窄不同的带所组成,没有非带区。

相关文档
最新文档