数形结合法解与函数零点有关的参数问题
函数的零点个数问题-含答案
![函数的零点个数问题-含答案](https://img.taocdn.com/s3/m/56221e4b4b35eefdc9d33364.png)
【知识要点】一、方程的根与函数的零点(1)定义:对于函数()y f x =(x D ∈),把使f(x)=0成立的实数x 叫做函数()y f x =(x D ∈)的零点.函数的零点不是一个点的坐标,而是一个数,类似的有截距和极值点等.(2)函数零点的意义:函数()y f x =的零点就是方程f(x)=0的实数根,亦即函数()y f x =的图像与x 轴的交点的横坐标,即:方程f(x)=0有实数根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点.(3)零点存在性定理:如果函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f ,那么函数()y f x =在区间(,)a b 内至少有一个零点,即存在(,c a b ∈)使得()0f c =,这个c 也就是方程的根.函数()y f x =在区间[,]a b 上的图像是一条连续不断的曲线,并且有0)()(<⋅b f a f 是函数()y f x =在区间(,)a b 内至少有一个零点的一个充分不必要条件.零点存在性定理只能判断是否存在零点,但是零点的个数则不能通过零点存在性定理确定,一般通过数形结合解决. 二、二分法(1)二分法及步骤对于在区间[,]a b 上连续不断,且满足0)()(<⋅b f a f 的函数()y f x =,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到函数零点近似值的方法叫做二分法. (2)给定精确度ε,用二分法求函数的零点近似值的步骤如下: 第一步:确定区间[,]a b ,验证0)()(<⋅b f a f ,给定精确度ε. 第二步:求区间(,)a b 的中点1x .第三步:计算1()f x :①若1()f x =0,则1x 就是函数的零点;②若1()()0f a f x <,则令1b x = (此时零点01(,)x a x ∈)③若1()()0f x f b <,则令1a x =(此时零点01(,)x x b ∈)第四步:判断是否达到精确度ε即若a b ε-<,则得到零点值a 或b ,否则重复第二至第四步. 三、一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布讨论一元二次方程2()0(0)f x ax bx c a =++=≠的根的分布一般从以下个方面考虑列不等式组: (1)a 的符号; (2)对称轴2bx a=-的位置; (3)判别式的符号; (4)根分布的区间端点的函数值的符号.四、精确度为0.1指的是零点所在区间的长度小于0.1,其中的任意一个值都可以取;精确到0.1指的是零点保留小数点后一位数字,要看小数点后两位,四舍五入. 五、方法总结函数零点问题的处理常用的方法有:(1) 方程法;(2)图像法;(3)方程+图像法. 【方法点评】方法一 方程法使用情景 方程可以直接解出来. 解题步骤 先解方程,再求解.【例1 】已知函数2()32(1)(2)f x x a x a a 区间(1,1)-内有零点,求实数a 的取值范围.【点评】(1)本题如果用其它方法比较复杂,用这种方法就比较简洁.关键是能发现方程能直接解出来.(2)对于含有参数的函数要尝试因式分解,如果不好因式分解,再考虑其它方法.【反馈检测1】函数2()(1)cos f x x x =-在区间[0,4]上的零点个数是( ) A .4 B .5 C .6 D . 7方法二 图像法使用情景一些简单的初等函数或单调性容易求出,比较容易画出函数的图像.解题步骤先求函数的单调性,再画图分析.学科@网【例2】(2017全国高考新课标I理科数学)已知函数2()(2)x xf x ae a e x=+--.(1)讨论()f x的单调性;(2)若()f x有两个零点,求a的取值范围.(2) ①若0,a≤由(1)知()f x至多有一个零点.②若0a>,由(1)知当lnx a=-时,()f x取得最小值,1(ln)1lnf a aa-=-+.(i)当1a=时,(ln)f a-=0,故()f x只有一个零点.(ii)当(1,)a∈+∞时,由于11ln aa-+>0,即(ln)0f a->,故()f x没有零点.(iii)当0,1a∈()时,11ln0aa-+<,即(ln)0f a-<.422(2)(2)2220,f ae a e e----=+-+>-+>故()f x在(,ln)a-∞-只有一个零点.00000000003ln(1),()(2)203ln(1)ln,()n n n nn n f n e ae a n e n naa f xa>-=+-->->->->-∞设正整数满足则由于因此在(-lna,+)有一个零点.综上所述,a的取值范围为(0,1).【点评】(1)本题第2问根据函数的零点个数求参数的范围,用的就是图像法. 由于第1问已经求出了函数的单调性,所以第2问可以直接利用第1问的单调性作图分析. (2) 当0,1a∈()时,要先判断(,ln)a-∞的零点的个数,此时考查了函数的零点定理,(ln)0f a-<,还必须在该区间找一个函数值为正的值,它就是422(2)(2)2220,f ae a e e----=+-+>-+>要说明(2)0f->,这里利用了放缩法,丢掉了42ae ae--+.(3) 当0,1a∈()时,要判断(ln,)a-+∞上的零点个数,也是在考查函数的零点定理,还要在该区间找一个函数值为正的值,它就是03ln(1)n a>-,再放缩证明0()f n >0. (4)由此题可以看出零点定理在高考中的重要性.【例3】已知3x =是函数()()2ln 110f x a x x x =++-的一个极值点. (Ⅰ)求a ;(Ⅱ)求函数()f x 的单调区间;(Ⅲ)若直线y b =与函数()y f x =的图象有3个交点,求b 的取值范围.(Ⅲ)由(Ⅱ)知,()f x 在()1,1-内单调增加,在()1,3内单调减少,在()3,+∞上单调增加,且当1x =或3x =时,()'0f x =所以()f x 的极大值为()116ln 29f =-,极小值为()332ln 221f =- 因此()()21616101616ln 291f f =-⨯>-=()()213211213f e f --<-+=-<所以在()f x 的三个单调区间()()()1,1,1,3,3,-+∞直线y b =有()y f x =的图象各有一个交点,当且仅当()()31f b f <<,因此,b 的取值范围为()32ln 221,16ln 29--【点评】本题第(3)问,由于函数()f x 中没有参数,所以可以直接画图数形结合分析解答.【反馈检测2】已知函数2()1x e f x ax =+,其中a 为实数,常数 2.718e =.(1) 若13x =是函数()f x 的一个极值点,求a 的值; (2) 当4a =-时,求函数()f x 的单调区间;(3) 当a 取正实数时,若存在实数m ,使得关于x 的方程()f x m =有三个实数根,求a 的取值范围.方法三 方程+图像法使用情景函数比较复杂,不容易求函数的单调性.解题步骤先令()0f x =,重新构造方程()()g x h x =,再画函数(),()y g x y h x ==的图像分析解答.【例4】函数()lg cos f x x x =-的零点有 ( ) A .4 个 B .3 个 C .2个 D .1个【点评】(1)本题主要考察零点的个数,但是方程f(x)lg cos 0x x =-=也不好解,直接研究函数的单调性不是很方便,所以先令()lg cos 0f x x x =-=,可化为lg cos x x =,再在同一直角坐标系下画出lg y x =和cos y x =的图像分析解答.(2)方程+图像是零点问题中最难的一种,大家注意理解掌握和灵活应用.【反馈检测3】设函数()()()221ln ,1,02f x x m xg x x m x m =-=-+>. (1)求函数()f x 的单调区间;(2)当1m ≥时,讨论函数()f x 与()g x 图象的交点个数.高中数学常见题型解法归纳及反馈检测第13讲:函数零点个数问题的求解方法参考答案【反馈检测1答案】C【反馈检测2答案】(1)95a =;(2)()f x 的单调增区间是51(1)2-,15(,12+; ()f x 的单调减区间是1(,)2-∞-,15(,12-,5(1)++∞;(3)a 的取值范围是(1,)+∞. 【反馈检测2详细解析】(1)222(21)()(1)xax ax e f x ax -+'=+ 因为13x =是函数()f x 的一个极值点,所以1()03f '=,即12910,935a a a -+==. 而当95a =时,229591521(2)()()59533ax ax x x x x -+=-+=--,可验证:13x =是函数()f x 的一个极值点.因此95a =.(2) 当4a =-时,222(481)()(14)xx x e f x x -++'=-令()0f x '=得24810x x -++=,解得51x =,而12x ≠±.所以当x 变化时,()f x '、()f x 的变化是x1(,)2-∞-15(,1)22-- 512-51(1,)22-15(,1)22+ 512+5(1,)2++∞ ()f x '--++-()f x极小值极大值因此()f x 的单调增区间是51(1)2,15(,12+;()f x 的单调减区间是1(,)2-∞-,15(,1)2--,5(1)+∞;【反馈检测3答案】(1)单调递增区间是(),m+∞, 单调递减区间是()0,m;(2)1.学科@网【反馈检测3详细解析】(1)函数()f x的定义域为()()()()0,,'x m x mf xx+-+∞=.当0x m<<时,()'0f x<,函数()f x单调递减,当x m>时,()'0f x>函数()f x单调递增,综上,函数()f x的单调递增区间是(),m+∞, 单调递减区间是()0,m.(2)令()()()()211ln,02F x f x g x x m x m x x=-=-++->,问题等价于求函数()F x的零点个数,()()()1'x x mF xx--=-,当1m=时,()'0F x≤,函数()F x为减函数,F x有唯一零点,即两函数图象总有一个交点.综上,函数()。
函数有三个零点与导数
![函数有三个零点与导数](https://img.taocdn.com/s3/m/c618eb1a65ce05087732130b.png)
函数有三个零点与导数解:∵f(x)=12x 2-4x+3lnx+m,∴234())3134(x x x x f x x x x x-+--'=-+==(), ∴f(x)在(0,1)上就是增函数,在(1,3)上就是减函数,在(3,+∞)上就是增函数;∴x=1就是f(x)的极大值点,x=3就是f(x)的极小值点。
又f(1)=12-4+m=m-72,f(3)=92-12+3ln3+m=m+3ln3-152,0 lim lim x x f x f x +→∞→=-∞=+∞(),(), ∴函数f(x)=12x 2-4x+3lnx+m 有且只有三个不同的零点,等价于f(1)=12-4+m=m-72>0且f(3)=92-12+3ln3+m=m+3ln3-152<0,∴72<m <152-3ln3.∴m 的取值范围为(72,152).3.(2016•东湖区月考)已知函数f(x)=x 2-(a+2)x+alnx,其中常数a >0.(1)当a >2时,求函数f(x)的单调递增区间;(2)当a=4时,若函数y=f(x)-m 有三个不同的零点,求m 的取值范围.本题第(2)问可以改为:(3)当a=4时,若函数y=f(x)-m 有且只有一个零点,求m 的取值范围.(4)当a=4时,若函数y=f(x)-m 有两个不同的零点,求m 的取值范围.(此问无解) 解:(1)由f(x)=x 2-(a+2)x+alnx 可知,函数的定义域为{x|x >0},且()()()2()2212)22(x a x a a x a x f x x a x x x-++--'-++===,∵a >2,∴2a >1. 当0<x <1或x >2a 时,f ′(x)>0;当1<x <2a 时,f ′(x)<0, ∴f(x)的单调递增区间为(0,1),(2a ,+∞). (2)当a=4时,()21()()2x x f x x --'=.当x 变化时,f ′(x),f(x)的变化情况如下表: x(0,1) 1 (1,2) 2 (2,+∞) f′(x)+ 0 - 0 + f(x) 单调递增 f(x)取极大值 单调递减 f(x)取极小值 单调递增∴f (x )极大值=f (1)=12−6×1+4ln 1=−5,f (x )极小值=f (2)=22−6×2+4ln 2=4ln 2−8.函数f(x)的图象大致如下:∴若函数y=f(x)-m 有三个不同的零点,则m ∈(4ln2-8,-5).4.已知a>0,函数f(x)=ax2-2ax+2lnx,g(x)=f(x)-2x. (Ⅰ)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程; (Ⅱ)讨论g(x)的单调性;(Ⅲ)当a>1时,若函数h(x)=g(x)+5+1a有三个不同的零点,求实数a的取值范围.5.(2015•连云港三模)函数f(x)=a x -x 2(a >1)有三个不同的零点,则实数a 的取值范围就是 . 解:先画草图大致分析一下:令y=a x (a >1),y=x 2,在同一坐标系中画出它们的图象,当x <0时,显然它们的图象,有一个交点,即f(x)=a x -x 2(a >1)有一个零点。
利用导数研究函数的零点讲义 解析版
![利用导数研究函数的零点讲义 解析版](https://img.taocdn.com/s3/m/da443a3ecbaedd3383c4bb4cf7ec4afe05a1b14e.png)
利用导数研究函数的零点题型一 数形结合法研究函数零点1.(2024·南昌模拟节选)已知函数f (x )=(x -a )2+be x (a ,b ∈R ),若a =0时,函数y =f (x )有3个零点,求b 的取值范围.解:函数y =f (x )有3个零点,即关于x 的方程f (x )=0有3个根,也即关于x 的方程b =-x 2ex 有3个根.令g (x )=-x 2e x ,则直线y =b 与g (x )=-x 2ex 的图象有3个交点.g ′(x )=x (x -2)e x,由g ′(x )<0解得0<x <2;由g ′(x )>0解得x <0或x >2,所以g (x )在(-∞,0)上单调递增,在(0,2)上单调递减,在(2,+∞)上单调递增.g (0)=0,g (2)=-4e2,当x >0时,g (x )<0;当x →+∞时,g (x )→0;当x →-∞时,g (x )→-∞,作出g (x )的大致图象如图所示,作出直线y =b .由图可知,若直线y =b 与g (x )的图象有3个交点,则-4e 2<b <0,即b 的取值范围为-4e 2,0 .感悟提升 含参数的函数零点个数,可转化为方程解的个数,若能分离参数,可将参数分离出来后,用x 表示参数的函数,作出该函数的图象,根据图象特征求参数的范围.2.设函数f (x )=ln x +m x ,m ∈R ,讨论函数g (x )=f ′(x )-x 3零点的个数.解:由题意知g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1).当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,∴x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图象(如图)可知,①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二 利用函数性质研究函数零点3.已知函数f (x )=(2a +1)x 2-2x 2ln x -4,e 是自然对数的底数,∀x >0,e x >x +1.(1)求f (x )的单调区间;(2)记p :f (x )有两个零点;q :a >ln 2.求证:p 是q 的充要条件.要求:先证充分性,再证必要性.(1)解:∵f (x )=(2a +1)x 2-2x 2ln x -4,∴f (x )的定义域为(0,+∞),f ′(x )=4x (a -ln x ).∵当0<x <e a 时,f ′(x )>0,∴f (x )在(0,e a )上单调递增;∵当x >e a 时,f ′(x )<0,∴f (x )在(e a ,+∞)上单调递减.∴f (x )的单调递增区间为(0,e a ),单调递减区间为(e a ,+∞).(2)证明 先证充分性.由(1)知,当x =e a 时,f (x )取得最大值,即f (x )的最大值为f (e a )=e 2a -4.由f (x )有两个零点,得e 2a -4>0,解得a >ln 2.∴a >ln 2.再证必要性.∵a >ln 2,∴e 2a >4.∴f (e a )=e 2a -4>0.∵a>ln2>0,∀x>0,e x>x+1,∴e2a>2a+1>2a.∴f(e-a)=e-2a(4a+1)-4=4a+1e2a -4<4a+12a-4=12a-2<12ln2-2=1ln4-2<0.∴∃x1∈(e-a,e a),使f(x1)=0;∵f(e a+1)=-e2a+2-4<0,∴∃x2∈(e a,e a+1),f(x2)=0.∵f(x)在(0,e a)上单调递增,在(e a,+∞)上单调递减,∴∀x∈(0,+∞),x≠x1且x≠x2,易得f(x)≠0.∴当a>ln2时,f(x)有两个零点.感悟提升 利用函数性质研究函数的零点,主要是根据函数单调性、奇偶性、最值或极值的符号确定函数零点的个数,此类问题在求解过程中可以通过数形结合的方法确定函数存在零点的条件.4.(2022·全国乙卷节选)已知函数f(x)=ax-1x-(a+1)ln x,若f(x)恰有一个零点,求a的取值范围.解:由f(x)=ax-1x-(a+1)ln x(x>0),得f′(x)=a+1x2-a+1x=(ax-1)(x-1)x2(x>0).①当a=0时,f(x)=-1x-ln x,f′(x)=1-xx2,当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0,所以f(x)≤f(1)=-1<0,所以f(x)不存在零点;②当a<0时,f′(x)=a x-1a(x-1)x2,当x∈(0,1)时,f′(x)>0,f(x)单调递增;当x∈(1,+∞)时,f′(x)<0,f(x)单调递减,所以f(x)max=f(1)=a-1<0,所以f(x)不存在零点;③当a>0时,f′(x)=a x-1a(x-1)x2,(ⅰ)当a=1时,f′(x)≥0,f(x)在(0,+∞)上单调递增,因为f(1)=a-1=0,所以函数f(x)恰有一个零点;(ⅱ)当a>1时,0<1a <1,故f(x)在0,1a,(1,+∞)上单调递增,在1a,1上单调递减.因为f(1)=a-1>0,所以f1a>f(1)>0,当x→0+时,f(x)→-∞,由零点存在定理可知f(x)在0,1a上必有一个零点,所以a>1满足条件;(ⅲ)当0<a<1时,1a >1,故f(x)在(0,1),1a,+∞上单调递增,在1,1a上单调递减.因为f(1)=a-1<0,所以f1a<f(1)<0,当x→+∞时,f(x)→+∞,由零点存在定理可知f(x)在1a,+∞上必有一个零点,即0<a<1满足条件.综上,若f(x)恰有一个零点,则a的取值范围为(0,+∞).题型三 构造函数法研究函数零点5.已知函数f(x)=e x-1+ax(a∈R).(1)当x≥0时,f(x)≥0,求a的取值范围;(2)若关于x的方程f(x)-ax+1e a=ln x+a有两个不同的实数解,求a的取值范围.解:(1)由题意,得f′(x)=e x+a.若a≥-1,则当x∈[0,+∞)时,f′(x)≥0恒成立,∴f(x)在[0,+∞)上单调递增,∴当x∈[0,+∞)时,f(x)≥f(0)=0,符合题意;若a<-1,令f′(x)<0,得x<ln(-a),∴f(x)在(0,ln(-a))上单调递减,∴当x∈(0,ln(-a))时,f(x)<f(0)=0,不符合题意.综上,a的取值范围为[-1,+∞).(2)法一 由f(x)-ax+1e a=ln x+a,得e x-a=ln x+a.令e x-a=t,则x-a=ln t,ln x+a=t,∴x+ln x=t+ln t.易知y=x+ln x在(0,+∞)上单调递增,∴t=x,得a=x-ln x.则原问题可转化为方程a=x-ln x有两个不同的实数解.令φ(x)=x-ln x(x>0),则φ′(x)=x-1 x,令φ′(x)<0,得0<x<1;令φ′(x)>0,得x>1,∴φ(x)在(0,1)上单调递减,在(1,+∞)上单调递增,∴φ(x)min=φ(1)=1,∴a≥1.当a=1时,易知方程1=x-ln x只有一个实数解x=1,不符合题意.下证当a>1时,a=x-ln x有两个不同的实数解.令g(x)=x-ln x-a(a>1),则g(x)=φ(x)-a,易知g(x)在(0,1)上单调递减,在(1,+∞)上单调递增.∵g(e-a)=e-a>0,g(1)=1-a<0,∴g(x)在(e-a,1)上有一个零点.易知g(e a)=e a-2a,令h(a)=e a-2a,则当a>1时,h′(a)=e a-2>0,∴h(a)在(1,+∞)上单调递增,∴当a >1时,h (a )>h (1)=e -2>0,即g (e a )=e a -2a >0,∴g (x )在(1,e a )上有一个零点.∴当a >1时,a =x -ln x 有两个不同的实数解.综上,a 的取值范围为(1,+∞).法二 由f (x )-ax +1e a=ln x +a ,得e x =e a (ln x +a ),∴xe x =xe a (ln x +a ),即xe x =e a +ln x (ln x +a ).令u (x )=xe x ,则有u (x )=u (a +ln x ).当x >0时,u ′(x )=(x +1)e x >0,∴u (x )=xe x 在(0,+∞)上单调递增,∴x =a +ln x ,即a =x -ln x .下同法一.感悟提升 涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间和极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围.6.(2021·全国甲卷节选)已知a >0且a ≠1,函数f (x )=x a ax (x >0).若曲线y =f (x )与直线y =1有且仅有两个交点,求a 的取值范围.解:曲线y =f (x )与直线y =1有且仅有两个交点,可转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x 2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增;当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e )=1e ,且当x >e 时,g (x )∈0,1e ,又g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e )∪(e ,+∞).【A 级 基础巩固】7.已知函数f (x )=x -ae x ,a ∈R ,讨论函数f (x )的零点个数.解:f (x )=0等价于x -ae x =0,即x ex =a .设h (x )=x e x ,则h ′(x )=1-x ex ,当x <1时,h ′(x )>0,h (x )单调递增;当x >1时,h ′(x )<0,h (x )单调递减,∴h (x )max =h (1)=1e.又当x <0时,h (x )<0;当x >0时,h (x )>0,且x →+∞时,h (x )→0,∴可画出h (x )大致图象,如图所示.∴当a ≤0或a =1e时,f (x )在R 上有唯一零点;当a >1e 时,f (x )在R 上无零点;当0<a <1e 时,f (x )在R 上有两个零点.8.(2024·青岛调研)已知函数f (x )=ln x +ax x,a ∈R .(1)若a =0,求f (x )的最大值;(2)若0<a <1,求证:f (x )有且只有一个零点.(1)解:若a =0,则f (x )=ln x x ,其定义域为(0,+∞),∴f ′(x )=1-ln x x 2,由f ′(x )=0,得x =e ,∴当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0,∴f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∴f (x )max =f (e )=1e.(2)证明 f ′(x )=1x +a x -ln x -ax x 2=1-ln x x 2,由(1)知,f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,∵0<a <1,∴当x >e 时,f (x )=ln x +ax x =a +ln x x>0,故f (x )在(e ,+∞)上无零点;当0<x <e 时,f (x )=ln x +ax x ,∵f 1e =a -e <0,f (e )=a +1e>0,且f (x )在(0,e )上单调递增,∴f (x )在(0,e )上有且只有一个零点,综上,当0<a <1时,f (x )有且只有一个零点.9.(2024·太原模拟节选)已知函数f (x )=xe x -x -1,讨论方程f (x )=ln x +m -2的实根个数.解;由f (x )=ln x +m -2,得xe x -x -ln x +1=m ,x >0,令h (x )=xe x -x -ln x +1,则h ′(x )=e x +xe x-1-1x =(x +1)(xe x -1)x(x >0),令m (x )=xe x -1(x >0),则m ′(x )=(x +1)·e x >0,∴m (x )在(0,+∞)上单调递增,又m 12 =e 2-1<0,m (1)=e -1>0,∴存在x 0∈12,1,使得m (x 0)=0,即e x 0=1x 0,从而ln x 0=-x 0.当x ∈(0,x 0)时,m (x )<0,h ′(x )<0,则h (x )单调递减;当x ∈(x 0,+∞)时,m (x )>0,h ′(x )>0,则h (x )单调递增;∴h (x )min =h (x 0)=x 0e x 0-x 0-ln x 0+1=x 0·1x 0-x 0+x 0+1=2,又易知,当x →0+时,h (x )→+∞;当x →+∞时,h (x )→+∞.∴当m <2时,方程f (x )=ln x +m -2没有实根;当m =2时,方程f (x )=ln x +m -2有1个实根;当m >2时,方程f (x )=ln x +m -2有2个实根.【B 级 能力提升】10.(2024·郑州模拟节选)已知函数f (x )=ln (x +1)-x +1,g (x )=ae x -x +ln a ,若函数F (x )=f (x )-g (x )有两个零点,求实数a 的取值范围.解:函数F (x )=f (x )-g (x )有两个零点,即f (x )=g (x )有两个实根,即ln (x +1)-x +1=ae x -x +ln a 有两个实根,即e x +ln a +x +ln a =ln (x +1)+x +1有两个实根,即e x +ln a +x +ln a =e ln (x +1)+ln (x +1)有两个实根.设函数h (x )=e x +x ,则e x +ln a +x +ln a =e ln (x +1)+ln (x +1)⇔h (x +ln a )=h (ln (x +1)).因为h ′(x )=e x +1>0恒成立,所以h (x )=e x +x 在R 上单调递增,所以x +ln a =ln (x +1),x >-1,所以要使F (x )有两个零点,只需ln a =ln (x +1)-x 有两个实根.设M (x )=ln (x +1)-x ,则M ′(x )=-x x +1.由M ′(x )=-x x +1>0,得-1<x <0;由M ′(x )=-x x +1<0,得x >0,故函数M(x)的单调递增区间为(-1,0),单调递减区间为(0,+∞).故函数M(x)在x=0处取得极大值,也是最大值,且M(x)max=M(0)=0.易知当x→-1时,M(x)→-∞;当x→+∞时,M(x)→-∞.故要使ln a=ln(x+1)-x有两个实根,只需ln a<M(x)max=0,解得0<a<1.所以实数a的取值范围是(0,1).。
专题38 由函数零点或方程根的个数求参数范围问题(解析版)
![专题38 由函数零点或方程根的个数求参数范围问题(解析版)](https://img.taocdn.com/s3/m/eb2a8ba5690203d8ce2f0066f5335a8102d266a8.png)
专题38 由函数零点或方程根的个数求参数范围问题【例题选讲】[例1] 已知函数f (x )=x 2+2x-a ln x (a ∈R ).(1)若f (x )在x =2处取得极值,求曲线y =f (x )在点(1,f (1))处的切线方程; (2)当a >0时,若f (x )有唯一的零点x 0,求[x 0].注:[x ]表示不超过x 的最大整数,如[0.6]=0,[2.1]=2,[-1.5]=-2. (参考数据:ln 2=0.693,ln 3=1.099,ln 5=1.609,ln 7=1.946) [规范解答](1)∵f (x )=x 2+2x -a ln x ,∴f ′(x )=2x 3-ax -2x 2(x >0), 由题意得f ′(2)=0,则2×23-2a -2=0,a =7,经验证,当a =7时,f (x )在x =2处取得极值,∴f (x )=x 2+2x -7ln x ,f ′(x )=2x -2x 2-7x,∴f ′(1)=-7,f (1)=3,则曲线y =f (x )在点(1,f (1))处的切线方程为y -3=-7(x -1),即7x +y -10=0. (2)令g (x )=2x 3-ax -2(x >0),则g ′(x )=6x 2-a ,由a >0,g ′(x )=0,可得x =a 6, ∴g (x )在⎝⎛⎭⎫0,a 6上单调递减,在⎝⎛⎭⎫a 6,+∞上单调递增.由于g (0)=-2<0,故当x ∈⎝⎛⎭⎫0,a 6时,g (x )<0,又g (1)=-a <0, 故g (x )在(1,+∞)上有唯一零点,设为x 1,从而可知f (x )在(0,x 1)上单调递减,在(x 1,+∞)上单调递增,由于f (x )有唯一零点x 0,故x 1=x 0,且x 0>1,则g (x 0)=0,f (x 0)=0,可得2ln x 0-3x 30-1-1=0. 令h (x )=2ln x -3x 3-1-1(x >1),易知h (x )在(1,+∞)上单调递增,由于h (2)=2ln 2-107<2×0.7-107<0,h (3)=2ln 3-2926>0,故x 0∈(2,3),[x 0]=2.[例2] 已知函数f (x )=x e x -12a (x +1)2.(1)若a =e ,求函数f (x )的极值;(2)若函数f (x )有两个零点,求实数a 的取值范围.[破题思路] 第(1)问求f (x )的极值,想到求f ′(x )=0的解,然后根据单调性求极值;第(2)问求实数a 的取值范围,想到建立关于a 的不等式,给出函数f (x )的解析式,并已知f (x )有两个零点,利用f (x )的图象与x 轴有两个交点求解.[规范解答] (1)由题意知,当a =e 时,f (x )=x e x -12e(x +1)2,函数f (x )的定义域为(-∞,+∞),f ′(x )=(x +1)e x -e(x +1)=(x +1)(e x -e).令f ′(x )=0,解得x =-1或x =1. 当x 变化时,f ′(x ),f (x )的变化情况如下表所示:x (-∞,-1)-1 (-1,1) 1 (1,+∞) f ′(x ) + 0 - 0 +f (x )极大值-1e极小值-e所以当x =-1时,f (x )取得极大值-1e ;当x =1时,f (x )取得极小值-e .(2)法一:分类讨论法 f ′(x )=(x +1)e x -a (x +1)=(x +1)(e x -a ), 若a =0,易知函数f (x )在(-∞,+∞)上只有一个零点,故不符合题意. 若a <0,当x ∈(-∞,-1)时,f ′(x )<0,f (x )单调递减; 当x ∈(-1,+∞)时,f ′(x )>0,f (x )单调递增.由f (-1)=-1e <0,且f (1)=e -2a >0,当x →-∞时,f (x )→+∞,所以函数f (x )在(-∞,+∞)上有两个零点.若ln a <-1,即0<a <1e ,当x ∈(-∞,ln a )∪(-1,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈(ln a ,-1)时,f ′(x )<0,f (x )单调递减.又f (ln a )=a ln a -12a (ln a +1)2<0,所以函数f (x )在(-∞,+∞)上至多有一个零点,故不符合题意.若ln a =-1,即a =1e ,当x ∈(-∞,+∞)时,f ′(x )≥0,f (x )单调递增,故不符合题意.若ln a >-1,即a >1e ,当x ∈(-∞,-1)∪(ln a ,+∞)时,f ′(x )>0,f (x )单调递增;当x ∈(-1,ln a )时,f ′(x )<0,f (x )单调递减.又f (-1)=-1e <0,所以函数f (x )在(-∞,+∞)上至多有一个零点,故不符合题意.综上,实数a 的取值范围是(-∞,0).法二:数形结合法 令f (x )=0,即x e x -12a (x +1)2=0,得x e x =12a (x +1)2.当x =-1时,方程为-e -1=12a ×0,显然不成立,所以x =-1不是方程的解,即-1不是函数f (x )的零点. 当x ≠-1时,分离参数得a =2x e x(x +1)2.记g (x )=2x e x(x +1)2(x ≠-1),则g ′(x )=(2x e x )′(x +1)2-[(x +1)2]′·2x e x (x +1)4=2e x (x 2+1)(x +1)3.当x <-1时,g ′(x )<0,函数g (x )单调递减;当x >-1时,g ′(x )>0,函数g (x )单调递增.当x =0时,g (x )=0;当x →-∞时,g (x )→0;当x →-1时,g (x )→-∞;当x →+∞时,g (x )→+∞. 故函数g (x )的图象如图所示.作出直线y =a ,由图可知,当a <0时,直线y =a 和函数g (x )的图象有两个交点,此时函数f (x )有两个零点.故实数a 的取值范围是(-∞,0).[题后悟通] 利用函数零点的情况求参数范围的方法(1)分离参数(a =g (x ))后,将原问题转化为y =g (x )的值域(最值)问题或转化为直线y =a 与y =g (x )的图象的交点个数问题(优选分离、次选分类)求解;(2)利用零点的存在性定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解 [例3] 已知函数f (x )=e x -2x -1. (1)求曲线y =f (x )在(0,f (0))处的切线方程;(2)设g (x )=af (x )+(1-a )e x ,若g (x )有两个零点,求实数a 的取值范围.[规范解答] (1)由题意知f ′(x )=e x -2,k =f ′(0)=1-2=-1,又f (0)=e 0-2×0-1=0, ∴f (x )在(0,f (0))处的切线方程为y =-x .(2)g (x )=e x -2ax -a ,g ′(x )=e x -2a .当a ≤0时,g ′(x )>0,∴g (x )在R 上单调递增,不符合题意. 当a >0时,令g ′(x )=0,得x =ln(2a ),在(-∞,ln(2a ))上,g ′(x )<0,在(ln(2a ),+∞)上,g ′(x )>0, ∴g (x )在(-∞,ln(2a ))上单调递减,在(ln(2a ),+∞)上单调递增, ∴g (x )极小值=g (ln(2a ))=2a -2a ln(2a )-a =a -2a ln(2a ).∵g (x )有两个零点,∴g (x )极小值<0,即a -2a ln(2a )<0,∵a >0,∴ln(2a )>12,解得a >e 2,∴实数a 的取值范围为⎝⎛⎭⎫e 2,+∞.[例4] 已知函数f (x )=ln x -ax 2+x ,a ∈R .(1)当a =0时,求曲线y =f (x )在点(e ,f (e))处的切线方程; (2)讨论f (x )的单调性;(3)若f (x )有两个零点,求a 的取值范围.[规范解答] (1)当a =0时,f (x )=ln x +x ,f (e)=e +1,f ′(x )=1x +1,f ′(e)=1+1e ,∴曲线y =f (x )在点(e ,f (e))处的切线方程为y -(e +1)=⎝⎛⎭⎫1+1e (x -e),即y =⎝⎛⎭⎫1e +1x .(2)f ′(x )=1x -2ax +1=-2ax 2+x +1x,x >0,①当a ≤0时,显然f ′(x )>0,∴f (x )在(0,+∞)上单调递增;②当a >0时,令f ′(x )=-2ax 2+x +1x =0,则-2ax 2+x +1=0,易知其判别式为正,设方程的两根分别为x 1,x 2(x 1<x 2),则x 1x 2=-12a <0,∴x 1<0<x 2,∴f ′(x )=-2ax 2+x +1x =-2a (x -x 1)(x -x 2)x,x >0.令f ′(x )>0,得x ∈(0,x 2);令f ′(x )<0,得x ∈(x 2,+∞),其中x 2=1+8a +14a,∴函数f (x )在⎝ ⎛⎭⎪⎫0,1+8a +14a 上单调递增,在⎝ ⎛⎭⎪⎫1+8a +14a ,+∞上单调递减.(3)法一:由(2)知,①当a ≤0时,f (x )在(0,+∞)上单调递增,至多一个零点,不符合题意;②当a >0时,函数f (x )在(0,x 2)上单调递增,在(x 2,+∞)上单调递减,∴f (x )max =f (x 2). 要使f (x )有两个零点,需f (x 2)>0,即ln x 2-ax 22+x 2>0,又由f ′(x 2)=0得ax 22=1+x 22,代入上面的不等式得2ln x 2+x 2>1,解得x 2>1,∴a =1+x 22x 22=12⎝⎛⎭⎫1x 22+1x 2<1. 下面证明:当a ∈(0,1)时,f (x )有两个零点.f ⎝⎛⎭⎫1e =ln 1e -a e -2+1e <0,f ⎝⎛⎭⎫2a =ln 2a -a ·4a 2+2a <2a -a ·4a 2+2a=0(∵ln x <x ). 又x 2=1+8a +14a <1+8+14a =1a <2a ,且x 2=1+8a +14a =28a +1-1>28+1-1=1>1e ,f (x 2)=ln x 2-ax 22+x 2=12(2ln x 2+x 2-1)>0,∴f (x )在⎝⎛⎭⎫1e ,x 2与⎝⎛⎭⎫x 2,2a 上各有一个零点. ∴a 的取值范围为(0,1).法二:函数f (x )有两个零点,等价于方程a =ln x +x x 2有两解.令g (x )=ln x +x x 2,x >0,则g ′(x )=1-2ln x -xx 3.由g ′(x )=1-2ln x -xx 3>0,得2ln x +x <1,解得0<x <1,∴g (x )在(0,1)单调递增,在(1,+∞)单调递减,又当x ≥1时,g (x )>0,当x →0时,g (x )→-∞,∴作出函数g (x )的简图如图,结合函数值的变化趋势猜想:当a ∈(0,1)时符合题意. 下面给出证明:当a ≥1时,a ≥g (x )max ,方程至多一解,不符合题意;当a ≤0时,方程至多一解,不符合题意; 当a ∈(0,1)时,g ⎝⎛⎭⎫1e <0,∴g ⎝⎛⎭⎫1e -a <0,g ⎝⎛⎭⎫2a =a 24⎝⎛⎭⎫ln 2a +2a <a 24⎝⎛⎭⎫2a +2a =a ,∴g ⎝⎛⎭⎫2a -a <0. ∴方程在⎝⎛⎭⎫1e ,1与⎝⎛⎭⎫1,2a 上各有一个根,∴f (x )有两个零点.∴a 的取值范围为(0,1). [例5] (2017·全国Ⅰ)已知函数f (x )=a e 2x +(a -2)·e x -x . (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.[规范解答] (1)f (x )的定义域为(-∞,+∞),f ′(x )=2a e 2x +(a -2)e x -1=(a e x -1)(2e x +1). (ⅰ)若a ≤0,则f ′(x )<0,所以f (x )在(-∞,+∞)单调递减. (ⅰ)若a >0,则由f ′(x )=0得x =-ln a .当x ∈(-∞,-ln a )时,f ′(x )<0;当x ∈(-ln a ,+∞)时,f ′(x )>0.所以f (x )在(-∞,-ln a )单调递减,在(-ln a ,+∞)单调递增.(2)(ⅰ)若a ≤0,由(1)知,f (x )至多有一个零点.(ⅰ)若a >0,由(1)知,当x =-ln a 时,f (x )取得最小值,最小值为f (-ln a )=1-1a +ln a .①当a =1时,由于f (-ln a )=0,故f (x )只有一个零点;②当a ∈(1,+∞)时,由于1-1a +ln a >0,即f (-ln a )>0,故f (x )没有零点;③当a ∈(0,1)时,1-1a+ln a <0,即f (-ln a )<0.又f (-2)=a e -4+(a -2)e -2+2>-2e -2+2>0,故f (x )在(-∞,-ln a )有一个零点. 设正整数n 0满足n 0>ln ⎝⎛⎭⎫3a -1,则f (n 0)=e n 0(a e n 0+a -2)-n 0>e n 0-n 0>2n 0-n 0>0. 由于ln ⎝⎛⎭⎫3a -1>-ln a ,因此f (x )在(-ln a ,+∞)有一个零点. 综上,a 的取值范围为(0,1).[例6] 已知a ∈R ,函数f (x )=e x -ax (e =2.718 28…是自然对数的底数). (1)若函数f (x )在区间(-e ,-1)上是减函数,求实数a 的取值范围;(2)若函数F (x )=f (x )-(e x -2ax +2ln x +a )在区间⎝⎛⎭⎫0,12内无零点,求实数a 的最大值. [规范解答] (1)由f (x )=e x -ax ,得f ′(x )=e x -a 且f ′(x )在R 上单调递增. 若f (x )在区间(-e ,-1)上是减函数,只需f ′(x )≤0在(-e ,-1)上恒成立.因此只需f ′(-1)=e -1-a ≤0,解得a ≥1e .又当a =1e 时,f ′(x )=e x -1e ≤0,当且仅当x =-1时取等号.所以实数a 的取值范围是⎣⎡⎭⎫1e ,+∞.(2)由已知得F (x )=a (x -1)-2ln x ,且F (1)=0,则F ′(x )=a -2x =ax -2x =a ⎝⎛⎭⎫x -2a x,x >0.①当a ≤0时,F ′(x )<0,F (x )在区间(0,+∞)上单调递减,结合F (1)=0知,当x ∈⎝⎛⎭⎫0,12时,F (x )>0.所以F (x )在⎝⎛⎭⎫0,12内无零点. ②当a >0时,令F ′(x )=0,得x =2a .若2a ≥12,即a ∈(0,4]时,F (x )在⎝⎛⎭⎫0,12上是减函数. 又x →0时,F (x )→+∞.要使F (x )在⎝⎛⎭⎫0,12内无零点,只需F ⎝⎛⎭⎫12=-a 2-2ln 12≥0,则0<a ≤4ln 2. 若2a <12,即a >4时,则F (x )在⎝⎛⎭⎫0,2a 上是减函数,在⎝⎛⎭⎫2a ,12上是增函数. 所以F (x )min =F ⎝⎛⎭⎫2a =2-a -2ln 2a ,令φ(a )=2-a -2ln 2a ,则φ′(a )=-1+2a =2-aa <0. 所以φ(a )在(4,+∞)上是减函数,则φ(a )<φ(4)=2ln 2-2<0.因此F ⎝⎛⎭⎫2a <0,所以F (x )在x ∈⎝⎛⎭⎫0,12内一定有零点,不合题意,舍去. 综上,函数F (x )在⎝⎛⎭⎫0,12内无零点,应有a ≤4ln 2,所以实数a 的最大值为4ln 2. 【对点训练】1.(2018·全国Ⅱ)已知函数f (x )=e x -ax 2. (1)若a =1,证明:当x ≥0时,f (x )≥1; (2)若f (x )在(0,+∞)只有一个零点,求a .1.解析 (1)当a =1时,f (x )≥1等价于(x 2+1)e -x -1≤0.设函数g (x )=(x 2+1)e -x -1,则g ′(x )=-(x 2-2x +1)e -x =-(x -1)2e -x .当x ≠1时,g ′(x )<0,所以g (x )在(0,+∞)单调递减.而g (0)=0,故当x ≥0时,g (x )≤0,即f (x )≥1. (2)设函数h (x )=1-ax 2e -x .当且仅当h (x )在(0,+∞)只有一个零点时,f (x )在(0,+∞)只有一个零点. ①当a ≤0时,h (x )>0,h (x )没有零点;②当a >0时,h ′(x )=ax (x -2)e -x .当x ∈(0,2)时,h ′(x )<0;当x ∈(2,+∞)时,h ′(x )>0. 所以h (x )在(0,2)单调递减,在(2,+∞)单调递增.故h (2)=1-4ae 2是h (x )在[0,+∞)的最小值.1)若h (2)>0,即a <e 24,h (x )在(0,+∞)没有零点;2)若h (2)=0,即a =e 24,h (x )在(0,+∞)只有一个零点;3)若h (2)<0,即a >e 24,由于h (0)=1,所以h (x )在(0,2)有一个零点.由(1)知,当x >0时,e x >x 2,所以h (4a )=1-16a 3e 4a =1-16a 3e 2a 2>1-16a 32a 4=1-1a >0.故h (x )在(2,4a )有一个零点.因此h (x )在(0,+∞)有两个零点. 综上,f (x )在(0,+∞)只有一个零点时,a =e 24.2.设函数f (x )=ln x +x .(1)令F (x )=f (x )+a x -x (0<x ≤3),若F (x )的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,求实数a的取值范围;(2)若方程2mf (x )=x 2有唯一实数解,求正数m 的值.2.解析 (1)∵F (x )=ln x +a x ,x ∈(0,3],∴F ′(x )=1x -a x 2=x -ax 2,∴k =F ′(x 0)=x 0-a x 20,∵F (x )的图象上任意一点P (x 0,y 0)处切线的斜率k ≤12恒成立,∴k =x 0-a x 20≤12在x 0∈(0,3]上恒成立,∴a ≥⎝⎛⎭⎫-12x 20+x 0max ,x 0∈(0,3],当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,即实数a 的取值范围为⎣⎡⎭⎫12,+∞. (2)∵方程2mf (x )=x 2有唯一实数解,∴x 2-2m ln x -2mx =0有唯一实数解. 设g (x )=x 2-2m ln x -2mx ,则g ′(x )=2x 2-2mx -2m x.令g ′(x )=0,则x 2-mx -m =0.∵m >0,∴Δ=m 2+4m >0,∵x >0,∴x 1=m -m 2+4m 2<0(舍去),x 2=m +m 2+4m2,当x ∈(0,x 2)时,g ′(x )<0,g (x )在(0,x 2)上单调递减, 当x ∈(x 2,+∞)时,g ′(x )>0,g (x )在(x 2,+∞)单调递增,当x =x 2时,g ′(x 2)=0,g (x )取最小值g (x 2).∵g (x )=0有唯一解,∴g (x 2)=0,则⎩⎪⎨⎪⎧g ′(x 2)=0,g (x 2)=0,即x 22-2m ln x 2-2mx 2=x 22-mx 2-m ,∴2m ln x 2+mx 2-m =0, ∵m >0,∴2ln x 2+x 2-1=0.(*)设函数h (x )=2ln x +x -1,∵当x >0时,h (x )是增函数,∴h (x )=0至多有一解. ∵h (1)=0,∴方程(*)的解为x 2=1,即1=m +m 2+4m 2,解得m =12.3.函数f (x )=ax +x ln x 在x =1处取得极值. (1)求f (x )的单调区间;(2)若y =f (x )-m -1在定义域内有两个不同的零点,求实数m 的取值范围. 3.解析 (1)由题意知,f ′(x )=a +ln x +1(x >0),f ′(1)=a +1=0,解得a =-1,当a =-1时,f (x )=-x +x ln x ,即f ′(x )=ln x ,令f ′(x )>0,解得x >1;令f ′(x )<0,解得0<x <1. ∴f (x )在x =1处取得极小值,f (x )的单调递增区间为(1,+∞),单调递减区间为(0,1).(2)y =f (x )-m -1在(0,+∞)上有两个不同的零点,可转化为f (x )=m +1在(0,+∞)上有两个不同的根, 也可转化为y =f (x )与y =m +1的图象有两个不同的交点,由(1)知,f (x )在(0,1)上单调递减,在(1,+∞)上单调递增,f (x )min =f (1)=-1, 由题意得,m +1>-1,即m >-2,①当0<x <1时,f (x )=x (-1+ln x )<0;当x >0且x →0时,f (x )→0;当x →+∞时,显然f (x )→+∞. 如图,由图象可知,m +1<0,即m <-1,②由①②可得-2<m <-1.故实数m 的取值范围为(-2,-1). 4.设函数f (x )=-x 2+ax +ln x (a ∈R ). (1)当a =-1时,求函数f (x )的单调区间;(2)设函数f (x )在⎣⎡⎦⎤13,3上有两个零点,求实数a 的取值范围. 4.解析 (1)函数f (x )的定义域为(0,+∞),当a =-1时,f ′(x )=-2x -1+1x =-2x 2-x +1x ,令f ′(x )=0,得x =12(负值舍去),当0<x <12时,f ′(x )>0;当x >12时,f ′(x )<0,∴f (x )的单调递增区间为⎝⎛⎭⎫0,12,单调递减区间为⎝⎛⎭⎫12,+∞. (2)令f (x )=-x 2+ax +ln x =0,得a =x -ln x x ,令g (x )=x -ln xx,其中x ∈⎣⎡⎦⎤13,3, 则g ′(x )=1-1x ·x -ln x x 2=x 2+ln x -1x 2,令g ′(x )=0,得x =1,当13≤x <1时,g ′(x )<0;当1<x ≤3时,g ′(x )>0, ∴g (x )的单调递减区间为⎣⎡⎭⎫13,1,单调递增区间为(1,3],∴g (x )min =g (1)=1,由于函数f (x )在⎣⎡⎦⎤13,3上有两个零点,g ⎝⎛⎭⎫13=3ln 3+13,g (3)=3-ln 33,3ln 3+13>3-ln 33, ∴实数a 的取值范围是⎝⎛⎦⎤1,3-ln 33. 5.已知函数f (x )=(x -2)e x +a (x -1)2. (1)讨论f (x )的单调性;(2)若f (x )有两个零点,求a 的取值范围.5.解析 (1)f ′(x )=(x -1)e x +2a (x -1)=(x -1)(e x +2a ).①设a ≥0,则当x ∈(-∞,1)时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.②设a <0,由f ′(x )=0得x =1或x =ln(-2a ).若a =-e2,则f ′(x )=(x -1)(e x -e),所以f (x )在(-∞,+∞)上单调递增.若a >-e2,则ln(-2a )<1,故当x ∈(-∞,ln(-2a ))∪(1,+∞)时,f ′(x )>0;当x ∈(ln(-2a ),1)时,f ′(x )<0.所以f (x )在(-∞,ln(-2a )),(1,+∞)上单调递增,在(ln(-2a ),1)上单调递减. 若a <-e2,则ln(-2a )>1,故当x ∈(-∞,1)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(1,ln(-2a ))时,f ′(x )<0.所以f (x )在(-∞,1),(ln(-2a ),+∞)上单调递增,在(1,ln(-2a ))上单调递减. (2)①设a >0,则由(1)知,f (x )在(-∞,1)上单调递减,在(1,+∞)上单调递增.又f (1)=-e ,f (2)=a ,取b 满足b <0且b <ln a 2,则f (b )>a2(b -2)+a (b -1)2=a ⎝⎛⎭⎫b 2-32b >0, 所以f (x )有两个零点.②设a =0,则f (x )=(x -2)e x ,所以f (x )只有一个零点.③设a <0,若a ≥-e2,则由(1)知,f (x )在(1,+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点;若a <-e2,则由(1)知,f (x )在(1,ln(-2a ))上单调递减,在(ln(-2a ),+∞)上单调递增.又当x ≤1时,f (x )<0,故f (x )不存在两个零点. 综上,a 的取值范围为(0,+∞). 6.已知函数f (x )=(x -1)e x +ax 2,a ∈R . (1)讨论函数f (x )的单调区间;(2)若f (x )有两个零点,求a 的取值范围. 6.解析 (1)f ′(x )=e x +(x -1)e x +2ax =x (e x +2a ). ①若a ≥0,则当x >0时,f ′(x )>0;当x <0时,f ′(x )<0. 故函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. ②当a <0时,由f ′(x )=0,解得x =0或x =ln(-2a ).(ⅰ)若ln(-2a )=0,即a =-12,则∀x ∈R ,f ′(x )=x (e x -1)≥0,故f (x )在(-∞,+∞)上单调递增;(ⅰ)若ln(-2a )<0,即-12<a <0,则当x ∈(-∞,ln(-2a ))∪(0,+∞)时,f ′(x )>0;当x ∈(ln(-2a ),0)时,f ′(x )<0.故函数f (x )在(-∞,ln(-2a )),(0,+∞)上单调递增,在(ln(-2a ),0)上单调递减.(ⅰ)若ln(-2a )>0,即a <-12,则当x ∈(-∞,0)∪(ln(-2a ),+∞)时,f ′(x )>0;当x ∈(0,ln(-2a ))时,f ′(x )<0.故函数f (x )在(-∞,0),(ln(-2a ),+∞)上单调递增,在(0,ln(-2a ))上单调递减.(2)①当a >0时,由(1)知,函数f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增. 因为f (0)=-1<0,f (2)=e 2+4a >0,取实数b 满足b <-2且b <ln a ,则 f (b )>a (b -1)+ab 2=a (b 2+b -1)>a (4-2-1)>0,所以f (x )有两个零点; ②若a =0,则f (x )=(x -1)e x ,故f (x )只有一个零点. ③若a <0,由(1)知,当a ≥-12时,则f (x )在(0,+∞)上单调递增,又当x ≤0时,f (x )<0,故f (x )不存在两个零点;当a <-12时,则f (x )在(-∞,0),(ln(-2a ),+∞)上单调递增;在(0,ln(-2a ))上单调递减.又f (0)=-1,故不存在两个零点. 综上所述,a 的取值范围是(0,+∞). 7.已知函数f (x )=(2-a )x -2(1+ln x )+a . (1)当a =1时,求f (x )的单调区间.(2)若函数f (x )在区间⎝⎛⎭⎫0,12上无零点,求a 的最小值. 7.解析 (1)当a =1时,f (x )=x -1-2ln x ,则f ′(x )=1-2x ,其中x ∈(0,+∞).由f ′(x )>0,得x >2,由f ′(x )<0,得0<x <2,故f (x )的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)f (x )=(2-a )x -2(1+ln x )+a =(2-a )(x -1)-2ln x ,令m (x )=(2-a )(x -1),h (x )=2ln x ,其中x >0,则f (x )=m (x )-h (x ). ①当a <2时,m (x )在⎝⎛⎭⎫0,12上为增函数,h (x )在⎝⎛⎭⎫0,12上为增函数, 结合图象知,若f (x )在⎝⎛⎭⎫0,12上无零点,则m ⎝⎛⎭⎫12≥h ⎝⎛⎭⎫12,即(2-a )⎝⎛⎭⎫12-1≥2ln 12, 所以a ≥2-4ln 2,所以2-4ln 2≤a <2.②当a ≥2时,在⎝⎛⎭⎫0,12上m (x )≥0,h (x )<0,所以f (x )>0,所以f (x )在⎝⎛⎭⎫0,12上无零点. 由①②得a ≥2-4ln 2,所以a min =2-4ln 2. 8.已知函数F (x )=ln x x -1-ax +1.(1)设函数h (x )=(x -1)F (x ),当a =2时,证明:当x >1时,h (x )>0; (2)若F (x )有两个不同的零点,求a 的取值范围. 8.解析 (1)当a =2,x >1时,h ′(x )=(x -1)2x (x +1)2>0,所以h (x )在(1,+∞)上单调递增,且h (1)=0,所以当x >1时,h (x )>0. (2)设函数f (x )=ln x -a (x -1)x +1,则f ′(x )=x 2+2(1-a )x +1x (x +1)2.令g (x )=x 2+2(1-a )x +1,当a ≤1,x >0时,g (x )>0,当1<a ≤2时,Δ=4a 2-8a ≤0,得g (x )≥0,所以当a ≤2时,f ′(x )≥0,f (x )在(0,+∞)上单调递增,此时f (x )至多有一个零点,F (x )=1x -1f (x )至多有一个零点,不符合题意,舍去. 当a >2时,Δ=4a 2-8a >0,此时g (x )有两个零点,设为t 1,t 2,且t 1<t 2.又t 1+t 2=2(a -1)>0,t 1t 2=1,所以0<t 1<1<t 2.所以f (x )在(0,t 1),(t 2,+∞)上单调递增,在(t 1,t 2)上单调递减,且f (1)=0,所以f (t 1)>0,f (t 2)<0,又f (e -a )=-2a e a +1<0,f (e a )=2a e a +1>0,且f (x )的图象连续不断, 所以存在唯一x 1∈(e -a ,t 1),使得f (x 1)=0,存在唯一x 2∈(t 2,e a ),使得f (x 2)=0.又F (x )=1x -1f (x ),所以当F (x )有两个不同零点时,a 的取值范围为(2,+∞). 9.已知函数f (x )=x e x -a (ln x +x ),a ∈R .(1)当a =e 时,求f (x )的单调区间;(2)若f (x )有两个零点,求实数a 的取值范围.9.解析 (1)函数的定义域为(0,+∞),当a =e 时,f ′(x )=(1+x )(x e x -e)x. 令f ′(x )>0,得x >1,令f ′(x )<0,得0<x <1,∴f (x )在(0,1)上单调递减;在(1,+∞)上单调递增.(2)记t =ln x +x ,则t =ln x +x 在(0,+∞)上单调递增,且t ∈R .∴f (x )=x e x -a (ln x +x )=e t -at .设g (t )=e t -at ,∴f (x )在x >0时有两个零点等价于g (t )=e t -at 在t ∈R 上有两个零点.①当a =0时,g (t )=e t 在R 上单调递增,且g (t )>0,故g (t )无零点;②当a <0时,g ′(t )=e t -a 在R 上单调递增,又g (0)=1>0,g ⎝⎛⎭⎫1a =1e a -1<0,故g (t )在R 上只有一个零点;③当a >0时,由g ′(t )=e t -a =0可知g (t )在t =ln a 时有唯一的一个极小值且为最小值g (ln a )=a (1-ln a ). 若0<a <e ,g (ln a )=a (1-ln a )>0,g (t )无零点;若a =e ,g (ln a )=0,g (t )只有一个零点;若a >e 时,g (ln a )=a (1-ln a )<0,而g (0)=1>0,由于f (x )=ln x x在x >e 时单调递减,可知a >e 时,e a >a e >a 2.从而g (a )=e a -a 2>0, ∴g (x )在(0,ln a )和(ln a ,+∞)上各有一个零点.综上可知当a >e 时,f (x )有两个零点,即所求a 的取值范围是(e ,+∞).10.已知函数f (x )=e xx,g (x )=a (x -ln x )(a ∈R ). (1)求函数g (x )的极值;(2)若h (x )=f (x )-g (x ) 在[1,+∞)上有且只有一个零点,求实数a 的取值范围.10.解析 (1)函数g (x )的定义域为(0,+∞),当a =0时,函数g (x )=0无极值,当a ≠0时,g ′(x )=a ⎝⎛⎭⎫1-1x =a x -1x. 若a >0,令g ′(x )>0,则x >1;令g ′(x )<0,则0<x <1,所以函数g (x )在(1,+∞)上单调递增,在(0,1)上单调递减,所以g (x )的极小值为g (1)=a ,无极大值.若a <0,令g ′(x )>0,则0<x <1;令g ′(x )<0,则x >1,所以函数g (x )在(0,1)上单调递增,在(1,+∞)上单调递减,所以g (x )的极大值为g (1)=a ,无极小值.(2)令M (x )=x -ln x ,M ′(x )=1-1x, 当x ∈[)1,+∞时,M ′(x )≥0,所以M (x )在[1,+∞)上单调递增,所以M (x )≥M (1)=1,所以x -ln x >0. 由题可知,h (x )=f (x )-g (x )在[1,+∞)上有且只有一个零点,即h (x )=0在[1,+∞)上有且只有一个根,等价于a =e xx (x -ln x )在[1,+∞)上有且只有一个根, 等价于函数y =a 与函数t (x )=e x x (x -ln x )的图象在[1,+∞)上只有一个交点, t ′(x )=e x ()x 2-x ln x -2x +ln x +1[]x (x -ln x )2,令m (x )=x 2-x ln x -2x +ln x +1, 则m ′(x )=2x -ln x +1x -3,令μ(x )=m ′(x ),则μ′(x )=2-1x -1x 2=(2x +1)(x -1)x 2, 当x ∈[1,+∞)时,μ′(x )≥0,所以m ′(x )在[1,+∞)上单调递增,则m ′(x )≥m ′(1)=0,所以m (x )在[1,+∞)上单调递增,则m (x )≥m (1)=0,所以t (x )在[1,+∞)上单调递增,所以t (x )≥e ,所以a ≥e .。
函数零点问题的几种常见求解方法
![函数零点问题的几种常见求解方法](https://img.taocdn.com/s3/m/341871239ec3d5bbfc0a7406.png)
函数零点问题的几种常见求解方法作者:卢杰来源:《中学教学参考·中旬》 2013年第1期湖北十堰市第一中学(442000)卢杰函数零点是函数与导数部分的重要知识,它涉及函数的图像与性质等基本知识,渗透着转化与化归、数形结合、分类讨论、函数与方程等重要思想,体现对学生综合能力的考查.下面对常见的几种函数零点解决办法作些归纳.方法一:解方程法.函数f(x)零点问题可转化为求方程f(x)=0的解,方程几个解就对应函数有几个零点.【例1】函数f(x)=xcosx2在区间[0,4]上零点的个数为().A.4B.5C.6D.7分析:求方程xcosx2=0在区间[0,4]上解的个数,x=0为一个解;x∈(0,4]时,x2∈(0,16],由cosx2=0得x2=kπ+π2 ,k∈Z,k只能取0,1,2,3,4,此时有5个解.综上,解的个数为6,即零点个数为6.选C.方法二:利用零点存在性定理法.如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,并且有f(a)·f(b)<0,那么,y=f(x)在区间(a,b)内有零点.若结合单调性,就能判断零点的个数.【例2】函数f(x)=ex+x-2的零点所在的一个区间是().A.(-2,-1)B.(-1,0)C.(0,1)D.(1,2)分析:因为f(0)=e0+0-2=-1<0,f(1)=e1+1-2=e-1>0,所以函数f(x)=ex+x-2的零点所在的一个区间是(0,1).选C.方法三:数形结合法.函数零点、方程的根与函数图象的关系为函数y=F(x)=f(x)-g(x)有零点�方程F(x)=f(x)-g(x)=0有实数根�函数y1=f(x)和y2=g(x)的图像有交点.故可以把函数零点问题转化为两个函数图象的交点问题,有时又需要把方程解的问题转化为函数零点问题,通过图象反映与轴交点的情况.【例4】函数f(x)=lgx-cosx的零点有().A.4个 B.3个 C.2个 D.1个分析:可画出y=lgx和y=cosx的图象,观察得出有3个交点.选B.【例5】函数f(x)=x2-8x+6lnx+m有三个零点,求实数m的取值范围.分析:函数有三个零点等价于图象与x轴有三个不同的交点.f(x)在(0,1)上递增,(1,3)上递减,(3,+∞)上递增.结合f(x)的图象可得f(1)>0且f(3)<0,解得7<m<15-6ln3.以上三种方法是常见的函数零点问题解决办法,前两种方法主要适用于较简单的问题,小题中运用较多;后一种方法有时直接画出函数图象看其与轴交点的个数,有时又必须画两个图象,注意在做题过程中加以区分.(责任编辑金铃)。
2024届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》
![2024届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》](https://img.taocdn.com/s3/m/2d5816fa8ad63186bceb19e8b8f67c1cfad6ee8d.png)
2024届高考数学二轮复习专题《运用数形结合思想探究函数零点问题》运用数形结合思想探究函数零点问题函数是数学中常见的一个概念,它描述了自变量和因变量之间的关系。
在学习函数的过程中,我们经常会遇到求函数的零点的问题。
函数的零点是指函数在哪些自变量取值下,其对应的因变量为0。
求解函数的零点在数学中具有重要的意义,不仅可以帮助我们分析数学问题,还可以在实际应用中发挥作用。
为了更好地探究函数零点问题,我们可以借助数形结合思想。
数形结合思想是数学的一种思维方式,通过将问题抽象为几何图形的形式,结合几何图形的性质来解决问题。
以简单的一元一次函数为例,我们考虑函数f(x)=ax+b,其中a和b为常数。
究竟什么样的条件下,函数f(x)的零点存在呢?我们可以通过数形结合思想进行探究。
首先,我们可以画出函数y=ax+b的图像。
这是一条直线,a决定了直线的斜率,b决定了直线在y轴上的截距。
我们可以从图像中直观地看出,当直线与x轴相交时,函数就有零点存在。
接下来,我们将函数的零点问题转化为几何问题。
我们可以将直线y=ax+b与x轴相交的点A与原点O连线,得到一条线段AO。
由于原点O的坐标为(0,0),所以点O可以看作是函数的零点。
通过几何分析,我们可以得到结论:当直线y=ax+b与x轴相交时,线段AO的长度就是零点的解。
而线段AO的长度可以通过两点之间的距离来计算,即0点到直线y=ax+b所对应的点A的距离,通常记为d。
根据直线到原点的距离公式,我们可以得到d的计算方法:d=,b,/√(a²+1)。
这个公式告诉我们,0点到直线y=ax+b所对应的点A的距离取决于a和b的值。
当a=0时,直线平行于x轴,不存在与x轴的交点,也就是函数不存在零点。
当a≠0时,直线与x轴相交于一点,也就是函数存在唯一的零点。
通过数形结合思想的探究,我们从几何的角度解释了函数零点的问题,并得到了函数零点存在的条件和计算零点的方法。
这种思考方式不仅能够加深对函数的理解,还可以培养我们的几何思维能力。
数形结合解复合函数的零点个数的常见解法
![数形结合解复合函数的零点个数的常见解法](https://img.taocdn.com/s3/m/73772805ec630b1c59eef8c75fbfc77da2699794.png)
数形结合解复合函数的零点个数的常见解法
在学习数学的过程中,复合函数是学习者必须要掌握的重要知识之一。
然而,
求解复合函数的零点个数往往是极为复杂的,尤其对初学者来说,可能会困扰很长时间。
本文就简单介绍一种求解复合函数零点个数的常见解法——参数形式结合法。
首先,看到复合函数时,要分析此函数是由哪些函数叠加而成的,并找出复合
函数中有几个部分函数。
其次,把复合函数进行拆分,把每个部分函数的参数构造成一组参数形式,便于进行函数的乘法和分解。
最后,通过用参数形式结合在一起,用一定 means 来分解复合函数的零点个数,主要是根据复合函数中的参数的关系,分析各部分函数的零点;之后再综合考虑其他因素,如在此前讨论的参数构造,从而可以从不同角度求出复合函数的零点个数。
通过以上步骤,学习者就可以很好地通过参数形式结合解决复合函数零点个数
的问题,从而减少数学学习过程中的困惑和困难,达成更高的预期效果。
数形结合解零点问题(已修改,含答案)
![数形结合解零点问题(已修改,含答案)](https://img.taocdn.com/s3/m/d8fc0505de80d4d8d15a4fb6.png)
x 4 和 y 4 x的
x
x 4 x 4的 零 点 个 数 为1.
y y= x+4
O
1 y=4-x
x
(图1)
例 2 : 定 义 函 数 f ( x ) m in { x , x } , 其 中 { x / x 0}
2
2
满 足 函 数 G ( x ) f ( x ) k 有 四 个 零 点 , 求 k的 范 围 ( 即 图 象 f ( x )与 y k 有 四 个 交 点 )
0k 1
(二 ) 零 点 所 在 区 间 问 题 例 3 : 函 数 f ( x ) lg x x 3的 零 点 所 在 区 间 为 ( A.(0,1) B.(1,2) C.(2,3) D . ( 3 , + )
C
y
)
y=lgx O 1 3 y=-x+3
(图4)
x
若 题 目 改 为 零 点 所 在 区 间 ( n , n 1), n N , 则 n=?
评 注 : 数 形 结 合 , 要 在 结 合 方 面 下 功 夫 ,本 题 不 仅 要 通过图象直观估计,而且还要计算两个函数 值,通过比较其大小进行判断.
(三)零点值问题 例 4 : 若 函 数 f ( x ) e x 3的 零 点 x1, g ( x ) ln x x 3的 零 点 x 2 ,
2
(1 ) 函 数 f ( x ) 有 四 个 零 点 ( 2 ) 函 数 f ( x )有 三 个 零 点 (3 ) 函 数 f ( x )有 两 个 零 点
0a 1 a 1
a 0或a 1
(一 ) 零 点 个 数 问 题 例1 : 求 函 数 f
三法破解函数零点个数问题 冯雄德
![三法破解函数零点个数问题 冯雄德](https://img.taocdn.com/s3/m/9be8099433687e21ae45a97e.png)
三法破解函数零点个数问题冯雄德发表时间:2015-11-03T14:39:44.450Z 来源:《教育学文摘》2015年9月总第169期供稿作者:冯雄德[导读] 甘肃省武威第七中学函数y=f(x)有零点方程f(x)=0有实根函数y=f(x)的图象与x轴有交点。
在解决函数与方程的问题时,要注意这三者之间的关系◆冯雄德甘肃省武威第七中学733006近几年高考,有关函数零点个数问题的试题层出不穷,对解决此类问题的能力考查力度也逐步加大,以下举例探讨判断函数零点个数的方法。
解析:选D。
注意到f(-1)×f(0)= ×(-1)<0,因此函数f(x)在(-1,0)上必有零点。
又f(2)=f(4)=0,因此函数f(x)的零点个数是3。
三、数形结合法即转化为两个函数的图象的交点个数问题,先画出两个函数的图象,看其交点的个数,其中交点的横坐标有几个不同的值,就有几个不同的零点。
例5.函数f(x)=2x|log0.5x|-1的零点个数为( )。
A.1B.2C.3D.4解析:选B。
易知函数f(x)=2x|log0.5x|-1的零点个数方程|log0.5x|==( )x的根的个数函数y1=|log0.5x|与y2=( )x的图象的交点个数。
作出两个函数的图象如图所示,由图可知两个函数图象有两个交点。
例6.若定义在R上的函数f(x)满足f(x+2)=f(x),且x∈ [-1,1]时,f(x)=1-x2,函数g(x)= ,则方程f(x)-g(x)=0在区间[-5,5]上的解的个数为( )。
A.5 B.7 C.8 D.10解析:选C。
依题意得,函数f(x)是以2为周期的函数,在同一坐标系下画出函数y=f(x)与函数y=g(x)的图象,结合图象得,当x∈[-5,5]时,它们的图象的公共点共有8个,即方程f(x)-g(x)=0在区间[-5,5]上的解的个数为8。
函数y=f(x)有零点方程f(x)=0有实根函数y=f(x)的图象与x轴有交点。
【函数与导数压轴题突破】2、三招五法破解含参零点问题
![【函数与导数压轴题突破】2、三招五法破解含参零点问题](https://img.taocdn.com/s3/m/c00ced9f580216fc710afd37.png)
2021高考数学压轴题命题区间探究与突破专题第一篇 函数与导数专题02 “三招五法”,轻松破解含参零点问题 一.方法综述函数的含参零点问题是高考热门题型,既能很好地考查函数、导数、方程与不等式等基础知识,又能考查分类讨论、数的性质,特别是函数单调性(可借助于导数)探寻解题思路,或利用数形结合思想、分离参数方法来求解.具体的,(1)分类讨论参数的不同取值情况,研究零点的个数或取值;(2)利用零点存在的判定定理构建不等式形结合、转化与化归等思想方法,所以此类题往往能较好地体现试卷的区分度,往往出现在压轴题的位置.正因为如此,根据函数的零点情况,讨论参数的范围成为高考的难点.对于此类题目,我们常利用零点存在定理、函数求解;(3)分离参数后转化为函数的值域(最值)问题求解,如果涉及由几个零点时,还需考虑函数的图象与参数的交点个数;(4)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解. 二.解题策略类型一 “第一招”带参讨论【例1】【2020·福建福州期末】已知函数()()2224x x f x x x a e e --+=--+有唯一零点,则a =( ) A .12-B .-2C .12D .2【答案】B【解析】因为函数()()2224x x f x x x a e e --+=--+有唯一零点, 等价于方程()2224x x x x a e e --+-=+有唯一解,等价于函数24y x x =-的图像与()22x x y a ee --+=+的图像只有一个交点.当0a =时,()224244y x x x =-=--≥-,此时有两个零点,矛盾;当0a >时,由于()22424y x x x =-=--在(),2-∞单调递减,在()2,+∞单调递增,且()22x x y a ee --+=+在(),2-∞单调递减,在()2,+∞单调递增,所以函数24y x x =-的图像最低点为()2,4-,()22x x y a e e --+=+的图像的最低点为()2,2a ,由于204a >>-,故两函数图像有两个交点,矛盾,当0a <时,由于()22424y x x x =-=--在(),2-∞单调递减,在()2,+∞单调递增,且()22x x y a ee --+=+在(),2-∞单调递增,在()2,+∞单调递减,所以函数24y x x =-的图像最低点为()2,4-,()22x x y a e e --+=+的图像的最高点为()2,2a ,若两函数只有一个交点,则24a =-,即2a =-.故选B 【指点迷津】1.根据题设要求研究函数的性质,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;2.由于函数含有参数,通常需要合理地对参数的取值进行分类讨论,并逐一求解. 【举一反三】【2020河北邯郸期末】已知函数()2x f x me x m --=有两个零点,则m 的取值范围是( ) A .(0,)+∞ B .(,0)-∞ C .(0,1) D .1(0,)e【答案】A【解析】由题知,()1x f x me '=-,当0m 时,()0f x '<,所以()f x 在R 上单调递减,函数()f x 不可能有两个零点,故0m 不成立; 当0m >时,令()0f x '=,∴1x e m=,∴1x ln m =∴函数()f x 在1(,)lnm -∞上单调递减,在1(,)ln m+∞上单调递增, ∴函数()f x 的最小值111()21()2min f lnm ln m ln m m m m m==--=+- 令()1()2g m ln m m =+-,其中0m >,∴121()2m g m m m-+'=-= ()g m ∴在1(0,)2上单调递增,在1(,)2+∞上单调递增,∴11()()022max g m g ln ==<()0g m ∴<,()f x ∴的最小值1()0f lnm< 且x 趋向于-∞时,()f x 趋向于+∞;当x 趋向于+∞时,()f x 趋向于+∞∴此时()f x 有两个零点,符合题意,(0,)m ∴∈+∞故选A .类型二 “第二招”数形结合【例2】【2020•河南一模】已知关于x 的方程2[()]()10f x kf x -+=恰有四个不同的实数根,则当函数2()x f x x e =时,实数k 的取值范围是( ) A .(-∞,2)(2-⋃,)+∞B .224(,)4e e ++∞C .28(,2)eD .224(2,)4e e +【答案】B【解析】函数2()2(2)x x x f x xe x e x xe '=+=+,由()0f x '>得(2)0x x +>,得0x >或2x <-,此时()f x 为增函数, 由()0f x '<得(2)0x x +<,得20x -<<,此时()f x 为减函数, 即当0x =时,函数()f x 取得极小值,极小值为(0)0f =, 当2x =-时,函数()f x 取得极大值,极大值为24(2)f e -=, 当0x →,()0f x >,且()0f x →, 作出函数()f x 的图象如图: 设()t f x =,则当240t e <<时 方程()t f x =有3个根,当24t e =时 方程()t f x =有2个根,当0t =或24t e >时 方程()t f x =有1个根, 则方程2[()]()10f x kf x -+=等价为210t kt -+=, 若2[()]()10f x kf x -+=恰有四个不同的实数根, 等价为210t kt -+=有两个不同的根, 当0t =,方程不成立,即0t ≠, 其中1240t e <<或224t e >, 设2()1h x t kt =-+,则满足2(0)100224()0h k kh e⎧⎪=>⎪-⎪-=>⎨⎪⎪<⎪⎩,得222044()()10k k e e >⎧⎪⎨-+<⎪⎩,即2222204()1444k e e k e e >⎧⎪⎪+⎨>=+⎪⎪⎩,即2244e k e >+, 即实数k 的取值范围是224(,)4e e ++∞,故选B .【指点迷津】1.由两个基本初等函数组合而得的超越函数f(x)=g(x)-h(x)的零点个数,等价于方程g(x)-h(x)=0的解的个数,亦即g(x)=h(x)的解的个数,进而转化为基本初等函数y =g(x)与y =h(x)的图象的交点个数.2.先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.一是转化为两个函数y =g (x ),y =h (x )的图象的交点个数问题,画出两个函数的图象,其交点的个数就是函数零点的个数,二是转化为y =a,y =g (x )的交点个数的图象的交点个数问题.交点的横坐标即零点.【举一反三】【2020河北武邑直线一调】已知函数()x x f x e=,若关于x 的方程2[()]()10f x mf x m ++-=恰有3个不同的实数解,则实数m 的取值范围是( )A .(-∞,2)(2⋃,)+∞B .1(1e-,)+∞ C .1(1e-,1)D .(1,)e【答案】C【解析】由题意1()xxf x e -'=. 当1x >时,1()0x x f x e -'=<,当1x <时,1()0x xf x e-'=>, ()f x ∴在(,1)-∞上单调递增,在(1,)+∞上单调递减,∴当1x =时,)(x f 取极大值1e.()f x 大致图象如下:假设2m =,令()t f x =.则2210t t ++=.解得1t =-,即()1f x =-. 根据()f x 图象,很明显此时只有一个解, 故2m =不符合题意,由此排除B 、D 选项; 假设3m =,则2320t t ++=,解得12t =-,21t =-. 即()2f x =-,或()1f x =-.根据()f x 图象,很明显此时方程只有两个解, 故3m =不符合题意,由此排除A 选项. 故选C .类型三 “第三招”分离参数【例3】【2020安徽】已知方程23||02ln x ax -+=有4个不同的实数根,则实数a 的取值范围是 .【答案】2(0,)2e【解析】由23||02ln x ax -+=,得23||2ax ln x =+,0x ≠,∴方程等价为23||2ln x a x +=,设23||2()ln x f x x +=,则函数()f x 是偶函数,当0x >时,232()lnx f x x +=,则24413()22(1)2()x lnx xx lnx x f x x x -+-+'==, 由()0f x '>得2(1)0x lnx -+>,得10lnx +<,即1lnx <-,得10x e<<,此时函数单调递增, 由()0f x '<得2(1)0x lnx -+<,得10lnx +>,即1lnx >-,得1x e>,此时函数单调递减,即当0x >时,1x e =时,函数()f x 取得极大值21312()1()ln e f e e+=2231(1)22e e =-+=,作出函数()f x 的图象如图所示,要使23||2ln x a x +=,有4个不同的交点,则满足202e a <<.【指点迷津】1.分离参数法,先将参数分离,转化成求函数值域(最值)问题加以解决;2.通过将原函数中的变参量进行分离后变形成g(x)=l(a),则原函数的零点问题化归为与x 轴平行的直线y =l(a)和函数g(x)的图象的交点问题. 【举一反三】【2015年天津卷理】已知函数()()22,2,{2,2,x x f x x x -≤=->函数()()2g x b f x =--,其中b R ∈,若函数()()y f x g x =-恰有4个零点,则b 的取值范围是( )A . 7,4⎛⎫+∞ ⎪⎝⎭B . 7,4⎛⎫-∞ ⎪⎝⎭C . 70,4⎛⎫ ⎪⎝⎭D . 7,24⎛⎫⎪⎝⎭【答案】D 【解析】函数恰有4个零点,即方程,即有4个不同的实数根,即直线与函数的图像有四个不同的交点.又做出该函数的图像如图所示,由图得,当时,直线与函数的图像有4个不同的交点,故函数恰有4个零点时,b 的取值范围是故选D .类型四 “三招五法”一题多解【例4】【2014年全国卷Ⅰ】已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围为( ) A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1)【答案】B 【解析】法一 单调性法:利用函数的单调性求解 由已知得,a ≠0,f ′(x)=3ax 2-6x ,令f ′(x)=0,得x =0或x =2a. 当a>0时,x ∈(-∞,0),f ′(x)>0;x ∈(0,2a ),f ′(x)<0;x ∈(2a,+∞),f ′(x)>0.所以函数f(x)在(-∞,0)和2a ,+∞上单调递增,在(0,2a)上单调递减,且f(0)=1>0,故f(x)有小于零的零点,不符合题意.当a<0时,x ∈(-∞,2a ),f ′(x)<0;x ∈(2a ,0),f ′(x)>0;x ∈(0,+∞),f ′(x)<0.所以函数f(x)在(-∞,2a )和(0,+∞)上单调递减,在(2a,0)上单调递增,所以要使f(x)有唯一的零点x 0且x 0>0,只需f (2a)>0,即a 2>4,解得a<-2.法二 数形结合法:转化为直线与曲线的位置关系求解由ax 3-3x 2+1=0可知x ≠0,可得ax =3-21x ,作出y =3-21x 的图象如图所示,转动直线y =ax ,显然a>0时不成立;当a<0,直线y =ax 与左边的曲线相切时,设切点为t,3-21t,其中t<0,则切线方程为y -3-21t =32t (x -t).又切线过原点,则有0-3-21t =32t(0-t),解得t =-1(t =1舍去),此时切线的斜率为-2,由图象可知a<-2符合题意. 法三 数形结合法:转化为两曲线的交点问题求解令f(x)=0,得ax 3=3x 2-1.问题转化为g(x)=ax 3的图象与h(x)=3x 2-1的图象存在唯一的交点,且交点横坐标大于零.当a =0时,函数g(x)的图象与h(x)的图象存在两个的交点; 当a>0时,如图(1)所示,不合题意;当a<0时,由图(2)知,可先求出函数g(x)=ax 3与h(x)=3x 2-1的图象有公切线时a 的值.由g ′(x)=h ′(x),g(x)=h(x),得a =-2.由图形可知当a<-2时,满足题意.法四 分离参数法:参变分离,化繁为简.易知x ≠0,令f(x)=0,则331a x x =-,记331()g x x x =-,2'234333(1)()x g x x x x --=-+=,可知g(x)在(-∞,-1)和(1,+∞)上单调递减,在(-1,0)和(0,1)上单调递增,且g(-1)=-2,画出函数大致图象如图所示,平移直线y =a ,结合图象,可知a<-2.法五 特例法:巧取特例求解取a =3,则f(x)=3x 3-3x 2+1.由于f(0)=1,f(-1)<0,从而f(x)在(-∞,0)上存在零点,排除A 、C.取a =-43,则f(x)=-43x 3-3x 2+1.由于f(0)=1,f (32)<0,从而f(x)在(-∞,0)上存在零点,排除D ,故选B. 【指点迷津】1.本题的实质是函数f(x)存在唯一的零点x 0∈(0,+∞),因此可利用其代数特征转化为方程有唯一的正根来构思解析,也可以从零点本身的几何特征入手,将其转化为曲线的交点问题来突破,还可以利用选项的唯一性选取特例求解.2. 函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.【举一反三】【2017课标3,理11】已知函数211()2()x x f x x x a e e --+=-++有唯一零点,则a=A .12-B .13C .12D .1【答案】C 【解析】方法一:函数的零点满足()2112x x x x a e e --+-=-+,设()11x x g x ee--+=+,则()()211111111x x x x x x e g x eeee e---+----'=-=-=,当()0g x '=时,1x =,当1x <时,()0g x '<,函数()g x 单调递减, 当1x >时,()0g x '>,函数()g x 单调递增, 当1x =时,函数取得最小值()12g =,设()22h x x x =- ,当1x =时,函数取得最小值1- ,方法二:由函数f(x)有零点,得211(2)0x x x x a e e --+-++=有解, 即211()(110)x x x a e e --+--++=有解,令1t x =-,则上式可化为2(10)t t t a e e --++=,即21t tt a e e --+=.令21t tt e e --+h(t)=,易得h(t)为偶函数,又由f(x)有唯一零点得函数h(t)的图象与直线y =a 有唯一交点,则此交点的横坐标为0,所以10122a -==,故选C. 方法三:由()112()02.x x f x a e ex x ⇔--+=+=-+112x x e e ≥--++,当且仅当1x =时取“=”. 2221)11(x x x ≤-+=--+,当且仅当1x =时取“=”.若a>0,则112()x x a e e a ≥--++,要使f(x)有唯一零点,则必有21a =,即12a =. 若a ≤0,则f(x)的零点不唯一.综上所述,12a =.三.强化训练1.【2018年新课标I 卷理】已知函数f(x)={e x,x ≤0,lnx ,x >0, g(x)=f(x)+x +a .若g (x )存在2个零点,则a 的取值范围是A . [–1,0)B . [0,+∞)C . [–1,+∞)D . [1,+∞) 【答案】C【解析】画出函数f(x)的图像,y =e x 在y 轴右侧的去掉, 再画出直线y =-x ,之后上下移动,可以发现当直线过点A 时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点, 即方程f(x)=-x -a 有两个解, 也就是函数g(x)有两个零点, 此时满足-a ≤1,即a ≥-1,故选C.2.【2020届河北“五个一名校联盟”二诊】已知函数()y f x =满足对任意的x R ∈,总有(2)()f x f x +=,且当[0x ∈,2]时,()1|1|f x x =--.若关于x 的方程()log a f x x =恰有三个不相等的实根,则实数a 的取值范围为( ) A .[3,5] B .(3,5)C .[4,5]D .(3,6)【答案】B【解析】函数()y f x =满足对任意的x R ∈,总有(2)()f x f x +=,可知函数的周期为2, 当[0x ∈,2]时,()1|1|f x x =--,所以函数()y f x =的图象如图所示关于x 的方程()log a f x x =恰有三个不相等的实根,可知1a >,log a y x =必须夹在A 点的下方,B点的上方,所以3151a alog log <⎧⎨>⎩,可得(3,5)a ∈,故选B .3.【2020河北唐山期中】若存在两个正实数x ,y 使得等式(1)x lnx xlny ay +=-成立(其中lnx ,lny 是以e 为底的对数),则实数a 的取值范围是( )A .21(0,]eB .1(0,]eC .21(,]e -∞ D .1(,]3-∞【答案】C【解析】(1)x lnx xlny ay +=-可化为x x x a ln y y y=--, 令x t y=,则0t >,()f t t tlnt =--,()2f t lnt '=--,∴函数()f t 在区间21(0,)e 上单调递增,在区间21(,)e +∞ 上单调递减. 即22221121()()f t f e e e e =-+=,则21(,]a e ∈-∞,故选C . 4.【2019届同步单元双基双测AB 卷】函数f (x )的定义域为实数集R ,f (x )={(12)x-1,-1≤x <0log 2(x +1),0≤x <3,对于任意的x ∈R 都有f (x +2)=f (x -2),若在区间[-5,3]函数g (x )=f (x )-mx +m 恰有三个不同的零点, 则实数m 的取值范围是( ) A . (-12,-13) B . [-12,-13] C . (-12,-16) D . [-12,-16) 【答案】D【解析】∵f (x+2)=f (x ﹣2),∴f (x )=f (x+4), f (x )是以4为周期的函数,若在区间[﹣5,3]上函数g (x )=f (x )﹣mx+m 恰有三个不同的零点, 则f (x )和y=m (x ﹣1)在[﹣5,3]上有3个不同的交点,画出函数函数f (x )在[﹣5,3]上的图象,如图示:,由K AC =﹣16,K BC =﹣12,结合图象得:m ∈[-12,16), 故选:D5.【2020届重庆八中期末】已知函数2()log 1f x x =-,且关于x 的方程2[()]()20f x af x b ++=有6个不同的实数解,若最小的实数解为-1,则+a b 的值为( ) A .-2 B .-1C .0D .1【答案】B【解析】作出函数2()log 1f x x =-的图象,∵方程2[()]()20f x af x b ++=有个不同的实数解,∴如图所示,令,方程2[()]()20f x af x b ++=转化为:,则方程有一零根和一正根,又∵最小的实数解为,由,∴方程:的两根是和,由韦达定理得:,,∴,故选B.6.【安徽省皖中名校联盟2019届10月联考】设函数f(x)={|2x+1-1|,x ≤14-x,x >1 ,若互不相等的实数p,q,r 满足f(p)=f(q)=f(r),则2p +2q +2r 的取值范围是( )A . (8,16)B . (9,17)C . (9,16)D . (172,352) 【答案】B 【解析】不妨设p <q <r ,f (x )的图像如图所示,令f (p )=f (q )=f (r )=m ,则|2p+1-1|=|2q+1-1|=4-r =m ,故2p+1-1=2q+1-1或2p+1-1=-2q+1+1且0<m <1,所以p =q (舎)或2p+1+2q+1=2即2p +2q =1且3<r <4, 故2p +2+q2r =1+2r ∈(9,17),故选B.7.【2020山西运城一中期末】对于任意的实数[1x ∈,]e ,总存在三个不同的实数[1y ∈-,5],使得210y y xe ax lnx ---=成立,则实数a 的取值范围是( ) A .24251(,]e e e- B .4253[,)e e C .(0,425]e D .24253[,)e e e- 【答案】B 【解析】210yy xeax lnx ---=可化为:2y y e lnxa e x=+,设2()(15)y y eg y y e=-,则(2)()y ey y g y e -'=,即函数()g y 在(1,0)-,(2,5)为减函数,在(0,2)为增函数,又2(1)g e -=,g (2)4e =,g (5)425e =, 设()([1,])lnx f x a x e x =+∈,所以21()lnxf x x -'=,即函数()f x 在[1,]e 为增函数, 所以1()a f x a e+,对于任意的实数[1x ∈,]e ,总存在三个不同的实数[1y ∈-,5],使得210y y xe ax lnx ---=成立,即对于任意的实数[1x ∈,]e ,总存在三个不同的实数[1y ∈-,5],使得2y y e lnxa e x=+成立,即425[lnx a x e +∈,4)e对于任意的实数[1x ∈,]e 恒成立, 即42514a e a e e ⎧⎪⎪⎨⎪+<⎪⎩,即4253a e e <,故选B .8.【2020浙江绍兴期末】若关于x 的方程12x a a x ---=恰有三个不同的解,则实数a 的取值范围为______. 【答案】[]1,1-【解析】原题等价于方程12x a a x--=±恰有三个不同的解, 设11(),()2,()2f x x a a g x h x x x=--=+=-,作出图像如下:则2,()=,x a x af x x x a -≥⎧⎨-<⎩是一个“V ”型分段函数,其顶点(,)A a a -在直线y x =-上运动, 将y x =-分别与(),()g x h x 联立,可得直线y x =-与()g x 相切与点(1,1)B -,与()h x 相切与点(1,1)C -, 因此,当且仅当点A 在线段BC 上运动时,()f x x a a =--与12y x=±有三个交点, 由图知实数a 的取值范围为[]1,1-.9.【2020江西瑞金一中期末】已知函数21,0,()2,0,lnx x f x x x x x +⎧>⎪=⎨⎪--<⎩若函数()()g x f x mx =-有三个零点,则实数m 的取值范围是 .【答案】(0,)2e【解析】函数()()g x f x mx =-有三个零点,即函数()y f x =的图象与函数y mx =的图象有三个交点,当0x >时,21(),()lnx lnxf x f x x x+-='=, 显然,当(0,1)x ∈时,()0f x '>,函数()f x 递增,当(1,)x ∈+∞时,()0f x '<,函数()f x 递减,且f (1)1=,设直线y mx =与函数()(0)y f x x =>相切时的切点为0(P x ,0)y ,则00200001lnx y x x lnx y x -⎧=⎪⎪⎨+⎪=⎪⎩,解得00x y ⎧=⎪⎪⎨⎪=⎪⎩此时切线斜率为2e ,作函数草图如下,由图象可知,要使函数()y f x =的图象与函数y mx =的图象有三个交点,则直线函数y mx =的图象应在x 轴与切线OP 之间,则斜率的取值范围为(0,)2e ,即实数m 的取值范围是(0,)2e.10.【2020浙江西湖一中期末】已知函数()y f x =是定义域为R 的偶函数,当0x 时,21,024()13(),224x x x f x x ⎧-⎪⎪=⎨⎪-->⎪⎩,若关于x 的方程27[()]()016a f x af x ++=,a R ∈有且仅有8个不同实数根,则实数a 的取值范围是 .【答案】7(4,16)9【解析】当02x 时,214y x =-递减,当2x >时,13()24x y =--递增, 由于函数()y f x =是定义域为R 的偶函数,则()f x 在(,2)-∞-和(0,2)上递减,在(2,0)-和(2,)+∞上递增, 当0x =时,函数取得极大值0; 当2x =±时,取得极小值1-. 当02x 时,21[14y x =-∈-,0]. 当2x >时,13()[124x y =--∈-,3)4- 要使关于x 的方程27[()]()016af x af x ++=,a R ∈, 有且仅有8个不同实数根, 设()t f x =,则27016a t at ++=的两根均在3(1,)4--. 则有2704312471016937016416a a a a a a a ⎧->⎪⎪⎪-<-<-⎪⎨⎪-+>⎪⎪⎪-+>⎩,即为70432216995a a a a a ⎧><⎪⎪⎪<<⎪⎨⎪<⎪⎪⎪<⎩或,解得71649a <<. 即有实数a 的取值范围是7(4,16)9.。
【高考理数】利用导数解决函数零点问题(解析版)
![【高考理数】利用导数解决函数零点问题(解析版)](https://img.taocdn.com/s3/m/dc640bd5ad02de80d4d840b1.png)
2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
数缺形时少直观,形少数时难入微——数形结合解决零点问题
![数缺形时少直观,形少数时难入微——数形结合解决零点问题](https://img.taocdn.com/s3/m/f534b6806bec0975f465e289.png)
☆
四、 根据复合函数的零点个数
求 参数 范 围
例 5 已 知 函 数 f (X ) : = =
图 7
一 一 一
O l 2 3 4
1 一 z z 一 2 z , ≤ o , 若 函 数 g 厂 一
有 3个 零 点, 则 实 数
由图象 可 知 要 使 I 4 x— 。 I 一一 有 四
点, 即l 4 —z I +n 一0有 四个 根 , 即l 4 z—z 1 一 一口有 四个 根 . 令 g ( z ) 一
点译 对于二次函数的零点问题, 可
利 用 二次 函数 的性 质 结 合 图 象 寻求 条 件 , 列 l 4 z— 。 I , h ( ) 一 一n . 不 等式 或 不等 式组 , 进 而求 解. 则作 出 g ( z ) 的图象 , 如 图 7所示 。
解: 析 因为零点在区问( l 2 , 3 ) 内, 所以
整 数 = 3 .
一
{
l D \/ l 2
一
点评 本题通过 一l 与Y 。 一一
+3的图象直 观 观察 , 还不 能 精确 入 微 , 还要
计算 z=2时 的两 个 函数 值 , 通 过 比较 其 大
区间( 一1 , O ) 、 , ( 1, 2 )内 , 求 m 的 范围 ;
☆ 二、 函数零点的区间分布问题
例 3 函 数 厂( z ) 一l g x + X一 3的 零 点
所 在 区 间 为
A. ( 0 , 1 ) C. ( 2 , 3 ) B. ( 1 , 2 ) D. ( 3 , +。 。)
( 2 )若. 函数 - 厂 ( ) 有 两 个零 点 均 在 区 间
专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数
![专题02 函数的零点个数问题、隐零点及零点赋值问题(学生版) -25年高考数学压轴大题必杀技系列导数](https://img.taocdn.com/s3/m/098dca6f42323968011ca300a6c30c225901f088.png)
专题2 函数的零点个数问题、隐零点及零点赋值问题函数与导数一直是高考中的热点与难点,函数的零点个数问题、隐零点及零点赋值问题是近年高考的热点及难点,特别是隐零点及零点赋值经常成为导数压轴的法宝.(一) 确定函数零点个数1.研究函数零点的技巧用导数研究函数的零点,一方面用导数判断函数的单调性,借助零点存在性定理判断;另一方面,也可将零点问题转化为函数图象的交点问题,利用数形结合来解决.对于函数零点个数问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.但需注意探求与论证之间区别,论证是充要关系,要充分利用零点存在定理及函数单调性严格说明函数零点个数.2. 判断函数零点个数的常用方法(1)直接研究函数,求出极值以及最值,画出草图.函数零点的个数问题即是函数图象与x 轴交点的个数问题.(2)分离出参数,转化为a =g (x ),根据导数的知识求出函数g(x )在某区间的单调性,求出极值以及最值,画出草图.函数零点的个数问题即是直线y =a 与函数y =g (x )图象交点的个数问题.只需要用a 与函数g (x )的极值和最值进行比较即可.3. 处理函数y =f (x )与y =g (x )图像的交点问题的常用方法(1)数形结合,即分别作出两函数的图像,观察交点情况;(2)将函数交点问题转化为方程f (x )=g (x )根的个数问题,也通过构造函数y =f (x )-g (x ),把交点个数问题转化为利用导数研究函数的单调性及极值,并作出草图,根据草图确定根的情况.4.找点时若函数有多项有时可以通过恒等变形或放缩进行并项,有时有界函数可以放缩成常数,构造函数时合理分离参数,避开分母为0的情况.【例1】(2024届河南省湘豫名校联考高三下学期考前保温卷数)已知函数()()20,ex ax f x a a =¹ÎR .(1)求()f x 的极大值;(2)若1a =,求()()cos g x f x x =-在区间π,2024π2éù-êúëû上的零点个数.【解析】(1)由题易得,函数()2ex ax f x =的定义域为R ,又()()()22222e e 2e e e x xx xxax x ax ax ax ax f x ---===¢,所以,当0a >时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢-0+0-()f x ]极小值Z极大值]由上表可知,()f x 的单调递增区间为()0,2,单调递减区间为()(),0,2,¥¥-+.所以()f x 的极大值为()()2420e af a =>.当a<0时,()(),f x f x ¢随x 的变化情况如下表:x(),0¥-0()0,22()2,¥+()f x ¢+0-0+()f x Z 极大值]极小值Z由上表可知,()f x 的单调递增区间为()(),0,2,¥¥-+,单调递减区间为()0,2.所以()f x 的极大值为()()000f a =<.综上所述,当0a >时,()f x 的极大值为24ea;当a<0时,()f x 的极大值为0.(2)方法一:当1a =时,()2e x xf x =,所以函数()()2cos cos e x xg x f x x x =-=-.由()0g x =,得2cos e xx x =.所以要求()g x 在区间π,2024π2éù-êúëû上的零点的个数,只需求()y f x =的图象与()cos h x x =的图象在区间π,2024π2éù-êúëû上的交点个数即可.由(1)知,当1a =时,()y f x =在()(),0,2,¥¥-+上单调递减,在()0,2上单调递增,所以()y f x =在区间π,02éù-êúëû上单调递减.又()cos h x x =在区间π,02éù-êúëû上单调递增,且()()()()()1e 1cos 11,001cos00f h f h -=>>-=-=<==,所以()2e x xf x =与()cos h x x =的图象在区间π,02éù-êúëû上只有一个交点,所以()g x 在区间π,02éù-êúëû上有且只有1个零点.因为当10a x =>,时,()20ex x f x =>,()f x 在区间()02,上单调递增,在区间()2,¥+上单调递减,所以()2e x xf x =在区间()0,¥+上有极大值()2421e f =<,即当1,0a x =>时,恒有()01f x <<.又当0x >时,()cos h x x =的值域为[]1,1-,且其最小正周期为2πT =,现考查在其一个周期(]0,2π上的情况,()2ex x f x =在区间(]0,2上单调递增,()cos h x x =在区间(]0,2上单调递减,且()()0001f h =<=,()()202cos2f h >>=,所以()cos h x x =与()2ex x f x =的图象在区间(]0,2上只有一个交点,即()g x 在区间(]0,2上有且只有1个零点.因为在区间3π2,2æùçúèû上,()()0,cos 0f x h x x >=£,所以()2e x xf x =与()cos h x x =的图象在区间3π2,2æùçúèû上无交点,即()g x 在区间3π2,2æùçúèû上无零点.在区间3π,2π2æùçúèû上,()2ex x f x =单调递减,()cos h x x =单调递增,且()()3π3π002π1cos2π2π22f h f h æöæö>><<==ç÷ç÷èøèø,,所以()cos h x x =与()2ex x f x =的图象在区间3π,2π2æùçúèû上只有一个交点,即()g x 在区间3π,2π2æùçúèû上有且只有1个零点.所以()g x 在一个周期(]0,2π上有且只有2个零点.同理可知,在区间(]()*2π,2π2πk k k +ÎN 上,()01f x <<且()2e xx f x =单调递减,()cos h x x =在区间(]2π,2ππk k +上单调递减,在区间(]2ππ,2π2πk k ++上单调递增,且()()()02π1cos 2π2πf k k h k <<==,()()()2ππ01cos 2ππ2ππf k k h k +>>-=+=+()()()02ππ1cos 2ππ2ππf k k h k <+<=+=+,所以()cos h x x =与()2ex x f x =的图象在区间(]2π,2ππk k +和2ππ,2π2π]k k ++(上各有一个交点,即()g x 在(]2π,2024π上的每一个区间(]()*2π,2π2πk k k +ÎN 上都有且只有2个零点.所以()g x 在0,2024π](上共有2024π220242π´=个零点.综上可知,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.方法二:当1a =时,()2e x xf x =,所以函数()()2cos cos ex x g x f x x x =-=-.当π,02éùÎ-êúëûx 时,()22sin 0e x x x g x x -=¢+£,所以()g x 在区间π,02éù-êúëû上单调递减.又()π0,002g g æö-><ç÷èø,所以存在唯一零点0π,02x éùÎ-êúëû,使得()00g x =.所以()g x 在区间π,02éù-êúëû上有且仅有一个零点.当π3π2π,2π,22x k k k æùÎ++ÎçúèûN 时,20cos 0ex x x ><,,所以()0g x >.所以()g x 在π3π2π,2π,22k k k æù++ÎçúèûN 上无零点.当π0,2x æùÎçèû时,()22sin 0exx x g x x -=¢+>,所以()g x 在区间π0,2æöç÷èø上单调递增.又()π00,g 02g æö<>ç÷èø,所以存在唯一零点.当*π2π,2π,2x k k k æùÎ+ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0exx x x x j -=+¢+>所以()g x ¢在*π2π,2π,2k k k æù+ÎçúèûN 上单调递增.又()π2π0,2π+02g k g k æö¢<>ç÷èø¢,所以存在*1π2π,2π,2x k k k æùÎ+ÎçúèûN ,使得()10g x ¢=.即当()12π,x k x Î时,()()10,g x g x <¢单调递减;当1π,2π2x x k æùÎ+çúèû时,()()10,g x g x >¢单调递增.又()π2π0,2π02g k g k æö<+>ç÷èø,所以()g x 在区间*π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点所以()g x 在区间π2π,2π,2k k k æù+ÎçúèûN 上有且仅有一个零点.当3π2π,2π2π,2x k k k æùÎ++ÎçúèûN 时,()22sin exx x g x x ¢-=+,设()22sin e x x x x x j -=+,则()242cos 0e xx x x x j -=+¢+>所以()g x ¢在3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递增.又()3π2π0,2π2π02g k g k æö+<+<ç÷¢¢èø,所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上单调递减:又()3π2π0,2π2π02g k g k æö+>+<ç÷èø,所以存在唯一23π2π,2π2π2x k k æöÎ++ç÷èø,使得()20g x =.所以()g x 在区间3π2π,2π2π,2k k k æù++ÎçúèûN 上有且仅有一个零点.所以()g x 在区间(]2π,2π2π,k k k +ÎN 上有两个零点.所以()g x 在(]0,2024π上共有2024π220242π´=个零点.综上所述,()g x 在区间π,2024π2éù-êúëû上共有202412025+=个零点.(二) 根据函数零点个数确定参数取值范围根据函数零点个数确定参数范围的两种方法1.直接法:根据零点个数求参数范围,通常先确定函数的单调性,根据单调性写出极值及相关端点值的范围,然后根据极值及端点值的正负建立不等式或不等式组求参数取值范围;2.分离参数法:首先分离出参数,然后利用求导的方法求出构造的新函数的最值,根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围,分离参数法适用条件:(1)参数能够分类出来;(2)分离以后构造的新函数,性质比较容易确定.【例2】(2024届天津市民族中学高三下学期5月模拟)已知函数()()ln 2f x x =+(1)求曲线()y f x =在=1x -处的切线方程;(2)求证:e 1x x ³+;(3)函数()()()2h x f x a x =-+有且只有两个零点,求a 的取值范围.【解析】(1)因为()12f x x ¢=+,所以曲线()y f x =在=1x -处的切线斜率为()11112f -==-+¢,又()()1ln 120f -=-+=,所以切线方程为1y x =+.(2)记()e 1x g x x =--,则()e 1xg x ¢=-,当0x <时,()0g x ¢<,函数()g x 在(),0¥-上单调递减;当0x >时,()0g x ¢>,函数()g x 在()0,¥+上单调递增.所以当0x =时,()g x 取得最小值()00e 10g =-=,所以()e 10xg x x =--³,即e 1x x ³+.(3)()()()()()2ln 22,2h x f x a x x a x x =-+=+-+>-,由题知,()()ln 220x a x +-+=有且只有两个不相等实数根,即()ln 22x a x +=+有且只有两个不相等实数根,令()()ln 2,22x m x x x +=>-+,则()()()21ln 22x m x x -+=+¢,当2e 2x -<<-时,()0m x ¢>,()m x 在()2,e 2--上单调递增;当e 2x >-时,()0m x ¢<,()m x 在()e 2,¥-+上单调递减.当x 趋近于2-时,()m x 趋近于-¥,当x 趋近于+¥时,()m x 趋近于0,又()1e 2ef -=,所以可得()m x 的图象如图:由图可知,当10ea <<时,函数()m x 的图象与直线y a =有两个交点,所以,a 的取值范围为10,e æöç÷èø.(三)零点存在性赋值理论及应用1.确定零点是否存在或函数有几个零点,作为客观题常转化为图象交点问题,作为解答题一般不提倡利用图象求解,而是利用函数单调性及零点赋值理论.函数赋值是近年高考的一个热点, 赋值之所以“热”, 是因为它涉及到函数领域的方方面面:讨论函数零点的个数(包括零点的存在性, 唯一性); 求含参函数的极值或最值; 证明一类超越不等式; 求解某些特殊的超越方程或超越不等式以及各种题型中的参数取值范围等,零点赋值基本模式是已知 f (a ) 的符号,探求赋值点 m (假定 m < a )使得 f (m ) 与 f (a ) 异号,则在 (m ,a ) 上存在零点.2.赋值点遴选要领:遴选赋值点须做到三个确保:确保参数能取到它的一切值; 确保赋值点 x 0 落在规定区间内;确保运算可行三个优先:(1)优先常数赋值点;(2)优先借助已有极值求赋值点;(3)优先简单运算.3.有时赋值点无法确定,可以先对解析式进行放缩,再根据不等式的解确定赋值点(见例2解法),放缩法的难度在于“度”的掌握,难度比较大.【例3】(2024届山东省烟台招远市高考三模)已知函数()()e x f x x a a =+ÎR .(1)讨论函数()f x 的单调性;(2)当3a =时,若方程()()()1f x x xm f x x f x -+=+-有三个不等的实根,求实数m 的取值范围.【解析】(1)求导知()1e xf x a =¢+.当0a ³时,由()1e 10xf x a ¢=+³>可知,()f x 在(),¥¥-+上单调递增;当a<0时,对()ln x a <--有()()ln 1e 1e0a xf x a a --=+>+×=¢,对()ln x a >--有()()ln 1e 1e 0a x f x a a --=+<+×=¢,所以()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.综上,当0a ³时,()f x 在(),¥¥-+上单调递增;当a<0时,()f x 在()(,ln a ¥ù---û上单调递增,在())ln ,a ¥é--+ë上单调递减.(2)当3a =时,()3e xf x x =+,故原方程可化为3e 13e 3e xx xx m x +=++.而()23e 13e 3e 3e 3e 3e 3e x x x x x x xx x x x x x x +-=-=+++,所以原方程又等价于()23e 3e xx x m x =+.由于2x 和()3e3e xxx +不能同时为零,故原方程又等价于()23e 3e x x xm x =×+.即()()2e 3e 90x x x m x m --×-×-=.设()e xg x x -=×,则()()1e xg x x -=-×¢,从而对1x <有()0g x ¢>,对1x >有()0g x ¢<.故()g x 在(],1-¥上递增,在[)1,+¥上递减,这就得到()()1g x g £,且不等号两边相等当且仅当1x =.然后考虑关于x 的方程()g x t =:①若0t £,由于当1x >时有()e 0xg x x t -=×>³,而()g x 在(],1-¥上递增,故方程()g x t =至多有一个解;而()110eg t =>³,()0e e t g t t t t --=×£×=,所以方程()g x t =恰有一个解;②若10e t <<,由于()g x 在(],1-¥上递增,在[)1,+¥上递减,故方程()g x t =至多有两个解;而由()()122222e2e e 2e 2e 12e 22x x x x xxx x g x x g g -------æö=×=×××=××£××=×ç÷èø有1222ln 1ln 222ln 2e2e t t g t t -×-æö£×<×=ç÷èø,再结合()00g t =<,()11e g t =>,()22ln 2ln 2e ln e 1t>>=,即知方程()g x t =恰有两个解,且这两个解分别属于()0,1和21,2ln t æöç÷èø;③若1t e=,则()11e t g ==.由于()()1g x g £,且不等号两边相等当且仅当1x =,故方程()g x t =恰有一解1x =.④若1e t >,则()()11eg x g t £=<,故方程()g x t =无解.由刚刚讨论的()g x t =的解的数量情况可知,方程()()2e 3e 90x x x m x m --×-×-=存在三个不同的实根,当且仅当关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû.一方面,若关于t 的二次方程2390t mt m --=有两个不同的根12,t t ,且110,e t æöÎç÷èø,21,e t ¥æùÎ-çúèû,则首先有()20Δ93694m m m m <=+=+,且1212119e e m t t t -=£<.故()(),40,m ¥¥Î--È+, 219e m >-,所以0m >.而方程2390t mt m--=,两解符号相反,故只能1t =,2t =23e m >这就得到203e m ->³,所以22243e m m m æö->+ç÷èø,解得219e 3e m <+.故我们得到2109e 3em <<+;另一方面,当2109e 3e m <<+时,关于t 的二次方程2390t mt m --=有两个不同的根1t =,2t 22116e 13319e 3e 9e 3e 2et +×+×++===,2t 综上,实数m 的取值范围是210,9e 3e æöç÷+èø.(四)隐零点问题1.函数零点按是否可求精确解可以分为两类:一类是数值上能精确求解的,称之为“显零点”;另一类是能够判断其存在但无法直接表示的,称之为“隐零点”.2.利用导数求函数的最值或单调区间,常常会把最值问题转化为求导函数的零点问题,若导数零点存在,但无法求出,我们可以设其为0x ,再利用导函数的单调性确定0x 所在区间,最后根据()00f x ¢=,研究()0f x ,我们把这类问题称为隐零点问题. 注意若)(x f 中含有参数a ,关系式0)('0=x f 是关于a x ,0的关系式,确定0x 的合适范围,往往和a 的范围有关.【例4】(2024届四川省成都市实验外国语学校教育集团高三下学期联考)已知函数()e xf x =,()ln g x x =.(1)若函数()()111x h x ag x x +=---,a ÎR ,讨论函数()h x 的单调性;(2)证明:()()()()1212224x f x f x g x -->-.(参考数据:45e 2.23»,12e 1.65»)【解析】(1)由题意()()1ln 1,11x h x a x x x +=-->-,所以()()22,11ax a h x x x -+¢=>-,当0a =时,()0h x ¢>,所以()h x 在()1,+¥上为增函数;当0a ¹时,令()0h x ¢=得21x a=-,所以若0a >时,211a-<,所以()0h x ¢>,所以()h x 在()1,+¥上为增函数,若0<a 时,211a ->,且211x a<<-时,()0h x ¢>,21x a >-时,()0h x ¢<,所以()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数,综上:当0a ³时,()h x 在()1,+¥上为增函数,当0<a 时,()h x 在21,1a æö-ç÷èø上为增函数,在21,a æö-+¥ç÷èø上为减函数;(2)()()()()1212224x f x f x g x -->-等价于()2121e e 2ln 204x x x x ---+>,设()()2121e e 2ln 24x x F x x x =---+,则()()()222e 2e 12e e 2e e x x x x x x x x x x F x x x x x-+--¢=--==,因为0x >,所以e 10x x +>,设()e 2x x x j =-,则()()10e xx x j ¢=+>,则()x j 在()0,¥+上单调递增,而()4544e 20,1e 2055j j æö=-<=->ç÷èø,所以存在04,15x æöÎç÷èø,使()00x j =,即00e 2xx =,所以00ln ln 2x x +=,即00ln ln 2x x =-,当00x x <<时,()0F x ¢<,则()F x 在()00,x 上单调递减,当0x x >时,()0F x ¢>,则()F x 在()0,x +¥上单调递增,所以()()00200min 121e e 2ln 24x x F x x x =---+()000220001421212ln 22222ln 224x x x x x x =---++=-+-+,设()21422ln 22,15m t t t t æö=-+-+<<ç÷èø,则()3220m t t ¢=+>,则()m t 在4,15æöç÷èø上单调递增,42581632ln 222ln 20516580m æö=-+-+=->ç÷èø,则()min 0F x >,则不等式()2121e e 2ln 204x x x x ---+>恒成立,即不等式()()()()1212224x f x f x g x -->-成立.【例1】(2024届山西省晋中市平遥县高考冲刺调研)已知函数()πln sin sin 10f x x x =++.(1)求函数()f x 在区间[]1,e 上的最小值;(2)判断函数()f x 的零点个数,并证明.【解析】(1)因为()πln sin sin 10f x x x =++,所以1()cos f x x x ¢=+,令()1()cos g x f x x x ==+¢,()21sin g x x x-¢=-,当[]1,e Îx 时,()21sin 0g x x x =--<¢,所以()g x 在[]1,e 上单调递减,且()11cos10g =+>,()112π11e cos e<cos 0e e 3e 2g =++=-<,所以由零点存在定理可知,在区间[1,e]存在唯一的a ,使()()0g f a a =¢=又当()1,x a Î时,()()0g x f x =¢>;当(),e x a Î时,()()0g x f x =¢<;所以()f x 在()1,x a Î上单调递增,在(),e x a Î上单调递减,又因为()ππ1ln1sin1sinsin1sin 1010f =++=+,()()ππe ln e sin e sin1sin e sin 11010f f =++=++>,所以函数()f x 在区间[1,e]上的最小值为()π1sin1sin10f =+.(2)函数()f x 在()0,¥+上有且仅有一个零点,证明如下:函数()πln sin sin 10f x x x =++,()0,x ¥Î+,则1()cos f x x x¢=+,若01x <£,1()cos 0f x x x+¢=>,所以()f x 在区间(]0,1上单调递增,又()π1sin1sin010f =+>,11πππ1sin sin 1sin sin 0e e 1066f æö=-++<-++=ç÷èø,结合零点存在定理可知,()f x 在区间(]0,1有且仅有一个零点,若1πx <£,则ln 0,sin 0x x >³,πsin010>,则()0f x >,若πx >,因为ln ln π1sin x x >>³-,所以()0f x >,综上,函数()f x 在()0,¥+有且仅有一个零点.【例2】(2024届江西省九江市高三三模)已知函数()e e (ax axf x a -=+ÎR ,且0)a ¹.(1)讨论()f x 的单调性;(2)若方程()1f x x x -=+有三个不同的实数解,求a 的取值范围.【解析】(1)解法一:()()e eax axf x a -=-¢令()()e e ax axg x a -=-,则()()2e e0ax axg x a -+¢=>()g x \在R 上单调递增.又()00,g =\当0x <时,()0g x <,即()0f x ¢<;当0x >时,()0g x >,即()0f x ¢>()f x \在(),0¥-上单调递减,在()0,¥+上单调递增.解法二:()()()()e 1e 1e e e ax ax ax ax axa f x a -+-=-=¢①当0a >时,由()0f x ¢<得0x <,由()0f x ¢>得0x >()f x \在(),0¥-上单调递减,在()0,¥+上单调递增②当0a <时,同理可得()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.综上,当0a ¹时,()f x 在(),0¥-上单调递减,在()0,¥+上单调递增.(2)解法一:由()1f x x x -=+,得1e e ax ax x x --+=+,易得0x >令()e e x xh x -=+,则()()ln h ax h x =又()e e x xh x -=+Q 为偶函数,()()ln h ax h x \=由(1)知()h x 在()0,¥+上单调递增,ln ax x \=,即ln xa x=有三个不同的实数解.令()()2ln 1ln ,x x m x m x x x -=¢=,由()0m x ¢>,得0e;x <<由()0m x ¢<,得e x >,()m x \在(]0,e 上单调递增,在()e,¥+上单调递减,且()()110,e em m ==()y m x \=在(]0,1上单调递减,在(]1,e 上单调递增,在()e,¥+上单调递减当0x →时,()m x ¥→+;当x →+¥时,()0m x →,故10ea <<解得10e a -<<或10e a <<,故a 的取值范围是11,00,e e æöæö-Èç÷ç÷èøèø解法二:由()1f x x x -=+得1e e ax ax x x --+=+,易得0x >令()1h x x x -=+,则()h x 在()0,1上单调递减,在()1,¥+上单调递增.由()()e axh h x =,得e ax x =或1e ax x -=两边同时取以e 为底的对数,得ln ax x =或ln ax x =-,ln ax x \=,即ln xa x=有三个不同的实数解下同解法一.【例3】(2024届重庆市第一中学校高三下学期模拟预测)已知函数31()(ln 1)(0)f x a x a x =++>.(1)求证:1ln 0x x +>;(2)若12,x x 是()f x 的两个相异零点,求证:211x x -<【解析】(1)令()1ln ,(0,)g x x x x =+Î+¥,则()1ln g x x ¢=+.令()0g x ¢>,得1ex >;令()0g x ¢<,得10e x <<.所以()g x 在10,e æöç÷èø上单调递减,在1,e ¥æö+ç÷èø上单调递增.所以min 11()10e e g x g æö==->ç÷èø,所以1ln 0x x +>.(2)易知函数()f x 的定义域是(0,)+¥.由()(ln f x a x =+,可得()a f x x ¢=.令()0f x ¢>得x >()0f x ¢<得0<所以()0f x ¢>在æççè上单调递减,在¥ö+÷÷ø上单调递增,所以min 3()ln 333a a f x f a æö==++ç÷èø.①当3ln 3033a aa æö++³ç÷èø,即403e a <£时,()f x 至多有1个零点,故不满足题意.②当3ln 3033a a a æö++<ç÷èø,即43e a >1<<.因为()f x 在¥ö+÷÷ø上单调递增,且(1)10f a =+>.所以(1)0f f ×<,所以()f x 在¥ö+÷÷ø上有且只有1个零点,不妨记为1x 11x <<.由(1)知ln 1x x>-,所以33221(1)0f a a a a a æö=+>+=>ç÷ç÷èø.因为()f x 在æççè0f f <×<,所以()f x 在æççè上有且只有1个零点,记为2x 2x <<211x x <<<<2110x x -<-<.同理,若记12,x x öÎÎ÷÷ø则有2101x x <-<综上所述,211x x -<.【例4】(2022高考全国卷乙理)已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)若()f x 在区间()()1,0,0,-+¥各恰有一个零点,求a 取值范围.的【解析】(1)当1a =时,()ln(1),(0)0e xxf x x f =++=,所以切点为(0,0),11(),(0)21ex xf x f x -¢¢=+=+,所以切线斜率为2所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x =.(2)()ln(1)e x ax f x x =++,()2e 11(1)()1e (1)ex x xa x a x f x x x +--¢=+=++,设()2()e 1xg x a x=+-1°若0a >,当()2(1,0),()e 10x x g x a x Î-=+->,即()0f x ¢>所以()f x 在(1,0)-上单调递增,()(0)0f x f <=故()f x 在(1,0)-上没有零点,不合题意,2°若10a -……,当,()0x Î+¥时,()e 20xg x ax ¢=->所以()g x 在(0,)+¥上单调递增,所以()(0)10g x g a >=+…,即()0f x ¢>所以()f x 在(0,)+¥上单调递增,()(0)0f x f >=,故()f x 在(0,)+¥上没有零点,不合题意.3°若1a <-,(1)当,()0x Î+¥,则()e 20x g x ax ¢=->,所以()g x 在(0,)+¥上单调递增,(0)10,(1)e 0g a g =+<=>,所以存在(0,1)m Î,使得()0g m =,即()0¢=f m .当(0,),()0,()x m f x f x ¢Î<单调递减,当(,),()0,()x m f x f x ¢Î+¥>单调递增,所以当(0,),()(0)0x m f x f Î<=,当,()x f x →+¥→+¥,所以()f x 在(,)m +¥上有唯一零点,又()f x 在(0,)m 没有零点,即()f x 在(0,)+¥上有唯一零点,(2)当()2(1,0),()e 1xx g x a xÎ-=+-,()e2xg x ax ¢=-,设()()h x g x ¢=,则()e 20x h x a ¢=->,所以()g x ¢在(1,0)-上单调递增,1(1)20,(0)10eg a g ¢¢-=+<=>,所以存(1,0)n Î-,使得()0g n ¢=当(1,),()0,()x n g x g x ¢Î-<单调递减当(,0),()0,()x n g x g x ¢Î>单调递增,()(0)10g x g a <=+<,在又1(1)0eg -=>,所以存在(1,)t n Î-,使得()0g t =,即()0f t ¢=当(1,),()x t f x Î-单调递增,当(,0),()x t f x Î单调递减有1,()x f x →-→-¥而(0)0f =,所以当(,0),()0x t f x Î>,所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点,即()f x 在(1,0)-上有唯一零点,所以1a <-,符合题意,综上得()f x 在区间(1,0),(0,)-+¥各恰有一个零点,a 的取值范围为(,1)-¥-.【例5】(2024届辽宁省凤城市高三下学期考试)已知函数()1e ln xf x x x x -=--.(1)求函数()f x 的最小值;(2)求证:()()1e e e 1ln 2xf x x x +>---éùëû.【解析】(1)因为函数()1e ln x f x x x x -=--,所以()()()11111e 11e x x f x x x x x --æö=+--=+-çè¢÷ø,记()11e,0x h x x x -=->,()121e 0x h x x-¢=+>,所以()h x 在()0,¥+上单调递增,且()10h =,所以当01x <<时,()0h x <,即()0f x ¢<,所以()f x 在()0,1单调递减;当1x >时,()0h x >,即()0f x ¢>,所以()f x 在()1,¥+单调递增,且()10f ¢=,所以()()min 10f x f ==.(2)要证()()1e e e 1ln 2xf x x x éù+>---ëû,只需证明:()11e ln 02xx x --+>对于0x >恒成立,令()()11e ln 2xg x x x =--+,则()()1e 0xg x x x x¢=->,当0x >时,令1()()e xm x g x x x=¢=-,则21()(1)e 0xm x x x =+¢+>,()m x 在(0,)+¥上单调递增,即()1e xg x x x=¢-在(0,)+¥上为增函数,又因为222333223227e e033238g éùæöæöêú=-=-<ç÷ç÷êøøëû¢úèè,()1e 10g =¢->,所以存在02,13x æöÎç÷èø使得()00g x ¢=,由()0200000e 11e 0x x x g x x x x ¢-=-==,得020e 1xx =即0201x e x =即0201x e x =即002ln x x -=,所以当()00,x x Î时,()1e 0xg x x x=¢-<,()g x 单调递减,当()0,x x ¥Î+时,()1e 0xg x x x=¢->,()g x 单调递增,所以()()()0320000000022min0122111e ln 2222x x x x x x g x g x x x x x -++-==--+=++=,令()3222213x x x x x j æö=++-<<ç÷èø,则()22153223033x x x x j æö=++=++>ç÷èø¢,所以()x j 在2,13æöç÷èø上单调递增,所以()0220327x j j æö>=>ç÷èø,所以()()()002002x g x g x x j ³=>,所以()11e ln 02xx x --+>,即()()1e e e 1ln 2xf x x x éù+>---ëû.1.(2024届湖南省长沙市第一中学高考最后一卷)已知函数()()e 1,ln ,xf x xg x x mx m =-=-ÎR .(1)求()f x 的最小值;(2)设函数()()()h x f x g x =-,讨论()hx 零点的个数.2.(2024届河南省信阳市高三下学期三模)已知函数()()()ln 1.f x ax x a =--ÎR (1)若()0f x ³恒成立,求a 的值;(2)若()f x 有两个不同的零点12,x x ,且21e 1x x ->-,求a 的取值范围.3.(2024届江西省吉安市六校协作体高三下学期5月联考)已知函数()()1e x f x ax a a -=--ÎR .(1)当2a =时,求曲线()y f x =在1x =处的切线方程;(2)若函数()f x 有2个零点,求a 的取值范围.4.(2024届广东省茂名市高州市高三第一次模拟)设函数()e sin x f x a x =+,[)0,x Î+¥.(1)当1a =-时,()1f x bx ³+在[)0,¥+上恒成立,求实数b 的取值范围;(2)若()0,a f x >在[)0,¥+上存在零点,求实数a 的取值范围.5.(2024届河北省张家口市高三下学期第三次模)已知函数()ln 54f x x x =+-.(1)求曲线()y f x =在点(1,(1))f 处的切线方程;(2)证明:3()25f x x>--.6.(2024届上海市格致中学高三下学期三模)已知()e 1xf x ax =--,a ÎR ,e 是自然对数的底数.(1)当1a =时,求函数()y f x =的极值;(2)若关于x 的方程()10f x +=有两个不等实根,求a 的取值范围;(3)当0a >时,若满足()()()1212f x f x x x =<,求证:122ln x x a +<.7.(2024届河南师范大学附属中学高三下学期最后一卷)函数()e 4sin 2x f x x l l =-+-的图象在0x =处的切线为3,y ax a a =--ÎR .(1)求l 的值;(2)求()f x 在(0,)+¥上零点的个数.8.(2024年天津高考数学真题)设函数()ln f x x x =.(1)求()f x 图象上点()()1,1f 处的切线方程;(2)若()(f x a x ³在()0,x Î+¥时恒成立,求a 的值;(3)若()12,0,1x x Î,证明()()121212f x f x x x -£-.9.(2024届河北省高三学生全过程纵向评价六)已知函数()ex axf x =,()sin cosg x x x =+.(1)当1a =时,求()f x 的极值;(2)当()0,πx Î时,()()f x g x £恒成立,求a 的取值范围.10.(2024届四川省绵阳南山中学2高三下学期高考仿真练)已知函数()()1ln R f x a x x a x=-+Î.(1)讨论()f x 的零点个数;(2)若关于x 的不等式()22ef x x £-在()0,¥+上恒成立,求a 的取值范围.11.(2024届四川省成都石室中学高三下学期高考适应性考试)设()21)e sin 3x f x a x =-+-((1)当a =()f x 的零点个数.(2)函数2()()sin 22h x f x x x ax =--++,若对任意0x ³,恒有()0h x >,求实数a 的取值范围12.(2023届云南省保山市高三上学期期末质量监测)已知函数()2sin f x ax x =-.(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程;(2)当0x >时,()cos f x ax x ³恒成立,求实数a 的取值范围.13.(2024届广东省揭阳市高三上学期开学考试)已知函数()()212ln 1R 2f x x mx m =-+Î.(1)当1m =时,证明:()1f x <;(2)若关于x 的不等式()()2f x m x <-恒成立,求整数m 的最小值.14.(2023届黑龙江省哈尔滨市高三月考)设函数(1)若,,求曲线在点处的切线方程;(2)若,不等式对任意恒成立,求整数k 的最大值.15.(2023届江苏省连云港市高三学情检测)已知函数.(1)判断函数零点的个数,并证明;(2)证明:.322()33f x x ax b x =-+1a =0b =()y f x =()()1,1f 0a b <<1ln 1x k f f x x +æöæö>ç÷ç÷-èøèø()1,x Î+¥21()e xf x x=-()f x 2e ln 2cos 0x x x x x --->。
热点2-4 函数的图象与函数的零点10大题型(解析版)
![热点2-4 函数的图象与函数的零点10大题型(解析版)](https://img.taocdn.com/s3/m/f9121ef57e192279168884868762caaedd33ba67.png)
热点2-4 函数的图象与函数的零点10大题型函数图象问题依旧以考查图象识别为重点和热点,难度中档,也可能考查利用函数图象解函数不等式等。
函数的零点问题一般以选择题与填空题的形式出现,有时候也会结合导数在解答题中考查,此时难度偏大。
一、函数图象辨识的方法步骤图象辨识题的主要解题思想是“对比选项,找寻差异,排除筛选”1、求函数定义域(若各选项定义域相同,则无需求解);2、判断奇偶性(若各选项奇偶性相同,则无需判断);3、找特殊值:①对比各选项,计算横纵坐标标记的数值;②对比各选项,函数值符号的差别,自主取值(必要时可取极限判断符号);4、判断单调性:可取特殊值判断单调性.二、作函数图象的一般方法1、直接法:当函数表达式是基本函数或函数图象是解析几何中熟悉的曲线时,就可根据这些函数或曲线的特征直接作出.2、转化法:含有绝对值符号的函数,可去掉绝对值符号,转化为分段函数来画图象.3、图象变换法:若函数图象可由某个基本函数的图象经过平移、翻折、对称变换得到,可利用图象变换作出,但要注意变换顺序.对不能直接找到熟悉的基本函数的要先变形,并应注意平移变换的顺序对变换单位及解析式的影响.4、如何制定图象变换的策略(1)在寻找到联系后可根据函数的形式了解变换所需要的步骤,其规律如下:①若变换发生在“括号”内部,则属于横坐标的变换;②若变换发生在“括号”外部,则属于纵坐标的变换.例如:()=+:可判断出属于横坐标的变换:有放缩与平移两个步骤.31y f x()2=-+:可判断出横纵坐标均需变换,其中横坐标的为对称变换,纵坐标y f x的为平移变换.(2)多个步骤的顺序问题:在判断了需要几步变换以及属于横坐标还是纵坐标的变换后,在安排顺序时注意以下原则:①横坐标的变换与纵坐标的变换互不影响,无先后要求;②横坐标的多次变换中,每次变换只有x发生相应变化.三、零点个数的判断方法1、直接法:直接求零点,令()0=f x,如果能求出解,则有几个不同的解就有几个零点.2、定理法:利用零点存在定理,函数的图象在区间[],a b上是连续不断的曲线,且()()0f a f b,⋅<结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.3、图象法:(1)单个函数图象:利用图象交点的个数,画出函数()f x的f x的图象,函数()图象与x轴交点的个数就是函数()f x的零点个数;(2)两个函数图象:将函数()g x的差,根据f x拆成两个函数()h x和()()()()f x的零点个数就是函数()y h x和=f x h xg x,则函数()=⇔=()y g x的图象的交点个数=4、性质法:利用函数性质,若能确定函数的单调性,则其零点个数不难得到;若所考查的函数是周期函数,则只需解决在一个周期内的零点的个数四、已知零点个数求参数范围的方法1、直接法:利用零点存在的判定定理构建不等式求解;2、数形结合法:将函数的解析式或者方程进行适当的变形,把函数的零点或方程的根的问题转化为两个熟悉的函数图象的交点问题,再结合图象求参数的取值范围;3、分离参数法:分离参数后转化为求函数的值域(最值)问题求解.【题型1 函数图象的画法与图象变换】【例1】(2022秋·甘肃白银·高三校考阶段练习)作出下列函数图象(1)12xy ⎛⎫= ⎪⎝⎭(2)()2log 1y x =+【答案】(1)答案见解析;(2)答案见解析【解析】(1)因为1()2xy f x ⎛⎫== ⎪⎝⎭,所以11()()22xxf x f x -⎛⎫⎛⎫-=== ⎪⎪⎝⎭⎝⎭, 所以函数为偶函数,关于y 轴对称,因此只需要画0x >时的函数图形即可,11()==22xxf x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,再利用对称性即可得解.(2)将函数 2log y x = 的图象向左平移 1个单位,再将 x 轴下方的部分沿 x 轴翻折上去, 即可得到函数()2log 1y x =+ 的图象,如图所示.【变式1-1】(2022秋·广东广州·高三广东实验中学校考阶段练习)为了得到函数()2ln e y x =的图象,可将函数ln y x =的图象( )A .纵坐标不变,横坐标伸长为原来的2e 倍B .纵坐标不变,横坐标缩短为原来的21e C .向下平移两个单位长度 D .向上平移两个单位长度 【答案】BD【解析】()22ln e ln e ln ln 2y x x x ===++,可将函数ln y x =的图象向上平移两个单位长度得到ln 2y x =+, 可将函数ln y x =的图象纵坐标不变,横坐标缩短为原来的21e 得到()2ln e y x =.故选:BD【变式1-2】(2022秋·重庆·高三统考阶段练习)已知函数()f x 的图象如图1所示,则图2所表示的函数是( )A .()1f x -B .()2f x --C .()1f x --D .()1f x -- 【答案】C【解析】由图知,将()f x 的图象关于y 轴对称后再向下平移1个单位即得图2,又将()f x 的图象关于y 轴对称后可得函数()y f x =-, 再向下平移1个单位,可得()1y f x =--所以解析式为()1y f x =--,故选:C.【变式1-3】(2022秋·北京·高三首都师范大学附属中学校考阶段练习)函数12xy -=的图像可看作是把函数2xy =经过以下哪种变换得到( )A .把函数2x y =向右平移一个单位B .先把函数2x y =的图像关于x 轴对称,然后把所得函数图像向左平移一个单位C .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像向左平移一个单位D .先把函数2x y =的图像关于y 轴对称,然后把所得函数图像上各点的纵坐标变为原来的2倍,横坐标不变 【答案】D【解析】选项A :函数2xy =向右平移一个单位得到12x y -=;选项B :先把函数2xy =的图像关于x 轴对称得到2x y =-,然后向左平移一个单位得到12x y +=-;选项C :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后向左平移一个单位得到(1)122x x y -+--==;选项D :先把函数2xy =的图像关于y 轴对称得到2xy -=,然后把各点的纵坐标变为原来的2倍,横坐标不变得到1222x xy --=⨯=;故选:D【变式1-4】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)定义在R 上的函数()f x 满足()()22f x f x -=+,且在()2,+∞单调递增,()40f =,()4g x x =,则函数()()2y f x g x =+的图象可能是( )A .B .C .D .【答案】B【解析】()()22f x f x -=+,所以()f x 的图象关于直线2x =对称,则()2f x +的图象关于直线0x =即y 轴对称,()2f x +是偶函数,()4g x x =为偶函数,图象关于y 轴对称,所以()()2y f x g x =+是偶函数,图象关于y 轴对称,排除AD 选项.()()()()4222200f f f f =+=-==,由于()f x 在()2,+∞上递增,在(),2-∞上递减, 所以()f x 有且仅有2个零点:0和4,另外有()30f <,所以()2f x +有且仅有2个零点:2-和2,()g x 有唯一零点:0, 所以()()2y f x g x =+有且仅有3个零点:2-、0和2. 当1x =时,()110g =>,()()()()121310y f g f g =+⋅=⋅<, 从而排除C 选项,故B 选项正确.故选:B【变式1-5】(2022秋·北京海淀·高三统考期中)已知函数()f x .甲同学将()f x 的图象向上平移1个单位长度,得到图象1C ;乙同学将()f x 的图象上所有点的横坐标变为原来的12(纵坐标不变),得到图象2C .若1C 与2C 恰好重合,则下列给出的()f x 中符合题意的是( )A .()12log f x x = B .()2log f x x = C .()2x f x =D .()12xf x ⎛⎫= ⎪⎝⎭【答案】B【解析】对于A ,()112:1log 1C f x x +=+,()211112222:2log 2log log 2log 1C f x x x x ==+=-,A 错误;对于B ,()12:1log 1C f x x +=+,()22222:2log 2log log 2log 1C f x x x x ==+=+,B 正确;对于C ,()1:121x C f x +=+,()22:224x xC f x ==,C 错误;对于D ,()11:112x C f x ⎛⎫+=+ ⎪⎝⎭,()2211:224x xC f x ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,D 错误.故选:B.【题型2 由复杂函数解析式选择图象】【例2】(2022·四川资阳·统考二模)函数()32cos e ex x x xf x -=+在区间[]2π,2π-上的图象大致为( )A .B .C .D .【答案】B【解析】∵()()()()332cos 2cos e e e ex xx x x x x xf x f x -----==-=-++, ∴()f x 为奇函数,图象关于原点对称,C 、D 错误;又∵若(]0,2πx ∈时,320,e e 0x xx ->+>,当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,cos 0x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,cos 0x <,∴当π3π0,,2π22x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭时,()0f x >,当π3π,22x ⎛⎫∈ ⎪⎝⎭时,()0f x <,A 错误,B 正确;故选:B.【变式2-1】(2022秋·江西·高三九江一中校联考阶段练习)函数()sin 2xf x =的大致图像是( )A .B .C .D .【答案】A【解析】注意到()sin 2xf x =过点()0,1,故可排除C ,D 选项.因2xy =在R 上单调递增,sin x 在π0,2⎛⎫⎪⎝⎭上单调递增, 则由复合函数单调性相关知识点可知,()sin 2xf x =在π0,2⎛⎫⎪⎝⎭上单调递增,故排除B 选项.故选:A【变式2-2】(2022·河南·安阳一中校联考模拟预测)函数()3sin 3291x x x f x π⎛⎫+ ⎪⎝⎭=-图像大致为( )A .B .C .D .【答案】B【解析】易得函数定义域为()(),00,-∞⋃+∞,已知函数()3sin 3cos329133x xx xx x f x π-⎛⎫+ ⎪⎝⎭==--,()()()cos 3cos33333x x x x x xf x f x ----===---,∴函数()f x 为奇函数,排除A 选项;当0x +→时,0cos31x <<,31x >,31x -<,则330x x -->, 所以()0f x >,排除C 选项;当x →+∞时,1cos31x -≤≤,3x →+∞,30x -→,则33x x --→+∞, 所以()0f x →,排除D 选项;故选:B.【变式2-3】(2022秋·江苏南京·高三南京师大附中校考期中)函数()2e2xf x x=的图象大致为( )A .B .C .D .【答案】A【解析】由()2e 2xf x x=,则其定义域为()()00-∞∞,,+,因为()()()22ee22xxf x f x xx --===-,故函数为偶函数, ()222e ,0e 22e ,02xx x x x f x x x x -⎧>⎪⎪==⎨⎪<⎪⎩,()()()33e 2,02e 2,02x x x x x f x x x x -⎧->⎪⎪=⎨--<'⎪⎪⎩,令()0f x '=,解得2x =±,可得下表:x(),2-∞-2-()2,0-()0,22()2,+∞()f x ' -+-+()f x极小值极小值故选:A.【变式2-4】(2022秋·山东青岛·高三山东省莱西市第一中学校考阶段练习)函数()()ln 0sin ax x f x a x+=在[2π-,2π]上的大致图像可能为( )A .B .C .D .【答案】ABC【解析】①当0a =时,()ln sin x f x x=,()()ln sin x f x f x x-=-=-,函数()f x 为奇函数,由0x →时()f x →∞,1x =±时()0f x =等性质可知A 选项符合题意; ②当a<0时,令()ln ||,()g x x h x ax ==-,作出两函数的大致图象,由图象可知在(1,0)-内必有一交点,记横坐标为0x ,此时0()0f x =,故排除D 选项;当02πx x -<<时,()()0g x h x ->,00x x <<时,()()0g x h x -<, 若在(0,2π)内无交点,则()()0g x h x -<在(0,2π)恒成立, 则()f x 图象如C 选项所示,故C 选项符合题意;若在(0,2π)内有两交点,同理得B 选项符合题意.故选:ABC.【题型3 根据函数图象选择解析式】【例3】(2022秋·福建南平·高三校考期中)已知函数()y f x =的部分图象如图所示,则下列可能是()f x 的解析式的是( )A .()cos f x x x =+B .()cos f x x x =-C .()cos xf x x= D .()cos xf x x=【答案】B【解析】A. ()010f =>,故错误;B.因为()010f =-<,且()1sin 0f x x '=+≥,则()f x 在R 上递增,故正确;C.()f x 的定义域为{}|0x x ≠关于原点对称, 又 ()()()cos cos x xf x f x x x--===---,则()f x 是奇函数,图象关于原点对称,故错误;D. ()f x 的定义域为|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭关于原点对称,又()()()cos cos x xf x f x x x---===--,则()f x 是奇函数,图象关于原点对称,故错误;故选:B【变式3-1】(2022秋·湖北宜昌·高三校联考期中)已知函数()f x 的图象如图所示,则该函数的解析式为( )A .2()e e x x xf x -=+ B .()3e e x x f x x -+= C .2()e ex x x f x -=-D .()2e e x xf x x -+=【答案】D【解析】由题图:()f x 的定义域为(,0)(0,)-∞+∞,排除A ;当333e e e e e e (),()()()x x x x x xf x f x f x x x x ---+++=-==-=--,故3e e ()x xf x x -+=是奇函数,排除B.当()()()()222,e e e e e e x x x x x x x x x f x f x f x ----=-==-=----,故2()e ex x x f x -=-是奇函数,排除C.故选:D【变式3-2】(2022秋·广西桂林·高三校考阶段练习)已知函数()y f x =的图象如图所示,则此函数的解析式可能是( )A .()()2211x f x x x -=- B .()2211x f x x x -=- C .()22211x f x x x -=- D .()()22211x f x x x -=-【答案】B【解析】根据图像可得:所求函数为奇函数,且当()0,1x ∈时,()0f x <;对CD :定义域关于原点对称,且都有()()f x f x =-,均为偶函数,故错误;对A :当()0,1x ∈时,()0f x >,故错误;故选:B.【变式3-3】(2022秋·江苏扬州·高三期末)已知函数()f x 的部分图像如图,则函数()f x 的解析式可能为( )A .()()e e sin x xf x x -=- B .()()e e sin x x f x x -=+C .()()e e cos x x f x x -=-D .()()e e cos x xf x x -=+【答案】B【解析】由于图像关于原点对称,所以()f x 为奇函数,对于A :由()()e e sin x xf x x -=-得:()()()()()e e sin e e sin x x x x f x x x f x ---=--=-=,()f x 为偶函数,故可排除A ;对于D :由()()e e cos x xf x x -=+得:()()()()()e e cos e e cos x x x x f x x x f x ---=+-=+=,()f x 为偶函数,故可排除D ;由图知()f x 图象不经过点π,02⎛⎫⎪⎝⎭,而对于C :ππ22ππe e cos 022f -⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故可排除C ;故选:B【变式3-4】(2022秋·湖北·高三枣阳一中校联考期中)已知函数()sin f x x =,()g cos x x =,()p x x =,则图像为下图的函数可能是( )A .()()2p x y f x =+B .()()2y g f x x =+C .()()2p x y f x =+D .()()2p x y f x =+【答案】D【解析】对于A ,2sin xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故A 不符合; 对于B ,sin 2cos xy x =+该函数为奇函数,由已知图象可得函数y 的图象不关于原点对称,故B 不符合; 对于C ,2sin x y x=+由于[]sin 1,1x ∈-,所以02sin x y x=≥+,由于已知图象y 的值域中存在负值,故C 不符合; 对于D ,2sin xy x=+不是奇函数,[]sin 1,1x ∈-,所以R y ∈,故D 图象符合.故选:D.【题型4 根据实际问题作函数图象】【例4】(2022·北京·人大附中校考模拟预测)如图为某无人机飞行时,从某时刻开始15分钟内的速度()V x (单位:米/分钟)与时间x (单位:分钟)的关系.若定义“速度差函数”()v x 为无人机在时间段[]0,x 内的最大速度与最小速度的差,则()v x 的图像为( )A .B .C .D .【答案】C【解析】由题意可得,当[0,6]x ∈时,无人机做匀加速运动,40()603V x x =+,“速度差函数”40()3v x x =; 当[6,10]x ∈时,无人机做匀速运动,()140V x =,“速度差函数”()80v x =; 当[10,12]x ∈时,无人机做匀加速运动,()4010V x x =+,“速度差函数”()2010v x x =-+;当[12,15]x ∈时,无人机做匀减速运动,“速度差函数”()100v x =, 结合选项C 满足“速度差函数”解析式,故选:C.【变式4-1】(2022·四川泸州·统考模拟预测)如图,一高为H 且装满水的鱼缸,其底部装有一排水小孔,当小孔打开时,水从孔中匀速流出,水流完所用时间为.T 若鱼缸水深为h 时,水流出所用时间为t ,则函数()h f t =的图象大致是( )A .B .C .D .【答案】B【解析】函数()h f t =是关于t 的减函数,故排除C ,D ,则一开始,h 随着时间的变化,而变化变慢,超过一半时,h 随着时间的变化,而变化变快,故对应的图象为B ,故选B .【变式4-2】(2022秋·安徽合肥·高三校考期中)(多选)水滴进玻璃容器,如图所示(单位时间内进水量相同),则下列选项匹配正确的是( )A .()2a -B .()3b -C .()4c -D .()1d - 【答案】AB【解析】在a 中,容器是圆柱形的,水高度的变化速度应是直线型,与(2)对应,故A 正确;在b 中,容器下粗上细,水高度的变化先慢后快,与(3)对应,故B正确;在c 中,容器为球型,水高度的变化为快—慢—快,与(1)对应,故C 错误;在d 中,容器上粗下细,水高度的变化为先快后慢,与(4)对应,故D 错误.故选:AB.【变式4-3】(2022·全国·高三专题练习)如图,正△ABC 的边长为2,点D 为边AB 的中点,点P 沿着边AC ,CB 运动到点B ,记∠ADP =x .函数f (x )=|PB |2﹣|P A |2,则y =f (x )的图象大致为( )A .B .C .D .【答案】A【解析】根据题意,f (x )=|PB |2﹣|P A |2,∠ADP =x .在区间(0,2π)上,P 在边AC 上,|PB |>|P A |,则f (x )>0,排除C ;在区间ππ⎛⎫⎪⎝⎭,2上,P 在边BC 上,|PB |<|P A |,则f (x )<0,排除B ,又由当12x x π+=时,有()12()f x f x =-,()f x 的图象关于点(,0)π2对称,排除D ,故选:A【变式4-4】(2022·全国·高三专题练习)在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,且BD CD ⊥,AB BD CD ==,点P 在棱AC 上运动,设CP 的长度为x ,若PBD △的面积为()f x ,则()f x 的图象大致为()A .B .C .D .【答案】A【解析】作PQ BC ⊥于点Q ,作QR BD ⊥于点R ,连接到PR ,由已知可得,PQ AB QR CD ∥∥,且AB ⊥平面BCD , 所以PQ ⊥平面BCD ,又BD ⊂平面BCD ,所以PQ BD ⊥,,,,QR BD PQ QR Q PQ QR ⊥=⊂平面PQR ,BD ∴⊥平面PQR ,PR ⊂平面PQR ,BD PR ∴⊥,设1,AB BD CD ===3AC ∴=,133PQ PQ =∴, 33133QR BQ x x QR BC --==∴222332233333x x PR x x ⎛⎫-⎛⎫∴=+-+ ⎪ ⎪ ⎪⎝⎭⎝⎭故23()22336f x x x =-+其函数图像是关于直线3x 对称的图像且开口上,故选项B,C,D 错误.故选:A .【题型5 函数零点所在区间问题】【例5】(2022秋·湖南长沙·高三长郡中学校考阶段练习)函数()()52lg 21f x x x =--+零点所在的区间是( )A .()0,1B .()1,2C .()2,3D .()3,4 【答案】C【解析】因为函数()()52lg 21f x x x =--+在1(,)2-+∞上单调递减,所以函数()f x 最多只有一个零点, 因为(0)(1)5(52lg3)5(3lg3)0f f ⋅=--=->,(1)(2)(52lg3)(54lg5)(3lg3)(1lg5)0f f ⋅=----=-->, (2)(3)(52lg3)(56lg7)(3lg3)(1lg7)0f f ⋅=----=---<, (3)(4)(56lg7)(58lg9)(1lg7)(3lg9)0f f ⋅=----=---->,所以函数()()52lg 21f x x x =--+零点所在的区间是()2,3.故选:C【变式5-1】(2022秋·广东深圳·高三红岭中学校考阶段练习)函数81()log 3f x x x=-的一个零点所在的区间是( )A .(1,2)B .(2,3)C .(3,3.5)D .(3.5,4) 【答案】A【解析】因为函数81log ,3y x y x==-在()0,∞+上单调递增, 所以,81()log 3f x x x =-在()0,∞+上单调递增, 因为()()8811111log 1,2log 23366f f =-=-=-=,()()120f f ⋅<, 所以,函数只有一个零点,且位于()1,2区间内.故选:A .【变式5-2】(2022秋·辽宁辽阳·高三统考阶段练习)若函数()lg f x a x x =++()110x <<有零点,则a 的取值范围为( )A .()10,1--B .()1,10C .()1,11D .()11,1-- 【答案】D【解析】因为函数y x a =+与lg y x =均在()1,10上单调递增,所以()lg f x a x x =++在()1,10上单调递增.要使函数()lg f x a x x =++()110x <<有零点,则只需要()()10100f f ⎧<⎪⎨>⎪⎩即可, 即10110a a +<⎧⎨+>⎩,解得111a -<<-.故选:D.【变式5-3】(2022秋·上海浦东新·高三上海市实验学校校考阶段练习)已知()23e x f x x =-,函数()f x 的零点从小到大依次为,12i x i =、、,若[),1(i x m m m ∈+∈Z ),请写出所有的m 所组成的集合___________.【答案】{}1,0,3-【解析】()f x 的零点可以转化为函数e x y =和23y x =图象交点的横坐标,图象如右所示,由图可知共三个零点,()1130f --=->e ,()010f =-<,所以在[)1,0-上存在一个零点; ()130f =->e ,则在[)0,1上存在一个零点;()33270f =->e ,()44480f =-<e ,则在[)3,4上存在一个零点;所以{}1,0,3m ∈-.【变式5-4】(2022秋·安徽·高三合肥一六八中学校联考阶段练习)(多选)已知函数()e 1x f x a x b =-+,若()f x 在区间[]1,222a b +( )A .1eB eC .2eD .1 【答案】BCD【解析】设()f x 在区间[]1,2上零点为m ,则e 10m a m b -+=,所以点(),P a b 在直线e 10m x y m --=上,()()222200a b a b OP +-+-,其中О为坐标原点.又()2220e 10ee 11m m mmm OP ⋅-+-≥=-+,记函数()2e m m g m =,[]1,2m ∈,()2222211122e e e e m m m mg m m m'==⎛⎫ -⎪⎝⎭- 因为[]1,2m ∈,所以()g m 在[]1,2m ∈上单调递增 所以()g m 最小值为()11g e=,所以221e a b +≥,故选:BCD.【题型6 函数的零点与零点个数问题】【例6】(2022秋·上海杨浦·高三同济大学第一附属中学校考阶段练习)若函数(),R y f x x =∈,满足()()2f x f x +=,且(]1,1x ∈-时,()f x x =,则函数()f x 的图像与函数4log y x =的图像的交点的个数为( ) A .3 B .4 C .6 D .8 【答案】C【解析】由题意得()f x 的周期为2,作出()y f x =与4log y x =的函数图象,数形结合得共有6个交点,故选:C【变式6-1】(2022·天津河西·统考二模)已知定义在R 上的函数()f x 满足:①()2()0f x f x -+=;②()()20f x f x ---=;③在[]1,1-上的解析式为()[](]πcos ,1,021,0,1x x f x x x ⎧∈-⎪=⎨⎪-∈⎩,则函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为( )A .3B .4C .5D .6 【答案】B【解析】由(2)()0f x f x -+=知()f x 的图象关于(1,0)对称,由(2)()0f x f x ---=知()f x 的图象关于=1x -对称,作出()f x 与||1()()2x g x =在[3-,3]上的图象:由图可知函数()f x 与函数1()2xg x ⎛⎫= ⎪⎝⎭的图象在区间[]3,3-上的交点个数为4.故选:B .【变式6-2】(2022秋·上海闵行·高三上海市七宝中学校考期中)定义域为R 的函数()f x 的图象关于直线1x =对称,当[]0,1x ∈时,()f x x =,且对任意x ∈R 只有()()2f x f x +=-,()()()2025,0log ,0f x x g x x x ⎧≥⎪=⎨--<⎪⎩,则方程()()0g x g x --=实数根的个数为( )A .2024B .2025C .2026D .2027 【答案】D【解析】由于函数()f x 的图象关于直线1x =对称,当[0x ∈,1]时,()f x x =,对任意x ∈R 都有(2)()f x f x +=-,得()()()(4)(2)=f x f x f x f x +=-+--=, 所以函数()f x 在[0,)∞+上以4为周期,()()2f x f x +=-, 做出函数()f x 一个周期[0,4]的图象:当0x >时,0x -< ,由()()g x g x =-得:()2025=log f x x - 令2025log 1x -=-,则2025x =,因为202545061=⨯+,而在第一个周期有3个交点,后面每个周期有2个交点,所以共有505231013⨯+=个交点,当0x <时,0x -> ,由()()g x g x =-得:()()2025=log f x x ---,令x t -=,得()2025=log f t t -,由上述可知,()2025=log f t t -有505231013⨯+=个交点,故()()2025=log f x x ---有505231013⨯+=个交点,又0x =时,(0)(0)g g =,所以方程()()0g x g x --=实数根的个数为210131=2027⨯+.故选:D .【变式6-3】(2022秋·河北·高三期中)函数21()cos sin 14f x x x x x =+--零点的个数为( )A .0B .1C .2D .3 【答案】D 【解析】()()()()()2211()cos sin 1cos sin 144f x x x x x x x x x f x -=-+-----=+--=, ()f x ∴是R 上的偶函数,1()cos 2f x x x ⎛⎫'=- ⎪⎝⎭,①当[]0,2πx ∈时,令()0f x '>,得π03x <<或5π2π3x <≤, 令()0f x '<,得π5π33x <<.()f x ∴在π0,3⎛⎫⎪⎝⎭和5π,2π3⎛⎤ ⎥⎝⎦上单调递增,在π5π,33⎛⎫ ⎪⎝⎭上单调递减.()()22π5π5π315π100,0,2ππ0333432f f f f ⎛⎛⎫⎛⎫⎛⎫>==⨯-⨯-<=-< ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭⎝⎭ 0π5π,33x ⎛⎫∴∃∈ ⎪⎝⎭,使得()00,()f x f x =∴在[]0,2π上有两个零点.②当(2,)x π∈+∞时,2211()cos sin 1044f x x x x x x x =+--<-<,()f x ∴在()2π,+∞上没有零点,由①②及()f x 是偶函数可得()f x 在R 上有三个零点.故选:D.【变式6-4】(2022秋·江苏南京·高三期末)若函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+- ,(1)0(0)(2)1f f f -===, ,则曲线|()|y f x =与2log y x =的交点个数为( )A .2B .3C .4D .5 【答案】B【解析】由题意函数()f x 的定义域为Z ,且()()()[()()]f x y f x y f x f y f y ++-=+-,(1)0(0)(2)1f f f -===,,令1y =,则[]()(1)(1)()(1)1(1())f x f x f x f f x f f ++-==+-,令1x =,则2(2)(0)(1)f f f +=,即2(1)2f =,令2x =,则(3)(1)(2)(1)f f f f +=,即(3)0f =, 令3x =,则(4)(2)(3)(1)f f f f +=,即(4)1f =-, 令4x =,则(5)(3)(4)(1)f f f f +=,即(5)(1)f f =-,令5x =,则(6)(4)(5)(1)f f f f +=,即2(6)1(1),(6)1f f f -=-∴=-,令6x =,则(7)(5)(6)(1)f f f f +=,即(7)(1)(1),(7)0f f f f -=-∴=, 令7x =,则(8)(6)(7)(1)f f f f +=,即(8)10,(8)1f f -=∴=, 依次类推,可发现此时当Z x ∈,且x 依次取0,1,2,3,时,函数|()|y f x =的值依次为, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(2,1); 令=1x -,则(0)(2)(1)(1)0,(2)1f f f f f +-=-=∴-=-, 令2x =-,则(1)(3)(2)(1)(1),(3)(1)f f f f f f f -+-=-=-∴-=-,令3x =-,则2(2)(4)(3)(1)(1),(4)1f f f f f f -+-=-=-∴-=-,令4x =-,则(3)(5)(4)(1)(1),(5)0f f f f f f -+-=-=-∴-=, 令5x =-,则(4)(6)(5)(1)0,(6)1f f f f f -+-=-=∴-=, 令6x =-,则(5)(7)(6)(1)(1),(7)(1)f f f f f f f -+-=-=∴-=,令7x =-,则2(6)(8)(7)(1)(1),(8)1f f f f f f -+-=-=∴-=,依次类推,可发现此时当Z x ∈,且x 依次取1,2,3---,时,函数|()|y f x =的值依次为0,121,0121,0,,,,,, ,即每四个值为一循环, 此时曲线|()|y f x =与2log y x =的交点为(1,0),(2,1)--;故综合上述,曲线|()|y f x =与2log y x =的交点个数为3,故选:B【题型7 根据函数零点个数求参数范围】【例7】(2022秋·广东中山·高三小榄中学校考阶段练习)已知函数()2ln ,045,0x x f x x x x ⎧>⎪=⎨-+≤⎪⎩,若方程()0f x a -=有4个不同的实数解,则实数a 的取值范围为_________. 【答案】(1,5]【解析】由题知:方程()0f x a -=有4个不同的实数解,即()f x a =有4个不同的实数解.作出()f x 图像(如图所示),即直线y a =与曲线()y f x =有4个公共点. 易知:15a <≤.【变式7-1】(2022秋·新疆喀什·高三新疆维吾尔自治区喀什第二中学校考阶段练习)已知函数()34,0,0x x x f x lnx x ⎧-≤=⎨>⎩,若函数()()g x f x x a =+-有3个零点,则实数a的取值范围是( )A .[)0,1B .[)0,2C .(],1-∞D .(],2-∞ 【答案】B【解析】令()()0g x f x x a =+-=,即()f x x a +=,令()()x f x x ϕ=+,当0x ≤时,()33x x x ϕ=-,()233x x ϕ'=-,令()0x ϕ'>得:1x >或1x <-,结合0x ≤,所以1x <-,令()0x ϕ'<得:11x -<<,结合0x ≤得:10-<≤x ,所以()x ϕ在=1x -处取得极大值,也是最大值,()()max 12x ϕϕ=-=,当x →-∞时,()x ϕ→-∞,且()00ϕ=,当0x >时,()ln x x x ϕ=+,则()110x xϕ'=+>恒成立,()ln x x x ϕ=+单调递增,且当0x →时,()x ϕ→-∞,当x →+∞时,()x ϕ→+∞,画出()x ϕ的图象,如下图:要想()()g x f x x a =+-有3个零点,则[)0,2a ∈故选:B【变式7-2】(2022·江西南昌·南昌市八一中学校考三模)定义在R 上的偶函数()f x 满足()()2f x f x =-,且当[]0,1x ∈时,()e 1x f x =-,若关于x 的方程()()()10f x m x m =+>恰有5个解,则m 的取值范围为( )A .e 1e 1,65--⎛⎫⎪⎝⎭ B .e 1e 1,64--⎛⎫ ⎪⎝⎭ C .e 1e 1,86--⎛⎫ ⎪⎝⎭D .()0,e 1- 【答案】B【解析】∵()()2f x f x =-,∴函数()f x 关于直线1x =对称,又()f x 为定义在R 上的偶函数,故函数()f x 关于直线0x =对称,作出函数()y f x =与直线()1y m x =+的图象,要使关于x 的方程()()()10f x m x m =+>恰有5个解, 则函数()y f x =与直线()1y m x =+有5个交点,∴6e 14e 1m m >-⎧⎨<-⎩,即e 1e 164m --<<.故选:B.【变式7-3】(2022秋·北京顺义·高三牛栏山一中校考期中)若函数()2,,,.x x a f x x x a ≤⎧=⎨>⎩满足存在t R ∈使()f x t =有两个不同的零点,则a 的取值范围是______. 【答案】()(),00,1-∞⋃【解析】如图所示,画出函数()2,,x x af x x x a ≤⎧=⎨>⎩的图象.结合图象可知,()(),00,1a ∈-∞⋃【变式7-4】(2023·全国·高三专题练习)已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.【答案】1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦【解析】设函数()3112,21ln ,2x x g x x x x ⎧-<⎪⎪=⎨⎪≥⎪⎩,根据题意函数()f x 恰有3个零点, 即为函数()g x 的图象与直线y m =有3个公共点,当12x ≥时,可得2()(3ln 1)g x x x '=+,令()0g x '=,得131e 2x -=>,当131[,e )2x -∈时,函数()g x 单调递减;当13(e ,)x -∈+∞时,函数()g x 单调递增,所以当13e x -=时,函数()g x 取得极小值,极小值为131e 3e g -⎛⎫=- ⎪⎝⎭,又由11()ln 2028g =-<,作出()g x 的图象,如图所示,由图可知,实数m 的取值范围是1ln 2,(0,1)3e8⎛⎤-- ⎥⎝⎦.【题型8 复合函数的零点问题】【例8】(2022秋·贵州黔东南·高三校考阶段练习)已知函数()()1ln 1,121,1x x x f x x -⎧->⎪=⎨+≤⎪⎩,则函数()()1y f f x =+的零点个数为______. 【答案】2【解析】先由函数画出草图如图,∴函数()f x 的零点为=2x ,令()1=2f x +,得()=1f x ,∴函数()()1y f f x =+的零点个数就是方程()=1f x 解的个数,也就是函数()f x 的图像与直线=1y 交点的个数,由图可知函数()f x 的图像与直线=1y 有两个不同的交点A ,B ,∴()()1y f f x =+的零点个数为2,【变式8-1】(2022秋·上海普陀·高三曹杨二中校考期中)已知函数()||1f x x =-,关于x 的方程2()|()|0f x f x k -+=,给出下列四个命题:①存在实数k ,使得方程恰有2个不同的实根; ②存在实数k ,使得方程恰有3个不同的实根; ③存在实数k ,使得方程恰有5个不同的实根; ④存在实数k ,使得方程恰有8个不同的实根. 其中真命题的序号为( )A .①②③B .①②④C .①③④D .②③④ 【答案】C【解析】设||1t x =-,则1t-,当1t =-时,0x =,当1t >-时,x 有两解.则原方程等价为2||0t t k -+=,即2211||(||)24k t t t =-+=--+.画出||1t x =-以及211(||)24k t =--+的图象, 由图象可知,(1)当0k <时,1t >,此时方程恰有2个不同的实根; (2)当0k =时,1t =或0=t 或1t =-, 当1t =时,x 有两个不同的解, 当0=t 时,x 有两个不同的解,当1t =-时,x 只有一个解,所以此时共有5个不同的解.(3)当104k <<时,112t -<<-或102t -<<或102t <<或112t <<,此时对应着8个解.(4)当14k =时,12t =-或12t =.此时每个t 对应着两个x ,所以此时共有4个解.综上正确的是①③④.故选:C【变式8-2】(2022秋·湖北·高三校联考阶段练习)已知函数()π4sin sin 3f x x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的单调递增区间;(2)若2,63ππx ⎡⎤∈⎢⎥⎣⎦,讨论函数()()()()21g x f x m f x m =-++⎡⎤⎣⎦的零点个数. 【答案】(1)πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈;(2)答案详见解析 【解析】(1)()134sin sin cos 22x f x x x ⎛⎫=+⎪ ⎪⎝⎭1cos 23sin 2x x =-+π2sin 216x ⎛⎫=-+ ⎪⎝⎭, 由πππ2π22π262k x k -+≤-≤+,Z k ∈, 解得ππππ63k x k -+≤≤+,Z k ∈,故()f x 递增区间为πππ,π63k k ⎡⎤-++⎢⎥⎣⎦,Z k ∈. (2)π2,π63x ⎡⎤∈⎢⎥⎣⎦,则ππ72,π666x ⎡⎤-∈⎢⎥⎣⎦,则π1sin 2,162x ⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以()π2sin 21[0,3]6f x x ⎛⎫=-+∈ ⎪⎝⎭,画出()f x 在区间π2,π63⎡⎤⎢⎥⎣⎦上的图象如下图所示,令()f x t =,则()()()()211g x t m t m t t m =-++=--,[]0,3t ∈,由()()10t t m --=,结合()f x 图象得:①当1m =时,()0g t ≥,1t =,即()1f x =,此时零点唯一; ②当23m ≤<时,1t =或()1t m f x =⇔=或()f x m =,此时三个零点; ③当3m =时,1t =或t m =⇔()1f x =或()3f x =,此时两个零点; ④当3m >时,1t =或t m =⇔()1f x =或()f x m =(无解),此时只有一个零点;⑤当0m =时,1t =或t m =⇔()1f x =或()0f x =,此时两个零点; ⑥当01m <<,12m <<时,1t =或t m =⇔()1f x =或()f x m =,此时有两个零点;⑦当0m <时,1t =或t m =⇔()1f x =或()f x m =(无解),此时有一个零点;综上所述:当()(){},03,1m ∈-∞⋃+∞⋃时,只有一个零点;[)(){}0,11,23m ∈⋃⋃时,只有两个零点;[]2,3m ∈,有三个零点.【变式8-3】(2022秋·河南焦作·高三统考期中)已知函数()()12,024,24x x f x x f x x ⎧+-<≤⎪=⎨⎪-<<⎩,方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=(其中0θπ<<)有6个不同的实根,则θ的取值范围是( )A .π0,6⎛⎫ ⎪⎝⎭B .π2π0,,π33⎛⎫⎛⎫⋃ ⎪ ⎪⎝⎭⎝⎭C .50ππ,,66π⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭D .π0,3⎛⎫⎪⎝⎭ 【答案】C【解析】因为当24x <<时,有()()4f x f x =-,故()f x 在()0,2上图象与在()2,4上的图象关于2x =对称,故()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 下面仅在()0,2上讨论()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=的解.因为()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=,故()1f x =或()sin f x θ=, 当()1f x =时,则有:12102x x x ⎧+-=⎪⎨⎪<<⎩,解得x . 因为方程()2(1sin )()sin 0f x f x θθ⎡⎤+⎦⋅⎣-+=在()0,2上有3个不同的实数根. 故()sin f x θ=在()0,2上有2个不同的实数根且与x 相异,故12sin 02π2x x x θθ⎧+-=⎪⎪<<⎨⎪⎪≠⎩有两个不同的解,整理得到()22sin 1002π2x x x θθ⎧⎪-++=⎪<<⎨⎪⎪≠⎩有两个不同的解.设()2(2sin )10g x x x θ=-++=,则2(0)0(2)02sin 022(2sin )40g g θθ>⎧⎪>⎪⎪⎨+<<⎪⎪+->⎪⎩,解得10sin 2θ<<,故π5π0,,π66θ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭.故选:C.【变式8-4】(2022秋·江西抚州·高三金溪一中校考阶段练习)已知函数()()()2,0,2ln ,0,x x f x g x x x x x ⎧==-⎨>⎩,若方程()()()0f g x g x m +-=的所有实根之和为4,则实数m 的取值范围是( )A .1m >B .1mC .1m <D .1m 【答案】C【解析】令(),0t g x t =≥,当1m =时,方程为()10f t t +-=,即1f t t ,作出函数()y f t =及1y t =-的图象, 由图象可知方程的根为0=t 或1t =, 即()20x x -=或()21x x -=, 作出函数()()2g x x x =-的图象,结合图象可得所有根的和为5,不合题意,故BD 错误; 当0m =时,方程为()0f t t +=,即()f t t =-, 由图象可知方程的根01t <<,即()()20,1x x t -=∈, 结合函数()()2g x x x =-的图象,可得方程有四个根, 所有根的和为4,满足题意,故A 错误.故选:C.【题型9 函数零点的大小与范围】【例9】(2022秋·河北保定·高三校联考阶段练习)已知0x >,函数()25xf x x =+-,()24g x x x =+-,()2log 3h x x x =+-的零点分别为a ,b ,c ,则( )A .a b c <<B .a c b <<C .b a c <<D .b c a <<【答案】C【解析】因为()25xf x x =+-单调递增,且()()551.6 1.65555(1.6)2 3.42 3.4256454.354240,f =-=-=-<()24250,f =+->由零点的存在性定理可知()f x 有唯一零点a 且1.62a <<;因为()24g x x x =+-在()0+∞,单调递增, 且()211140,(1.6) 1.6 2.4 2.56 2.40g g =+-<=-=->,由零点的存在性定理可知()g x 有唯一零点b 且1 1.6b <<;因为()2log 3h x x x =+-在()0+∞,单调递增,且()21230h =+-=, 由零点的存在性定理可知()h x 有唯一零点2c =,所以b a c <<.故选:C.【变式9-1】(2022·全国·高三专题练习)已知函数()()()222,log 2,32x x f x x g x x x h x x =+=+=+的零点分别为,,a b c ,则,,a b c 的( )A .b c a >>B .b a c >>C .c a b >>D .a b c >> 【答案】A【解析】由题可得,,a b c 即为2y x =-的图象分别与2xy =,2log y x =,3x y =的交点的横坐标,如图,画出函数图象,由图可得,b c a >>.故选:A.【变式9-2】(2022·全国·模拟预测)已知函数()g x 的定义域为R ,()1g x +为奇函数,()g x 为偶函数,当01x ≤≤时,()()221g x x =--,则方程()11g x x =-,在区间[-5,7]上所有解的和为( )A .10B .8C .6D .4 【答案】B【解析】第一步:判断函数()g x 与11y x =-的图象的特征并作出图象 ∵()1g x +为奇函数,∴()()11g x g x -=-+,即()()2g x g x -=-, ∴()g x 的图象关于点(1,0)对称. 又()()()42222g x g x g x +=++=--=⎡⎤⎡⎤⎣⎦⎣⎦()()()222g x g x g x ---=-+=---=⎡⎤⎣⎦()()()g x g x g x ---=-=⎡⎤⎣⎦,∴()g x 是周期为4的周期函数,显然,函数11y x =-的图象关于点(1,0)对称,在同一直角坐标系中,分别作出函数()g x 与函数11y x =-的图象如图所示.(画出函数图象,注意“草图不草”)第二步:确定交点个数,进而求解 由可知,函数()g x 与11y x =-的图象在[-5,7]上共有8个交点,且两两关于点(1,0)对称,∴方程()11g x x =-在[-5,7]上所有解的和为428⨯=.故选:B【变式9-3】(2022秋·全国·高三校联考阶段练习)已知函数ln ,0<2,()=ln(4),2<<4,x x f x x x ≤-⎧⎪⎨⎪⎩若直线=y m 与()f x 的图像有四个交点,且从左到右四个交点的横坐标依次为1234,,,x x x x ,则()123412++4+=x x x x x x ( )A .12B .16C .18D .32 【答案】C【解析】作出函数()f x 的图像如图所示:()f x 的图像关于直线=2x 对称.由图可知:1423+=+=4x x x x ,且12340<<1<<2<<3<<4x x x x .所以341<4<2,0<4<1x x --.由12ln ln x x =可得:12ln ln x x -=,所以121x x =. 同理可得()()34441x x --=,所以()3434=4+15x x x x -.于是()()()1234123412++4+=1+4+15+4+x x x x x x x x x x -()()1423=4++4+14x x x x -=18.故选:C【变式9-4】(2022·全国·高三专题练习)(多选)已知函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,则( ) A .122x x << B .12111x x += C .124x x < D .122322+≥+x x 【答案】ABD【解析】令2()log (1)0f x x m =--=,()1x >则2log (1)x m -=,令2log (1)y x =-,y m =,则函数2()log (1)(0)=-->f x x m m 的两个零点为12,x x 12()x x <,即为函数2log (1)y x =-,y m =交点的横坐标, 作图如下图所示:故1212x x <<<,故A 正确;根据题意得()12()0f x f x ==,即2122log (1)log (1)x x -=-, 因为1212x x <<<,所以2122log (1)0,log (1)0x x -<->, 故2122log (1)log (1)0x x -+-=,即212log (1)(1)0x x --=,所以12(1)(1)1x x --=,即()12120x x x x -+=,所以12111x x +=,故B 正确;因为12122x x x x +≥,所以()121212122x x x x x x x x -+≤-,即121220x x x x -≥, 所以124x x ≥,当且仅当12x x =时取等号, 又因1212x x <<<,所以124x x >,故C 错误;()2112121212211223322x xx x x x x x x x ⎛⎫+++=+++ ≥⎪⎝⎭=,当且仅当21122x x x x =,即212x x =时,取等号,故D 正确.故选:ABD.【变式9-5】(2022秋·天津武清·高三校考阶段练习)已知函数()2log ,02{12,22x x f x x x <<=-+≥,如果互不相等的实数,,a b c ,满足()()()f a f b f c ==,则实数abc 的取值范围_____. 【答案】(2,4)【解析】()2log ,0212,22x x f x x x ⎧<<⎪=⎨-+≥⎪⎩,画出函数图象,如图所示:不妨设a b c <<,其中22log log a b -=,故1ab =,且()2,4c ∈,所以abc 的取值范围是(2,4).【题型10 二分法及其应用】【例10】(2022·陕西西安·西安中学校考模拟预测)某同学用二分法求函数()237x f x x =+-的零点时,计算出如下结果:()()1.50.33, 1.250.87f f ==-,()()()()1.3750.26, 1.43750.02, 1.40650.13, 1.4220.05f f f f =-==-=-,下列说法正确的有( )A .1.4065是满足精度为0.01的近似值.B .1.375是满足精度为0.1的近似值C .1.4375是满足精度为0.01的近似值D .1.25是满足精度为0.1的近似值 【答案】B【解析】()()1.43750.020, 1.40650.130f f =>=-<,又1.4375 1.40650.0310.01-=>,A 错误;()()1.3750.260, 1.43750.020f f =-<=<,又1.4375 1.3750.0620.1-=<, ∴满足精度为0.1的近似值在()1.375,1.4375内,则B 正确,D 错误;()()1.4220.050, 1.43750.020,1.4375 1.4220.01550.01f f =-<=>-=>,C 错误.故选:B.【变式10-1】(2022·全国·高三专题练习)在用二分法求方程32100x x +-=在(1,2)上的近似解时,构造函数()3210x f x x =+-,依次计算得()150f =-<,()230f =>,()1.50f <,()1.750f >,()1.6250f <,则该近似解所在的区间是( )A .()11.5, B .()1.51.625, C .()1.6251.75, D .()1.752, 【答案】C【解析】根据已知()150f =-<,()1.50f <,()1.6250f <,()1.750f >,()230f =>,根据二分法可知该近似解所在的区间是()1.625,1.75.故选:C.【变式10-2】(2022·全国·高三专题练习)用二分法求如图所示的函数()f x 的零。
专题14 利用函数有零点(方程有根)求参数值(取值范围)常用的方法-学会解题必备方法技巧规律
![专题14 利用函数有零点(方程有根)求参数值(取值范围)常用的方法-学会解题必备方法技巧规律](https://img.taocdn.com/s3/m/54ba65e9541810a6f524ccbff121dd36a32dc4e6.png)
由 得 , , 与 在原点相切时, ,
由 得 , , 与 在原点相切时, ,
所以直线 , , 与曲线 相切,
由直线 与曲线 的位置关系可得:
当 时有两个交点,即函数 恰有两个零点.
故选:C.
【点睛】本题考查函数零点个数问题,解题方法是把函数零点转化为方程的解的个数,再转化为函数图象与直线交点个数,作出函数图象与直线通过数形结合思想求解.
例3
典型例题精选与变式
典型例题
自主解析体会方法
例1【云南省文山州2021届10月质检】已知函数 (e为自然对数的底数),若 有三个零点,则实数 的取值范围为_____.
解:设 ,
当 时, , 单调减,
当 时, , 单调增,
所以当 时, ;
又当 时, ;而令 , 综上: .
故答案为:
【方法】直接法
例2【河南省豫南九校2021届高三11月联考】已知函数 ,若函数 有零点,则实数a的取值范围是()
A. 或 B.
C.1D.
【答案】D
【解析】
【分析】令 ,易知 是 的一个零点.
只需讨论 的情况:分为b=0和b≠0分类讨论.
在b≠0时,根据判别式讨论根的情况即可.
【详解】令 ,即 或 .
显然 是 的一个零点.
下面讨论 的根的情况:
(1)b=0时, .不符合题意.
(2)b≠0时,
①若 时,有 或 ,此时 没有实数根,符合题意;
A. B.
C. D.(0,1)
解:
在定义域上单调增,∴ ,∴ ,
∵ 在 处切线为 ,即 ,又 故 与 没有公共点
∴ 与 有且仅有一个公共点且为
高考数学:数形结合在函数问题
![高考数学:数形结合在函数问题](https://img.taocdn.com/s3/m/1a5fcbcd6394dd88d0d233d4b14e852458fb39e3.png)
例 2 已知函数f(x)是定义在R上的奇函数,当x<0时,f(x)=2 -|x+2|.若对任意的x∈[-1,2],f(x+a)>f(x)恒成立,则 实数a的取值范围是( D ) A.(0,2) B.(-∞,-6)∪(0,2) C.(-2,0) D.(-2,0)∪(6,+∞)
【解析】f(x)是定义在 R 上的奇函数,当 x<0 时,f(x)=2-|x+2|.根据奇函数的图像关于 原点对称,作出 f(x)的图像,如图所示.
g′(x)=(2a-1)e2x-2aex+1=(ex-1)·[(2a-1)ex-1],
①若 a>12,令 g′(x)=0,得极值点 x1=0,x2=ln 2a1-1.当 x2>x1=0,即12<a<1 时,在(x2, +∞)上有 g′(x)>0,此时 g(x)在区间(x2,+∞)上单调递增,并且在该区间上有 g(x)∈(g(x2), +∞),不合题意;
n-m
的最大值为3+2
10 .
分考点讲解
与不等式有关的问题
利用函数f(x)和g(x)图像的上下位置关系,可直观地得到不等 式f(x)>g(x)或f(x)<g(x)的解集.
当f(x)的图像在g(x)的图像的上方时,自变量x的范围是不等式 f(x)>g(x)的解集;当f(x)的图像在g(x)的图像的下方时,自变量x 的范围是不等式f(x)<g(x)的解集.
C.[1,+∞)
D.e12,1e
【解析】由 f(x)=xln2, (xx≤ +01, ),x>0,得 f(x)-1=xln2- (1x+,1x≤ )0-,1,x>0. 在平面直角坐标系中,画出函数 y=f(x)-1 与 y=a(x+1)的大致图像,如图所示.
导数中两种零点问题解决方法
![导数中两种零点问题解决方法](https://img.taocdn.com/s3/m/b006f3a84b73f242336c5ff9.png)
导数中的零点问题解决方法解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。
一、能直接分离参数的零点题目此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。
例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x=-只有一个实数根,求a 的值。
二、不能直接分离参数的零点问题(包括零点个数问题)这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。
在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。
例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e上有两个不同零点,求实数b 的取值范围。
例4.已知函数32()f x x ax b =++(1)讨论()f x 的单调性;(2)若b c a =-,当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-⋃⋃+∞,求c 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数形结合法解与函数零点有关的参数问题
一.知识预备
1.零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点。
2.函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。
3.函数的零点,方程的根,两图像交点之间的联系
设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。
由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。
二.与函数零点有关的参数问题
例1:直线y a =与函数33y x x =-的图象有三个相异的交点,则a 的取值范围为 ( ).
A .()2,2-
B .[]2,2-
C .[)2,+∞
D .(],2-∞-
例2:设函数()()222ln 1f x x x x =+-+,若关于x 的方程()2
f x x x a =++在[]0,2上恰有两个相异实根,则实数a 的取值范围是_________
例3:已知函数()f x 满足()()3f x f x =,当[)()1,3,ln x f x x ∈=,若在区间[)1,9内, 函数()()g x f x ax =-有三个不同零点,则实数a 的取值范围是( )
A .ln 31,3e ⎛⎫
⎪⎝⎭ B. ln 31,93e ⎛⎫ ⎪⎝⎭ C .ln 31,92e ⎛⎫ ⎪⎝⎭ D .ln3ln3,93⎛⎫ ⎪⎝⎭
例4:已知函数()y f x =的图像为R 上的一条连续不断的曲线,当0x ≠时,()()'0f x f x x
+>,则关于x 的函数()()1g x f x x =+的零点的个数为( ) A .0 B .1 C .2 D .0或2
例5:已知函数()()sin 1,02log 0,1,0a
x x f x x a a x π⎧⎛⎫-<⎪ ⎪=⎝⎭⎨⎪>≠>⎩ 的图像上关于y 轴对称的点至少有3
对,则实数a 的取值范围是( )
A. 0,5⎛
⎝⎭
B. 5⎛⎫ ⎪⎝⎭
C. 3⎛⎫ ⎪⎝⎭
D. 3⎛ ⎝⎭
例6:已知()32,,x x x a f x x a
⎧≤⎪=⎨>⎪⎩,若存在实数b ,使函数()()g x f x b =-有两个零点,则a 的取值范围是______。