四川省凉山州会理县2018-2019学年七年级(下)期末数学试卷
2018—2019学年度第二学期期末考试七年级数学试卷
2018—2019学年度第二学期期末考试七年级数学试题(90分钟完成,满分100分)题号 一 二 19 20 21 22 23 24 25 26 总分 等级 分数一、选择题(每小题给出四个选项中只有一个是正确的,请把你认为正确的选项选出来,并将该选项的字母代号填入下表中.每选对一个得3分,选错、不选或选出的答案多于一个均得0分.本大题共30分)题号12345678 9 10 答案一、选择题:(本大题共10个小题,每小题3分,共30分) 1.若m >-1,则下列各式中错误的...是( ) A .6m >-6 B .-5m <-5 C .m+1>0 D .1-m <2 2.下列各式中,正确的是( )A.16=±4B.±16=4C.327-=-3D.2(4)-=-4 3.已知a >b >0,那么下列不等式组中无解..的是( ) A .⎩⎨⎧-><b x a x B .⎩⎨⎧-<->b x a x C .⎩⎨⎧-<>b x a x D .⎩⎨⎧<->bx ax4.一辆汽车在公路上行驶,两次拐弯后,仍在原来的方向上平行行驶,那么两个拐弯的角度可能为 ( )(A) 先右转50°,后右转40° (B) 先右转50°,后左转40° (C) 先右转50°,后左转130° (D) 先右转50°,后左转50° 5.解为12x y =⎧⎨=⎩的方程组是( )A.135x y x y -=⎧⎨+=⎩B.135x y x y -=-⎧⎨+=-⎩C.331x y x y -=⎧⎨-=⎩D.2335x y x y -=-⎧⎨+=⎩6.如图,在△ABC 中,△ABC=500,△ACB=800,BP 平分△ABC ,CP 平分△ACB ,则△BPC的大小是( )A .1000B .1100C .1150D .1200(1) (2) (3)PCBA 小刚小军小华得分 评卷人C 1A 1ABB 1CD7.四条线段的长分别为3,4,5,7,则它们首尾相连可以组成不同的三角形的个数是( ) A .4 B .3 C .2 D .1 8.在各个内角都相等的多边形中,一个外角等于一个内角的12,则这个多边形的边数是( ) A .5 B .6 C .7 D .89.如图,△A 1B 1C 1是由△ABC 沿BC 方向平移了BC 长度的一半得到的,若△ABC 的面积为20 cm 2,则四边形A 1DCC 1的面积为( )A .10 cm 2B .12 cm 2C .15 cm 2D .17 cm 210.课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(△0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成( )A.(5,4)B.(4,5)C.(3,4)D.(4,3)二、填空题:本大题共8个小题,每小题3分,共24分,把答案直接填在答题卷的横线上. 11.49的平方根是________,算术平方根是______,-8的立方根是_____. 12.不等式5x -9≤3(x+1)的解集是________.13.如果点P(a,2)在第二象限,那么点Q(-3,a)在_______.14.如图3所示,在铁路旁边有一李庄,现要建一火车站,△为了使李庄人乘火车最方便(即距离最近),请你在铁路旁选一点来建火车站(位置已选好),说明理由:____________.15.从A 沿北偏东60°的方向行驶到B,再从B 沿南偏西20°的方向行驶到C,△则△ABC=_______度.16.如图,AD△BC,△D=100°,CA 平分△BCD,则△DAC=_______.17.给出下列正多边形:△ 正三角形;△ 正方形;△ 正六边形;△ 正八边形.用上述正多边形中的一种能够辅满地面的是_____________.(将所有答案的序号都填上) 18.若│x 2-则x=_______,y=_______.三、解答题:本大题共7个小题,共46分,解答题应写出文字说明、证明过程或演算步骤.19.解不等式组:⎪⎩⎪⎨⎧+<-≥--.21512,4)2(3x x x x ,并把解集在数轴上表示出来.C B A D20.解方程组:2313424()3(2)17x y x y x y ⎧-=⎪⎨⎪--+=⎩21.如图, AD△BC , AD 平分△EAC,你能确定△B 与△C 的数量关系吗?请说明理由。
凉山州2018年下期统一检测七年级数学试卷、答卷及参考答案(晏祥喜精心制作,全网最好)
则蚁AED忆=
度.
第 14 题图
15. 已知点 B 的坐标为渊2,1冤袁AB椅y 轴袁且线段 AB=4袁则点 A 的坐标为
.
16.
若 y=姨1-4x
+ 姨4x-1
+4袁则
y x
=
.
嗓 17. 若 x+2y-5=0 袁则 x垣y 的值是
.
2x+y-5=0
18. 在下列说法中院淤过一点有且只有一条直线与已知直线平行曰于-0.9 是 0.81 的平方根曰盂
吟ABC 平移到一个确定位置得吟A忆B忆C忆袁则对应点 A忆尧B忆尧C忆的坐标为渊 冤
A. A忆渊0,3冤 B忆渊0,1冤 C忆渊-1袁-1冤
B. A忆渊-3袁-2冤 B忆渊3,2冤 C忆渊-4,0冤
C. A忆渊1袁-2) B忆 (3,2) C忆(-1,-3)
D. A忆(-1,3) B忆 (3,5) C忆(-2,1)
若在平面直角坐标系中直线 AB 垂直于 y 轴袁则直线 AB 上所有的点的横坐标相同曰榆
姨-2 是一个负数曰虞0 的相反数和倒数都是 0曰愚姨 4 =依2曰舆姨a2 = a 曰 余全体有理数和
数轴上的点一一 对应.
以上真命题的序号是
.
七年级数学试题卷 第 2 页渊共 4 页冤
三尧解答题渊共 58 分冤
嗓 2x-y=8
19. 渊1冤渊5 分冤解方程组
淤
3x-2y=5
于
扇设设x-3渊x-2冤臆4
设
渊2冤渊5
分冤解不等式组
设
设
缮设 设
1+2x
设
3 设墒设跃Fra bibliotekx-1
淤 袁并把它的解集在数轴上表示出来.
四川省凉山彝族自治州七年级下学期数学期末考试试卷
四川省凉山彝族自治州七年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共16题;共32分)1. (2分) (2018七下·深圳期末) 我区深入实施环境污染整治,关停和整改了一些化工企业,使得每年排放的污水减少了167000吨.将167000用科学记数法表示为()A . 167×103B . 16.7×104C . 1.67×105D . 1.6710×1062. (2分)如图,CM,ON被AO所截,那么()A . ∠1和∠3是同位角B . ∠2和∠4是同位角C . ∠ACD和∠AOB是内错角D . ∠1和∠4是同旁内角3. (2分) (2019七下·句容期中) 下列变形,属于因式分解的有()①x2﹣16=(x+4)(x﹣4)②x2+3x﹣16=x(x+3)﹣16③(x+4)(x﹣4)=x2﹣16 ④x2+x=x(x+1)A . 1个B . 2个C . 3个D . 4个4. (2分)(2019·安顺) 如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=350 ,则∠2的度数是()A . 350B . 450C . 550D . 6505. (2分)(2014·来宾) 下列运算正确的是()A . (﹣a3)2=a5B . (﹣a3)2=﹣a6C . (﹣3a2)2=6a4D . (﹣3a2)2=9a46. (2分) (2020七下·滨湖期中) 有4根小木棒,长度分别为2cm、3cm、4cm、5cm,任意取3根小木棒首尾相接搭三角形,可搭出不同的三角形的个数为()A . 1个B . 2个C . 3个D . 4个7. (2分) (2020七下·天府新期中) 下列说法中正确的个数有().⑴在同一平面内,不相交的两条直线必平行⑵同旁内角互补⑶相等的角是对顶角⑷从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离⑸经过直线外一点,有且只有一条直线与已知直线平行A . 1个B . 3个C . 4个D . 5个8. (2分) (2019七下·梁园期末) 解方程组时,把①代入②,得()A .B .C .D .9. (2分) (2020七下·涿州月考) 下列命题是假命题的是()A . 两条直线被第三条直线所截,内错角相等B . 在同一平面内,垂直于同一条直线的两条直线互相平行C . 不相等的角不是对顶角;D . 若一个角的两边分别与另一个角的两边平行,那么这两个角相等或互补10. (2分) (2019八下·重庆期中) 下列命题是真命题的是()A . 菱形的对角线相等B . 对角线互相垂直的平行四边形是正方形C . 三个角都相等的四边形是矩形D . 对角线相等的平行四边形是矩形11. (2分)(2017·黄冈模拟) 实数a,b在数轴上的位置如图所示,则下列各式正确的是()A . a>bB . a>﹣bC . a<bD . ﹣a<﹣b12. (2分)已知x2﹣2=y,则x(x﹣3y)+y(3x﹣1)﹣2的值是()A . ﹣2B . 0C . 2D . 413. (2分)关于x的不等式组只有五个正整数解,则实数a的取值范围是()A . ﹣4<a<﹣3B . ﹣4≤a≤﹣3C . ﹣4≤a<﹣3D . ﹣4<a≤﹣314. (2分) (2020七下·青岛期中) 下列计算正确的是()A . (x+2y)(x+2y)=x2+4y2B . (x-2)2=x2-4C . (x+2)(x-3)=x2+x-6D . (-x-1)(x-1)=1-x215. (2分)Rt△ABC中,∠C=90°,∠B=36°,则∠A=()A . 44°B . 34°C . 54°D . 64°16. (2分)(2020·梁子湖模拟) 如图,分别过点Pn(n,0)(n为正整数)作x轴的垂线,交二次函数(x>0)的图象于点An ,交直线 (x>0)于点Bn ,则的值为()A .B . 2C .D .二、填空题 (共4题;共4分)17. (1分) (2020七下·甘井子期末) 已知是方程 3x+y=m 的解,则 m 的值为________.18. (1分) (2020八上·乌拉特前旗期末) 若|x+2|+ =0,则yx的值为________.19. (1分)(2018·河源模拟) 分解因式: =________20. (1分)现有八个大小相同的长方形,可拼成如图①、②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小长方形的面积是________ .三、解答题 (共6题;共54分)21. (11分)(2018·南京模拟) 解不等式组 .22. (6分) (2020七下·鼓楼期中) 装饰公司为小明家设计电视背景墙时需要A、B型板材若干块,A型板材规格是a´b,B型板材规格是b´b.现只能购得规格是150´b的标准板材.(单位:cm)(1)若设a=60cm,b=30cm.一张标准板材尽可能多的裁出A型、B型板材,共有下表三种裁法,下图是裁法一的裁剪示意图.裁法一裁法二裁法三A型板材块数120B型板材块数3m n则上表中, m=________, n=________;(2)为了装修的需要,小明家又购买了若干C型板材,其规格是a´a,并做成如下图的背景墙.请写出下图中所表示的等式:________;(3)若给定一个二次三项式2a2+5ab+3b2 ,试用拼图的方式将其因式分解.(请仿照(2)在几何图形中标上有关数量)23. (6分) (2019七下·南海期末)(1)如图1,阴影部分的面积是________.(写成平方差的形式)(2)若将图1中的阴影部分剪下来,拼成如图2的长方形,面积是________.(写成多项式相乘的积形式)(3)比较两图的阴影部分的面积,可以得到公式:________.(4)应用公式计算:(1﹣)(1﹣)(1﹣)(1﹣)…(1﹣)(1﹣).24. (6分) (2017七下·盐都期中) 画图并填空:如图,方格纸中每个小正方形的边长都为1.在方格纸中将△ABC经过一次平移后得到△A′B′C′,图中标出了点A、点B′、点C和它的对应点C′.(1)请画出平移前后的△ABC和△A′B′C′;(2)利用网格画出△ABC 中BC边上的中线AD;(3)利用网格画出△ABC 中AB边上的高CE;(4)△A′B′C′的面积为________.25. (10分)(2019·港南模拟) 随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加,据统计,某小区年底拥有家庭轿车辆,年底家庭轿车的拥有量达到辆.(1)若该小区年底到年底家庭轿车拥有量的年平均增长率都相同,求该小区到年底家庭轿车将达到多少辆?(2)为了解决停车困难,该小区决定投资万元再建造若干个停车位,据测算,室内车位建造费用元个,露天车位建造费用元个,考虑到实际因素,计划露天车位的数量不少于室内车位的倍,但不超过室内车位的倍,求该小区建造车位共有几种方案?26. (15分) (2018七上·大庆期中) 已知:如图,EF∥CD,∠1+∠2=180°(1)判断GD与CA的位置关系,并说明理由;(2)若CD平分∠ACB,DG平分∠CDB,且∠A=40°,求∠ACB的度数。
2019年下学期凉山中小学期末考试题-七年级数学
一、选择题(共12个小题,每小题2分,共24分)1.在下列实数227,3.14159265,8√,﹣8,93√,16√,1.103030030003…(两个3之间依次多一个0),π3中,无理数有()A.3个B.4个C.5个D.6个2.下列作图能表示点A 到BC 的距离的是()3.2019年凉山州有5.2万名初中毕业生参加升学考试,为了了解这5.2万名考生的数学成绩,从中抽取2000名考生的数学成绩进行统计,在这个问题中样本是()A.5.2万名考生B.2000名考生C.5.2万名考生的数学成绩D.2000名考生的数学成绩4.25√的算术平方根是()A.5B.±5C.-5D.5√5.x=1y=3{,是二元一次方程2x+ay=3的一个解,则a 的值为()A.3B.13C.1D.-116.若点P 在第二象限,它到x 轴,y 轴的距离分别为3,1,则点P 的坐标为()A.(1,3)B.(﹣3,1)C.(﹣1,3)D.(3,﹣1)7.如图,直线l 1∥l 2,∠α=∠β,∠1=40°,则∠2等于()A.140°B.130°C.120°D.110°七年级数学试题卷第1页(共4页)第Ⅰ卷(选择题共24分)凉山州2018要2019学年度下期期末检测七年级数学试题注意事项:全卷共8页(试题卷4页,答题卷4页),考试时间为120分钟,满分100分;请将自己的学校、姓名、考号写在答题卷密封线内,答题只能答在答题卷上,答题时用蓝黑墨水笔(芯)书写。
考试结束后,只将答题卷交回。
8.把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x 名同学,可列不等式9x+7<11x,则横线上的信息可以是()A.每人分7本,则可多分9个人B.每人分7本,则剩余9本C.每人分9本,则剩余7本D.其中一个人分7本,则其他同学每人可分9本9.已知点P(a+1,2a ﹣3)在第四象限,则a 的取值范围是()A.a<-1B.-1<a<32C.-32<a<1D.a >3210.已知a,b,c 都是实数,则关于三个不等式:a>b,a>b+c,c<0的逻辑关系的表述,下列正确的是()A.因为a>b+c,所以a>b,c<0B.因为a>b+c,c<0,所以a>bC.因为a>b,a>b+c,所以c<0D.因为a>b,c<0,所以a>b+c 11.如果∠α与∠β的两边分别平行,∠α比∠β的3倍少36°,则∠α的度数是()A.18°B.126°C.18°或126°D.以上都不对12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2019次运动后,动点P 的坐标是()A.(2019,0)B.(2019,1)C.(2019,2)D.(2018,0)第Ⅱ卷(非选择题共76分)二、填空题(共8小题,每小题3分,共24分)13.已知方程(2m+6)xm -2+(n-2)y n 2-3=0是关于x ,y 的二元一次方程,则m=,n=.14.已知2a-1的平方根是±3,3a+b-1的平方根是±4,a+2b 的平方根=.15.若关于x 的不等式组x -a>31-2x>x -2{无解,则a 的取值范围是.16.已知a 是3√的整数部分,b 是3√的小数部分,则a-b=.17.若二元一次方程组4x+3y =1a x +(a-1)y =3{的解中x 与y 的值相等,则a=.18.若过点M(-3,a)、N(7,-5)的直线与x 轴平行,则点M 关于y 轴的对称点的坐标是.19.已知(2x +5y +4)2+|x -2y -7|=0,则4x -2y √=.七年级数学试题卷第2页(共4页)20.如图,计划把河水引到水池A 中,先作AB⊥CD,垂足为B,然后沿AB 开渠,能使所开的渠道最短,这样设计的依据是.三、解答题(本大题共7小题,共52分)21.计算或解方程组:(8分,每小题4分)(1)计算:-12018+25√-1-2√+-83√-(-3)2√(2)解方程组3x +4y =56x -5y =-16{22.(6分)解不等式组:x -3(x -1)≥71-2-5x 3<x⎧⎩⏐⏐⏐⏐⏐⎨⏐⏐⏐⏐⏐,并把它的解集在数轴上表示出来.23.(6分)在凉山州“精准扶贫”工作中,甲、乙两个工程队先后接力为某扶贫村庄修建一条2100米长的公路,甲队每天修建150米,乙队每天修建250米,一共用10天完成.求甲、乙工程队各修建了多少天?24.(8分)如图,△ABC 在直角坐标系中,(1)请写出△ABC 各点的坐标.(2)求出△ABC 的面积.(3)若把△ABC 先向上平移2个单位,再向右平移2个单位得到△A′B′C′,请在图中画出△A′B′C′,并写出点A′、B′、C′的坐标.七年级数学试题卷第3页(共4页)25.(8分)为积极响应政府提出的“绿色发展低碳出行”号召,某社区决定购置一批共享单车.经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需16000元.(1)求男式单车和女式单车的单价;(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过50000元,该社区有几种购置方案?26.(7分)某地为提倡节约用水,准备实行“阶梯水价”,每户居民每月用水不超出基本用水量的部分享受基本价格,超出部分加价收费.为更好地决策,当地自来水公司随机抽取部分居民某月的用水量数据,并绘制了如图1和图2所示的不完整的统计图(每组数据均只含最大值而不含最小值),请根据题意,解答下列问题.(1)此次调查抽取了多少户居民的用水量数据?(2)补全频数分布直方图,求图2中“25﹣30”部分对应的扇形圆心角的度数;(3)如果自来水公司将基本用水量定为每户每月25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?27.(9分)如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,请直接写出∠ABC的度数。
凉山州2019年度下期期末检测七年级数学试题+答案
凉山州2019年度下期期末检测七年级数学试题+答案×××××××中学 班级 姓名 准考证号……………………………密……………………………………………………封…………………………………………线……………………… ……………………………答……………………………………………………题…………………………………………线………………………七年级数学试题一、选择题(本大题共10小题,每小题2分,共20分)1.已知下列命题:①若a>0,b>0,则a+b>0;②若a b ≠,则22a b ≠;③两点之间,线段最短; ④同位角相等,两直线平行.其中真命题的个数是( )A.1个 B .2个 C .3个 D .4个 2.、9的平方根是( )A .3B .±3C .、3D .3± 3.若点P(a ,a-3)在第四象限,则a 的取值范围是( ).3a 0 .0 3 . 3 .0A B a C a D a -<<<<>< 4.a,b 都是实数,且a<b ,则下列不等式的变形正确的是( ). .11 .22 .22a b A a x b x B a b C a b D -<---<---<-->- 5.把方程2x+3y+l=0改写成用x 的式子表示y 的形式为( )11. (21) . (21) . 3 (21) . 3 (12)33A y xB y xC y xD y x =-=--=-=-6.已知3331.51=1.14715.1=2.4720.151=0.5325,,,则31510的值是( ) A. 24.72 B.53.25 C.11.47 D.114.77.已知2x-3与3x-7是一个正数a 的平方根,则a 的值是( )A .1B .4C .25D .1,25 8.已知关于x,y 的方程组35323x y k x y k +=+⎧⎨+=⎩满足x 与y 相等,则k 的取值是( )A .4B .5 C.11 D.12 9.如图,点E 在CD 的延长线上,下列条中不能判定AB//CD 的是( ) A .∠1=∠2 B .∠3=∠4C .∠5=∠BD.∠B+∠BDC=180010.对某校七年级随机抽取若干名学生进行体能测试,成绩记为1分,2分,3分.4分共4个等级,将调查结果绘制成如下条形统计图 和扇形统计图,根据图中信息,可得出样本容量是( )A .15B .40C .50D .60第Ⅱ卷(非选择题共80分) 二、填空题(本大题共10小题,每小题3分,共30分) 11.2742-的绝对值是 。
2018-2019学年七年级下学期期末考试数学试卷含答案解析
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
四川省凉山彝族自治州七年级下学期数学期末试卷
四川省凉山彝族自治州七年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·绍兴月考) 在① +y=1;②3x-2y=1;③5xy=1;④ +y=1四个式子中,不是二元一次方程的有()A . 1个B . 2个C . 3个D . 4个2. (2分)(2019·包河模拟) 下列多项式,在实数范围内能够进行因式分解的是()A . x2+4B .C .D .3. (2分) (2019八下·盐湖期中) 剪纸是我国最古老民间艺术之一,被列入第四批(人类非物质文化遗产代表作名录),下列剪纸作品中,是中心对称图形但不是轴对称图形的是()A .B .C .D .4. (2分)若x2-2(k+1)x+4是完全平方式,则k的值为()A . ±1B . ±3C . -1或3D . 1或-35. (2分) (2011·柳州) 如图,在所标识的角中,互为对顶角的两个角是()A . ∠2和∠3B . ∠1和∠3C . ∠1和∠4D . ∠1和∠26. (2分)(2019·乐山) 下列四个图形中,可以由下图通过平移得到的是()A .B .C .D .7. (2分)一次数学测试,某小组五名同学的成绩如下表所示(有两个数据被遮盖).组员甲乙丙丁戊方差平均成绩得分8179■8082■80那么被遮盖的两个数据依次是()A . 80,2B . 80,C . 78,2D . 78,8. (2分) (2016七上·永登期中) 两个互为相反数的有理数相除,商为()A . 正数B . 负数C . 不存在D . 负数或不存在9. (2分)如图中,∠1与∠2是内错角的是()A .B .C .D .10. (2分)如图,若∠1=∠2,则下列结论正确的是()A . AB∥CDB . AD∥BCC . ∠ABD=∠BDCD . ∠A=∠C二、填空题 (共8题;共9分)11. (1分)若2m=4,2n=8,则2m+n=________。
2018-2019学年七年级下期末考试数学试卷及答案
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
四川省20182019学年下学期期末考试七年级数学试卷附
精选试卷四川省 2013-2014 学年放学期期末考试七年级数学试卷(附答案)A卷(共 100 分)第Ⅰ卷(选择题,共30 分)注意事项:1.第Ⅰ卷共 2 页.答第Ⅰ卷前,考生务势必自己的姓名、准考据号、考试科目涂写在试卷和答题卡上.考试结束,监考人员将试卷和答题卡一并回收.2.第Ⅰ卷全部是选择题,各题均有四个选项,只有一项切合题目要求.每题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑;如需变动,用橡皮擦洁净后,再选涂其余答案,选择题的答案不可以答在试卷上.请注意机读答题卡的横竖格式.一、选择题(本大题共10个小题,每题3分,共 30分)1. 以下运算正确的选项是()2b2B.a3a2aA.a ba2C.2a 1 2a 1 4a 1D.2a3 24a62.某流感病毒的直径大概为0.00000008 米,用科学计数法表示为( )A. 0.8 ×10-7米B. 810-8米C . 8×10-9米D. 8× 10-7米3.以下长度的3条线段,能首尾挨次相接构成三角形的是()A .1,3,5B.3,4,6C . 5,6, 11D. 8,5, 24.以下图形中,有无数条对称轴的是( )A.等边三角形B.线段C. 等腰直角三角形D.圆5.以下乘法中,不可以运用平方差公式进行运算的是()A.(x+a)(x-a)B.(b+m)(m-b)C.(-x-b)(x-b)D.(a+b)(-a-b)6.能判断两个三个角形全等的条件是()A.已知两角及一边相等B.已知两边及一角对应相等C.已知三条边对应相等D.已知三个角对应相等7.如图,工人师傅砌门时,常用木条EF 固定长方形门框ABCD,使其不变形,这类做法的依据是( )A.三角形的稳固性B.长方形的对称性C.长方形的四个角都是直角D.两点之间线段最短A3F G1DB B′C D D′2B第 6 题E O C A O′A′C′(第 9 题图)(第 7 题图) (第 8 题图)8. 如图,已知A . 90°FD ∥ BE ,则∠1+∠ 2- ∠3=()B . 135°C . 150°D. 180°9.请认真察看用 直尺和圆规 作一个角∠ A ′O ′B ′等于已知角∠.....AOB 的表示图,请你依据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依照是()A . SASC . AASBD. ASA . SSS10. 如图向高为 H 的圆柱形空水杯中灌水,则下边表示灌水量y与水深x的关系的图象是()Y Y Y YHXHXHXHXABCD第Ⅱ卷(非选择题,共 70 分)注意事项:1. A 卷的第Ⅱ卷和 B 卷共 10 页,用蓝、黑钢笔或圆珠笔挺接答在试卷上. 2.答卷前将密封线内的项目填写清楚.二. 填空题:(本大题共 4个小题,每题4分,共 16分)211.1 23=计算:20110212. 从一个袋子中摸出红球的概率为1,已知袋子中红球有5 个,则袋子中共有球的个数5为13. 如图 1所示,若12 180,375,则4105MNA14.4所示,△ ABC 中,∠ A=90°, BD 是角均分线, DE ⊥ BC ,垂足如 图aD是 E,1AC=10cm , CD=6cm,则 DE23bBC的长为OE__________________图 1第 14 题图三、解答题(本大题共6个小题,共54分)15.计算(此题满分12分)2 )(2) x 1 x 1x 2(1) (a2)6a8( 2a)2 ( 1 a2216.先化简,再求值(此题满分6分)x(x 2 y) ( x 1) 22x ,此中 x 1 , y3 317.解答题 ( 此题满分 8分 )(1) 已知 a+b=3, a 2+b2=5,求 ab的值(2)若 3m8,3n2, 求 32m 3 n 1的值18. ( 本小题满分 8分)如图,在△ ABC中, CD⊥ AB,垂足为D,点 E 在 BC上, EF⊥ AB,垂足为F.(1)求证: CD∥ EF(2)假如∠ 1=∠ 2,且∠ 3=115°,求∠ ACB的度数.19.(本小题满分10 分)小明某天上午 9 时骑自行车走开家, 15 时回家,他存心描述了离家的距离与时间的变化状况(如图 6- 32 所示) .图 6-32(1)图象表示了哪两个变量的关系?哪个是自变量?哪个是因变量?(2)他抵达离家最远的地方是什么时间?离家多远?(3)11 时到 12 时他行驶了多少千米?(4)他可能在哪段时间内歇息,并吃午饭?(5)他由离家最远的地方返回时的均匀速度是多少?20.(本小题满分10分)如图,四边形ABCD中, E是 AD中点, CE交BA延伸线于点 F.此时 E也是 CF中点(1)判断 CD与 FB的地点关系并说明原因(2) 若 BC= BF,试说明: BE⊥ CF.D CEF BAB卷(共 50分)一、填空题(本大题共5个小题,每题4分,共 20分)21.假如 (x + 1)(x 2- 5ax+ a) 的乘积中不含 x2项,则 a为22.如图,已知∠1=∠ 2, AC=AD,增添以下条件:①AB=AE;② BC= ED;③∠ C=∠ D;④∠ B=∠ E,此中能使△ ABC≌△ AED的条件有:(只要填序号)23.如图,∠ A+∠ ABC+∠ C+∠D+∠ E+∠F= __DA BEC F第22 题图第23题图24.如图 a是长方形纸带,∠ DEF= 25°,将纸带沿 EF折叠成图 b,再沿 BF折叠成图 c,则图 c 中的∠ CFE的度数是 _______.n n25. 在数学中,了便,k =1+2+3+⋯+(n-1)+n,(x k ) =( x+1)+(x+2)k1k1103+⋯+ (x+n).若( x k )+ 3x2 =[ (x-k)(x-k-1)].xk 1k1二、解答(本大共3个小,共 30 分)26.(本小分 8分).已知 : x y 3, x 2y 23xy 4 ,求: x 3 y xy 3的27.(本小分 10分)操作:如,把等腰三角形沿角均分折并睁开,被折痕分红的两个三角形成称.所以△ABD≌△ ACD,所以∠ B=∠C.:假如一个三角形有两条相等,那么两条所的角也相等.依据上述内容,回答以下:思虑:如( 4),在△ ABC中, AB=AC.明∠ B=∠C的原因.AA A ABC B C BD CCB图( 1)图( 2)图(3)图 (4)研究用:如( 5),CB⊥AB,垂足 A,DA⊥AB,垂足 B.E AB的中点, AB=BC,CE⊥BD.(1) BE 与 AD能否相等?什么?(2)小明 AC是段 DE的垂直均分,你?你的原因。
凉山州会理2018-2019学度初一下年末数学试卷含解析解析.doc
凉山州会理2018-2019学度初一下年末数学试卷含解析解析【一】选择题:本大题共8小题,每题3分,共24分1、﹣2旳相反数是〔〕A、2B、﹣2C、D、﹣2、在实数,﹣,0.1,0,2π,中,无理数旳个数是〔〕A、0个B、1个C、2个D、3个3、南涧无量樱花谷旳樱花在12月中旬左右盛开,花朵绚丽迷人,吸引了众多海内外游客,去年到樱花谷参观旳游客约为150000人,将那个数据用科学记数法表示为〔〕A、1.5×103B、1.5×104C、0.15×105D、1.5×1054、以下各式运算正确旳选项是〔〕A、2a+3b=5abB、﹣2x2﹣x2=﹣3x4C、﹣1.5﹣2=﹣4D、﹣32=〔﹣3〕25、不等式2x﹣3>1旳解集是〔〕A、x<1B、x>﹣1C、x<2D、x>26、如图,能推断AB∥CE旳条件是〔〕A、∠A=∠ACEB、∠A=∠ECDC、∠B=∠BCAD、∠B=∠ACE7、以下图形中,属于正方体平面展开图旳是〔〕A、B、C、D、8、以下说法中,不正确旳选项是〔〕A、1旳立方根是1B、负数没有立方根C、9旳算术平方根是3D、旳平方根是±2【二】填空题:本大题共6小题,每题3分,共18分9、单项式旳系数是﹏﹏﹏﹏﹏﹏,它是﹏﹏﹏﹏﹏﹏次单项式、10、假设式子3x﹣2与旳值相等,那么x旳值为﹏﹏﹏﹏﹏﹏、11、如下图,直线AB,CD被直线EF所截,假设∠1=∠2,那么∠AEF+∠CFE=﹏﹏﹏﹏﹏﹏度、12、假设〔m﹣1〕2+=0,那么〔m+n〕2018旳值是﹏﹏﹏﹏﹏﹏、13、过点P〔2,﹣3〕且垂直于y轴旳直线交y轴于点Q,那么Q点旳坐标为﹏﹏﹏﹏﹏﹏、14、用同样大小旳笑脸按如下图旳方式摆图形,按照如此旳规律摆下去,那么第n个图形需要笑脸﹏﹏﹏﹏﹏﹏张、〔用含n旳代数式表示〕【三】解答题:本大题共9小题,共58分15、计算:|﹣1|﹣22×〔﹣〕+、16、先化简,再求值:2〔ab﹣b2〕﹣〔ab﹣a2〕+3〔b2﹣a2〕,其中a=﹣1,b=、17、解方程组:、18、解不等式组:、19、如图,∠ABC=50°,∠ACB=60°,∠ABC、∠ACB旳角平分线BO、CO交于O点,过O点作DE∥BC,求出∠BOC旳大小、20、如图,∠B=∠C,∠B+∠D=180°,那么BC平行DE吗?什么缘故?21、如图每个小方格差不多上边长为1个单位旳正方形,△ABC在平面直角坐标系旳位置如下图,先将△ABC向左平移4个单位,再向上平移2个单位,得到△A1B1 C1〔1〕画出△ABC平移后旳△A1B1C1;〔3〕写出A1、B1、C1旳坐标、22、某中学为了了解该校学生周末活动情况,学校决定围绕“看电视、玩手机、看书以及其他活动中,你最喜爱旳活动种类是什么、”〔只选一类〕旳问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后,绘制成两幅不完整旳统计图,请你依照图中提供旳信息,解答以下问题:〔1〕该校一共抽取了多少名学生进行问卷调查?〔2〕补全条形统计图、〔3〕在扇形统计图中,“其他”所在扇形圆心角旳度数为﹏﹏﹏﹏﹏﹏度;〔4〕假设全校有920名学生,请你可能该校周末喜爱“看书”类旳学生人数约为多少人?23、小华旳家乡正在进行新农村建设,他爸爸在南涧水泥厂购买了100吨水泥,经与水泥厂老总协商,打算租用该厂A、B两种型号旳汽车共6辆,用这6辆汽车一次将水泥全部运走,其中每辆A型汽车最多能装该种水泥16吨,每辆B型汽车最多能装该种水泥18吨,租用1辆A型汽车和2辆B型汽车共需要费用2500元,租用2辆A型汽车和1辆B型汽车共需要费用2450元,且同一种型号汽车每辆租车费用相同、〔1〕求租用一辆A型汽车、一辆B型汽车旳费用分别为多少元?〔2〕小华旳爸爸打算此次租车费用不超过5000元,通过计算求出小华旳爸爸有哪几种租车方案?参考【答案】与试题【解析】【一】选择题:本大题共8小题,每题3分,共24分1、﹣2旳相反数是〔〕A、2B、﹣2C、D、﹣【考点】相反数、【分析】依照相反数旳意义,只有符号不同旳数为相反数、【解答】解:依照相反数旳定义,﹣2旳相反数是2、应选:A、【点评】此题考查了相反数旳意义、注意掌握只有符号不同旳数为相反数,0旳相反数是0、2、在实数,﹣,0.1,0,2π,中,无理数旳个数是〔〕A、0个B、1个C、2个D、3个【考点】无理数、【分析】无依照无理数旳定义进行解答即可、理数确实是无限不循环小数、【解答】解:在实数,﹣,0.1,0,2π,中,无理数有﹣,2π,共有2个;应选C、【点评】此题要紧考查了无理数旳定义,注意带根号旳要开不尽方才是无理数,无限不循环小数为无理数、3、南涧无量樱花谷旳樱花在12月中旬左右盛开,花朵绚丽迷人,吸引了众多海内外游客,去年到樱花谷参观旳游客约为150000人,将那个数据用科学记数法表示为〔〕A、1.5×103B、1.5×104C、0.15×105D、1.5×105【考点】科学记数法—表示较大旳数、【分析】用科学记数法表示较大旳数时,一般形式为a×10﹣n,其中1≤|a|<10,n为整数,据此推断即可、【解答】解:150000=1.5×105、应选:D、【点评】此题要紧考查了用科学记数法表示较大旳数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n旳值是解题旳关键、4、以下各式运算正确旳选项是〔〕A、2a+3b=5abB、﹣2x2﹣x2=﹣3x4C、﹣1.5﹣2=﹣4D、﹣32=〔﹣3〕2【考点】合并同类项;有理数旳乘方、【分析】A、原式不能合并,错误;B、原式合并得到结果,即可作出推断;C、原式计算得到结果,即可作出推断;D、原式利用乘方旳意义计算得到结果,即可作出推断、【解答】解:A、原式不能合并,错误;B、原式=﹣3x2,错误;C、原式=﹣4,正确;D、﹣32=﹣9,〔﹣3〕2=9,错误,应选C【点评】此题考查了合并同类项,以及有理数旳乘方,熟练掌握运算法那么是解此题旳关键、5、不等式2x﹣3>1旳解集是〔〕A、x<1B、x>﹣1C、x<2D、x>2【考点】解一元一次不等式、【分析】依照一元一次不等式旳解法解答、【解答】解:移项,得2x>1+3,合并同类项,得2x>4,系数化为1,得x>2、应选D、【点评】此题考查了解一元一次不等式,理解不等式旳性质是解题旳关键、6、如图,能推断AB∥CE旳条件是〔〕A、∠A=∠ACEB、∠A=∠ECDC、∠B=∠BCAD、∠B=∠ACE【考点】平行线旳判定、【分析】依照平行线旳判定方法:内错角相等两直线平行,即可推断AB∥CE、【解答】解:∵∠A=∠ACE,∴AB∥CE、应选A、【点评】此题考查了平行线旳判定,平行线旳判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线旳判定是解此题旳关键、7、以下图形中,属于正方体平面展开图旳是〔〕A、B、C、D、【考点】几何体旳展开图、【分析】正方体旳平面展开图有:“一四一”形、“一三二”形、“三个二成阶梯”形、“三个【二】日相连”形;异层必有“日”,“凹、田”不能有、故用排除法选D【解答】解:因为,选项A、B、C折叠起来均有重叠旳面,因此,选D【点评】此题考查了正方体旳平面展开图,解题旳关键是要理解立体图形与其平面展开图之间旳关系以及空间想象能力、8、以下说法中,不正确旳选项是〔〕A、1旳立方根是1B、负数没有立方根C、9旳算术平方根是3D、旳平方根是±2【考点】立方根;平方根;算术平方根、【分析】依照立方根旳定义,即可解答、【解答】解:A、1旳立方根是1,正确;B、负数有立方根,故错误;C、9旳算术平方根是3,正确;D、=4,4旳平方根是±2,正确;应选:B、【点评】此题考查了立方根,解决此题旳关键是熟记立方根旳定义、【二】填空题:本大题共6小题,每题3分,共18分9、单项式旳系数是﹣,它是四次单项式、【考点】单项式、【分析】依照单项式旳系数、次数旳概念求解、【解答】解:单项式旳系数是﹣,它是四次单项式、故【答案】为:﹣,四、【点评】此题考查了多项式旳系数、次数旳概念、单项式旳系数是指单项式中旳数字因数,次数为单项式中字母旳指数和、10、假设式子3x﹣2与旳值相等,那么x旳值为1、【考点】解一元一次方程、【分析】先依照题意列出关于x旳方程,再去分母,去括号,移项,合并同类项,把x旳系数化为1即可、【解答】解:由题意得,3x﹣2=,去分母得,2〔3x﹣2〕=x+1,去括号得,6x﹣4=x+1,移项得,6x﹣x=1+4,合并同类项得,5x=5,x旳系数化为1得,x=1、故【答案】为:1、【点评】此题考查旳是解一元一次方程,熟知解一元一次方程旳差不多步骤是解答此题旳关键、11、如下图,直线AB,CD被直线EF所截,假设∠1=∠2,那么∠AEF+∠CFE=180度、【考点】平行线旳判定与性质、【分析】由∠1=∠2能够得到AB∥CD,由此能够推出∠AEF+∠CFE=180°、【解答】解:∵直线AB,CD被直线EF所截,∠1=∠2,∴AB∥CD,∴∠AEF+∠CFE=180°、故填空【答案】:180、【点评】此题应用旳知识点为:同位角相等,两直线平行;两直线平行,同旁内角互补、12、假设〔m﹣1〕2+=0,那么〔m+n〕2018旳值是﹣1、【考点】非负数旳性质:算术平方根;非负数旳性质:偶次方、【分析】依照几个非负数旳和等于0,那么每个数等于0,据此求得m和n旳值,进而求得代数式旳值、【解答】解:依照题意得:,解得:,那么原式=〔1﹣2〕2018=﹣1、故【答案】是:﹣1、【点评】此题考查了非负数旳性质,初中范围内旳非负数有:算术平方根,偶次幂以及绝对值三个、13、过点P〔2,﹣3〕且垂直于y轴旳直线交y轴于点Q,那么Q点旳坐标为〔0,﹣3〕、【考点】点旳坐标、【分析】依照P〔2,﹣3〕,PQ⊥y轴,得出点Q旳纵坐标,再依照点Q在y轴上,得出点Q旳横坐标即可、【解答】解:∵P〔2,﹣3〕,PQ⊥y轴,∴点Q旳纵坐标为﹣3,又∵点Q在y轴上,∴点Q旳横坐标为0,∴Q点旳坐标为〔0,﹣3〕、故【答案】为:〔0,﹣3〕、【点评】此题要紧考查了点旳坐标,解题时注意:与y轴垂直旳直线上旳点旳纵坐标相同,与x轴垂直旳直线上旳点旳横坐标相同、14、用同样大小旳笑脸按如下图旳方式摆图形,按照如此旳规律摆下去,那么第n个图形需要笑脸3n+1张、〔用含n旳代数式表示〕【考点】规律型:图形旳变化类、【分析】解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加〔或倍数〕情况旳变化,找出数量上旳变化规律,从而推出一般性旳结论、【解答】解:第1个图形需要笑脸4张;第2个图形需要笑脸4+3=7张;第3个图形需要笑脸4+3+3=10张;…第n个图形需要笑脸4+3〔n﹣1〕=〔3n+1〕张、故【答案】为:3n+1、【点评】此题考查了图形旳变化类,要紧培养学生旳观看能力和空间想象能力、【三】解答题:本大题共9小题,共58分15、计算:|﹣1|﹣22×〔﹣〕+、【考点】实数旳运算、【分析】依照实数旳运算,即可解答、【解答】解:原式=﹣1﹣4×+2=﹣1﹣1+2=、【点评】此题考查了实数旳运算,解决此题旳关键是熟记实数旳运算、16、先化简,再求值:2〔ab﹣b2〕﹣〔ab﹣a2〕+3〔b2﹣a2〕,其中a=﹣1,b=、【考点】整式旳加减—化简求值、【分析】先进行整式旳加减,再代入求值、【解答】解:2〔ab﹣b2〕﹣〔ab﹣a2〕+3〔b2﹣a2〕,=ab﹣b2﹣ab++3b2﹣=2b2﹣a2,当a=﹣1,b=时,原式=﹣〔﹣1〕2=2×﹣1=﹣1=﹣、【点评】此题考查了整式旳加减,解决此题旳关键是先把多项式化简、17、解方程组:、【考点】解二元一次方程组、【分析】方程组利用加减消元法求出解即可、【解答】解:,①+②×3得:10x=20,即x=2,把x=2代入②得:y=2,那么方程组旳解为、【点评】此题考查了解二元一次方程组,利用了消元旳思想,消元旳方法有:代入消元法与加减消元法、18、解不等式组:、【考点】解一元一次不等式组、【分析】分别求出各不等式旳解集,再求出其公共解集即可、【解答】解:,由①得,x<2,由②得,x≥﹣1,故不等式组旳解集为:﹣1≤x<2、【点评】此题考查旳是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”旳法那么是解答此题旳关键、19、如图,∠ABC=50°,∠ACB=60°,∠ABC、∠ACB旳角平分线BO、CO交于O点,过O点作DE∥BC,求出∠BOC旳大小、【考点】平行线旳性质、【分析】依照角平分线旳定义求出∠OBC、∠OCB,再依照三角形旳内角和定理列式计算即可得解、【解答】解:∵∠ABC、∠ACB旳平分线交于点O,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×60°=30°,在△OBC中,∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣25°﹣30°=125°、【点评】此题考查了三角形旳内角和定理,角平分线旳定义,是基础题,熟记概念并准确识图是解题旳关键、20、如图,∠B=∠C,∠B+∠D=180°,那么BC平行DE吗?什么缘故?【考点】平行线旳判定、【分析】依照∠B=∠C,得两直线AB∥CD;又由条件∠B+∠D=180°及等量代换证明同旁内角∠C+∠D=180°,因此两直线BC∥DE、【解答】证明:BC与DE能平行、理由:∵∠B=∠C,∴AB∥CD,又∵∠B+∠D=180°〔〕,∴∠C+∠D=180°〔等量代换〕,∴BC∥DE〔同旁内角互补,两直线平行〕、【点评】此题考查了平行线旳判定与性质、解答此题旳关键是找出∠C与∠D旳关系、21、如图每个小方格差不多上边长为1个单位旳正方形,△ABC在平面直角坐标系旳位置如下图,先将△ABC向左平移4个单位,再向上平移2个单位,得到△A1B1 C1〔1〕画出△ABC平移后旳△A1B1C1;〔3〕写出A1、B1、C1旳坐标、【考点】作图-平移变换、【分析】利用点平移旳坐标规律,写出点A1、B1、C1旳坐标,然后描点即可得到△A1B1C1、【解答】解:〔1〕如图,△A1B1C1为所作;〔2〕A 1、B 1、C 1旳坐标分别为〔2,2〕,〔﹣3,0〕,〔0,0〕、【点评】此题考查了平移变换:确定平移后图形旳差不多要素有两个:平移方向、平移距离、作图时要先找到图形旳关键点,分别把这几个关键点按照平移旳方向和距离确定对应点后,再顺次连接对应点即可得到平移后旳图形、22、某中学为了了解该校学生周末活动情况,学校决定围绕“看电视、玩手机、看书以及其他活动中,你最喜爱旳活动种类是什么、”〔只选一类〕旳问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查问卷适当整理后,绘制成两幅不完整旳统计图,请你依照图中提供旳信息,解答以下问题:〔1〕该校一共抽取了多少名学生进行问卷调查?〔2〕补全条形统计图、〔3〕在扇形统计图中,“其他”所在扇形圆心角旳度数为36度;〔4〕假设全校有920名学生,请你可能该校周末喜爱“看书”类旳学生人数约为多少人?【考点】条形统计图;用样本可能总体;扇形统计图、【分析】〔1〕依照统计图能够求得该校一共抽取了多少名学生进行问卷调查;〔2〕依照统计图能够求得看书旳学生数,从而能够将条形统计图补充完整;〔3〕依照其他占所抽取旳学生旳百分比能够求得在扇形统计图中,“其他”所在扇形圆心角旳度数;〔4〕依照统计图中旳数据能够求得可能该校周末喜爱“看书”类旳学生人数、【解答】解:〔1〕由题意可得,本次抽取旳学生有:80÷40%=200〔名〕,即该校一共抽取了200名学生进行问卷调查;〔2〕看书旳学生有:200﹣80﹣60﹣20=40〔名〕,故补全旳条形统计图如右图所示,〔3〕由题意可得,在扇形统计图中,“其他”所在扇形圆心角旳度数为:360°×=36°,故【答案】为:36;〔4〕920×=184〔人〕,即该校周末喜爱“看书”类旳学生人数约为184人、【点评】此题考查条形统计图、扇形统计图、用样本可能总体,解题旳关键是明确题意,找出所求问题需要旳条件,利用数形结合旳思想解答问题、23、小华旳家乡正在进行新农村建设,他爸爸在南涧水泥厂购买了100吨水泥,经与水泥厂老总协商,打算租用该厂A、B两种型号旳汽车共6辆,用这6辆汽车一次将水泥全部运走,其中每辆A型汽车最多能装该种水泥16吨,每辆B型汽车最多能装该种水泥18吨,租用1辆A型汽车和2辆B型汽车共需要费用2500元,租用2辆A型汽车和1辆B型汽车共需要费用2450元,且同一种型号汽车每辆租车费用相同、〔1〕求租用一辆A型汽车、一辆B型汽车旳费用分别为多少元?〔2〕小华旳爸爸打算此次租车费用不超过5000元,通过计算求出小华旳爸爸有哪几种租车方案?【考点】一元一次不等式旳应用;二元一次方程组旳应用、【分析】〔1〕找出等量关系列出方程组再求解即可、此题旳等量关系为“1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”、〔2〕得等量关系是“将本公司100吨物资运往某地销售,经与春晨运输公司协商,打算租用甲、乙两种型号旳汽车共6辆,用这6辆汽车一次将物资全部运走,其中每辆甲型汽车最多能装该种物资16吨同一种型号汽车每辆且同一种型号汽车每辆租车费用相同”、【解答】解:解:〔1〕设租用一辆甲型汽车旳费用是x元,租用一辆乙型汽车旳费用是y 元、由题意得,;解得:,答:租用一辆甲型汽车旳费用是800元,租用一辆乙型汽车旳费用是850元、〔2〕设租用甲型汽车z辆,租用乙型汽车〔6﹣z〕辆、由题意得,解得2≤z≤4,由题意知,z为整数,∴z=2或z=3或z=4,∴共有3种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲型汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆、方案一旳费用是800×2+850×4=5000〔元〕;方案二旳费用是800×3+850×3=4950〔元〕;方案三旳费用是800×4+850×2=4900〔元〕;∵5000>4950>4900;∴最低运费是方案三旳费用:4900元;答:共有三种方案,分别是:方案一:租用甲型汽车2辆,租用乙型汽车4辆;方案二:租用甲汽车3辆,租用乙型汽车3辆;方案三:租用甲型汽车4辆,租用乙型汽车2辆、最低运费是4900元、【点评】此题考查不等式组旳应用,二元一次方程组旳应用,解题关键是要读懂题目旳意思,找出〔1〕合适旳等量关系:1辆甲型汽车和2辆乙型汽车共需费用2500元”和“租用2辆甲型汽车和1辆乙型汽车共需费用2450元”、〔2〕依照租车费用不超过5000元列出方程组,再求解、。
2018-2019(下)期末七年级数学考试试卷(含参考答案)
2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。
2018-2019学年度七年级下期末数学试卷及答案
12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。
四川省凉山彝族自治州七年级下学期期末考试数学试卷
四川省凉山彝族自治州七年级下学期期末考试数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,直线AB,CD相交于O,OE平分∠AOC,∠EOC=40°,则∠BOD=()A . 40°B . 80°C . 50°D . 100°2. (2分) (2020七下·新乡期中) 如图,∠3的同位角是()A . ∠1B . ∠2C . ∠BD . ∠C3. (2分) (2019七下·新吴期中) 如图,AB//CD,直线l 分别交 AB,CD 于 E,F,∠1=56°,则∠2 的度数是()A . 56°B . 146°C . 134°D . 124°4. (2分) (2019七下·吉林期中) 交换下列命题的题设和结论,得到的新命题是假命题的是()A . 两直线平行,内错角相等;B . 相等的角是对顶角;C . 所有的直角都是相等的;D . 若a=b,则a-1=b-1.5. (2分) (2018七下·浦东期中) 下列语句正确是()A . 无限小数是无理数B . 无理数是无限小数C . 实数分为正实数和负实数D . 两个无理数的和还是无理数6. (2分)下列说法错误的是()A . (﹣4)2的平方根是4B . ﹣1的立方根是﹣1C . 是2的平方根D . 5是25的算术平方根7. (2分) (2018八上·佳木斯期中) 如图,在平面直角坐标系上有个点A(-1,0),点A第1次向上跳动一个单位至点A1(-1,1),紧接着第2次向右跳动2个单位至点A2(1,1),第3次向上跳动1个单位,第4次向左跳动3个单位,第5次又向上跳动1个单位,第6次向右跳动4个单位,…,依次规律跳动下去,点A第2017次跳动至点A2017的坐标是()A .B .C .D .8. (2分)如图所示的正六边形ABCDEF中,可以由△AOB经过平移得到的三角形有()A . 5个B . 4个C . 3个D . 2个9. (2分)(2017·浙江模拟) 二元一次方程组的解为()A .B .C .D .10. (2分)不等式组的整数解的个数是()A . 1个B . 2个C . 3个D . 4个二、填空题 (共5题;共6分)11. (2分) (2017八下·东城期中) 观察下列表格:请你结合该表格及相关知识,求出,的值.即_________, ________.列举猜想、、、、、、、、12. (1分)(2016·邵阳) 不等式组的解集是________.13. (1分)在九年级体育中考中,某班参加仰卧起坐测试的一组女生:46,44,45,42,48,46,47,45.则这组数据的极差为________.14. (1分) (2017八下·吴中期中) 时代中学举行了一次科普知识竞赛.满分100分,学生得分的最低分31分.如图是根据学生竞赛成绩绘制的频数分布直方图的一部分.参加这次知识竞赛的学生共有40人,则得分在60~70分的频率为________.15. (1分)观察下列各式:=2,,…,用含自然数n(n≥1)的等式表示上述规律:________三、解答题 (共7题;共45分)16. (5分) (2018八上·下城期末) 解不等式组并把解在数轴上表示出来.17. (5分)若x、y为实数,且|x+2|+ =0,则求(x+y)2016的值.18. (5分)解不等式组,并把解集在数轴上表示出来.19. (10分) (2017七下·南京期末) 解方程组:(1)(2)20. (5分)根据题意列方程组(只列方程组,不需解出)一个两位数,个位上的数字比十位上的数字大5,如果将它们的位置交换,所得的新数比原来的两位数大45,求原来的两位数是多少?21. (5分)求不等式组的正整数解.22. (10分) (2017七下·寿光期中) 假如某市的出租车是这样收费的:起步价所包含的路程为0~1.5千米,超过1.5千米的部分按每千米另收费.小刘说:“我乘出租车从市政府到娄底汽车站走了4.5千米,付车费10.5元.”小李说:“我乘出租车从市政府到娄底汽车站走了6.5千米,付车费14.5元.”问:(1)出租车的起步价是多少元?超过1.5千米后每千米收费多少元?(2)小张乘坐出租车从汽车站到市政府走了10千米,应付车费多少元?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共5题;共6分)11-1、12-1、13-1、14-1、15-1、三、解答题 (共7题;共45分)16-1、17-1、18-1、19-1、19-2、20-1、21-1、22-1、22-2、。
2018-2019学年七年级下期末考试数学试卷(含答案)
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
2018—2019学年度第二学期期末七年级数学试卷
2018—2019学年度第二学期期末教学质量检测试卷七年级 数学(总分:100分 作答时间:100分钟)一、单项选择题.(本大题共10小题,每小题3分,共30分) 1.1的算术平方根是( ) A .0B .1C . 1D .±12.下列是二元一次方程的是( )A .x +8y =0B .2x 2=y C .y +=2 D .3x =10 3.下列各式中,正确的是( ) A .=±4 B .C .D .4.如图,不能推出a ∥b 的条件是( )A .∠1=∠3B .∠2=∠4C .∠2=∠3D .∠2+∠3=180° 5.以下问题,适合用全面调查的是( )A .调查某一电视节目的收视率B .调查一批冷饮的质量是否合格C .调查你们班同学是否喜欢科普类书籍D .调查我国中学生的节水意识 6.如图,要把小河里的水引到田地A 处,则作AB ⊥l ,垂足为点B ,沿AB 挖水沟,水沟最短,理由是( )A .两点之间线段最短B .两点确定一条直线C .垂线段最短D .过一点可以作无数条直线 7.下列不等式变形中,错误的是( ) A .若 a<b ,则 a +c<b +c B .若 a +c<b +c ,则 a<b C .若 a<b ,则 ac 2<bc 2D .若 ac 2<bc 2,则 a<b8.不等式3x ﹣1>5的解集在数轴上表示正确的是( ) A . B . C .D .9.在平面直角坐标中,点M (﹣2,3)到y 轴的距离为( ) A .3B .2C .﹣3D .﹣210.如图,把图中以点A 为圆心的圆经过平移得到以点O 为圆心的圆,如果左图中圆A 上一点P 的坐标为(m ,n ),那么平移后在右图中的对应点P ′的坐标为( ) A .(m +2,n +1) B .(m ﹣2,n ﹣1) C .(m ﹣2,n +1) D .(m +2,n ﹣1)二、填空题(每小题3分,共24分)11.如图,△ABC 平移得到△A ′B ′C ′,已知∠B =45°, ∠C ′=70°,∠A = . 12.若,则a +b = .13.已知点M 在第四象限,其坐标是(x ,y ),且x +y =0.试写出2个满足这些条件的点: . 14.若a <<b ,且a 、b 是两个连续的整数,则a b= .15.将某班女生的身高分成三组,情况如表所示,则表中a 的值是 .16.《九章算术》第八卷方程第十问题:“今有甲、乙二人持钱不知其数.甲得乙半而钱五十,果甲得到乙所有钱的一半,那么甲共有钱50文.如果乙得到甲所有钱的三分之二,那么乙也共有钱50文.甲、乙各带了多少钱?设甲原有x 文钱,乙原有y 文钱,可列方程组为.17.若关于x 的一元一次不等式组有解,则a 的取值范围是 .18.如图,将一块含45°的直角三角板的直角顶点放在直尺的一边上,当∠1=35°时,则∠2的度数是 .三、解答题(本题共7小题,共46分;解答时应写出必要的解题过程或演算步骤)19.(本题满分6分)(1)计算+﹣.(2)解方程组.20.(本题满分6分)解不等式组并写出它的整数解.21.(本题满分6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D,那么AC与DF平行吗?说明你的理由.22.(本题满分6分)已知点A(﹣3,0),点C(0,3)且点B的坐标为(﹣1,4),计算△ABC的面积.23.(本题满分7分)某村为了尽早摆脱贫穷落后的现状,积极响应国家号召,15位村民集资8万元,承包了一些土地种植有机蔬菜和水果,种这两种作物每公顷需要人数和投入资金如表:在现有条件下,这15位村民全部参与种植,问:应承包多少公顷土地使资金正好够用?24.(本题满分7分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A.非常了解”、“B.了解“,“C.了解一些”三个等级,并根据调查结果绘制了如下两幅不完整的统计图:(1)这次调查的市民人数为人,m=,n=.(2)请根据以上信息直接在答题卡中补全条形统计图;(3)若该市共有20万人,请估算该市对“社会主义核心价值观”知晓程度为“A.非常了解”的有多少万人。
2018-2019年度第二学期期末考试七年级数学试卷及答案
2018—2019学年度第二学期末试卷七年级 数学考试注意:本试卷满分150分,答题时间120分钟。
一、选择题:本大题共10小题,每小题3分,共30分.每小题给出的四个选项中,只有一项是符合题目要求的,将此选项的代号填入题后的括号内. 1. 如图,直线AB 与直线CD 相交于点O ,E 是∠AOD 内一点, 已知OE ⊥AB ,∠BOD = 45°,则∠COE 的度数是( ) A. 125° B. 135°C. 145°D. 155° 2.如图,下列条件中不能..判定AB ∥CD 的是( ) A .∠3=∠4 B .∠1=∠5C .∠1+∠4=180°D .∠3=∠ 5 3.观察下面图案,能通过该图案平移得到的是( )A B C D4.在数-3.14, 2, 0, π, 16, 0.1010010001……中无理数的个数有 ( ) A.3个 B.2个 C.1个 D.4个5.下列各式中,正确的是( )A.16=±4B.-16=4C. 327-=-3D.2(4)-=-4 6.在平面直角坐标系中,点P (2,3)在( )A .第一象限B .第二象限C .第三象限D .第四象限 7. 一个不等式组中的两个不等式的解集如图所示, 则这个不等式组的解集为( ) A .x >-1 B .x <1C .-1≤x <1D .-1<x ≤1 8.方程53=+y kx 有一个解是⎩⎨⎧==12y x ,则k 的值是 ( )A .1B .-1C .0D .29.若x >y ,则下列式子错误..的是( ) A .x-3>y-3 B .3-x >3-y C .-2x <-2y D .3x >3y10.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是( )A .某市5万名初中毕业生的中考数学成绩B .被抽取500名学生C .被抽取500名学生的数学成绩D .5万名初中毕业生二、填空题:本大题共8小题,每小题4分,共32分.把答案写在题中的横线上 11、如图已知∠C =150º ,∠A =120º 则∠P =_________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四川省凉山州会理县2018-2019学年七年级(下)期末数学试卷一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.4的平方根是()A.±2 B.2 C.﹣2 D.±2.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.>C.3a+1>3b+1 D.﹣2a>﹣2b3.下列各数:3.414,﹣,,π,4.,0.1010010001…,其中无理数有()A.1个B.2个C.3个D.4个4.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)5.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15°B.25°C.30°D.35°6.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图7.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直8.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6二、填空题(本题有6个小题,每小题3分,共计18分)9.点A的坐标(﹣3,4),它到y轴的距离为.10.式子的值是负数,则x的取值范围是.11.已知a,b为两个连续整数,且a<<b,则a+b= .12.如图,点O是直线AB上一点,OC⊥OD,∠AOC:∠BOD=5:1,那么∠AOC的度数是.13.对于有理数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣4)的值是.14.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是.三、解答题(本题有5个小题,每小题5分,共计25分)15.计算:﹣+.16.解方程组.17.解不等式﹣≥,并把解集在数轴上表示出来.18.如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.在下面的括号中填上推理依据.证明:∵∠3=∠4(已知)∴CF∥BD∴∠5+∠CAB=180°∵∠5=∠6(已知)∴∠6+∠CAB=180°(等式的性质)∴AB∥CD∴∠2=∠EGA∵∠1=∠2(已知)∴∠1=∠EGA(等量代换)∴ED∥FB .19.如图,∠BAF=40°,∠ACE=130°,CE⊥CD.问CD∥AB吗?为什么?四、解答题(本题有3个小题,每小题6分,共计18分)20.一种口服液有大、小两种包装.3大盒,4小盒共108瓶,2大盒,3小盒共装76瓶,大盒与小盒各装多少瓶?21.已知:如图把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A'B'C'.(1)画出图中△A'B'C';(2)连接A'、A、C'、C,求四边形A'AC'C的面积.22.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分为A、B、C、D四个等级),根据调查的数据绘制成如图的条形统计图和扇形统计图.请根据以下不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= ;(2)补全条形统计图;(3)若该校九年级共有300名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)共多少人?五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB =S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP +S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.四川省凉山州会理县2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本题有8个小题,每小题3分,满分24分,每小题只有一个选项符合题意)1.4的平方根是()A.±2 B.2 C.﹣2 D.±【考点】平方根.【分析】依据平方根的定义即可得出答案.【解答】解:∵(±2)2=4,∴4的平方根是±2.故选:A.2.已知a<b,下列不等式变形中正确的是()A.a﹣2>b﹣2 B.>C.3a+1>3b+1 D.﹣2a>﹣2b【考点】不等式的性质.【分析】根据不等式的性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变进行分析即可.【解答】解:A、若a<b,则a﹣2<b﹣2,故此选项错误;B、若a<b,则<,故此选项错误;C、若a<b,则3a+1<3b+1,故此选项错误;D、若a<b,则﹣2a>﹣2b,故此选项正确;故选:D.3.下列各数:3.414,﹣,,π,4.,0.1010010001…,其中无理数有()A.1个B.2个C.3个D.4个【考点】无理数.【分析】根据无理数的三种形式解答即可.【解答】解:∵=2,∴无理数有,π,0.1010010001…,共三个,故选C4.如果点P(a﹣4,a)在y轴上,则点P的坐标是()A.(4,0)B.(0,4)C.(﹣4,0)D.(0,﹣4)【考点】点的坐标.【分析】根据y轴上点横坐标等于零,可得答案.【解答】解:由点P(a﹣4,a)在y轴上,得a﹣4=0,解得a=4,P的坐标为(0,4),故选:B.5.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是()A.15°B.25°C.30°D.35°【考点】平行线的性质.【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【解答】解:如图所示:由题意可得:∠1=∠3=15°,则∠2=45°﹣∠3=30°.故选:C.6.要反映自贡市一周内每天的最高气温的变化情况,宜采用()A.条形统计图 B.折线统计图C.扇形统计图 D.频数分布直方图【考点】统计图的选择;折线统计图.【分析】扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.根据扇形统计图、折线统计图、条形统计图各自的特点来判断即可.【解答】解:∵折线统计图表示的是事物的变化情况,∴要反映自贡市一周内每天的最高气温的变化情况,宜采用折线统计图.故选(B)7.下列命题中,是真命题的是()A.同位角相等B.邻补角一定互补C.相等的角是对顶角D.有且只有一条直线与已知直线垂直【考点】命题与定理.【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【解答】解:A、两直线平行,同位角相等,故此选项错误;B、根据邻补角的定义,故此选项正确;C、相等的角不一定是对顶角,故此选项错误;D、过直线外一点,有且只有一条直线与已知直线垂直,故此选项错误.故选:B.8.若不等式组的整数解共有三个,则a的取值范围是()A.5<a<6 B.5<a≤6 C.5≤a<6 D.5≤a≤6【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a 的范围.【解答】解:解不等式组得:2<x≤a,∵不等式组的整数解共有3个,∴这3个是3,4,5,因而5≤a<6.故选C.二、填空题(本题有6个小题,每小题3分,共计18分)9.点A的坐标(﹣3,4),它到y轴的距离为 3 .【考点】点的坐标.【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:点A的坐标(﹣3,4),它到y轴的距离为|﹣3|=3,故答案为:3.10.式子的值是负数,则x的取值范围是x>.【考点】解一元一次不等式.【分析】的值是负数,则必有3x﹣2>0,解得x的取值范围.【解答】解:∵的值为负数,而﹣5<0,∴3x﹣2>0,∴x>.故答案为x>.11.已知a,b为两个连续整数,且a<<b,则a+b= 7 .【考点】估算无理数的大小.【分析】根据被开方数越大对应的算术平方根越大求得a、b的值,然后利用加法法则计算即可.【解答】解:∵9<11<16,∴3<<4.∴a=3,b=4.∴a+b=3+4=7.故答案为:7.12.如图,点O是直线AB上一点,OC⊥OD,∠AOC:∠BOD=5:1,那么∠AOC的度数是75°.【考点】垂线.【分析】首先根据垂线的定义可知:∠COD=90°,从而可得到∠AOC+∠BOD=90°,然后根据设∠BOD为x,则∠AOC为5x,最后列方程求解即可.【解答】解:∵OC⊥OD,∴∠COD=90°.∴∠AOC+∠BOD=90°设∠BOD为x,则∠AOC为5x.根据题意得:x+5x=90°.解得:x=15°.∴∠AOC=5x=75°.故答案为:75°.13.对于有理数x、y,定义新运算:x*y=ax+by;其中a、b是常数,等式右边是通常的加法和乘法运算,已知1*2=1,(﹣3)*3=6,则2*(﹣4)的值是﹣6 .【考点】有理数的混合运算.【分析】已知等式利用已知的新定义化简,求出a与b的值,原式再利用新定义化简后,将a与b的值代入计算即可求出值.【解答】解:根据题中的新定义化简1*2=1,(﹣3)*3=6得:,解得:,则2*(﹣4)=2×(﹣1)﹣4×1=﹣2﹣4=﹣6.故答案为:﹣614.如图,在平面直角坐标系中,已知点A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),把一根长为2015个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在A处,并按A→B→C→D→A…的规律紧绕在四边形ABCD的边上,则细线的另一端所在位置的点的坐标是(﹣1,﹣2).【考点】规律型:点的坐标.【分析】根据点的坐标求出四边形ABCD的周长,然后求出另一端是绕第几圈后的第几个单位长度,从而确定答案.【解答】解:∵A(1,1),B(﹣1,1),C(﹣1,﹣2),D(1,﹣2),∴AB=1﹣(﹣1)=2,BC=1﹣(﹣2)=3,CD=1﹣(﹣1)=2,DA=1﹣(﹣2)=3,∴绕四边形ABCD一周的细线长度为2+3+2+3=10,2015÷10=201…5,∴细线另一端在绕四边形第202圈的第5个单位长度的位置,即点C的位置,点的坐标为(﹣1,﹣2).故答案为:(﹣1,﹣2).三、解答题(本题有5个小题,每小题5分,共计25分)15.计算:﹣+.【考点】实数的运算.【分析】原式利用平方根、立方根性质,以及二次根式性质化简即可得到结果.【解答】解:原式=﹣2﹣1+5=2.16.解方程组.【考点】解二元一次方程组.【分析】利用加减消元法解方程组.【解答】解:,①+②得4a=12,解得a=3,把a=3代入①得3+2b=1,解得b=﹣1,所以方程组的解为.17.解不等式﹣≥,并把解集在数轴上表示出来.【考点】解一元一次不等式;在数轴上表示不等式的解集.【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1,把不等式的解集在数轴上表示出来即可.【解答】解:去分母得,3(3x+1)﹣2(2x﹣5)≥8,去括号得,9x+3﹣4x+10≥8,移项得,9x﹣4x≥8﹣10﹣3,合并同类项得,5x≥﹣5,x的系数化为1得,x≥﹣1.在数轴上表示为:.18.如图,∠1=∠2,∠3=∠4,∠5=∠6.求证:ED∥FB.在下面的括号中填上推理依据.证明:∵∠3=∠4(已知)∴CF∥BD 内错角相等,两直线平行∴∠5+∠CAB=180°两直线平行,同旁内角互补∵∠5=∠6(已知)∴∠6+∠CAB=180°(等式的性质)∴AB∥CD 同旁内角互补,两直线平行∴∠2=∠EGA 两直线平行,同位角相等∵∠1=∠2(已知)∴∠1=∠EGA(等量代换)∴ED∥FB 同位角相等,两直线平行.【考点】平行线的判定.【分析】根据平行线的判定定理的证明步骤,补充完整题中确实的推理依据即可.【解答】证明:∵∠3=∠4(已知),∴CF∥BD(内错角相等,两直线平行),∴∠5+∠CAB=180°(两直线平行,同旁内角互补).∵∠5=∠6(已知),∴∠6+∠CAB=180°(等式的性质),∴AB∥CD(同旁内角互补,两直线平行),∴∠2=∠EGA(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠1=∠EGA(等量代换),∴ED∥FB(同位角相等,两直线平行).故答案为:内错角相等,两直线平行;两直线平行,同旁内角互补;同旁内角互补,两直线平行;两直线平行,同位角相等;同位角相等,两直线平行.19.如图,∠BAF=40°,∠ACE=130°,CE⊥CD.问CD∥AB吗?为什么?【考点】平行线的判定.【分析】由CE⊥CD可得出∠DCE=90°,分解周角通过角的计算得出∠ACD=140°,再根据∠BAC+∠BAF=180°可得出∠BAC=140°,由此可得出∠BAC=∠ACD,依据“内错角相等,两直线平行”即可得出CD∥AB.【解答】解:CD∥AB,理由如下:∵CE⊥CD,∴∠DCE=90°,∵∠ACD+∠DCE+∠ACE=360°,∠ACE=130°,∴∠ACD=360°﹣130°﹣90°=140°.∵∠BAC+∠BAF=180°,∠BAF=40°,∴∠BAC=140°=∠ACD,∴CD∥AB.四、解答题(本题有3个小题,每小题6分,共计18分)20.一种口服液有大、小两种包装.3大盒,4小盒共108瓶,2大盒,3小盒共装76瓶,大盒与小盒各装多少瓶?【考点】二元一次方程组的应用.【分析】设大盒装x瓶,小盒装y瓶,根据题意可得等量关系是:3×大盒瓶数+4×小盒瓶数=108;2×大盒瓶数+3×小盒瓶数=76,依据两个等量关系可列方程组求解.【解答】解:设大盒装x瓶,小盒装y瓶,则,解得,答:大盒装20瓶,小盒装12瓶.21.已知:如图把△ABC向上平移4个单位长度,再向右平移3个单位长度,得到△A'B'C'.(1)画出图中△A'B'C';(2)连接A'、A、C'、C,求四边形A'AC'C的面积.【考点】作图﹣平移变换.【分析】(1)根据图形平移的性质画出平移后的△A′B′C′即可;(2)利用S四边形A'AC'C =S△A′CC′+S△A′CA即可得出结论.【解答】解:(1)如图所示;(2)S四边形A'AC'C =S△A′CC′+S△A′CA=×7×3+×7×3=+ =21.22.某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分为A、B、C、D四个等级),根据调查的数据绘制成如图的条形统计图和扇形统计图.请根据以下不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80 名同学的体育测试成绩,扇形统计图中B 级所占的百分比b= 40% ;(2)补全条形统计图;(3)若该校九年级共有300名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)共多少人?【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)由等级A的人数除以所占的百分比求出调查的总学生;进一步求出B占的百分比;(2)求出C级的学生数,补全条形统计图即可;(3)求出A,B,C的百分比之和,乘以300即可得到结果.【解答】解:(1)根据题意得:4÷5%=80(人),B占的百分比b=×100%=40%;故答案为:80,40%;(2)C级的人数为80﹣(20+32+4)=24(人),补全条形图,如图所示:(3)根据题意得:300×=285(人),答:估计该校九年级同学体育测试达标的人数约为285人.五、解答下列各题(本题共有2个小题,第23题7分,第24题8分,共计15分)23.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【考点】平行线的判定与性质.【分析】推出EF∥BC,根据平行线性质求出∠ACB,求出∠FCB,根据角平分线求出∠ECB,根据平行线的性质推出∠FEC=∠ECB,代入即可.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.24.如图,在平面直角坐标系中,点A,B的坐标分别为(﹣1,0),(3,0),现同时将点A,B分别向上平移2个单位,再向右平移1个单位,分别得到点A,B 的对应点C,D,连接AC,BD,CD.(1)求点C,D的坐标;(2)若在y轴上存在点 M,连接MA,MB,使S△MAB =S平行四边形ABDC,求出点M的坐标.(3)若点P在直线BD上运动,连接PC,PO.①若P在线段BD之间时(不与B,D重合),求S△CDP +S△BOP的取值范围;②若P在直线BD上运动,请直接写出∠CPO、∠DCP、∠BOP的数量关系.【考点】坐标与图形性质;三角形的面积.【分析】(1)根据点的平移规律易得点C,D的坐标;(2)先计算出S平行四边形ABOC=8,设M坐标为(0,m),根据三角形面积公式得×4×|m|=8,解得m=±4,于是可得M点的坐标为(0,4)或(0,﹣4);(3)①先计算出S梯形OCDB =7,再讨论:当点P运动到点B时,S△BOC的最小值=3,则可判断S△CDP +S△BOP<4,当点P运动到点D时,S△BOC的最大值=4,于是可判断S△CDP+S △BOP >3,所以3<S △CDP +S △BOP <4;②分类讨论:当点P 在BD 上,如图1,作PE ∥CD ,根据平行线的性质得CD ∥PE ∥AB ,则∠DCP=∠EPC ,∠BOP=∠EPO ,易得∠DCP+∠BOP=∠EPC+∠EPO=∠CPO ; 当点P 在线段BD 的延长线上时,如图2,同样有∠DCP=∠EPC ,∠BOP=∠EPO ,由于∠EPO ﹣∠EPC=∠BOP ﹣∠DCP ,于是∠BOP ﹣∠DCP=∠CPO ;同理可得当点P 在线段DB 的延长线上时,∠DCP ﹣∠BOP=∠CPO . 【解答】解:(1)由平移可知:C (0,2),D (4,2); (2)∵AB=4,CO=2, ∴S 平行四边形ABOC =AB •CO=4×2=8, 设M 坐标为(0,m ), ∴×4×|m|=8,解得m=±4∴M 点的坐标为(0,4)或(0,﹣4); (3)①S 梯形OCDB =×(3+4)×2=7,当点P 运动到点B 时,S △BOC 最小,S △BOC 的最小值=×3×2=3,S △CDP +S △BOP <4, 当点P 运动到点D 时,S △BOC 最大,S △BOC 的最大值=×4×2=4,S △CDP +S △BOP >3, 所以3<S △CDP +S △BOP <4;②当点P 在BD 上,如图1,作PE ∥CD , ∵CD ∥AB , ∴CD ∥PE ∥AB ,∴∠DCP=∠EPC ,∠BOP=∠EPO , ∴∠DCP+∠BOP=∠EPC+∠EPO=∠CPO ;当点P 在线段BD 的延长线上时,如图2,作PE ∥CD , ∵CD ∥AB , ∴CD ∥PE ∥AB ,∴∠DCP=∠EPC ,∠BOP=∠EPO , ∴∠EPO ﹣∠EPC=∠BOP ﹣∠DCP , ∴∠BOP ﹣∠DCP=∠CPO ;同理可得当点P 在线段DB 的延长线上时,∠DCP ﹣∠BOP=∠CPO .。