数据结构知识点总结归纳整理
数据结构 知识点总结
数据结构知识点总结一、基本概念数据:所有能被输入到计算机并被处理的符号的集合。
数据元素:数据的基本单位,也称为结点、节点或记录。
数据项:构成数据元素的不可分割的最小单位。
抽象数据类型:抽象数据组织和与之相关的操作,通常采用数据对象、数据关系、基本操作集这样的三元组来表示。
二、逻辑结构数据的逻辑结构是从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
数据元素之间的关系(逻辑结构)可分为四类:集合结构:数据元素之间除了“属于同一集合”的关系外,别无其它关系。
线性结构:数据元素之间存在一对一的关系,如数组、链表、队列和栈等。
树形结构:数据元素之间存在一对多的关系,如二叉树、多叉树等。
图结构或网状结构:数据元素之间存在多对多的关系。
三、存储结构数据对象在计算机中的存储表示称为数据的存储结构,也称物理结构。
数据元素在计算机中有两种基本的储存结构:顺序存储结构:借助元素在存储器中的相对位置来表示数据元素之间的逻辑关系,通常借助程序设计语言的数组类型来描述。
链式存储结构:无需占用一整块存储空间,数据元素的存储位置不必连续,而是通过指针链接形成逻辑关系。
四、数据结构的运算数据结构中的运算包括插入、删除、查找、遍历等,这些运算的实现依赖于具体的逻辑结构和存储结构。
五、数据结构的应用数据结构在各个领域都有广泛的应用,如数据库系统、计算机网络、图形处理等。
通过合理地选择和设计数据结构,可以提高程序的运行效率,降低存储空间的占用。
六、数据结构与算法的关系数据结构和算法是相辅相成的。
数据结构是算法的基础,算法的实现依赖于特定的数据结构。
同时,算法的优化也往往需要对数据结构进行改进和调整。
总结来说,数据结构是计算机科学中的核心概念之一,它涉及数据的组织、存储和运算等多个方面。
理解和掌握数据结构的基本知识点和原理,对于提高编程能力和解决实际问题具有重要意义。
数据结构大纲知识点
数据结构大纲知识点一、绪论。
1. 数据结构的基本概念。
- 数据、数据元素、数据项。
- 数据结构的定义(逻辑结构、存储结构、数据的运算)- 数据结构的三要素之间的关系。
2. 算法的基本概念。
- 算法的定义、特性(有穷性、确定性、可行性、输入、输出)- 算法的评价指标(时间复杂度、空间复杂度的计算方法)二、线性表。
1. 线性表的定义和基本操作。
- 线性表的逻辑结构特点(线性关系)- 线性表的基本操作(如初始化、插入、删除、查找等操作的定义)2. 顺序存储结构。
- 顺序表的定义(用数组实现线性表)- 顺序表的基本操作实现(插入、删除操作的时间复杂度分析)- 顺序表的优缺点。
3. 链式存储结构。
- 单链表的定义(结点结构,头指针、头结点的概念)- 单链表的基本操作实现(建立单链表、插入、删除、查找等操作的代码实现及时间复杂度分析)- 循环链表(与单链表的区别,操作特点)- 双向链表(结点结构,基本操作的实现及特点)三、栈和队列。
1. 栈。
- 栈的定义(后进先出的线性表)- 栈的基本操作(入栈、出栈、取栈顶元素等操作的定义)- 顺序栈的实现(存储结构,基本操作的代码实现)- 链栈的实现(与单链表的联系,基本操作的实现)- 栈的应用(表达式求值、函数调用栈等)2. 队列。
- 队列的定义(先进先出的线性表)- 队列的基本操作(入队、出队、取队头元素等操作的定义)- 顺序队列(存在的问题,如假溢出)- 循环队列的实现(存储结构,基本操作的代码实现,队空和队满的判断条件)- 链队列的实现(结点结构,基本操作的实现)- 队列的应用(如操作系统中的进程调度等)四、串。
1. 串的定义和基本操作。
- 串的概念(字符序列)- 串的基本操作(如连接、求子串、比较等操作的定义)2. 串的存储结构。
- 顺序存储结构(定长顺序存储和堆分配存储)- 链式存储结构(块链存储结构)3. 串的模式匹配算法。
- 简单的模式匹配算法(Brute - Force算法)的实现及时间复杂度分析。
数据结构知识点整理
数据结构知识点整理第一点:数据结构的基本概念与类型数据结构是计算机科学中的一个重要分支,它研究的是如何有效地存储、组织和管理数据,以便于计算机可以高效地进行数据的读取、插入、删除等操作。
数据结构的基本概念主要包括两个方面:数据的逻辑结构与数据的物理结构。
1.1 数据的逻辑结构数据的逻辑结构主要描述数据的逻辑关系,不涉及数据的存储方式。
常见的逻辑结构有:•线性结构:如线性表、栈、队列、串等。
线性结构的特点是数据元素之间存在一对一的关系,每个数据元素只有一个直接前驱和一个直接后继。
•非线性结构:如树、图等。
非线性结构的特点是数据元素之间存在一对多或者多对多的关系。
其中,树结构是一种重要的非线性结构,它具有层次性,每个数据元素(树节点)有零个或多个子节点。
1.2 数据的物理结构数据的物理结构主要描述数据在计算机内存中的存储方式,它直接影响了计算机对数据的访问效率。
常见的物理结构有:•顺序存储结构:如数组、链表等。
顺序存储结构将数据元素按照一定的顺序存放在计算机内存中,相邻的数据元素在内存中也是相邻的。
•链式存储结构:如单链表、双向链表、循环链表等。
链式存储结构通过指针将不连续的数据元素连接起来,每个数据元素只存储数据本身以及指向下一个数据元素的指针。
1.3 数据结构的应用场景不同的数据结构适用于不同的应用场景。
例如:•线性表:适用于顺序访问数据元素的场景,如学生成绩管理系统。
•栈和队列:适用于后进先出(LIFO)或先进先出(FIFO)的场景,如表达式求值、任务调度等。
•树结构:适用于具有层次关系的数据组织,如文件系统的目录结构、HTML文档的DOM树等。
•图结构:适用于表示复杂的关系,如社交网络、交通网络等。
第二点:常见数据结构算法与应用在计算机科学中,算法是解决问题的一系列清晰指令。
结合数据结构,算法可以有效地解决实际问题。
以下是一些常见的数据结构及其相关算法与应用。
2.1 线性表的算法与应用线性表是最基本的逻辑结构。
(完整版)数据结构知识点全面总结—精华版
第1章绪论内容提要:◆数据结构研究的内容。
针对非数值计算的程序设计问题,研究计算机的操作对象以及它们之间的关系和操作。
数据结构涵盖的内容:◆基本概念:数据、数据元素、数据对象、数据结构、数据类型、抽象数据类型。
数据——所有能被计算机识别、存储和处理的符号的集合。
数据元素——是数据的基本单位,具有完整确定的实际意义。
数据对象——具有相同性质的数据元素的集合,是数据的一个子集。
数据结构——是相互之间存在一种或多种特定关系的数据元素的集合,表示为:Data_Structure=(D, R)数据类型——是一个值的集合和定义在该值上的一组操作的总称。
抽象数据类型——由用户定义的一个数学模型与定义在该模型上的一组操作,它由基本的数据类型构成。
◆算法的定义及五个特征。
算法——是对特定问题求解步骤的一种描述,它是指令的有限序列,是一系列输入转换为输出的计算步骤。
算法的基本特性:输入、输出、有穷性、确定性、可行性◆算法设计要求。
①正确性、②可读性、③健壮性、④效率与低存储量需求◆算法分析。
时间复杂度、空间复杂度、稳定性学习重点:◆数据结构的“三要素”:逻辑结构、物理(存储)结构及在这种结构上所定义的操作(运算)。
◆用计算语句频度来估算算法的时间复杂度。
第二章线性表内容提要:◆线性表的逻辑结构定义,对线性表定义的操作。
线性表的定义:用数据元素的有限序列表示◆线性表的存储结构:顺序存储结构和链式存储结构。
顺序存储定义:把逻辑上相邻的数据元素存储在物理上相邻的存储单元中的存储结构。
链式存储结构: 其结点在存储器中的位置是随意的,即逻辑上相邻的数据元素在物理上不一定相邻。
通过指针来实现!◆线性表的操作在两种存储结构中的实现。
数据结构的基本运算:修改、插入、删除、查找、排序1)修改——通过数组的下标便可访问某个特定元素并修改之。
核心语句:V[i]=x;顺序表修改操作的时间效率是O(1)2) 插入——在线性表的第i个位置前插入一个元素实现步骤:①将第n至第i 位的元素向后移动一个位置;②将要插入的元素写到第i个位置;③表长加1。
数据结构必考知识点总结
数据结构必考知识点总结在准备考试时,了解数据结构的基本概念和相关算法是非常重要的。
以下是一些数据结构的必考知识点总结:1. 基本概念数据结构的基本概念是非常重要的,包括数据、数据元素、数据项、数据对象、数据类型、抽象数据类型等的概念。
了解这些概念有助于更好地理解数据结构的本质和作用。
2. 线性表线性表是数据结构中最基本的一种,它包括顺序表和链表两种实现方式。
顺序表是将数据元素存放在一块连续的存储空间内,而链表是将数据元素存放在若干个节点中,每个节点包含数据和指向下一个节点的指针。
了解线性表的概念和基本操作是非常重要的。
3. 栈和队列栈和队列是两种特殊的线性表,它们分别具有后进先出和先进先出的特性。
栈和队列的实现方式有多种,包括数组和链表。
掌握栈和队列的基本操作和应用是数据结构的基本内容之一。
4. 树结构树是一种非线性的数据结构,它包括二叉树、多路树、二叉搜索树等多种形式。
了解树的基本定义和遍历算法是必考的知识点。
5. 图结构图是一种非线性的数据结构,它包括有向图和无向图两种形式。
了解图的基本概念和相关算法是非常重要的,包括图的存储方式、遍历算法、最短路径算法等。
6. 排序算法排序是一个非常重要的算法问题,掌握各种排序算法的原理和实现方式是必不可少的。
常见的排序算法包括冒泡排序、选择排序、插入排序、快速排序、归并排序等。
7. 查找算法查找是另一个重要的算法问题,包括顺序查找、二分查找、哈希查找、树查找等。
了解各种查找算法的原理和实现方式是必考的知识点之一。
8. 算法复杂度分析算法的时间复杂度和空间复杂度是评价算法性能的重要指标,掌握复杂度分析的方法和技巧是非常重要的。
9. 抽象数据类型ADT是数据结构的一种概念模型,它包括数据的定义和基本操作的描述。
了解ADT的概念和实现方式是非常重要的。
10. 动态存储管理动态存储管理是数据结构中一个重要的问题,包括内存分配、内存释放、内存回收等。
了解动态存储管理的基本原理和实现方式是必考的知识点之一。
数据结构知识点总结
数据结构知识点总结在计算机科学中,数据结构是一门非常重要的基础学科,它研究的是数据的组织、存储和管理方式,以及如何对这些数据进行高效的操作和处理。
下面就让我们一起来梳理一下数据结构中的一些关键知识点。
一、线性表线性表是最基本的数据结构之一,它是由零个或多个数据元素组成的有限序列。
线性表有两种常见的实现方式:顺序表和链表。
顺序表是将数据元素存储在一段连续的内存空间中,通过数组来实现。
顺序表的优点是可以随机访问任意元素,时间复杂度为 O(1);缺点是插入和删除操作需要移动大量元素,时间复杂度为 O(n)。
链表则是通过指针将各个数据元素链接起来,不要求内存连续。
链表分为单链表、双链表和循环链表等。
链表的优点是插入和删除操作方便,只需修改指针,时间复杂度为 O(1);缺点是不能随机访问,需要从头开始遍历,时间复杂度为 O(n)。
二、栈和队列栈是一种特殊的线性表,它遵循“后进先出”(Last In First Out,LIFO)的原则。
可以将栈想象成一个只有一端开口的桶,先放入的元素被压在底部,后放入的元素在顶部,取出元素时只能从顶部取出。
栈的常见操作有入栈(push)和出栈(pop)。
队列则是遵循“先进先出”(First In First Out,FIFO)原则的线性表。
就像排队买票一样,先到的人先得到服务。
队列的常见操作有入队(enqueue)和出队(dequeue)。
三、数组和字符串数组是一种顺序存储的线性表,它的元素类型相同,并且存储在连续的内存空间中。
数组可以通过下标快速访问元素,但插入和删除操作的效率较低。
字符串是由字符组成的数组,在处理字符串时,常常需要进行字符串的比较、查找、拼接等操作。
常见的字符串算法有字符串匹配算法(如暴力匹配、KMP 算法等)。
四、树树是一种非线性的数据结构,它由节点和边组成。
常见的树结构有二叉树、二叉搜索树、AVL 树、红黑树等。
二叉树每个节点最多有两个子节点,分别称为左子节点和右子节点。
数据结构知识点归纳
数据结构知识点归纳数据结构知识点归纳1-线性数据结构1-1 数组1-2 链表1-2-1 单向链表1-2-2 双向链表1-2-3 循环链表1-3 栈1-4 队列2-非线性数据结构2-1 树2-1-1 二叉树2-1-2 平衡二叉树2-1-3 B树2-1-4 红黑树2-2 图2-2-1 有向图2-2-2 无向图2-3 堆2-4 散列表2-5 图的搜索算法2-5-1 深度优先搜索(DFS) 2-5-2 广度优先搜索(BFS)3-排序算法3-1 冒泡排序3-2 插入排序3-3 选择排序3-4 快速排序3-5 归并排序3-6 堆排序4-查找算法4-1 顺序查找4-2 二分查找4-3 哈希查找4-4 平衡二叉树查找5-图算法5-1 最短路径算法5-2 最小树算法5-3 拓扑排序算法5-4 关键路径算法附件:本文档所涉及附件●数据结构实现代码示例●图相关的示意图法律名词及注释:●数据结构:指数据的组织、管理和存储方式的一种技术●数组:一种线性数据结构,按照连续的内存地质存储同一类型的数据●链表:一种线性数据结构,由节点组成,每个节点包含数据和指向下一个节点的指针●栈:一种特殊的线性数据结构,只能在一端进行插入和删除操作的数据结构●队列:一种特殊的线性数据结构,遵循先进先出(FIFO)的原则●树:一种非线性数据结构,由节点组成,每个节点可以连接多个子节点●图:一种非线性数据结构,由顶点和边组成,顶点表示数据,边表示数据之间的关系●排序算法:一种将数据按照某个规则进行排列的算法●查找算法:一种在数据集中找到目标元素的算法●最短路径算法:一种寻找图的两个顶点之间最短路径的算法●最小树算法:一种寻找连接图中所有顶点的最小总权值的树的算法●拓扑排序算法:一种对有向无环图进行排序的算法●关键路径算法:一种查找项目中关键路径的算法。
数据结构知识点总结
数据结构知识点总结一、数据结构的分类数据结构可以分为线性结构和非线性结构两大类。
1. 线性结构线性结构是最简单、最常用的数据结构之一,它的特点是每个数据元素都只有一个前驱和一个后继,形成一个线性序列。
常见的线性结构包括:数组、链表、栈和队列。
- 数组:数组是由相同类型的元素按一定顺序排列而成的数据集合。
数组的元素可以通过下标直接访问,具有随机访问的特性。
- 链表:链表是一种线性表,由一系列节点组成,节点可以动态分配。
链表的节点之间通过指针进行连接,可以实现随机插入和删除操作。
- 栈:栈是一种特殊的线性表,只能在表尾进行插入和删除操作。
后进先出(LIFO)是栈的特点。
- 队列:队列也是一种特殊的线性表,只能在表尾进行插入操作,表头进行删除操作。
先进先出(FIFO)是队列的特点。
2. 非线性结构非线性结构是一些数据元素之间存在着多对多的关系,各元素之间并不是简单的前驱和后继关系。
常见的非线性结构包括:树和图。
- 树:树是一种非线性的数据结构,它由节点和边组成。
树中有一个特殊的节点称为根节点,其他节点按照父子关系连接起来,形成层次结构。
- 图:图是由顶点集合和边集合组成的一种数据结构。
图的边可以是有向边或无向边,顶点之间可以存在环。
二、数据结构的基本操作数据结构的基本操作包括:插入、删除、查找、更新等。
这些操作是对数据结构中的元素进行处理和管理的基本手段。
1. 插入操作插入操作是将一个新的元素插入到数据结构中的适当位置,使得整个数据结构保持有序性或其他特定的结构性质。
2. 删除操作删除操作是从数据结构中移除一个元素,使得整个数据结构保持有序性或其他特定的结构性质。
3. 查找操作查找操作是根据给定的条件在数据结构中找到符合条件的元素。
4. 更新操作更新操作是对数据结构中的元素进行修改,使得元素的值变为新给定的值。
三、常用的数据结构算法1. 排序算法排序算法是对一组元素按照指定规则进行排序的算法。
常见的排序算法包括:冒泡排序、选择排序、插入排序、快速排序、归并排序等。
数据结构知识点全面总结_精华版
数据结构知识点全面总结_精华版数据结构是计算机科学中的重要概念,它涉及到如何有效地存储和组织数据,以便于程序的操作和管理。
在本文中,我将全面总结数据结构的核心知识点,以帮助读者深入理解和掌握这一领域的基础概念和算法。
一、线性结构1. 数组(Array)数组是一种线性结构,它由相同类型的元素组成,通过索引访问。
数组的特点是随机访问快,但插入和删除操作较慢。
2. 链表(LinkedList)链表由一系列节点组成,每个节点包含数据和指向下一个节点的指针。
链表的特点是插入和删除操作快,但访问元素需要遍历整个链表。
3. 栈(Stack)栈是一种后进先出(LIFO)的数据结构,只允许在栈顶进行插入和删除操作。
栈的应用场景包括表达式求值、函数调用和递归等。
4. 队列(Queue)队列是一种先进先出(FIFO)的数据结构,只允许在队尾插入元素,在队头删除元素。
队列的应用场景包括任务调度和缓冲区管理等。
二、树形结构1. 二叉树(Binary Tree)二叉树是一种每个节点最多只有两个子节点的树形结构,它可以为空树。
二叉树的遍历方式包括前序、中序和后序遍历。
2. 堆(Heap)堆是一种完全二叉树,其中每个节点的值都大于等于(或小于等于)其子节点的值。
堆常用于实现优先队列和排序算法。
3. 平衡二叉树(Balanced Binary Tree)平衡二叉树是一种高度平衡的二叉树,它的左右子树的高度差不超过1。
平衡二叉树的例子包括AVL树和红黑树。
4. B树(B-Tree)B树是一种多路搜索树,它在一个节点中可以存储多个元素。
B树常用于数据库索引和文件系统等。
三、图形结构1. 图(Graph)图由节点和边组成,节点表示数据元素,边表示节点之间的关系。
图分为有向图和无向图,常用的表示方式有邻接矩阵和邻接表。
2. 深度优先搜索(DFS)深度优先搜索是一种用于图的遍历算法,它从起始节点开始,沿着一条路径尽可能深入,直到不能继续为止,然后回溯到前一个节点继续搜索。
数据结构 知识点总结
数据结构知识点总结一、数据结构基础概念数据结构是指数据元素之间的关系,以及对数据元素进行操作的方法的总称。
数据结构是计算机科学中非常基础的概念,它为计算机程序的设计和实现提供了基础架构。
数据结构的研究内容包括数据的逻辑结构、数据的存储结构以及对数据进行操作的算法。
1.1 数据结构的分类数据结构可以根据数据的逻辑关系和数据的物理存储方式进行分类,常见的数据结构分类包括线性结构、树形结构、图结构等。
1.2 数据结构的基本概念(1)数据元素:数据结构中的基本单位,可以是原子类型或者复合类型。
(2)数据项:数据元素中的一个组成部分,通常是基本类型。
(3)数据结构的逻辑结构:指数据元素之间的逻辑关系,包括线性结构、树形结构、图结构等。
(4)数据结构的存储结构:指数据元素在计算机内存中的存储方式,包括顺序存储结构和链式存储结构等。
1.3 数据结构的特点数据结构具有以下几个特点:(1)抽象性:数据结构是对现实世界中的数据进行抽象和模型化的结果。
(2)实用性:数据结构是在解决实际问题中得出的经验总结,是具有广泛应用价值的。
(3)形式化:数据结构具有精确的数学定义和描述,可以进行分析和证明。
(4)计算性:数据结构是为了使计算机程序更加高效而存在的。
二、线性结构线性结构是数据元素之间存在一对一的关系,是一种最简单的数据结构。
常见的线性结构包括数组、链表、栈和队列等。
2.1 线性表线性表是数据元素之间存在一对一的关系的数据结构,可以采用顺序存储结构或者链式存储结构实现。
(1)顺序存储结构:线性表采用数组的方式进行存储,数据元素在内存中连续存储。
(2)链式存储结构:线性表采用链表的方式进行存储,数据元素在内存中非连续存储,通过指针将它们进行连接。
2.2 栈栈是一种特殊的线性表,只允许在一端进行插入和删除操作,这一端称为栈顶。
栈的操作遵循后进先出(LIFO)的原则。
2.3 队列队列也是一种特殊的线性表,允许在一端进行插入操作,另一端进行删除操作,这两端分别称为队尾和队首。
数据结构复习要点(整理版)
第一章数据结构概述基本概念与术语1.数据:数据是对客观事物的符号表示,在计算机科学中是指所有能输入到计算机中并被计算机程序所处理的符号的总称。
2。
数据元素:数据元素是数据的基本单位,是数据这个集合中的个体,也称之为元素,结点,顶点记录。
(补充:一个数据元素可由若干个数据项组成。
数据项是数据的不可分割的最小单位。
)3.数据对象:数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
(有时候也叫做属性。
)4.数据结构:数据结构是相互之间存在一种或多种特定关系的数据元素的集合。
(1)数据的逻辑结构:数据的逻辑结构是指数据元素之间存在的固有逻辑关系,常称为数据结构。
数据的逻辑结构是从数据元素之间存在的逻辑关系上描述数据与数据的存储无关,是独立于计算机的。
依据数据元素之间的关系,可以把数据的逻辑结构分成以下几种:1.集合:数据中的数据元素之间除了“同属于一个集合“的关系以外,没有其他关系.2.线性结构:结构中的数据元素之间存在“一对一“的关系。
若结构为非空集合,则除了第一个元素之外,和最后一个元素之外,其他每个元素都只有一个直接前驱和一个直接后继。
3。
树形结构:结构中的数据元素之间存在“一对多“的关系.若数据为非空集,则除了第一个元素(根)之外,其它每个数据元素都只有一个直接前驱,以及多个或零个直接后继。
4.图状结构:结构中的数据元素存在“多对多"的关系.若结构为非空集,折每个数据可有多个(或零个)直接后继.(2)数据的存储结构:数据元素及其关系在计算机内的表示称为数据的存储结构。
想要计算机处理数据,就必须把数据的逻辑结构映射为数据的存储结构。
逻辑结构可以映射为以下两种存储结构:1.顺序存储结构:把逻辑上相邻的数据元素存储在物理位置也相邻的存储单元中,借助元素在存储器中的相对位置来表示数据之间的逻辑关系.2.链式存储结构:借助指针表达数据元素之间的逻辑关系。
不要求逻辑上相邻的数据元素物理位置上也相邻。
数据结构知识点归纳
数据结构知识点归纳数据结构知识点归纳1、线性表1.1 数组- 定义:一种连续存储数据的结构,数据在内存中占据一段连续的地质空间。
- 特点:支持随机访问,插入和删除操作效率较低。
- 使用场景:适用于读取频繁,插入和删除较少的情况。
1.2 链表- 定义:一种非连续存储数据的结构,数据在内存中的位置可以是任意的。
- 特点:插入和删除操作效率较高,但访问某个元素需要遍历链表。
- 使用场景:适用于插入和删除频繁,读取较少的情况。
2、栈和队列2.1 栈- 定义:一种先进后出(FILO)的数据结构。
- 特点:只能在栈顶进行插入和删除操作。
- 使用场景:适用于需要记录操作历史、递归等应用场景。
2.2 队列- 定义:一种先进先出(FIFO)的数据结构。
- 特点:只能在队尾插入,在队首删除。
- 使用场景:适用于任务调度、消息处理等应用场景。
3、树3.1 二叉树- 定义:每个节点最多只有两个子节点的树结构。
- 特点:可以快速搜索、插入和删除数据。
- 使用场景:适用于需要快速查找数据的情况。
3.2 平衡二叉树- 定义:左右子树的高度差不超过1的二叉树。
- 特点:可以提高二叉树的操作效率。
- 使用场景:适用于需要频繁插入和删除数据的情况。
3.3 B树- 定义:多路平衡查找树。
- 特点:适用于大规模数据存储和高效查找的场景。
- 使用场景:适用于数据库索引和文件系统的实现。
4、图4.1 有向图- 定义:边有方向的图结构。
- 特点:可以表示有向关系和依赖关系。
- 使用场景:适用于拓扑排序、关系网络等问题。
4.2 无向图- 定义:边无方向的图结构。
- 特点:可以表示无向关系和社交网络。
- 使用场景:适用于最短路径、连通性等问题。
附件:无法律名词及注释:无。
数据结构知识点总结
数据结构知识点总结数据结构知识点总结:一、线性表:⒈数组:定义、初始化、访问元素、插入和删除元素、扩容和缩容、数组的应用⒉链表:定义、单链表、双链表、循环链表、链表的插入和删除操作、链表的反转、链表的应用⒊栈:定义、基本操作(入栈、出栈、获取栈顶元素、判断栈是否为空)、应用场景(递归、表达式求值、括号匹配)⒋队列:定义、基本操作(入队、出队、获取队首元素、判断队列是否为空)、队列的分类(普通队列、双端队列、优先级队列)、队列的应用二、树结构:⒈二叉树:定义、遍历方式(前序遍历、中序遍历、后序遍历)、二叉树的应用(表达式求值、二叉搜索树)⒉堆:定义、堆的插入操作、堆的删除操作、堆的应用(优先级队列、Top K 问题)⒊平衡二叉树:定义、AVL 树、红黑树、平衡二叉树的应用⒋ B 树:定义、B+ 树、B 树、B 树的应用三、图结构:⒈图的存储方式(邻接矩阵、邻接表、十字链表、邻接多重表)⒉图的遍历方式(深度优先搜索、广度优先搜索)⒊最短路径算法(Dijkstra 算法、Bellman-Ford 算法、Floyd-Warshall 算法)⒋最小树算法(Prim 算法、Kruskal 算法)四、查找算法:⒈顺序查找⒉二分查找⒊散列查找(哈希表)⒋平衡查找树(红黑树)五、排序算法:⒈冒泡排序⒉插入排序⒊选择排序⒋快速排序⒌归并排序⒍堆排序⒎希尔排序⒏计数排序⒐桶排序⒑基数排序六、高级数据结构:⒈ Trie 树⒉哈夫曼树⒊并查集⒋线段树⒌ AVL 树附件:⒈相关实例代码⒉数据结构相关的练习题法律名词及注释:⒈版权:指作品的著作权人依照一定的法定条件所享有的权利。
⒉知识产权:指人们创作、发明的智力成果所享有的财产权或相关权益。
⒊法律保护:通过法律手段对知识产权进行保护和维护的行为。
数据结构知识点整理
数据结构知识点整理一、数据结构的定义和概述数据结构是计算机科学中非常重要的一个概念,它关注如何组织和存储数据以便高效地访问和操作。
一个好的数据结构能够提高程序的运行效率,并且能够更好地满足特定的应用需求。
二、线性结构1. 数组(Array):一组连续的内存空间,通过下标访问元素。
数组的优点是随机访问速度快,但插入和删除操作效率较低。
2. 链表(Linked List):由节点组成的集合,每个节点包含数据和指向下一个节点的指针。
链表的优点是插入和删除操作效率高,但访问元素需要遍历整个链表。
3. 栈(Stack):后进先出(LIFO)的数据结构,只能在栈顶进行插入和删除操作。
4. 队列(Queue):先进先出(FIFO)的数据结构,只能在队尾插入元素,在队头删除元素。
三、树形结构1. 二叉树(Binary Tree):每个节点最多有两个子节点的树结构。
树的优点是可以快速地搜索、插入和删除节点,常见的二叉树包括二叉搜索树和平衡二叉树。
2. 堆(Heap):根节点的键值最大(最大堆)或最小(最小堆),其他节点的键值与其父节点的键值有一定关系。
3. 并查集(Disjoint Set):用于解决集合合并和查询问题的数据结构,支持合并、查询和判断两个元素是否属于同一集合的操作。
四、图形结构1. 图(Graph):由节点和边构成的集合,可以用来表示各种实际问题。
常见的图算法包括深度优先搜索(DFS)和广度优先搜索(BFS)。
五、排序和检索算法1. 排序算法:冒泡排序、插入排序、选择排序、快速排序、归并排序等。
不同的排序算法具有不同的时间复杂度和空间复杂度。
2. 检索算法:顺序查找、二分查找、哈希查找等。
哈希查找基于哈希表,可以实现快速的检索操作。
六、常见的数据结构应用1. 数组和链表适用于存储和操作一组数据。
2. 栈和队列常用于算术表达式求值、括号匹配等问题。
3. 二叉树可以用于实现字典、文件系统等。
4. 图可以用于解决路径搜索、最短路径、最小生成树等问题。
数据机构知识点总结
数据机构知识点总结数据结构是计算机科学中的重要概念,它涉及数据的组织、存储和管理。
正确的数据结构设计对于解决各种计算机科学问题至关重要。
本文将介绍数据结构的基本知识点,包括数据结构的类型、常见的数据结构及其应用,以及数据结构的性能分析。
一、数据结构的类型数据结构可以分为线性结构和非线性结构两种类型。
1.线性结构线性结构是指数据元素之间存在一对一的关系,每个数据元素最多只有一个直接前驱和一个直接后继。
常见的线性结构包括数组、链表、栈和队列。
- 数组:数组是最基本的数据结构,它使用连续的存储空间存储相同类型的数据元素。
数组具有随机访问的特点,但插入和删除操作的效率较低。
- 链表:链表使用指针将数据元素连接起来,它可以分为单向链表、双向链表和循环链表。
链表具有插入和删除操作效率较高的特点,但访问数据元素的效率较低。
- 栈:栈是一种具有后进先出(LIFO)特性的线性结构,它只允许在栈顶进行插入和删除操作。
- 队列:队列是一种具有先进先出(FIFO)特性的线性结构,它只允许在队首进行删除操作,在队尾进行插入操作。
2.非线性结构非线性结构是指数据元素之间存在一对多或多对多的关系。
常见的非线性结构包括树、图和集合。
- 树:树是一种层级关系的数据结构,它包括根节点、子节点和叶子节点。
树可以分为二叉树、平衡树、红黑树等。
- 图:图是由节点和边组成的数据结构,它可以分为有向图和无向图。
图可以用来表示各种实际问题中的关系。
- 集合:集合是一种数据元素的无序集合,其中每个元素都是独一无二的。
常见的集合操作包括并集、交集、补集等。
二、常见的数据结构及其应用1. 数组数组是最基本的数据结构之一,它可以用来存储一组相同类型的数据元素。
数组的应用包括:- 在排序算法中使用数组存储需要排序的数据。
- 在搜索算法中使用数组存储需要搜索的数据。
- 在图像处理中使用数组存储像素数据。
2. 链表链表是一种用指针连接的数据结构,它可以用来存储数据集合。
数据结构知识点归纳
数据结构知识点归纳数据结构知识点归纳1.线性数据结构1.1 数组①基本操作②时间复杂度③动态数组④多维数组1.2 链表①单向链表②双向链表③循环链表④基本操作⑤时间复杂度1.3 栈①基本操作1.4 队列①基本操作②队列的实现方式③阻塞队列④并发队列2.树形数据结构2.1 二叉树①基本概念②二叉树的遍历③二叉树的构建方式2.2 堆①最大堆和最小堆②堆的实现方式③堆的应用场景2.3 平衡二叉树① AVL树2.4 B树和B+树①基本概念② B树的插入和删除操作③ B+树的优势和应用场景3.图形数据结构3.1 无向图和有向图3.2 图的遍历①深度优先搜索(DFS)②广度优先搜索(BFS)3.3 最短路径算法① Dijkstra算法② Floyd-Warshall算法3.4 最小树算法① Prim算法② Kruskal算法4.散列数据结构4.1 散列表①基本概念②散列函数的设计与应用③碰撞解决方法4.2 布隆过滤器①基本原理②应用场景4.3 哈希算法①基本概念②常见的哈希算法5.高级数据结构5.1 树状数组(BIT)①基本原理②树状数组的应用5.2 线段树①基本原理②线段树的构建和查询操作5.3 Trie树①基本概念② Trie树的构建与查询5.4 并查集①基本操作②应用场景6.本文档涉及附件。
7.本文所涉及的法律名词及注释:7.1 数据结构:指在计算机科学中,用于存储和组织数据的方式和方式的方法。
7.2 数组:是一个线性数据结构,由一组相同类型的元素组成。
7.3 链表:是一个线性数据结构,由一组节点组成,每个节点包含数据和指向下一个节点的指针。
7.4 栈:是一种线性数据结构,具有后进先出(Last-In-First-Out)的特性。
7.5 队列:是一种线性数据结构,具有先进先出(First-In-First-Out)的特性。
7.6 二叉树:是一种树形数据结构,每个节点最多有两个子节点。
7.7 图:是由一组节点和一组边构成的数据结构。
数据结构必考知识点归纳
数据结构必考知识点归纳数据结构是计算机科学中的核心概念之一,它涉及到数据的组织、存储、管理和访问方式。
以下是数据结构必考知识点的归纳:1. 基本概念:- 数据结构的定义:数据结构是数据元素的集合,这些数据元素之间的关系,以及在这个集合上定义的操作。
- 数据类型:基本数据类型和抽象数据类型(ADT)。
2. 线性结构:- 数组:固定大小的元素集合,支持随机访问。
- 链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
- 单链表:每个节点指向下一个节点。
- 双链表:每个节点同时指向前一个和下一个节点。
- 循环链表:最后一个节点指向第一个节点或第一个节点指向最后一个节点。
3. 栈(Stack):- 后进先出(LIFO)的数据结构。
- 主要操作:push(入栈)、pop(出栈)、peek(查看栈顶元素)。
4. 队列(Queue):- 先进先出(FIFO)的数据结构。
- 主要操作:enqueue(入队)、dequeue(出队)、peek(查看队首元素)。
- 特殊类型:循环队列、优先队列。
5. 递归:- 递归函数:一个函数直接或间接地调用自身。
- 递归的三要素:递归终止条件、递归工作量、递归调用。
6. 树(Tree):- 树是节点的集合,其中有一个特定的节点称为根,其余节点称为子节点。
- 二叉树:每个节点最多有两个子节点的树。
- 二叉搜索树(BST):左子树的所有节点的值小于或等于节点的值,右子树的所有节点的值大于或等于节点的值。
7. 图(Graph):- 图是由顶点(节点)和边(连接顶点的线)组成的。
- 图的表示:邻接矩阵、邻接表。
- 图的遍历:深度优先搜索(DFS)、广度优先搜索(BFS)。
8. 排序算法:- 基本排序:选择排序、冒泡排序、插入排序。
- 效率较高的排序:快速排序、归并排序、堆排序。
9. 查找算法:- 线性查找:在数据结构中顺序查找。
- 二分查找:在有序数组中查找,时间复杂度为O(log n)。
数据结构重点整理
数据结构重点整理第一点:数据结构的基本概念与类型数据结构是计算机科学中用于存储、组织和管理数据的一种方式。
它涉及多种不同的技术和算法,旨在提高数据处理的效率和可靠性。
数据结构可以根据其组织和操作方式的不同,分为多种基本类型,包括但不限于:1.1 线性结构线性结构是最常见的数据结构类型,其特点是数据元素之间存在一对一的关系。
常见的线性结构有:•数组:一种固定大小的数据集合,元素按顺序存储,可以通过索引快速访问。
•链表:由一系列节点组成,每个节点包含数据部分和指向下一个节点的指针。
•栈:遵循后进先出(LIFO)原则的线性结构,主要用于解决递归和深度优先搜索等问题。
•队列:遵循先进先出(FIFO)原则的线性结构,常用于广度优先搜索和任务调度等场景。
1.2 非线性结构非线性结构的数据元素之间存在一对多或多对多的关系,可以更有效地模拟现实世界中的复杂关系。
常见的非线性结构有:•树:由节点组成的层次结构,每个节点包含数据部分和指向子节点的指针。
•图:由顶点(节点)和边组成的结构,用于模拟实体之间的复杂关系和网络结构。
第二点:数据结构在实际应用中的重要性数据结构在现代计算机科学和软件开发中扮演着至关重要的角色。
掌握和应用合适的数据结构可以大幅提高程序的性能、可维护性和可扩展性。
2.1 性能优化选择合适的数据结构对于优化程序性能至关重要。
例如,使用哈希表可以实现对数据的快速查找和插入,而使用平衡树可以实现更高效的数据更新和删除操作。
对于大规模数据处理,合适的数据结构可以显著降低计算复杂度,提高程序的响应速度。
2.2 代码可读性和可维护性良好的数据结构设计可以提高代码的可读性和可维护性。
清晰的数据结构使代码更易于理解和修改,降低出现bug的风险,并提高开发效率。
此外,合理的结构设计可以避免不必要的数据冗余和耦合,使得系统更加模块化和灵活。
2.3 算法实现数据结构是算法实现的基础。
许多高效的算法,如排序、搜索、动态规划等,都依赖于特定的数据结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章绪论1.1 数据结构的基本概念数据元是数据的基本单位,一个数据元素可由若干个数据项完成,数据项是构成数据元素的不可分割的最小单位。
例如,学生记录就是一个数据元素,它由学号、姓名、性别等数据项组成。
数据对象是具有相同性质的数据元素的集合,是数据的一个子集。
数据类型是一个值的集合和定义在此集合上一组操作的总称。
•原子类型:其值不可再分的数据类型•结构类型:其值可以再分解为若干成分(分量)的数据类型•抽象数据类型:抽象数据组织和与之相关的操作抽象数据类型(ADT)是指一个数学模型以及定义在该模型上的一组操作。
抽象数据类型的定义仅取决于它的一组逻辑特性,而与其在计算机内部如何表示和实现无关。
通常用(数据对象、数据关系、基本操作集)这样的三元组来表示。
#关键词:数据,数据元素,数据对象,数据类型,数据结构数据结构的三要素:1.逻辑结构是指数据元素之间的逻辑关系,即从逻辑关系上描述数据,独立于计算机。
分为线性结构和非线性结构,线性表、栈、队列属于线性结构,树、图、集合属于非线性结构。
2.存储结构是指数据结构在计算机中的表示(又称映像),也称物理结构,包括数据元素的表示和关系的表示,依赖于计算机语言,分为顺序存储(随机存取)、链式存储(无碎片)、索引存储(检索速度快)、散列存储(检索、增加、删除快)。
3.数据的运算:包括运算的定义和实现。
运算的定义是针对逻辑结构的,指出运算的功能;运算的实现是针对存储结构的,指出运算的具体操作步骤。
1.2 算法和算法评价算法是对特定问题求解步骤的一种描述,有五个特性:有穷性、确定性、可行性、输入、输出。
一个算法有零个或多个的输入,有一个或多个的输出。
时间复杂度是指该语句在算法中被重复执行的次数,不仅依赖于问题的规模n,也取决于待输入数据的性质。
一般指最坏情况下的时间复杂度。
空间复杂度定义为该算法所耗费的存储空间。
算法原地工作是指算法所需辅助空间是常量,即O(1)。
第2章线性表2.1 线性表的定义和基本操作线性表是具有相同数据类型的n个数据元素的有限序列。
除第一个元素外,每个元素有且仅有一个直接前驱;除最后一个元素外,每个元素有且仅有一个直接后继。
注意:线性表是一种逻辑结构,表示元素之间一对一的相邻关系。
顺序表和链表是指存储结构。
两者属于不同层面的概念,因此不要混淆。
2.2 线性表的顺序表示线性表的顺序存储又称为顺序表。
它是用一组地址连续的存储单元,依次存储线性表中的数据元素,从而使得逻辑上相邻的两个元素在物理位置上也相邻。
顺序表的特点是表中元素的逻辑顺序与其物理顺序相同。
顺序表最主要的特点是随机访问(随机存取),即通过首地址和元素序号可以在O(1)的时间内找到指定的元素。
但插入和删除操作需要移动大量元素。
顺序表的存储密度高,每个结点只存储数据元素。
顺序表插入操作:最好情况:在表尾插入,元素后移语句不执行,时间复杂度为O(1)最坏情况:在表头插入,元素后移语句将执行n次,时间复杂度为O(n)平均情况:平均时间复杂度为O(n)顺序表删除操作:最好情况:删除表尾元素,无需移动元素,时间复杂度为O(1)最坏情况:删除表头元素,需要移动除第一个元素外的所有元素,时间复杂度为O(n)平均情况:平均时间复杂度为O(n)顺序表按值查找(顺序查找):最好情况:查找的元素就在表头,仅需比较一次,时间复杂度为O(1)最坏情况:查找的元素在表尾或不存在时,需要比较n次,时间复杂度为O(n)平均情况:平均时间复杂度为O(n)2.3 线性表的链式表示链式存储线性表时,不需要使用地址连续的存储单元,即它不要求逻辑上相邻的两个元素在物理位置上也相邻,对线性表的插入和删除不需要移动元素,只需要修改指针。
单链表是非随机存储的存储结构,即不能直接找到表中某个特定的结点。
头结点和头指针的区分:不管带不带头结点,头指针始终指向链表的第一个结点,而头结点是带头结点链表中的第一个结点,结点内通常不存储信息。
采用头插法建立单链表:从一个空表开始,生成新结点,并将读取到的数据存放在新结点的数据域中,然后将新结点插入到当前链表的表头,即头结点之后。
读入数据的顺序与生成的链表中元素的顺序是相反的。
每个结点插入的时间为O(1),设单链表长为n,则总的时间复杂度为O(n)。
采用尾插法建立单链表:将新结点插入到当前链表的表尾上,为此必须增加一个尾指针r,使其始终指向当前链表的尾结点。
时间复杂度和头插法相同。
按序号查找结点值:在单链表中从第一个结点出发,顺指针next域逐个往下搜索,直到找到第i个结点为止,否则返回最后一个结点指针域NULL。
时间复杂度为O(n)。
按值查找表结点:从单链表第一个结点出发,由前往后依次比较表中各结点数据域的值,若某结点数据域的值等于给定值e,则返回该结点的指针,否则返回NULL。
时间复杂度为O(n)。
插入结点操作:先检查插入位置的合法性,然后找到待插入位置的前驱结点,即第i-1个结点,再在其后插入新结点。
主要的时间开销在于查找第i-1个元素,时间复杂度为O(n)。
若是在给定的结点后面插入新结点,则时间复杂度仅为O(1)。
删除结点操作:先检查删除位置的合法性,然后找到待删除位置的前驱结点,即第i-1个结点,再将其删除。
时间复杂度为O(n)。
双链表结点中有两个指针prior和next,分别指向其前驱结点和后继结点。
双链表中执行按值查找和按位查找的操作和单链表相同,但双链表插入、删除操作的时间复杂度仅为O(1)。
循环单链表和单链表的区别在于,表中最后一个结点的指针不是NULL,而改为指向头结点,从而整个链表形成一个环。
故表中没有指针域为NULL的结点。
循环双链表 L中,某结点*p为尾结点时,p->next=L;当循环双链表为空表时,其头结点的prior域和next域都等于L。
静态链表是借助数组来描述线性表的链式存储结构,结点也有数据域data和指针域next,这里的指针是结点的相对地址(数组下标),又称为游标。
顺序表和链表的比较:1.存取方式:顺序表可以顺序存取,也可以随机存取,链表只能从表头顺序存取元素。
2.逻辑结构与物理结构:采用顺序存储时,逻辑上相邻的元素,其对应的物理存储位置也相邻。
而采用链式存储时,逻辑上相邻的元素,其物理存储位置则不一定相邻。
3.查找、插入和删除操作:对于按值查找,当顺序表在无序的情况下,两者的时间复杂度均为O(n);而当顺序表有序时,可采用折半查找,时间复杂度为O(logn)。
对于按序号查找,顺序表支持随机访问,时间复杂度仅为O(1),而链表的平均时间复杂度为O(n)。
链表插入、删除较优,只需修改相关结点的指针域即可。
4.空间分配:链式存储的结点空间只在需要的时候申请分配。
5.通常较稳定的线性表选择顺序存储,而频繁做插入、删除操作的线性表(即动态性较强)宜选择链式存储。
第3章栈和队列3.1 栈栈:后进先出(LIFO),又称为后进先出的线性表顺序栈的实现:栈顶指针:S.top,初始时设置S.top=-1;栈顶元素:S.data[S.top]。
进栈操作:栈不满时,栈顶指针先加1,再送值到栈顶元素。
S.data[++S.top]=x。
出栈操作:栈非空时,先取栈顶元素值,再将栈顶指针减1。
x=S.data[S.top–]。
栈空条件:S.top==-1;栈满条件:S.top==Maxsize-1;栈长:S.top+1注意:如果栈顶指针初始化为S.top=0,即栈顶指针指向栈顶元素的下一个位置,则入栈操作变为S.data[S.top++]=x;出栈操作变为x=S.data[–S.top]。
相应的栈空、栈满条件也会发生变化。
共享栈:利用栈底位置相对不变的特性,可以让两个顺序栈共享一个一维数据空间,将两个栈的栈底分别设置在共享空间的两端,两个栈顶向共享空间的中间延伸。
两个栈的栈顶指针都指向栈顶元素,top0=-1时0号栈为空,top1=Maxsize时1号栈为空;仅当两个栈顶指针相邻(top1-top0=1)时,判断为栈满。
当0号栈进栈时top0先加1再赋值,1号栈进栈时top1先减1再赋值;出栈时刚好相反,0号栈先出栈再减1,1号栈先出栈再加1.共享栈是为了更有效地利用存储空间,其存取数据的时间复杂度均为O(1)。
链栈的优点是便于多个栈共享存储空间和提高其效率,且不存在栈满上溢的情况。
通常采用单链表实现,并规定所有操作都是在单链表的表头进行的。
这里规定链栈没有头结点,Lhead 指向栈顶元素。
采用链式存储,便于结点的插入和删除。
对于带头结点和不带头结点的链栈,在具体的实现方面有所不同。
3.2 队列队列也是一种操作受限的线性表,只允许在表的一端进行插入,而在表的另一端进行删除。
(先进先出的线性表)队列的顺序实现是指分配一块连续的存储单元存放队列中的元素,并附设两个指针front和rear分别指示队头元素和队尾元素的位置。
设队头指针指向队头元素,队尾指针指向队尾元素的下一个位置(也可以让rear指向队尾元素,front指向队头元素的前一个位置)。
初始状态(队空条件):Q.front==Q.rear == 0.进队操作:队不满时,先送值到队尾元素,再将队尾指针加1。
出队操作:队不空时,先取队头元素值,再将队头指针加1.循环队列,即把存储队列元素的表从逻辑上看成一个环。
初始时:Q.front==Q.rear == 0.出队:队首指针进1,Q.front=(Q.front+1)%MaxSize入队:队尾指针进1,Q.rear=(Q.rear+1)%MaxSize队列长度:(Q.rear+MaxSize-Q.front)%MaxSize出队入队时:指针都按顺时针方向进1.为了区分队空还是队满的情况,有三种处理方式:1)牺牲一个单元来区分队空和队满,队头指针在队尾指针的下一位置作为队满的标志:队满条件为:(Q.rear+1)%MaxSize == Q.front队空条件仍为:Q.front==Q.rear队列中元素的个数:(Q.rear-Q.front+MaxSize)%MaxSize2)类型中增设表示元素个数的数据成员:队空条件为:Q.size== 0队满条件为:Q.size == Maxsize3)类型中增设tag数据成员,以区分是队满还是队空。
队列的链式表示称为链队列,是一个同时带有队头指针和队尾指针的单链表。
头指针指向队头结点,尾指针指向队尾结点,即单链表的最后一个结点。
当Q.front==NULL && Q.rear == NULL时,链式队列为空。
双端队列是指允许两端都可以进行入队和出队操作的队列,其元素的逻辑结构仍是线性结构。
输出受限的双端队列:允许在一端进行插入和删除,但在另一端只允许插入。
输入受限的双端队列:允许在一端进行插入和删除,但在另一端只允许删除。