电涡流位移传感器
电涡流传感器(位移)
![电涡流传感器(位移)](https://img.taocdn.com/s3/m/0c841ed333d4b14e8524680b.png)
Your company slogan
1 电涡流式传感器原理
电涡流探头结构
1—电涡流线圈 2—探头壳体 3—壳体上的位置调节螺纹 4—印制线路 板 5—夹持螺母 6—电源指示灯 7—阈值指示灯 8—输出屏蔽电缆线 9—电缆插头
Your company slogan
2 电涡流传感器测量电路
电桥测量电路 在进行测量时,由于传感器线圈的阻抗发生变化,使电桥 失去平衡,将电桥不平衡造成的输出信号进行放大并检波, 就可得到与被测量成正比的输出。 谐振法 谐振法主要有调幅式电路和调频式电路两种基本形式。调 幅式由于采用了石英晶体振荡器,因此稳定性较高,而调 频式结构简单,便于遥测和数字显示。
Your company slogan
Your company slogan
1 电涡流式传感器原理
高频反射电涡流传感器等效电路
R
M
R
1
U
·
1
I
·
1
I
L
1
·
2
L
2
Z1=R+jωL1 RI1+jωL1I1-jωMI2=U1 -jωMI1+R1I2+jωL2I2=0
Your company slogan
1 电涡流式传感器原理
传感器线圈的等效阻抗
Your company slogan
1 电涡流式传感器原理
电涡流传感器分类 涡流传感器在金属体上产生的电涡流, 涡流传感器在金属体上产生的电涡流,其渗透深度从传感器线圈自身 原因来讲主要与励磁电流的频率有关, 原因来讲主要与励磁电流的频率有关,所以涡流传感器主要可分高频 反射的低频投射两类。 反射的低频投射两类。
电涡 传感 (
电涡流位移传感器测量横梁振动实验思考及建议
![电涡流位移传感器测量横梁振动实验思考及建议](https://img.taocdn.com/s3/m/956c20c4710abb68a98271fe910ef12d2af9a9f6.png)
电涡流位移传感器测量横梁振动实验思考及建议
电涡流位移传感器是一种常用于测量物体振动的传感器,可以用于横梁振动实验。
以下是一些关于电涡流位移传感器测量横梁振动实验的思考和建议:
传感器选择:选择适合的电涡流位移传感器,具有高灵敏度、高精度和快速响应的特点。
确保传感器能够准确测量横梁的微小振动,并输出稳定的信号。
安装位置:将传感器正确安装在横梁上,通常应选择横梁的振动最大的位置进行安装。
确保传感器与横梁的接触良好,避免传感器与其他结构物干扰。
实验设置:在进行横梁振动实验之前,需要明确实验的目的和参数设置。
确定振动频率范围、振幅大小等参数,并进行相应的实验设计。
数据采集与处理:使用合适的数据采集系统,将传感器输出的信号准确记录下来。
对于横梁振动实验的数据处理,可以使用相应的信号处理算法进行频谱分析、频率特性提取等。
实验结果分析:根据测得的振动数据,进行振动特性分析和评估。
通过分析振动频率、振幅等参数,可以了解横梁的固有频率、振动模态等信息。
实验改进建议:根据实验结果,对横梁的振动特性进行分析,发现问题和改进的空间。
可能需要优化横梁的结构设计、调整支撑方式或改进材料等,以改善横梁的振动性能。
总之,电涡流位移传感器在测量横梁振动实验中起着重要的作用。
合理选择传感器,正确安装,精确记录数据,并进行有效的数据处理和结果分析,可以为横梁振动特性的研究提供有价值的信息和改进建议。
电涡流传感器位移特性实验报告
![电涡流传感器位移特性实验报告](https://img.taocdn.com/s3/m/8abe0a7b3868011ca300a6c30c2259010202f389.png)
电涡流传感器位移特性实验报告
一、实验目的
通过实验研究电涡流传感器的位移特性,了解电涡流传感器的工作原理和应用范围。
二、实验原理
三、实验器材
1.电涡流传感器
2.信号发生器
3.示波器
4.金属样品
四、实验步骤
1.将电涡流传感器固定在实验台上,将金属样品放在传感器的检测区域内。
2.连接信号发生器和示波器,设置合适的频率和电压。
3.逐渐增加金属样品的位移,观察信号发生器输出的频率和示波器显示的波形变化。
4.记录金属样品位移和传感器输出信号的对应关系。
五、实验结果
在实验中,我们逐渐增加金属样品的位移,观察信号发生器输出的频
率和示波器显示的波形变化。
根据实验结果,可以得到金属样品的位移和
传感器输出信号的对应关系。
六、实验讨论
通过实验,我们发现位移增加时,传感器输出信号的频率也相应增加。
这是因为金属样品位移增加时,电涡流的密度和分布发生变化,导致传感
器测量到的电磁感应信号频率发生变化。
七、实验结论
通过本次实验,我们了解了电涡流传感器的位移特性,得到了金属样
品位移和传感器输出信号的对应关系。
电涡流传感器可以通过测量金属物
体表面电涡流的变化来检测金属物体位移,具有广泛的应用前景。
八、实验感想。
米朗科技电涡流位移传感器说明书
![米朗科技电涡流位移传感器说明书](https://img.taocdn.com/s3/m/d0946a5753d380eb6294dd88d0d233d4b04e3f12.png)
电涡流传感器系统的工作原理是电涡流效应,属于一种电感式测量原理。
电涡流效应源自振荡电路的能量。
而电涡流需要在可导电的材料内才可以形成。
给传感器探头内线圈导入一个交变电流以在探头线圈周围形成一个磁场。
如果将一个导体放入这个磁场,根据法拉第电磁感应定律激发出电涡流。
根据楞兹定律,电涡流的磁场方向与线圈磁场正好相反,而这将改变探头内线圈的阻抗性能参数测量量程1mm 2mm 4mm 5mm 12.5mm 20mm 25mm 50mm探头直径Φ6mm Φ8mm Φ11mm Φ17mm Φ30mm Φ40mm Φ50mm Φ60mm线性误差≤±0.25 ≤±0.25 ≤±0.5 ≤±0.5 ≤±1 ≤±1 ≤±1 ≤±2 (%FS)分辨率0.05um 0.1um 0.2um 0.25um 0.625um 1.0um 1.25um 2.5um重复性0.1um 0.2um 0.4um 0.5um 1.25um 2.0um 2.5um 5um频率响应0~10KHz 0~8KHz 0~2KHz 0~1KHz (-3dB)输出信号0~5V,0~10V,4~20mA,RS485电压型+9~18VDC,+18~36VDC或±15V~±18VDC可选供电电压电流型+22~30VDC,RS485型+12VDC电压型<45mA工作电流电流型<25mARS485型<40mA纹波≤20mV系统温漂≤0.05%/℃静态灵敏度根据输出信号和对应量程而定电压输出:负载能力<10KΩ输出负载电流输出:负载能力<500Ω标定时(20±5)℃环境温度探头-30℃~+150℃使用温度前置器-30℃~+85℃探头 IP67防护等级前置器 IP65探头电缆默认2m,可定制电源电缆默认2m,可定制接线定义电流型电压型RS485 棕线电源正 +24VDC 电源正 +12VDC或+24VDC 电源正 +12VDC黑线空电源负 0V 电源负 0V蓝线电流输出 OUT 输出正 OUT+ RS485 A+白线空输出负 OUT- RS485 B-屏蔽线接大地 GND 接大地 GND 接大地 GND探头典型结构图示在制作过程中,探头头部体一般采用耐高温ABS+PC工程塑料,通过“二次注塑”成型将线圈密封其中。
电涡流传感器应用
![电涡流传感器应用](https://img.taocdn.com/s3/m/bc2236cc227916888586d7d4.png)
2021/3/6
电涡流传感器应用
31
安检门演示
当有金属物体穿 越安检门时报警
2021/3/6
电涡流传感器应用
Hale Waihona Puke 32六、电涡流表面探伤
手持式裂纹测量仪
2021/3/6
电涡流传感器应用
油管探伤
33
滚子涡流探伤机
(参考无锡市通达滚子 有限公司资料)
滚子涡流探伤机 是由计算机控制的轴 承滚子表面微裂纹探 伤的专用设备,可探 出深 30μm的表面微小 裂纹。
2021/3/6
电涡流传感器应用
29
测量金属镀层或绝缘层厚度
2021/3/6
测量金 属镀层或绝 缘层厚度的 计算方法有 何区别?
电涡流传感器应用
30
五、电涡流式通道安全检查门
安检门的内部设置有发射线 圈和接收线圈。当有金属物体通 过时,交变磁场就会在该金属导 体表面产生电涡流,会在接收线 圈中感应出电压,计算机根据感 应电压的大小、相位来判定金属 物体的大小。在安检门的侧面还 安装一台“软x光”扫描仪,它对人 体、胶卷无害,用软件处理的方 法,可合成完整的光学图像。
2021/3/6
电涡流传感器应用
1
位移测量仪
位移测量包含:
偏心、间隙、位 置、倾斜、弯曲、变 形、移动、圆度、冲 击、偏心率、冲程、 宽度等等。来自不同 应用领域的许多量都 可归结为位移或间隙 变化。
数显位移测量仪及探头
2021/3/6
电涡流传感器应用
2
4~20mA电涡流位移传感器外形
(参考德国图尔克公司资料)
2021/3/6
电涡流传感器应用
6
某V系列电涡流位移传感器的机械图
电涡流位移传感器的原理
![电涡流位移传感器的原理](https://img.taocdn.com/s3/m/5d63dd8a168884868662d66b.png)
电涡流位移传感器的工作道理:电涡流传感器能静态和动态地非接触.高线性度.高分辩力地测量被测金属导体距探头概况距离.它是一种非接触的线性化计量对象.电涡传播感器能精确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变更.在高速扭起色械和来去式运念头械状况剖析,振动研讨.剖析测量中,对非接触的高精度振动.位移旌旗灯号,能持续精确地收集到转子振动状况的多种参数.如轴的径向振动.振幅以及轴向地位.电涡传播感器以其长期工作靠得住性好.测量规模宽.敏锐度高.分辩率高级长处,在大型扭起色械状况的在线监测与故障诊断中得到普遍运用.从转子动力学.轴承学的理论上剖析,大型扭起色械的活动状况,重要取决于其焦点—转轴,而电涡传播感器,能直接非接触测量转轴的状况,对诸如转子的不服衡.不合错误中.轴承磨损.轴裂纹及产生摩擦等机械问题的早期剖断,可供给症结的信息.依据法拉第电磁感应道理,块状金属导体置于变更的磁场中或在磁场中作切割磁力线活动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应.而依据电涡流效应制成的传感器称为电涡流式传感器.前置器中高频振荡电流畅过延长电缆流入探头线圈,在探头头部的线圈中产生交变的磁场.当被测金属体接近这一磁场,则在此金属概况产生感应电流,与此同时该电涡流场也产生一个偏向与头部线圈偏向相反的交变磁场,因为其反感化,使头部线圈高频电流的幅度和相位得到转变(线圈的有用阻抗),这一变更与金属体磁导率.电导率.线圈的几何外形.几何尺寸.电流频率以及头部线圈到金属导体概况的距离等参数有关.平日假定金属导体材质平均且机能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б.磁导率ξ.尺寸因子τ.头部体线圈与金属导体概况的距离D.电流强度I和频率ω参数来描写.则线圈特点阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来暗示.平日我们能做到掌握τ, ξ, б, I, ω这几个参数在必定规模内不变,则线圈的特点阻抗Z就成为距离D的单值函数,固然它全部函数是一非线性的,其函数特点为“S”型曲线,但可以拔取它近似为线性的一段.于此,经由过程前置器电子线路的处理,将线圈阻抗Z的变更,即头部体线圈与金属导体的距离D的变更转化成电压或电流的变更.输出旌旗灯号的大小随探头到被测体概况之间的间距而变更,电涡传播感器就是依据这一道理实现对金属物体的位移.振动等参数的测量.其工作进程是:当被测金属与探头之间的距离产生变更时,探头中线圈的Q值也产生变更,Q值的变更引起振荡电压幅度的变更,而这个随距离变更的振荡电压经由检波.滤波.线性抵偿.放大归一处理转化成电压(电流)变更,最终完成机械位移(间隙)转换成电压(电流).由上所述,电涡传播感器工作体系中被测体可看作传感器体系的一半,即一个电涡流位移传感器的机能与被测体有关.按照电涡流在导体内的贯串情形,此传感器可分为高频反射式和低频透射式两类,但从根本工作道理上来说仍是类似的.电涡流式传感器最大的特色是能对位移.厚度.概况温度.速度. 应力.材料毁伤等进行非接触式持续测量,别的还具有体积小,敏锐度高,频率响应宽等特色,运用极其普遍.典范运用:电涡传播感器体系普遍运用于电力.石油.化工.冶金等行业和一些科研单位.对汽轮机.水轮机.鼓风机.紧缩机.空分机.齿轮箱.大型冷却泵等大型扭起色械轴的径向振动.轴向位移.键相器.轴转速.胀差.偏幸.以及转子动力学研讨和零件尺寸磨练等进行在线测量和呵护. 轴向位移测量对于很多扭起色械,包含蒸汽轮机.燃汽轮机.水轮机.离心式和轴流式紧缩机.离心泵等,轴向位移是一个十分重要的旌旗灯号,过大的轴向位移将会引起过大的机构破坏.轴向位移的测量,可以指导扭转部件与固定部件之间的轴向间隙或相对瞬时的位移变更,用以防止机械的破坏.轴向位移是指机械内部转子沿轴心偏向,相对于止推轴承二者之间的间隙而言.有些机械故障,也可经由过程轴向位移的探测,进行判别:止推轴承的磨损与掉效均衡活塞的磨损与掉效止推法兰的松动联轴节的锁住等.轴向位移(轴向间隙)的测量,经常与轴向振动弄混.轴向振动是指传感器探头概况与被测体,沿轴向之间距离的快速变动,这是一种轴的振动,用峰峰值暗示.它与平均间隙无关.有些故障可以导致轴向振动.例如紧缩机的踹振和不合错误中等于.振动测量测量径向振动,可以由它看到轴承的工作状况,还可以看到转子的不服衡,不合错误中等机械故障.可以供给对于下列症结或基本机械进行机械状况监测所须要的信息:·工业透平,蒸汽/燃汽·紧缩机,空气/特别用处气体,径向/轴向·电动马达·发电机·励磁机·齿轮箱·泵·电扇·鼓风机·来去式机械振动测量同样可以用于对一般性的小型机械进行持续监测.可为如下各类机械故障的早期判别供给了重要信息.胀差测量对于汽轮发电机组来说,在其启动和停机时,因为金属材料的不合,热膨胀系数的不合,以及散热的不合,轴的热膨胀可能超出壳体膨胀;有可能导致透平机的扭转部件和静止部件(如机壳.喷嘴.台座等)的互相接触,导致机械的破坏.是以胀差的测量是异常重要的.转速测量对于所有扭起色械而言,都须要监测扭起色械轴的转速,转速是权衡机械正常运转的一个重要指标.而电涡传播感器测量转速的优胜性是其它任何传感器测量没法比的,它既能响应零转速,也能响应高转速,抗干扰机能也异常强.转速测量对于所有扭起色械而言,都须要监测扭起色械轴的转速,转速是权衡机械正常运转的一个重要指标.而电涡传播感器测量转速的优胜性是其它任何传感器测量没法比的,它既能响应零转速,也能响应高转速,抗干扰机能也异常强.电涡传播感器测转速,平日选用φ3mm.φ4mm.φ5mm.φ8mm.φ10mm 的探头.转速测量频响为0~10KHZ. 电涡传播感器测转速,传感器输出的旌旗灯号幅值较高(在低速和高速全部规模内)抗干扰才能强. 无源磁电式传感器是针对测齿轮而设计的发电型传感器(无源),不合适测零转速和较低转速,因低频时,幅值旌旗灯号小,抗干扰才能差,它不须要供电. 有源磁电式传感器采取了+24V 供电,输出波形为矩形波,具有负载驱动才能,合适测量 0.03HZ以上转速旌旗灯号.装配请求:1.轴的径向振动测量当须要测量轴的径向振动时,请求轴的直径大于探头直径的三倍以上.每个测点应同时装配两个传感器探头,两个探头应分离装配在轴承双方的统一平面上相隔90o±5o.因为轴承盖一般是程度朋分的,是以平日将两个探头分离装配在垂直中间线每一侧45o,从原念头端看,分离界说为X探头(程度偏向)和Y探头(垂直偏向),X偏向在垂直中间线的右侧,Y偏向在垂直中间线的左侧.轴的径向振动测量时探头的装配地位应当尽量接近轴承,如图所示,不然因为轴的挠度,得到的值会有误差.轴的径向振动探头装配地位与轴承的最大距离.轴的径向振动测量时探头的装配:测量轴承直径最大距离0~76mm 25mm76~510mm 76mm大于520mm 160mm探头中间线应与轴心线正交,探头监测的概况(正对探头中间线的双方1.5倍探头直径宽度的轴的全部圆周面,如图)应无裂缝或其它任何不持续的概况现象(如键槽.凸凹不服.油孔等),且在这个规模内不克不及有喷镀金属或电镀,其概况的粗糟度应在0.4 um至0.8um之间.2.轴的轴向位移测量测量轴的轴向位移时,测量面应当与轴是一个整体,这个测量面是以探头的中间线为中间,宽度为 1.5倍的探头圆环.探头装配距离距止推法兰盘不该超出305mm,不然测量成果不但包含轴向位移的变更,并且包含胀差在内的变更,如许测量的不是轴的真实位移值.3.键相测量键相测量就是经由过程在被测轴上设置一个凹槽或凸键,称键相标识表记标帜.当这个凹槽或凸键转到探头地位时,相当于探头与被测面间距突变,传感器会产生一个脉冲旌旗灯号,轴每转一圈,就会产生一个脉冲旌旗灯号,产生的时刻标清楚明了轴在每转周期中的地位.是以经由过程对脉冲计数,可以测量轴的转速;经由过程将脉冲与轴的振动旌旗灯号比较,可以肯定振动的相位角,用于轴的动均衡剖析以及装备的故障剖析与诊断等方面.凹槽或凸键要足够大,以使产生的脉冲旌旗灯号峰峰值不小于5V.一般若采取φ5.φ8探头,则这一凹槽或凸键宽度应大于7.6mm.深度或高度应大于1.5mm(推举采取2.5mm以上).长度应大于0.2mm.凹槽或凸键应平行于轴中间线,其长度尽量长,以防当轴产生轴向窜动时,探头还能对着凹槽或凸键.为了防止因为轴相位移引起的探头与被测面之间的间隙变更过大,应将键相探头装配在轴的径向,而不是轴向的地位.应尽可能地将键相探头装配在机组的驱动部分上,如许即使机组的驱动部分与载荷离开,传感器仍会有键信任号输出.当机组具有不合的转速时平日须要有多套键相传感器探头对其进行监测,从而可认为机组的各部分供给有用的键信任号.键相标识表记标帜可所以凹槽,也可所以凸键,如图所示,尺度请求用凹槽的情势.当标识表记标帜是凹槽时,装配探头要对着轴的完全部分调剂初始装配间隙(装配在传感器的线性中点为宜),而不是对着凹槽来调剂初始装配间隙.而当标识表记标帜是凸键时探头必定要对着凸起的顶部概况调剂初始装配间隙(装配在传感器的线性中点为宜),不是对着轴的其它完全概况进行调剂.不然当轴迁移转变时,可能会造成凸键与探头碰撞,剪断探头.被测体对电涡传播感器特点的影响:1.被测体材料对传感器的影响传感器特点与被测体的电导率б.磁导率ξ有关,当被测体为导磁材料(如通俗钢.构造钢等)时,因为涡流效应和磁效应同时消失,磁效应反感化于涡流效应,使得涡流效应削弱,即传感器的敏锐度降低.而当被测体为弱导磁材料(如铜,铝,合金钢等)时,因为磁效应弱,相对来说涡流效应要强,是以传感器感应敏锐度要高.2.被测体概况平整度对传感器的影响不规矩的被测体概况,会给现实的测量带来附加误差,是以对被测体概况应当平整滑腻,不该消失凸起.洞眼.刻痕.凹槽等缺点.一般请求,对于振动测量的被测概况光滑度请求在0.4um~0.8um之间;对于位移测量被测概况光滑度请求在0.4um~1.6um 之间.3.被测体概况磁效应对传感器的影响电涡流效应重要分散在被测体概况,假如因为加工进程中形成残磁效应,以及淬火不平均.硬度不平均.金相组织不平均.结晶构造不平均等都邑影响传感器特点.在进行振动测量时,假如被测体概况残磁效应过大,会消失测量波形产生畸变.4.被测体概况镀层对传感器的影响被测体概况的镀层对传感器的影响相当于转变了被测体材料,视其镀层的材质.厚薄,传感器的敏锐度会略有变更.5.被测体概况尺寸对传感器的影响因为探头线圈产生的磁场规模是必定的,而被测体概况形成的涡流场也是必定的.如许就对被测体概况大小有必定请求.平日,当被测体概况为平面时,以正对探头中间线的点为中间,被测面直径应大于探头头部直径的1.5倍以上;当被测体为圆轴且探头中间线与轴心线正交时,一般请求被测轴直径为探头头部直径的3倍以上,不然传感器的敏锐度会降低,被测体概况越小,敏锐度降低越多.试验测试,当被测体概况大小与探头头部直径雷同,其敏锐度会降低到72%阁下.被测体的厚度也会影响测量成果.被测体中电涡流场感化的深度由频率.材料导电率.导磁率决议.是以假如被测体太薄,将会造成电涡流感化不敷,使传感器敏锐度降低,一般请求厚度大于0.1mm以上的钢等导磁材料及厚度大于0.05mm以上的铜.铝等弱导磁材料,则敏锐度不会受其厚度的影响.设计总结:经由过程进修这门课程让我学到了以前没接触过的器械.让我熟悉到了传感器在我们生涯中的一些现实运用,没有传感器级没有现代科学技巧,更没有人类现代化的生涯情形和前提.但是要研制出更好的电涡流位移传感器还要做很多.和进修很多相干常识.这不但仅是为进修电涡传播感器做预备更是给我们本身充电.。
电涡流位移传感器的原理及其静态标定方法
![电涡流位移传感器的原理及其静态标定方法](https://img.taocdn.com/s3/m/a5d8241f6edb6f1aff001ff2.png)
电涡流位移传感器的原理及其静态标定方法电涡流是20世纪70年代以后发展较快的一种新型传感器,它广泛的应用在位移震动检测、金属材质鉴别,无损探伤等技术领域。
实验目的:了解电涡流位移传感器的结构和工作原理。
了解电涡流位移传感器的静态标定方法。
实验原理结构:变间隙式是最常用的一种电涡流传感器形式,它的结构很简单,由一个扁平线圈固定在框架上构成。
线圈用高强度漆包铜线或银线绕成,用粘结剂粘在框架端部或是绕指在框架槽内。
线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚四氟乙烯等。
由于激励频率较高,对所用的电缆和插头也要充分重视,一般使用专用的高频电缆和插头。
工作原理:在传感器线圈中通以高频电流,则在线圈中产生高频交变磁场。
当到点被测金属板接近线圈,并置于线圈的磁场范围内,交变磁场在金属板的表面层内产生感应电流,即电涡流。
电涡流又产生一个反向的磁场,减弱了线圈的原磁场,从而导致线圈的电感量、阻抗和品质因素发生变化,这些参数的变化与导体的几何形状、电导率、线圈的几何参数、电流的频率以及线圈与被测导体间的距离有关。
如果控制上述参数的变化,在其他条件不变的情况下,仅是线圈与金属板之间距离的单值函数,从而达到测量位移间隙的目的。
测量电路当传感器接近被测导体时,损耗功率增大,回路失谐,输出电压相应变小。
这样,在一定范围内,输出电压幅值与间隙呈近似线性关系。
由于输出电压的频率始终恒定,因此称为定频幅式。
这种电路采用适应晶体振荡器,旨在获得高稳定度频率的高频激励信号,以保证稳定的输出。
实验仪器与材料电涡流位移传感器静态标定系统Hz-8500探头前置器8511型电涡流探头电涡流传感器测量装置高精度数字万用表。
实验内容:实验一:被测金属板采用铝质板,测量U-x 关系曲线。
实验二:被测金属板仍采用铝质板,但直径较小,测量U-x 关系曲线。
实验三:被测金属板采用铁板,测量U-x 关系曲线。
5、实验数据:实验一数据:6、实验要求:1、画出(实验一)中的U-x 关系曲线,确定传感器的线性工作范围计算传感器的灵敏度。
YD9800电涡流位移传感器
![YD9800电涡流位移传感器](https://img.taocdn.com/s3/m/78d38af3a76e58fafbb0031d.png)
YD9800电涡流位移传感器YD9800电涡流位移传感器能测量被测体(必须是金属导体)与探头端面的相对位置。
由于其非接触测量、长期工作可靠性高、灵敏度高、抗干扰能力强、响应速度快、不受油水等介质的影响,常被用于对大型旋转机械的轴位移、轴振动、轴转速等参数进行长期实时监测,可以分析出设备的工作状况和故障原因,有效地对设备进行保护及进行预测性维修。
可测量位移、振幅、转速、尺寸、厚度、表面不平度等。
从转子动力学、轴承学的理论上分析,大型旋转机械的运行状态主要取决于其核心——转轴,而电涡流位移传感器能直接测量转轴的状态,测量结果可靠、可信。
第一节简介YD9800系列电涡流位移传感器的领先科技:1、“线圈最佳温度稳定性参数匹配”技术保证良好的探头温度稳定性;2、采用新型PPS工程塑料通过“二次注塑”工艺,保证良好的探头密封性、尺寸稳定性和互换性,工作温度范围扩展到-50℃~+175℃;3、“变形联接”工艺组合,更高探头强度、可靠性;4、“深度负反馈稳定谐振回路”技术,使前置器稳定性达到(0.05%/℃, 0.02%/年);5、按美国军用规范设计生产,前置器可在-50~+105℃环境下长期连续工作;6、前置器电路采用容错设计,保证任意接线错误不会损坏;7、前置器采用最新电子技术,功耗低于12mA;8、前置器壳体采用压铸工艺、高频插座内凹及接线端子镶嵌保护、工程塑料隔离绝缘等结构,使前置器更加坚固、安装使用更加方便;9、先进的电涡流位移传感器相频特性的测试和控制方法,使JX20系列产品在动态特性方面处于国际领先水平。
应用领域:正广泛应用于电力、石油化工、冶金等行业的汽轮机、水轮机、发电机、鼓风机、压缩机、齿轮箱等设备的位移、振动、转速、油膜厚度等参数的在线监测与故障诊断。
典型应用示意技术指标探头:工作温度-50~+175°C温漂≤0.05%/°C前置器:工作温度-50~+120°C温漂≤0.05%/°C互换性:误差≤5%频响:0~10kHz;幅频特性1kHz处-1%、10kHz处-5%;相频特性1kHz 处-1°、10kHz处-100°输出特性:1、负电压输出供电电源:-18Vdc~-24Vdc 功耗≤12mA(不含输出电流)2、4~20mA电流输出供电电源:+18Vdc~+30Vdc 功耗≤12mA(不含输出电流)第二节探头型号规格A 探头直径选择☆选择探头直径,应保证其线性量程大于被测体最大移动范围20%以上,除非被测面面积不能满足最小试件尺寸要求或安装空间限制,应该选择较大的线性量程。
电涡流位移传感器介绍
![电涡流位移传感器介绍](https://img.taocdn.com/s3/m/2bf90fca58f5f61fb7366625.png)
④ 如果验收不合格,请尽快与本公司联系。
2、 贮存 如果长期不使用,传感器系统应存放在温度介于-30℃~70℃、相
对湿度不大于 90%的整洁室内,且室内空气中不得含有腐蚀性气体。 存放期达一年以上的,使用前应重新校准。 3、试件材料
ZA21 系列前置器只有一种外形结构。 外型尺寸: 78×70×30(mm) 安装尺寸: DIN35 导轨安装 供电电源 UT: 1、 -20V DC~-26V DC,输出电压极限:-0.7V~(UT+1)V,线性
量程内输出电压范围:-2V~-18V。 2、 亦可使用供电电源+20V~+26V 输出电压极限: 0.7V~(UT-1)
探头壳体用于连接和固定探头头部,并作为探头安装时的装夹结
构。壳体一般采用不锈钢制成(对于高温、高压、强酸、强碱等特殊
环境的应用、本公司可以为用户提供一体化全陶瓷探头头部和壳体的
探头),一般上面刻有标准螺纹,并备有锁紧螺母。为了能适应不同的
应用和安装场合,探头壳体具有不同的形式和不同的螺纹及尺寸规格
(见附录 A)。
一套完整的传感器系统主要包括探头、延伸电缆(用户可以根据 需要选择)、前置器和附件。系统组成见图 1-1。
图 1-1 一套完整的传感器系统的组成
★ 与同类产品的兼容性 ZA21 系列电涡流位移传感器的各项性能指标相当或接近美国本
特利(BN)公司的 3300 系列产品水平,优于国内任何一家公司的同 类产品。
① 将系统各部分从包装箱取出。检查是否存在由于运输不当造 成的损坏。如果有,应立即与承运单位交涉提出索赔,并将情况反映 给本公司。
实验 电涡流传感器位移特性实验
![实验 电涡流传感器位移特性实验](https://img.taocdn.com/s3/m/395cdd134a7302768e9939cc.png)
实验电涡流传感器位移特性实验一、实验目的:了解电涡流传感器测量位移的工作原理和特性。
二、基本原理:电涡流式传感器是一种建立在涡流效应原理上的传感器。
电涡流式传感器由传感器线圈和被测物体(导电体—金属涡流片)组成,如图17.1.1所示。
根据电磁感应原理,当传感器线圈(一个扁平线圈)通以交变电流(频率较高,一般为1MHz~2MHz)I1时,线圈周围空间会产生交变磁场H1,当线圈平面靠近某一导体面时,由于线圈磁通链穿过导体,使导体的表面层感应出呈旋涡状自行闭合的电流I2,而I2所形成的磁通链又穿过传感器线圈,这样线圈与涡流“线圈”形成了有一定耦合的互感,最终原线圈反馈一等效电感,从而导致传感器线圈的阻抗Z发生变化。
我们可以把被测导体上形成的电涡等效成一个短路环,这样就可得到如图17.1.2的等效电路。
图中R1、L1为传感器线图17.1.1 电涡流传感器原理图图17.1.2 电涡流传感器等效电路图圈的电阻和电感。
短路环可以认为是一匝短路线圈,其电阻为R2、电感为L2。
线圈与导体间存在一个互感M,它随线圈与导体间距的减小而增大。
根据等效电路可列出电路方程组:通过解方程组,可得I1、I2。
因此传感器线圈的复阻抗为:线圈的等效电感为:线圈的等效Q 值为:Q =Q 0{[1-(L2ω2M2)/(L1Z22)]/[1+(R 2ω2M2)/( R 1Z22)]}式中:Q 0 — 无涡流影响下线圈的Q值,Q 0=ωL1/R 1; Z22— 金属导体中产生电涡流部分的阻抗,Z22=R 22+ω2L 22。
由式Z 、L 和式Q可以看出,线圈与金属导体系统的阻抗Z 、电感L 和品质因数Q值都是该系统互感系数平方的函数,而从麦克斯韦互感系数的基本公式出发,可得互感系数是线圈与金属导体间距离x(H)的非线性函数。
因此Z 、L 、Q均是x的非线性函数。
虽然它整个函数是一非线性的,其函数特征为"S"型曲线,但可以选取它近似为线性的一段。
(完整版)电涡流位移传感器.
![(完整版)电涡流位移传感器.](https://img.taocdn.com/s3/m/fc268612d5bbfd0a785673b4.png)
传感器课程设计燕山大学课程设计说明书题目:电涡流位移传感器设计学院(系):电气工程系年级专业: 14级工业仪表 1班学号: 131203021060学生姓名:韩升升指导教师:程淑红教师职称:副教授燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:电子实验中心学生姓名学号专业(班级)设计题目电涡流位移传感器设计设计技术参数工作计划12答辩并写好任务书画出电路图和探头部分结构图【 1】贾伯年传感器技术东南大学出版社 2007参考资料【 2】林志琦信号发生电路原理与实用设计人民邮电出版社2010【 3】Arthur B.Williams术出版社 2008著宁彦卿译电子滤波器设计科学技指导教师签基层教学单位主任签字字说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
年月日目录摘要⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 5 5 6 6 6 8 电涡流位移传感器设计⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯一、总体设计方案⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯二、电涡流传感器 的基本原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2.1电涡流传感器工作原理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2.2电涡流传感器等效电路分析⋯⋯⋯⋯⋯⋯⋯⋯⋯2.3电涡流传感器测量电路原理⋯⋯⋯⋯⋯⋯⋯⋯⋯三、实验数据⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 3.1 3.2 电涡流透射式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯电涡流反射式⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯15 15 个人小结⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17 17摘要随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。
特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显著。
传感器技术的应用在许多个发达国家中,已经得到普遍重视。
在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。
WT 系列电涡流位移传感器 说明书
![WT 系列电涡流位移传感器 说明书](https://img.taocdn.com/s3/m/7758dce8da38376baf1fae59.png)
WT系列电涡流位移传感器概述电涡流传感器就是能静态和动态地非接触,高线性度,高分辨力地测量被测金属导体距探头表面的距离。
它是一种非接触的线性化计量工具。
电涡流位移传感器,能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。
在对高速旋转机械和往复式运动机械状态分析,即振动研究、分析测量中,非接触的高精度振动、位移信号测量,能连续准确地采集到转子振动状态的多种参数。
如轴的径向振动、振幅以及轴向位置。
在所有的与机械状态有关的故障征兆中,机械振动测量是最具权威性的,这是由于它同时含有幅值,相位和频率的信息。
机械振动测量占有优势的另一个原因是:它能反应出机械所有大的损坏并易于测量。
从转子动力学,轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流位移传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。
电涡流位移传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响,结构简单等优点。
因此在大型旋转机械状态在线监测与故障诊断中得到广泛应用。
电涡流传感器的工作原理及特性探头、(延伸电缆)、前置器以及被测体构成基本工作系统。
前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。
如果在这一交变磁场的有效范围内没有金属材料靠近,则这一磁场能量会全部损失;当有被测金属体靠近这一磁场,则在此金属表面产生感应电流,电磁学上称之为电涡流。
与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。
通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。
涡流传感器位移实验报告
![涡流传感器位移实验报告](https://img.taocdn.com/s3/m/119b81b14bfe04a1b0717fd5360cba1aa9118c64.png)
一、实验目的1. 理解涡流传感器的工作原理及其在位移测量中的应用。
2. 掌握电涡流传感器位移测量的基本操作流程。
3. 分析电涡流传感器在不同位移条件下的测量特性。
二、实验原理电涡流传感器是利用电磁感应原理进行非接触式测量的传感器。
当高频电流通过传感器线圈时,会在其周围产生交变磁场。
当金属被测物体靠近该磁场时,会在物体表面产生感应电流,即电涡流。
电涡流的产生会消耗部分能量,从而改变传感器线圈的阻抗,进而影响线圈的输出电压。
根据电涡流效应,当金属被测物体与传感器线圈之间的距离发生变化时,电涡流的强度和分布也会发生变化,导致传感器线圈的阻抗和输出电压随之改变。
通过测量线圈阻抗或输出电压的变化,可以实现对金属被测物体位移的测量。
三、实验器材1. 电涡流传感器2. 被测金属圆片3. 测微头4. 数显电压表5. 直流电源6. 连接导线7. 主控箱四、实验步骤1. 将电涡流传感器安装在主控箱上,并将传感器输出线接入实验模块的标有“TI”的插孔中。
2. 将测微头端部装上铁质金属圆片,作为电涡流传感器的被测体。
3. 将电涡流传感器输出线接入实验模块的输出端Vo,并与数显电压表输入端Vi相接。
4. 将实验模块输出端Vo与数显电压表输入端Vi相接,并选择电压20V档。
5. 用连接导线从主控台接入15V直流电源到模块上标有15V的插孔中,同时主控台的地与实验模块的地相连。
6. 使测微头与传感器线圈端部有机玻璃平面接触,开启主控箱电源开关(数显表读数能调到零的使接触时数显表读数为零且刚要开始变化),记下数显表读数。
7. 每隔0.1mm读取一次数显表读数,直到输出几乎不变为止。
8. 将结果列入表格,并绘制位移-电压曲线。
五、实验结果与分析1. 位移-电压曲线如图所示,可以看出电涡流传感器具有较好的线性度,且在较小的位移范围内,其测量精度较高。
2. 通过曲线拟合,可以得到电涡流传感器的线性区域,并选择最佳工作点进行位移测量。
电涡流位移传感器原理与应用-(38003)
![电涡流位移传感器原理与应用-(38003)](https://img.taocdn.com/s3/m/fe22e466cf84b9d528ea7a62.png)
电涡流位移(振动)传感器原理与应用电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。
它是一种非接触的线性化计量工具。
电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。
在高速旋转机械和往复式运动机械的状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。
如轴的径向振动、振幅以及轴向位置。
从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。
电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。
一、电涡流传感器的基本原理根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。
而根据电涡流效应制成的传感器称为电涡流式传感器。
前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。
当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。
通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。
则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。
电涡流传感器轴向位移的测量
![电涡流传感器轴向位移的测量](https://img.taocdn.com/s3/m/84be13587ed5360cba1aa8114431b90d6c858918.png)
电涡流传感器在振动测量上的应用
径向振动是振动测量中比较重要的一项指标,径向振动是指垂直于转轴中心线方向的振动。
使用电涡流传感器测量径向振动,可以由它看到轴承的工作状态,还可以看到转子的不平衡、不对中等机械故障,提供一些关键或基础机械状态监测所需要的信息,主要包括:1、工业透平,蒸汽/燃汽;2、压缩机,空气/特殊用途气体,径向/轴向;3、膨胀机;4、动力发电透平,蒸汽/燃汽/水利;5、电动马达、发电机;6、励磁机;7、齿轮箱;8、泵;
9、风扇、风机;10、往复式机械。
振动测量同样可以用于对一般性的小型机械进行连续监测。
可为如下各种机械故障的早期判别提供了重要信息:
1、轴的同步振动,油膜失稳;
2、转子摩擦,部件松动;
3、轴承套筒松动,压缩机踹振;
4、滚动部件轴承失效,径向预载,内部/外部包括不对中;
5、轴承巴氏合金磨损,轴承间隙过大,径向/轴向;
6、平衡(阻气)活塞磨损/失效,联轴器“锁死”;
7、轴弯曲,轴裂纹;
8、电动马达空气间隙不匀,齿轮咬合问题;
9、透平叶片通道共振,叶轮通过现象。
电涡流位移传感器原理
![电涡流位移传感器原理](https://img.taocdn.com/s3/m/0ad17f88d4bbfd0a79563c1ec5da50e2524dd132.png)
电涡流位移传感器原理电涡流位移传感器是一种常用于测量金属表面位移的传感器,它利用了涡流的原理来实现非接触式的位移测量。
在工业领域,电涡流位移传感器被广泛应用于机械加工、汽车制造、航空航天等领域,具有高精度、高灵敏度和长寿命等优点。
电涡流位移传感器的原理基于法拉第电磁感应定律和涡流的概念。
当导体相对于磁场运动时,会在导体内产生涡流。
根据涡流的特性,当金属表面有位移时,导体内的涡流也会发生变化。
电涡流位移传感器正是利用了这一原理,通过测量涡流的变化来实现对金属表面位移的精确测量。
电涡流位移传感器由激励线圈和感应线圈组成。
激励线圈通电产生交变磁场,而感应线圈则用来检测金属表面涡流的变化。
当金属表面发生位移时,涡流的密度和分布都会发生改变,从而影响感应线圈中感应电动势的大小和频率。
通过测量感应电动势的变化,就可以得到金属表面的位移信息。
电涡流位移传感器具有高精度和高灵敏度的特点,可以实现微小位移的测量。
由于其非接触式的测量方式,不会对被测金属表面造成损伤,因此在一些对被测物体表面要求严格的场合,电涡流位移传感器具有独特的优势。
此外,电涡流位移传感器还具有快速响应和长寿命的特点。
由于其工作原理的特殊性,电涡流位移传感器不受被测物体表面特性的影响,可以适用于各种金属材料的位移测量。
因此,在工业生产中,电涡流位移传感器被广泛应用于各种机械零件的位移监测和质量控制。
总之,电涡流位移传感器利用了涡流的原理,实现了对金属表面位移的精确测量。
它具有高精度、高灵敏度、非接触式测量、快速响应和长寿命等优点,在工业领域具有广泛的应用前景。
随着科技的不断进步,电涡流位移传感器的性能将得到进一步提升,为工业生产提供更加可靠、高效的位移测量解决方案。
电涡流位移传感器的原理
![电涡流位移传感器的原理](https://img.taocdn.com/s3/m/51c876540975f46526d3e113.png)
电涡流位移传感器的原理集团标准化工作小组 [Q8QX9QT-X8QQB8Q8-NQ8QJ8-M8QMN]电涡流位移传感器的工作原理:电涡流能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面距离。
它是一种非接触的线性化计量工具。
电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。
在高速旋转机械和往复式运动机械状态分析,振动研究、分析测量中,对非接触的高精度振动、位移信号,能连续准确地采集到转子振动状态的多种参数。
如轴的径向振动、振幅以及轴向位置。
电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高等优点,在大型旋转机械状态的在线监测与故障诊断中得到广泛应用。
从转子动力学、轴承学的理论上分析,大型旋转机械的运动状态,主要取决于其核心—转轴,而电涡流传感器,能直接非接触测量转轴的状态,对诸如转子的不平衡、不对中、轴承磨损、轴裂纹及发生摩擦等机械问题的早期判定,可提供关键的信息。
根据法拉第电磁感应原理,块状金属导体置于变化的磁场中或在磁场中作切割磁力线运动时,导体内将产生呈涡旋状的感应电流,此电流叫电涡流,以上现象称为电涡流效应。
而根据电涡流效应制成的传感器称为电涡流式传感器。
前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。
当被测金属体靠近这一磁场,则在此金属表面产生感应电流,与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。
通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。
则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。
电涡流位移传感器工作原理
![电涡流位移传感器工作原理](https://img.taocdn.com/s3/m/26f6ffd0cd22bcd126fff705cc17552707225e2a.png)
电涡流位移传感器工作原理小伙伴们!今天咱们来唠唠电涡流位移传感器这个超有趣的东西。
你知道吗?电涡流位移传感器就像是一个超级敏感的小侦探呢。
它主要是利用电涡流效应来工作的。
啥是电涡流效应呢?想象一下,你在一个平静的湖面上丢了一颗小石子,会激起一圈圈的涟漪吧。
在传感器的世界里,当一个通有交变电流的线圈靠近金属导体的时候,就会在金属导体里产生像那湖面上的涟漪一样的电涡流啦。
这个电涡流可不得了哦。
它会产生自己的磁场,这个磁场呢就会和原来线圈产生的磁场相互作用。
就像是两个小怪兽在打架一样,你影响我,我影响你。
当金属导体靠近或者远离传感器的线圈时,电涡流的大小就会发生变化呢。
为啥会这样呢?因为距离不一样了呀,就好像你和朋友之间的距离变了,你们之间的相互影响也就不一样了。
那这个变化有啥用呢?这可太有用啦。
传感器就是靠着检测这个电涡流的变化来知道金属导体的位移情况的。
比如说,在一个机器设备里,有个金属零件在来回移动。
电涡流位移传感器就像一个小眼睛一样盯着这个零件的位移。
如果这个零件移动得太离谱了,传感器就能马上发现,然后给其他设备发出信号,就像在喊:“那个零件跑错地方啦,快管管它!”这个传感器的线圈就像是一个魔法圈。
交变电流通过它的时候,就像给这个魔法圈注入了魔力。
当有金属靠近时,电涡流产生的磁场就会让这个魔法圈的魔力发生变化。
这种变化可以被转化成各种信号,比如电信号。
就好像魔法圈把它看到的金属的位移情况用一种特殊的语言告诉了其他设备。
而且哦,电涡流位移传感器还特别聪明呢。
它可以在很多不同的环境里工作。
不管是有点小灰尘的地方,还是有点小震动的地方,它都能坚守岗位。
不过呢,它也有自己的小脾气。
如果周围的环境太恶劣了,比如说温度特别高或者有很强的电磁干扰,它可能就会有点小迷糊啦。
在一些大型的工业设备里,电涡流位移传感器可是大功臣呢。
比如说在汽轮机里,那些高速旋转的金属部件的位移都得靠它来监测。
要是没有它,那些部件一旦发生位移异常,可能就会引发大事故呢。
电涡流式位移传感器实验报告
![电涡流式位移传感器实验报告](https://img.taocdn.com/s3/m/4a6655c6900ef12d2af90242a8956bec0875a54c.png)
电涡流式位移传感器实验报告前言位移传感器是一种用于测量目标物体位置变化的装置。
在各个领域中都有广泛的应用,比如工业自动化、机械制造以及医疗设备等。
本实验将研究一种常见的位移传感器——电涡流式位移传感器,并通过实验测试其性能和准确性。
一、实验原理电涡流位移传感器是一种非接触式传感器,通过检测金属目标物体上产生的电涡流来测量目标物体的位移。
当一个金属目标物体靠近传感器时,传感器中的线圈会产生交变磁场。
这个交变磁场会引起目标物体上的电流变化,从而产生一个反向的磁场与传感器磁场相互作用。
通过检测目标物体上的电流变化来测量目标物体的位移。
传感器输出的电压信号与目标物体的位置成正比。
二、实验准备1. 装置:电涡流位移传感器、目标物体、信号发生器、示波器。
2. 连接:将信号发生器和示波器连接到电涡流位移传感器上。
三、实验步骤1. 将目标物体放置在电涡流位移传感器的感应范围内。
2. 设置信号发生器的频率和振幅,可以根据实际需要进行设置。
3. 打开示波器,并选择合适的测量范围。
4. 观察示波器上显示的波形,并记录下电压的变化。
四、实验结果通过实验,我们得到了与目标物体位置变化相关的电压信号波形。
通过观察示波器上的波形,我们可以获得目标物体位移的信息。
实验结果表明电涡流式位移传感器具有较好的线性和精确性,可以用于准确测量目标物体的位移。
五、实验分析电涡流式位移传感器的原理是基于金属材料的导电性以及磁场和电流的相互作用。
目标物体的位置变化引起了电涡流的变化,从而影响传感器输出的电压信号。
通过对电压波形的观察和分析,我们可以得到目标物体位置变化的相关信息。
因此,电涡流式位移传感器在工业生产中应用非常广泛。
六、实验应用电涡流位移传感器可以用于各种需要测量位移的场合。
在机械制造中,可以用于检测零件的装配精度;在汽车工业中,可以用于测量活塞的位置变化;在医疗设备中,可以用于测量人体关节的运动等。
由于电涡流式位移传感器具有非接触式测量和高精度等特点,因此在现代工业中得到了广泛的应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
燕山大学课程设计说明书题目:电涡流位移传感器设计学院(系):电气工程系年级专业: 14级工业仪表1班学号:学生姓名:韩升升指导教师:程淑红教师职称:副教授燕山大学课程设计(论文)任务书院(系):电气工程学院基层教学单位:电子实验中心说明:此表一式四份,学生、指导教师、基层教学单位、系部各一份。
年月日目录摘要 (4)电涡流位移传感器设计 (5)一、总体设计方案 (5)二、电涡流传感器的基本原理 (6)电涡流传感器工作原理 (6)电涡流传感器等效电路分析 (6)电涡流传感器测量电路原理 (8)三、实验数据 (13)电涡流透射式 (13)电涡流反射式 (14)个人小结 (17)参考文献 (17)摘要随着现代测量、控制盒自动化技术的发展,传感器技术越来越受到人们的重视。
特别是近年来,由于科学技术的发展及生态平衡的需要,传感器在各个领域的作用也日益显着。
传感器技术的应用在许多个发达国家中,已经得到普遍重视。
在工程中所要测量的参数大多数为非电量,促使人们用电测的方法来研究非电量,及研究用电测的方法测量非电量的仪器仪表,研究如何能正确和快速的非电量技术。
电涡流传感器已成为目前电测技术中非常重要的检测手段,广泛的应用于工程测量和科学实验中。
关键词:电涡流式传感器传感器技术电量非电量电涡流位移传感器设计一、总体设计方案电涡流传感器能静态和动态地非接触、高线性度、高分辨力地测量被测金属导体距探头表面的距离。
它是一种非接触的线性化计量工具。
电涡流传感器能准确测量被测体(必须是金属导体)与探头端面之间静态和动态的相对位移变化。
电涡流传感器以其长期工作可靠性好、测量范围宽、灵敏度高、分辨率高、响应速度快、抗干扰力强、不受油污等介质的影响、结构简单等优点。
根据下面的组成框图,构成传感器。
根据组成框图,具体说明各个组成部分的材料:(1)敏感元件:传感器探头线圈是通过与被测导体之间的相互作用,从而产生被测信号的部分,它是由多股漆包铜线绕制的一个扁平线圈固定在框架上构成,线圈框架的材料是聚四氟乙烯,其顺耗小,电性能好,热膨胀系数小。
(2)传感元件: 前置器是一个用环氧树脂灌封并带有导线的装置,测量电路完全装在前置器中。
(3)测量电路:是由涡流传感器构成,将测量信息转换为直流电量输出。
本电路采用西勒振荡电路产生振荡频率,在经过滤波产生直流电量。
二、电涡流传感器的基本原理电涡流传感器工作原理根据法拉第电磁感应定律,当传感器探头线圈通以正弦交变电流i1时,线圈周围空间必然产生正弦交变磁场H1,它使置于此磁场中的被测金属导体表面产生感应电流,即电涡流,如图2-2中所示。
与此同时,电涡流i2又产生新的交变磁场H2;H2与H1方向相反,并力图削弱H1,从而导致探头线圈的等效电阻相应地发生变化。
其变化程度取决于被测金属导体的电阻率ρ,磁导率μ,线圈与金属导体的距离x,以及线圈激励电流的频率f 等参数。
如果只改变上述参数中的一个,而其余参数保持不变,则阻抗Z 就成为这个变化参数的单值函数,从而确定该参数的大小。
电涡流传感器的工作原理,如图2-2所示:电涡流传感器等效电路分析为了便于分析,把被测金属导体上形成的电涡流等效成一个短路环中的电流,这样就可以得到如图2-3所示的等效电路。
图中R1,L1为传感器探头线圈的电阻和电感,短路环可以认为是一匝短路线圈,其中R2,L2为被测导体的电阻和电感。
探头线圈和导体之间存在一个互感M,它随线圈与导体间距离的减小而增大。
U1为激励电压,根据基尔霍夫电压平衡方程式,上图等效电路的平衡方程式如下:经求解方程组,可得I1和I2表达式:由此可得传感器线圈的等效阻抗为:从而得到探头线圈等效电阻和电感。
通过式(2-4)的方程式可见:涡流的影响使得线圈阻抗的实部等效电阻增加,而虚部等效电感减小,从而使线圈阻抗发生了变化,这种变化称为反射阻抗作用。
所以电涡流传感器的工作原理,实质上是由于受到交变磁场影响的导体中产生的电涡流起到调节线圈原来阻抗的作用。
因此,通过上述方程组的推导,可将探头线圈的等效阻抗Z表示成如下一个简单的函数关系:其中,x为检测距离;μ为被测体磁导率;ρ为被测体电阻率;f为线圈中激励电流频率。
所以,当改变该函数中某一个量,而固定其他量时,就可以通过测量等效阻抗Z的变化来确定该参数的变化。
在目前的测量电路中,有通过测量ΔL或ΔZ等来测量x ,ρ,μ,f的变化的电路。
电涡流传感器测量电路原理电涡流传感器常用的测量电路有电桥电路和谐振电路,阻抗Z的测量一般用电桥,电感L的测量电路一般用谐振电路,其中谐振电路又分为调频式和调幅式电路。
电桥法是将传感器线圈的等效阻抗变化转换为电压或电流的变化。
图2-4为电桥法的原理图。
图中A,B两线圈作为传感器线圈。
传感器线圈与两电容的并联阻抗作为电桥的桥臂,起始状态,使电桥平衡。
在进行测量时,由于传感器线圈的等效阻抗发生变化,使电桥失去平衡,将电桥不平衡造成的输出信号进行放大并检波,就可得到与被测量成正比的输出。
电桥法主要用于两个电涡流线圈组成的差动式传感器。
谐振法是将传感器线圈的等效电感的变化转换为电压或电流的变化,传感器线圈与电容并联组成LC并联谐振回路,其谐振频率为,谐振时回路的等效阻抗最大,Z =L/RC,其中R为谐振回路等效电阻。
当线圈电感L发生变化时,回路的等效阻抗和谐振频率都将随L的变化为变化,因此可以利用测量回路阻抗的方法或测量回路谐振频率的方法间接测出传感器的被测值。
调频式电路是通过测量谐振频率的变化来进行测量,其结构简单,便于遥测和数字显示;而调幅式电路是通过测量等效阻抗的变化来进行测量,由于采用了石英晶体振荡器,因此稳定性较高。
下面以调幅式测量电路为例,说明谐振法的测量原理,如图2-5所示:从图中可以看出LC谐振回路由一个频率及幅值稳定的晶体振荡器提供一个高频信号激励谐振回路。
LC回路的输出电压为,其中i0为激励电流,Z为等效阻抗。
测量中,当探头线圈远离被测金属导体时,LC回路处于谐振状态,谐振回路上的输出电压最大;当探头线圈接近被测金属导体时,线圈的等效电感发生变化,导致回路失谐而等效阻抗发生变化,使输出电压下降。
输出的电压再经过放大,检波,滤波后由指示仪器(电压表)读出,或输入示波器显示电压波形。
这样就实现了将L-x 关系转换成V-x关系,通过对输出电压的测量,可确定电涡流传感器线圈与被测金属导体之间的距离x。
电涡流传感器就是利用涡流效应,将非电量转换为阻抗的变化而进行测量的本设计采用涡流转换器,其工作原理是谐振式调幅电路。
涡流转换器等效电路图图1从涡流转换的等效电流图可分析出线圈震荡电流有涡流转换器提供。
是由其中的西勒振荡电路提供震荡电流。
下图为西勒振荡电路。
西勒震荡电路图 图2西勒振荡器是一种改进型的电容反馈振荡器, 它是克拉波电路的改进电路。
这种电路频率稳定性高。
因为可通过C4改变振荡频率,且接入系数不受C4影响,所以在整个波段中振荡振幅比较平稳。
真两点使西勒电路的频率能在比较宽的范围内调节。
西勒振荡电路的频率为∑≈LC f π2/1 。
式中,4'133'2'2'13'2'1C C C C C C C C C C C +++=∑ 。
其中,01'1C C C +=;iC C C +=2'2 当13C C <<及23C C <<时,振荡频率为)(21430C C L f +≈π ,与受输入输出电容(包括闲散电容)影响的1C 与 2C 无关,因此提高了振荡频率的稳定性。
西勒振荡电路的振荡频率可以通过改变4C 来调整。
因3C 比克拉波电路取值大!故频率覆盖系数大,易调整,频率稳定度高,实际应用较多。
西勒振荡等效电路图 图3上图为在实际应用中的西勒电路改进型,在实际应用中可用可调电感,而可调电容换成固定电容。
在大多数电视机中大多采用西勒振荡电路。
此时的振荡频率为∑≈LC f π2/1。
由涡流转换器电路图可知,西勒电路产生的电流从振荡器输出端输出后,经过上下两部分滤波电路,滤去交流。
剩下直流电流从转换器的输出端输出。
上部滤波电路为LC滤波电路1 图7直流电由输入端进入后经由LC低通滤波器后由输出端输出直流分量。
下部LC滤波器在二极管之后如图所示,LC滤波电路2 图8由于二极管有单向导通性,因此有部分正弦波经由二极管,而形成半波正弦波。
在通过下部LC低通滤波器滤去交流分量。
从而输出直流分量。
三、实验数据电涡流传感器有传感器有两种结构类型,分别为透射式和反射式。
即透射试验和反射实验电涡流透射式穿L2,这这种类型与反射式主要不同在于它采用低频激励,贯穿深度大,适用于测量金属材料的厚度。
下图为其工作示意图,透射式电涡流传感器工作原理图图9传感器由发射线圈L1和接受线圈L2组成,它们分别位于被测金属板的两侧。
当低频激励电压加到线圈L1两端时,将在L2两端产生感应电压。
若两线圈之间无金属导体,L1的磁场就能直接贯时电压达到最大。
当有金属板后,其产生的涡流削弱了L1的磁场,造成电压下降。
金属板厚度越大,涡流损耗的就越大,电压也就越小。
因此可用电压大小反应金属般的厚度!而且对于不同材质的特性不通所得的实验现象也不相同。
当传感器激励频率升高后其透射后的电压增大了,但从低频到高频过程中再有无导体的情况下,电压的下降幅度也不同!在高频境况下电压下降幅度明显大于低频是电压下降到幅度!说明导体对涡流传感器在高频时吸收率更高,更有利于低频是的磁场通过。
电涡流反射式反射式中,变间隙是最常用的的一种结构式。
他的结构简单,由一个扁平线圈固定在框架上构成。
线圈用高强度漆包铜线或银线绕制(高温时也采用钨线),用粘合剂在框架端部或绕制在框架槽内,其结构示意图如图所示,电涡流传感器结构图图14线圈框架应采用损耗小、电性能好、热膨胀系数小的材料,常用高频陶瓷、聚酰亚胺、环氧玻璃纤维等。
由于激励频率较高,对所用的电缆与插头也要充分重视。
对于电涡流传感器线圈外径大,线性范围也就大,但灵敏度低;反之线圈外径小,灵敏度高,但线性范围小。
除此之外也有加入不加入铁心之分加入铁心可以感受较弱的磁场。
对被测导体的大小和形状也与灵敏度密切相关。
而且除反射式外还有变面积式和螺管式两种。
下面对变间隙式的电涡流传感器进行试验测量,并记录数据,在进行数据处理,通过matlab拟合数据找出其最适合测量的线性区间。
下图为使用matlab拟合直线数据图变间隙反射式试验数据拟合图图15个人小结在这几天的课程设计中我学到了许多,既有有因无从下手和失败而迷茫和沮丧,也有获得成功后的沾沾自喜。
而且发现自己的知识储备实在太少。
在课程设计中每天不断的查资料分析电路,要找出试验电路和经典电路之间的共性,还要通过变换把复杂的电路变换成熟知的基本电路,尤其是在西勒振荡器的查找时,面对一个陌生的电路根本无从下手。