泛函分析知识点

合集下载

泛函分析课件

泛函分析课件

泛函分析课件泛函分析是数学中的一门重要学科,它研究的是无限维空间中的函数和算子。

在实际应用中,泛函分析广泛应用于物理学、工程学、经济学等领域。

本文将介绍泛函分析的基本概念和主要内容,以及其在实际应用中的一些例子。

一、泛函分析的基本概念泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

向量空间是泛函分析的基础,它是一组满足一定条件的向量的集合。

线性映射是指将一个向量空间映射到另一个向量空间的函数,它保持向量空间的加法和数乘运算。

内积是向量空间中的一种运算,它是一个函数,将两个向量映射到一个实数。

范数是向量空间中的一种度量,它衡量向量的大小。

二、泛函分析的主要内容泛函分析的主要内容包括线性算子、连续性、紧性、谱理论等。

线性算子是指将一个向量空间映射到另一个向量空间的线性映射,它在泛函分析中起到了重要的作用。

连续性是指在一个向量空间中,如果两个向量足够接近,它们的映射也应该足够接近。

紧性是指一个映射将有界集映射到有界集,且将紧集映射到紧集。

谱理论是研究线性算子谱性质的一门学科,它对于解析和估计线性算子的特征值和特征向量具有重要意义。

三、泛函分析在实际应用中的例子泛函分析在实际应用中有许多例子,下面将介绍其中的几个。

首先是量子力学中的波函数,它是一个复数函数,描述了量子系统的状态。

泛函分析提供了一种理论框架,可以对波函数进行分析和计算。

其次是信号处理中的傅里叶变换,它将一个信号分解成一系列正弦和余弦函数的叠加。

泛函分析提供了一种数学工具,可以对信号进行分析和处理。

再次是优化问题中的拉格朗日乘子法,它是一种求解约束优化问题的方法。

泛函分析提供了一种理论基础,可以对优化问题进行建模和求解。

最后是经济学中的效用函数,它描述了个体对不同商品或服务的偏好程度。

泛函分析提供了一种数学工具,可以对效用函数进行分析和计算。

综上所述,泛函分析是一门重要的数学学科,它研究的是无限维空间中的函数和算子。

泛函分析的基本概念包括向量空间、线性映射、内积、范数等。

泛函分析期末复习提要

泛函分析期末复习提要

泛函分析期末复习提要一、距离空间与拓扑空间(一)教学内容1. 距离空间的基本概念:定义与例子、收敛性、距离空间的连续映射与等距。

2. 距离空间中的点集:开集与闭集、稠密子集,可分距离空间。

3. 完备距离空间:Cauchy 列,完备性、闭球套定理、纲,纲定理、距离空间完备化。

4. 压缩映射原理:不动点,压缩映射原理、压缩原理的一些应用。

5.拓扑空间的基本概:拓扑空间的定义、拓扑基、拓扑空间中的连续映射,同胚、分离公理。

6.紧性和距离空间的紧性:紧性的概念、紧空间的连续映射。

7.距离空间的紧性:列紧集,全有界集、Arzela 定理。

重点 掌握距离空间的基本概念、 距离空间中的点集、 完备距离空间、 压缩映射原理、拓扑空间的基本概念、紧性和距离空间的紧性。

难点 完备距离空间、 压缩映射原理。

(二)教学基本要求1.理解距离空间、距离空间中的点集等基本概念。

2.了解完备距离空间的概念,掌握压缩映射原理的证明。

3.理解拓扑空间的基本概念及其运算性质。

二、赋范线性空间(一)教学内容1. 赋范空间的基本概念:赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例。

2. 空间)1(≥p L p:Holder 不等式与Minkowski 不等式、空间)1)((≥p E L p 、空间)(E L ∞。

3. 赋范空间进一步的性质:赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。

4. 有穷维赋范空间。

重点 赋范空间的定义、赋范空间的基本性、凸集、赋范空间的例、Holder 不等式与Minkowski 不等式、空间)1)((≥p E L p 、空间)(E L ∞、赋范空间的子空间、赋范空间的完备化、赋范空间的商空间、赋范空间的乘积、赋范线性空间的基本概念、等价范数。

难点 Holder 不等式与Minkowski 不等式、赋范空间的完备化、空间)1)((≥p E L p 、空间)(E L ∞。

泛函分析第一讲

泛函分析第一讲

线性算子和线性泛函
第二章 泛函分析
绪论
2.1 距离空间
第二章 泛函分析
一、距离空间的定义
lim
n
xn
x
0, N, 当 n 时N,有
dx, y x y
x y 0, x y 0当且仅当 x y
xy yx
xy xz zy
xn x
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
第一节 距离空间
一、距离空间的定义
例2.1.2 设 X ,d 是距离空间,对任意 x, y X ,源自定义x,y
d
1+d
x,xy, y ,则
X
,
也是距离空间.
证明 三角不等式 d(x, y) d(x, z) d(z, y),
第二章 泛函分析
第一节 距离空间
一、距离空间的定义
例2.1.3 空间l p p 1.
x0 X. 如果d (xn , x0 ) 0, n , 则称该点列 xn
收敛于 x0 , 并记为
lim
n
xn
x0

xn x0 n
定理1 距离空间 X ,d 中,收敛点列的极限是唯一的.
第二章 泛函分析
第一节 距离空间
二、距离空间中的收敛
例2.1.5 在Rn 中,点列的收敛为按坐标收敛.
♣ 泛函分析在微分方程、概率论、函数论、计算 数学、控制论、最优化理论、连续介质力学、量 子物理等以及一些工程技术学科都有重要作用.
第二章 泛函分析
绪论
二、泛函分析课程内容 1.空间 集合 + 一定的结构
距离空间 赋范线性空间 内积空间 Banach空间 Hilbert空间

泛函分析第四讲

泛函分析第四讲
T是X的线性子空间DT 到 Y中的线性算子. 如果存在M 0,使得对于任意的 x DT 都有
Tx M x ,
则称 T是 DT Y 中的有界线性算子.
当 DT X时,称 T 是 X Y 中的有界线性算子.
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
泛函分析
2.2 赋范线性空间及Banach空间
第二章 泛函分析
一、赋范线性空间
1. 赋范线性空间的定义
定义1 设 X 是复(或实)的线性空间,
如果对于 X 中的每个 x ,对应于一个实数 x ,
且满足 (1) x 0,x 0 x 0;
(2) x x , R 或 C;
(非负性) (齐次性)
第二章 泛函分析
第二节 赋范线性空间及Banach空间
三、线性算子空间和共轭空间
定理5 ƁX Y 按通常的线性运算及算子范数
构成一个赋范线性空间. 证Ax sup Ax
x 1
x 1
x 1
A
(3)A B sup A Bx sup Ax Bx
x D, x 0
第二章 泛函分析
第二节 赋范线性空间及Banach空间
二、有界线性算子和连续线性泛函
定理3 设 X ,Y 是两个赋范线性空间, T : X Y 的线性算子,则T连续的充要条件是 T有界.
证明 必要性 若T连续但无界
xn X,xn 0n 1,2, 使 Txn n xn

yn
定理2 设 X ,Y 是两个赋范线性空间,T是定义在 X 的子空间D上而值域含在 Y 中的线性算子,则 T 是有界的充要条件是 T将D中任一有界集映成 Y 中有界集.
证明 必要性

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函分析总结范文高中

泛函分析总结范文高中

泛函分析是现代数学分析的一个重要分支,它主要研究的是函数构成的函数空间以及这些空间上的线性算子。

相较于高中数学中的实变函数和复变函数,泛函分析更多地关注函数之间的相互关系和映射性质,为解决实际问题提供了新的视角和方法。

一、泛函分析的基本概念1. 函数空间:泛函分析研究的对象是函数,这些函数构成一个集合,称为函数空间。

常见的函数空间有实值函数空间、复值函数空间、有界函数空间、连续函数空间等。

2. 线性算子:函数空间上的线性算子是一种映射,它将一个函数映射到另一个函数,同时满足线性性质。

线性算子是泛函分析的核心概念,如积分算子、微分算子、傅里叶变换等。

3. 范数:范数是度量函数空间中函数“大小”的一种方式。

一个函数空间的范数满足以下性质:非负性、齐次性、三角不等式和归一性。

4. 内积:内积是度量函数空间中函数“夹角”的一种方式。

一个函数空间的内积满足以下性质:非负性、齐次性、共轭对称性和三角不等式。

二、泛函分析的主要理论1. 线性算子的谱理论:研究线性算子的特征值和特征向量,以及这些特征值和特征向量的性质。

2. 线性算子的有界性:研究线性算子是否具有有界性,以及有界性的条件。

3. 线性算子的连续性:研究线性算子是否具有连续性,以及连续性的条件。

4. 线性算子的可逆性:研究线性算子是否具有可逆性,以及可逆性的条件。

5. 线性算子的对偶性:研究线性算子的对偶算子,以及对偶算子的性质。

三、泛函分析的应用1. 微分方程:泛函分析为微分方程的求解提供了新的方法,如泛函微分方程、积分方程等。

2. 积分方程:泛函分析为积分方程的求解提供了新的方法,如变分法、迭代法等。

3. 函数论:泛函分析为函数论的研究提供了新的工具,如傅里叶分析、Sobolev空间等。

4. 线性代数:泛函分析为线性代数的研究提供了新的视角,如无穷维线性空间、线性算子等。

总之,泛函分析是一门具有广泛应用前景的数学分支。

通过对函数空间、线性算子、范数、内积等基本概念的研究,泛函分析为解决实际问题提供了新的思路和方法。

(完整)泛函分析知识总结,推荐文档

(完整)泛函分析知识总结,推荐文档

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

考研泛函分析知识点详解

考研泛函分析知识点详解

考研泛函分析知识点详解泛函分析是数学中重要的理论分支之一,广泛应用于各个领域,尤其在工程、物理学和计算机科学等领域具有重要的应用价值。

本文将详细介绍考研泛函分析的知识点,帮助考生更好地备战考试。

一、概述泛函分析是研究无穷维空间上的函数和它们之间的关系的数学理论。

它考察了函数的性质、收敛性、连续性等,并提供了一系列强有力的工具和方法来研究这些问题。

泛函分析在数学分析中扮演着重要的角色,也是许多其他学科的基础。

二、范数空间和内积空间范数空间是指带有范数的线性空间。

范数是对于向量的一种度量,它满足非负性、齐次性和三角不等式。

内积空间是指带有内积的线性空间。

内积是向量之间的一种度量方式,它满足对称性、线性性和正定性。

范数空间和内积空间是泛函分析中的基本概念,它们提供了函数空间的结构和性质。

三、巴拿赫空间巴拿赫空间是一种完备的范数空间,也就是说任何一个柯西序列都能在该空间中收敛。

巴拿赫空间常见的有Hilbert空间和Lp空间。

Hilbert空间是一个内积空间,并且是完备的。

Lp空间是一类以p阶可积函数为元素的空间,其中p是一个实数。

四、线性算子和泛函线性算子是指一个线性映射,它把一个向量空间映射到另一个向量空间。

泛函是一种对向量空间中的向量进行映射的函数。

线性算子和泛函是泛函分析中的重要研究对象,它们有着丰富的性质和应用。

五、连续性和紧性在泛函分析中,连续性是一个重要的性质。

一个线性算子或泛函如果是连续的,就意味着在某种度量下输入的小变动会导致输出的小变动。

紧性是一种强化的连续性,它表示函数空间中有一部分序列具有收敛的子序列。

连续性和紧性在泛函分析中有着广泛的应用。

六、谱理论谱理论是泛函分析中研究线性算子谱的一门学科。

谱是线性算子特征值的推广,用于描述线性算子的性质和行为。

谱分为点谱、连续谱和剩余谱等。

谱理论在泛函分析和偏微分方程等领域具有重要的意义。

七、弱收敛和弱*-收敛弱收敛也称为弱拓扑收敛,是泛函分析中一种弱形式的收敛性。

泛函分析知识点

泛函分析知识点

泛函分析知识点 SANY GROUP system office room 【SANYUA16H-泛函分析知识点知识体系概述(一)、度量空间和赋范线性空间第一节度量空间的进一步例子1.距离空间的定义:设X是非空集合,若存在一个映射d:X×X→R,使得∀x,y,z∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x与y的距离,X为以d为距离的距离空间,记作(X,d)2.几类空间例1离散的度量空间例2序列空间S例3有界函数空间B(A)例4可测函数空M(X)例5C[a,b]空间即连续函数空间例6l2第二节度量空间中的极限,稠密集,可分空间1.开球定义设(X,d)为度量空间,d是距离,定义U(x0,ε)={x∈X|d(x,x0)<ε}为x0的以ε为半径的开球,亦称为x0的ε一领域.2. 极限定义若{x n }⊂X,∃x ∈X,s.t.()lim ,0n n d x x →∞=则称x 是点列{x n }的极限. 3. 有界集定义若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义设X 是度量空间,E 和M 是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义如果X 有一个可数的稠密子集,则称X 是可分空间。

第三节连续映射1.定义设X=(X,d),Y=(Y,~d )是两个度量空间,T 是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x ,有()~0,d Tx Tx ε<,则称T 在0x 连续.2.定理1设T 是度量空间(X,d )到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3.定理2度量空间X 到Y 中的映射T 是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -是X 中的开集.第四节柯西(cauchy )点列和完备度量空间1.定义设X=(X,d)是度量空间,{}n x 是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 是X 中的柯西点列或基本点列。

泛函分析知识点总结

泛函分析知识点总结

泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。

解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。

⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。

注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。

这个经常被⽤来证明。

例如,开映射定理、闭图像定理等。

2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。

导集是集合所有聚点组成的集合,不包含孤⽴点。

所以闭包是集合导集和孤⽴点组成的集合。

3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。

4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。

不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。

5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。

e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。

然后再除以对应范数,进⾏单位化。

6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。

(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。

7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。

泛函分析报告知识的总结

泛函分析报告知识的总结

泛函分析报告知识的总结泛函分析是数学中的一个重要分支领域,它研究的是无穷维空间上的函数及其性质。

泛函分析的应用广泛,包括函数空间、傅里叶分析、偏微分方程等等。

下面是我对泛函分析的一些知识进行总结。

首先,泛函分析的基础是线性代数和实分析。

线性代数研究的是向量空间及其线性关系,实分析则研究的是实数空间上的函数性质,例如收敛性、极限、连续性等等。

这两个基础学科为泛函分析的理论及应用打下了坚实的基础。

其次,泛函分析的核心是函数空间的研究。

函数空间是指一组函数的集合,其中的函数可以是有界函数、可积函数、连续函数等等。

泛函分析研究的是函数空间上的线性算子及其性质,例如范数、内积、完备性等等。

常见的函数空间有Lp空间、C(X)空间、Sobolev空间等等。

然后,泛函分析的重要工具是算子理论。

算子理论研究的是线性算子的性质和作用。

在泛函分析中,线性算子可以将一个函数映射到另一个函数,例如导数、积分等。

算子理论主要研究线性算子的性质,例如有界算子、紧算子、自伴算子等等。

算子理论在解析、几何等问题中有着广泛的应用。

此外,泛函分析也研究了拓扑结构及度量空间的性质。

拓扑结构是用来描述集合上点的邻域关系的概念,是泛函分析中重要的概念。

度量空间是带有度量函数的拓扑空间,度量函数可以度量空间中两个点之间的距离。

拓扑结构和度量空间的研究为泛函分析提供了一种统一的框架。

最后,泛函分析的应用广泛,特别是在数学的其他分支领域中。

在偏微分方程中,泛函分析可以用来研究问题的存在性、唯一性和稳定性;在概率论中,泛函分析可以用来研究随机过程的性质和收敛性;在图像处理中,泛函分析可以用来研究图像的压缩和恢复等等。

总之,泛函分析在数学及其应用领域中具有重要的地位和作用。

总结起来,泛函分析研究的是无穷维空间上的函数及其性质,它的基础是线性代数和实分析。

泛函分析的核心是函数空间的研究,它的重要工具是算子理论及拓扑结构和度量空间的性质。

泛函分析的应用非常广泛,涉及到数学的各个分支领域。

泛函分析复习与总结

泛函分析复习与总结

《泛函分析》复习与总结第一部分 空间及其性质泛函分析的主要内容分为空间和算子两大部分. 空间包括泛函分析所学过的各种抽象空间, 函数空间, 向量空间等, 也包括空间的性质, 例如完备性, 紧性, 线性性质, 空间中集合的各种性质等等。

以下几点是对第一部分内容的归纳和总结。

一.空间(1)距离空间 (集合+距离)!验证距离的三个条件:(,)X ρ称为是距离空间,如果对于,,x y z X ∈(i) 【非负性】(,)0x y ρ≥,并且(,)0x y ρ=当且仅当x y =【正定性】;(ii) 【对称性】(,)(,)x y y x ρρ=;(iii) 【三角不等式】(,)(,)(,)x y x y y z ρρρ≤+。

距离空间的典型代表:s 空间、S 空间、所有的赋范线性空间、所有的内积空间。

(2)赋范线性空间 (线性空间 + 范数)!验证范数的三个条件:(,||||)X ⋅称为是赋范线性空间,如果X是数域K =¡(或K =£)上的线性空间,对于a K ∈和,x y X ∈,成立(i) 【非负性】||||0x ≥,并且||||0x =当且仅当0x =【正定性】; (ii) 【齐次性】||||||||||ax a x =⋅;(iii) 【三角不等式】||||||||||||x y x y +≤+。

赋范线性空间的典型代表:n ¡空间(1,2,3,n =L )、n £空间(1,2,3,n =L )、p l 空间(1p ≤≤∞)、([,])p L ab 空间(1p ≤≤∞)、[,]Cab 空间、[,]k C a b 空间、Banach 空间、所有的内积空间(范数是由内积导出的范数)。

(3)内积空间 (线性空间 + 内积)!验证内积的四个条件:(,(,))X ⋅⋅称为是内积空间,如果X 是数域K =¡(或K =£)上的线性空间,对于a K ∈和,,x y z X ∈,成立(i) 【非负性】(,)0x x ≥,并且(,)0x x =当且仅当0x =【正定性】;(ii) 【第一变元可加性】(,)(,)(,)x y z x z x z +=+;(iii) 【第一变元齐次性】(,)(,)ax z a x z =;(iv) 【共轭对称性】(,)(,)x z z x =。

泛函分析知识总结讲解

泛函分析知识总结讲解

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间nR (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

泛函知识点总结

泛函知识点总结

泛函知识点总结一、泛函的基本概念1.1 泛函的定义泛函是函数的一个推广概念,它是对函数的一种广义的抽象和概括。

在数学中,泛函一般被定义为一个把函数空间中的函数映射到实数域或复数域的映射,这种映射被称为泛函。

泛函可以看作是一个“函数的函数”,它对函数进行了更高级别的抽象和泛化。

1.2 泛函的表示泛函通常用一般形式的积分或者其他函数操作来表示,这样的表示形式更加抽象和一般,可以适用于更广泛的函数空间和函数类别。

例如,一个泛函可以表示为关于函数f(x)的某种积分形式,如:\[J[f]=\int_{a}^{b} L(x,f(x),f'(x))dx\]其中L(x,f(x),f'(x))是关于函数f(x)及其导数的某种函数,称为被积函数,这种形式的泛函被称为积分型泛函。

1.3 泛函的性质泛函具有一般函数所具有的性质,如可微性、极值性、泛函空间的完备性等。

另外,泛函还具有一些特有的性质,如泛函运算的线性性、变分性等。

这些性质对于泛函的研究和分析具有重要意义。

二、泛函的理论基础2.1 变分法变分法是泛函研究的重要方法和基础理论,它是求解泛函的极值问题的一种基本工具。

变分法通过对函数的微小变动进行分析,得到泛函的极值条件和解的存在唯一性等结论,它在物理学、工程学等领域中具有重要应用。

2.2 泛函空间泛函空间是泛函分析的基本研究对象,它是一种特殊的函数空间,其中的元素是泛函。

泛函空间通常具有一定的结构和性质,如线性空间结构、度量空间结构等,它是研究泛函和泛函运算的重要工具和理论基础。

2.3 函数空间的拓扑结构函数空间是泛函空间的特殊情况,它是泛函研究中的另一个重要对象。

函数空间通常具有一定的拓扑结构,如紧性、连续性、收敛性等,这些拓扑性质对于泛函的收敛性和连续性等问题具有重要意义。

2.4 泛函分析的基本理论泛函分析是对泛函和泛函空间进行研究和分析的一个重要分支,它是泛函研究的基本理论之一。

泛函分析主要研究泛函空间的结构、性质和运算规律等问题,它为泛函的研究和应用提供了重要的理论基础和工具。

泛函分析第三讲

泛函分析第三讲
定理4(Arzela-Ascoli定理)Ca,b中的子集
A 是列紧集当且仅当 A中函数是一致有界和 等度连续的.
如果存在 M 0,使得 f A和x a,b, 有 f x M,则称函数族 A是一致有界的.
如果 0, 存在 0, x, y a,b,f A, 只要 dx, y , 就有 f x f y ,
对于x x1, x2 ,, xn ,定义
x x1 2 x2 2 xn 2 ,
则 Rn是Banach空间.
第二章 泛函分析
第二节 赋范线性空间及Banach空间
一、赋范线性空间
例2 空间Ca,b.对于xtCa,b,定义
x max xt at b
则 Ca, b是Banach空间.
第二章 泛函分析
第一节 距离空间
二、紧集与列紧集
定义5 设 X , d 是一个距离空间,A, B X.
0是给定的数, 如果对 A 中的任何点 x,必有 B中
的点 x,使得dx, x ,则称 B是 A的一个 -网.
定义6 设 X , d 是一个距离空间,A X.
如果对任意 0,A中总存在有限的 - 网,
二、紧集与列紧集
定理6 设A 是距离空间 X的紧集,f : A R是连续的,则 (1) f 在 A上有界; (2) f在 A 上可取到最大值和最小值.
第二章 泛函分析
第一节 距离空间
2.2 赋范线性空间及Banach空间
第二章 泛函分析
一、赋范线性空间
1. 赋范线性空间的定义
定义1 设 X 是复(或实)的线性空间,
一、赋范线性空间
3. Banach空间的定义 定义3 设 X 为赋范线性空间, d是由范数 诱导的距离,如果X是完备的距离空间, 称 X 为Banach空间.

泛函分析部分知识点汇总

泛函分析部分知识点汇总

度量空间:把距离概念抽象化,对某些一般的集合引进点和点之间的距离,使之成为距离空间,这将是深入研究极限过程的一个有效步骤。

泛函分析中要处理的度量空间,是带有某些代数结构的度量空间,例如赋范线性空间,就是一种带有线性结构的度量空间。

一、度量空间的进一步例子1、度量空间设x 是一个集合,若对于x 中任意两个元素x,y ,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°的充要条件为x=y 2°对任意的z 都成立, 则称 d(x,y) 是 x,y 之间的距离,称 d(x,y)为度量空间或距离空间。

x 中的元素称为点。

2、常见的度量空间(1)离散的度量空间 设 x 是任意的非空集合,对 x 中的任意两点 ,令 称为离散的度量空间。

(2)序列空间S令S 表示实数列(或复数列)的全体,对S 中的任意两点令 称 为序列空间。

(3)有界函数空间B(A )设A 是一个给定的集合,令B(A)表示A 上有界实值(或复值)函数全体,对B(A)中任意两点x,y ,定义(4)可测函数空间设M(X)为X 上实值(或复值)的勒贝格可测函数全体,m 为勒贝格测度,若 ,对任意两个可测函数 及 由于 ,所以这是X 上的可积函数。

令 (5)C[a,b]空间令C[a,b] 表示闭区间[a,b]上实值(或复值)连续函数全体,对 C[a,b]中任意两点x,y ,定义二、度量空间中的极限、稠密集、可分空间1、收敛点列设 是(X ,d )中点列,如果存在 ,使 则称点列是(X ,d ) 中的收敛点列,x 是点列 的极限。

收敛点列性质:(1)在度量空间中,任何一个点列最多只有一个极限,即收敛点列的极限是唯一的。

(2)M 是闭集的充要条件是M 中任何收敛点列的极限都在M 中。

(,)0,(,)0d x y d x y ≥=(,)(,)(,)d x y d x z d y z ≤+,x y X ∈1,(,)0,if x y d x y if x y ≠⎧=⎨=⎩(,)X d 1212(,,...,,...),(,,...,,...),n n x y ξξξηηη==1||1(,)21||i i i i i i d x y ξηξη∞=-=+-∑(,)S d (,)sup |()()|t A d x y x t y t ∈=-()m X <∞()f t ()g t |()()|11|()()|f tg t f t g t -<+-|()()|(,)1|()()|X f t g t d f g dt f t g t -=+-⎰(,)max |()()|a t b d x y x t y t ≤≤=-{}n x x X ∈lim (,)0n n d x x →∞={}n x {}n x2、收敛点列在具体空间中的意义(1)n 维欧式空间中:为 中的点列, 即:按欧式距离收敛于x 的充要条件是 依坐标收敛于(2)序列空间S 中:为 S 中的点列,(3)C[a,b]空间设 及X 分别为C[a,b] 中的点列及点,(4)可测函数空间M(X)设 及 f 分别为可测函数空间中的点列及点,3、稠密集,可分空间(1)设X 是度量空间,E 和M 是X 中的两个子集,令 表示M 的闭包,如果 ,那么称集M 在集E 中稠密。

泛函分析部分知识总结

泛函分析部分知识总结

泛函分析单元知识总结与知识应用一、单元知识总结第七章、 度量空间和赋范线性空间 §1 度量空间§1.1定义:若X 是一个非空集合,:dX X R ⨯→是满足下面条件的实值函数,对于,x y X ∀∈,有(1)(,)0d x y =当且仅当xy =;(2)(,)(,)d x y d y x =;(3)(,)(,)(,)d x y d x z d y z ≤+,则称d 为X 上的度量,称(,)X d 为度量空间。

例:1、设X 是一个非空集合,,x y X ∀∈,当1,(,)0,=x y d x y x y≠⎧=⎨⎩当当,则(,)X d 为离散的度量空间。

2、序列空间S ,i =1i |-|1(,)21+|-|i ii i d x y ξηξη∞=∑是度量空间 3、有界函数全体()B A ,(,)sup|(t)-(t)|t Ad x y x y ∈=是度量空间4、连续函数[a,b]C ,(,)max|(t)-(t)|a t bd x y x y ≤≤=是度量空间5、空间2l ,122=1(,)[(-)]kki d x y y x ∞=∑是度量空间§2 度量空间中的极限,稠密集,可分空间 §2.1收敛点列:设{}n x 是(,)X d 中点列,如果∃x X ∈,使n lim (,)=0n d x x →∞,则称点列{}n x 是(,)X d 中的收敛点列。

例:1、nn x R ∈,{}n x 按欧氏距离收敛于x 的充要条件为1,i n ∀≤≤各点列依分量收敛。

2、[a,b]C 中(,)0k d x y x x →⇔→(一致)3、可测函数空间()M X 中点列(,)0n n d f f f f→⇔⇒(依测度)稠密子集与可分空间:设X 是度量空间,E 和M 是X 中两个子集,令M M M ⊂表示的闭包,如果E ,那么称集M 在集E 中稠密,当E=X 时,称M 为X 的一个稠密子集,如果X 有一个可数的稠密子集,则称X 是可分空间。

91国优教材:泛函分析讲义

91国优教材:泛函分析讲义

91国优教材:泛函分析讲义泛函分析讲义一、泛函分析的基本概念1、定义泛函分析又称为泛函相似性。

它是一种数学的技术,可以在极端情况下精准地求解和分析复杂的函数关系。

2、概念向量空间,空间中所有向量的集合;泛函,一个函数的集合,可以表述成 f: 某特定的n 向量变量集合→某特定的m 向量变量值集合,其中 n,m>0;泛函分析,对于给定的一个泛函 f 和泛函中多个变量空间 Xi (i=1,2,3,..m),求解 f 中部分变量取特定值下另外部分变量的取值范围。

3、性质(1)泛函分析属于泛函理论的应用,它可以求解复杂的函数关系。

(2)泛函分析可以帮助我们对于复杂系统中的变量进行有针对性的分析。

(3)泛函分析可以有效地提高系统的分析效率和精确度。

二、泛函分析法的特点1、函数可以没有限制地拓展泛函分析法不仅可以求解多元函数,还可以求解多项式函数,甚至是非常大的函数。

当有不同复杂度函数相互连接时,也可以采用泛函分析方法。

2、精确度较高泛函分析的结果能接近实际的变量取值情况。

3、适用范围广泛泛函分析可以应用到许多不同领域,比如机械、电子、建筑等等。

1、应用于元件分析泛函分析可以用于分析电路元件及其特性参数,以便精确地计算出所需要的结果。

2、应用于系统模拟泛函分析可以用来模拟系统的特性参数,预测系统性能,以优化系统的整体结构和设计。

3、用于参数估算泛函分析可以用于分析复杂的系统结构,在给定的参数的情况下,估算出系统的性能状态。

4、用于控制设计泛函分析可以帮助设计及优化某一系统的控制算法,便于提高系统的应用性能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泛函分析知识点知识体系概述(一)、度量空间与赋范线性空间第一节 度量空间的进一步例子1.距离空间的定义:设X 就是非空集合,若存在一个映射d:X ×X →R,使得∀x,y,z ∈X,下列距离公理成立:(1)非负性:d(x,y)≥0,d(x,y)=0⇔x=y;(2)对称性:d(x,y)=d(y,x);(3)三角不等式:d(x,y)≤d(x,z)+d(z,y);则称d(x,y)为x 与y 的距离,X 为以d 为距离的距离空间,记作(X,d)2、几类空间例1 离散的度量空间例2 序列空间S例3 有界函数空间B(A)例4 可测函数空M(X)例5 C[a,b]空间 即连续函数空间例6 l 2第二节 度量空间中的极限,稠密集,可分空间1. 开球定义 设(X,d)为度量空间,d 就是距离,定义U(x 0, ε)={x ∈X | d(x, x 0) <ε}为x 0的以ε为半径的开球,亦称为x 0的ε一领域、2. 极限定义 若{x n }⊂X, ∃x ∈X, s 、t 、 ()lim ,0n n d x x →∞= 则称x 就是点列{x n }的极限、 3. 有界集定义 若()(),sup ,x y Ad A d x y ∀∈=<∞,则称A 有界4. 稠密集定义 设X 就是度量空间,E 与M 就是X 中两个子集,令M 表示M 的闭包,如果E M ⊂,那么称集M 在集E 中稠密,当E=X 时称M 为X 的一个稠密集。

5. 可分空间定义 如果X 有一个可数的稠密子集,则称X 就是可分空间。

第三节 连续映射1、定义 设X=(X,d),Y=(Y , ~d )就是两个度量空间,T 就是X 到Y 中映射,x0X ∈,如果对于任意给定的正数ε,存在正数0δ>,使对X 中一切满足()0,d x x δ< 的x,有()~0,d Tx Tx ε<,则称T 在0x 连续、2、定理1 设T 就是度量空间(X,d)到度量空间~Y,d ⎛⎫ ⎪⎝⎭中的映射,那么T 在0x X ∈连续的充要条件为当()0n x x n →→∞时,必有()0n Tx Tx n →→∞3、定理2 度量空间X 到Y 中的映射T 就是X 上连续映射的充要条件为Y 中任意开集M 的原像1T M -就是X 中的开集、第四节 柯西(cauchy)点列与完备度量空间1、定义 设X=(X,d)就是度量空间,{}n x 就是X 中点列,如果对任意给定的正数0ε>,存在正整数()N N ε=,使当n,m>N 时,必有(),n m d x x ε<,则称{}n x 就是X 中的柯西点列或基本点列。

如果度量空间(X,d)中每个柯西点列都在 (X,d)中收敛,那么称(X,d)就是完备的度量空间、【注意】(1)Q 不就是完备集(2)n R 完备(3)cauchy 列不一定收敛,但收敛列一定就是cauchy 列、(4)C[a,b]完备2、定理 完备度量空间X 的子空间M 就是完备空间的充要条件为M 就是X 中的闭子空间、第五节 度量空间的完备化1、定义 设(X,d),( ~X ,~d )就是两个度量空间,如果存在X 到~X 上的保距映射T,即()()~,,d Tx Ty d x y =,则称(X,d)与( ~X ,~d )等距同构,此时T 称为X 到~X 上等距同构映射。

2、定理1(度量空间的完备化定理) 设X=(X,d)就是度量空间,那么一定存在一完备度量空间~X =( ~X ,~d ),使X 与~X 的某个稠密子空间W 等距同构,并且~X 在等距同构意义下就是唯一的,即若( ^X ,^d )也就是一完备度量空间,且X 与~X 的某个稠密子空间等距同构,则( ~X ,~d )与( ^X ,^d )等距同构。

3、定理1’ 设X=(X,d)就是度量空间,那么存在唯一的完备度量空间~X =( ~X ,~d ),使X 为~X 的稠密子空间。

第六节 压缩映射原理及其应用1、定义 设X 就是度量空间,T 就是X 到X 中的映射,如果存在一个数α,0<α<1,使得对所有的,x y X ∈,()(),,d Tx Ty d x y α≤,则称T 就是压缩映射。

2.定理1(压缩映射定理)(即Barnach 不动点定理) 设X 就是完备的度量空间,T 就是X 上的压缩映射,那么T 有且只有一个不动点(就就是说,方程Tx=x,有且只有一个解)、补充定义:若Tx=x,则称x 就是T 的不动点。

x 就是T 的不动点⇔x 就是方程Tx=x 的解。

3.定理2 设函数(),f x y 在带状域,a x b y ≤≤-∞<<∞中处处连续,且处处有关于y 的偏导数()',y f x y 、如果还存在常数m 与M 满足 ()'0,,y m f x y M m M <≤≤<, 则方程(),0f x y =在区间[],a b 上必有唯一的连续函数()y x ϕ=作为解:()()[],0,,f x x x a b ϕ≡∈ 第七节 线性空间1、定义1 设X 就是一非空集合,在X 中定义了元素的加法运算与实数(或复数)与X 中元素的乘法运算,满足下列条件:(1)关于加法成为交换群,即对任意x,y ∈X,存在u ∈X 与之相对应,记为u=x+y,称为x 与y 的与,满足1)x y y x +=+;2)()()(),,x y z x y z x y z X ++=++∈任何;3)在X 中存在唯一元素θ,使对任何x X ∈,成立x x θ+=,称θ为X 中零元素;4)对X 中每个元素x,存在唯一元素x X '∈,使x x θ'+=,称x '为x 的负元素,记为x -;(2)对于X 中每个元素x X ∈,及任意实数(或复数)a,存在元素u X ∈与之对应,记为u ax =,称为a 与x 的数积,满足1)1x x =;2)()()a bx ab x =对任意实数(或复数)a 与b 成立;3)()(),a b x ax bx a x y ax by +=++=+,则称X 按上述加法与数乘运算成为线性空间或向量空间,其中的元素称为向量。

如果数积运算只对实数(复数)有意义,则称X 就是实(复)线性空间。

例1 R n ,对R n 中任意两点x=(ξ1,ξ2,…,ξn ),y=(η1,η2,…,ηn)与任何实(复)数a,定义x+y=(ξ1 +η1,ξ2 +η2,…,ξn +ηn ),ax=(a ξ1 ,aξ2,…,aξn )、容易验证R n 按上述加法与数乘运算成实(复)线性空间、2、定义2 设x 1 ,x 2,…,x n 就是线性空间X 中的向量,如果存在n 个不全为零的数α1,α2,…,αn ,使α1 x 1 +α2 x 2 +…+αn x n =0, (1)则称x 1,x 2 ,…,x n 线性相关,否则称为线性无关、不难瞧出,x 1,x 2,…,x n 线性无关的充要条件为,若10ni i i x α==∑,必有α1 =α2 =…=αn =0、3、定义3 设M 就是线性空间X 的一个子集,如果M 中任意有限个向量都线性无关,则称M 就是X 中线性无关子集、设M 与L 为X 中两个子集,若M 中任何向量与L 中任何向量都线性无关,则称M 与L 线性无关、4、定义4 设X 就是线性空间, M 就是X 中线性无关子集,如果·spanM= X,则称M 的基数为X 的维数,记为dim X, M 称为X 的一组基、如果M 的基数为有限数,则称X 就是有限维线性空间,否则称X 就是无限维线性空间、如果X 只含零元素,称X 为零维线性空间、第八节 赋范线性空间与巴拿赫(Banach)空间1、定义1 设X 就是实(或复)的线性空间,如果对每个向量x ∈X,有一个确定的实数,记为‖x ‖与之对应,并且满足:1°‖x ‖≥0,且‖x ‖=0等价于x=0;2°‖αx ‖=|α|‖x ‖其中α为任意实(复)数;3°‖x+y ‖≤‖x ‖+‖y ‖,x,y ∈X,则称‖x ‖为向量x 的范数,称X 按范数‖x ‖成为赋范线性空间、2、 引理1(H ӧlder 不等式) 设p>1,111p q+=,[][],,,p q f L a b g L a b ∈∈那么f(t)g(t)在[a,b]上L 可积,并且 ()()bp q a f t g t dt f g ≤⎰3引理2(Minkowski 不等式) 设p ≥1,f,g ∈L p [a,b],那么f+g ∈L p [a,b],并且成立不等式‖f+g ‖p ≤‖f ‖p +‖g ‖p4.定理1 当p ≥1时,L p [a,b]按(6)中范数‖f ‖p 成为赋范线性空间、5.定理2 L p [a,b](p ≥1)就是Banach 空间、6.定理3 设X 就是n 维赋范线性空间,{e1,e2,…,en}就是X 的一组基,则存在常数M 与M ′,使得对一切1nk k k x e ξ==∑成立1221n k k M x M x ξ=⎛⎫'≤≤ ⎪⎝⎭∑、 7.推论1 设在有限维线性空间上定义了两个范数‖x ‖与‖x ‖1 ,那么必存在常数M 与M ′,使得M ‖x ‖≤‖x ‖1 ≤M ′‖x ‖、8、 定义2 设(R 1,‖x ‖1 )与(R 2 ,‖x ‖2 )就是两个赋范线性空间、如果存在从R 1 到R 2 上的线性映射φ与正数c 1 ,c 2,使得对一切x ∈R 1,成立c 1 ‖φx ‖2 ≤‖x ‖1 ≤c 2 ‖φx ‖2则称(R 1 ,‖x ‖1)与(R 2,‖x ‖2 )这两个赋范空间就是拓扑同构的、8.推论2 任何有限维赋范空间都与同维数欧氏空间拓扑同构、相同维数的有限维赋范空间彼此拓扑同构、(二)有界线性算子与连续线性泛函第一节 有界线性算子与连续线性泛函定义1 设X 与Y 就是两个同为实(或复)的线性空间,D 就是X 的线性子空间,T 为D 到Y 中的映射,如果对任何x,y ∈D,及数α,有T(x+y)= Tx+ Ty, (1)T(αx)=αTx, (2)则称T 为D 到Y 中的线性算子,其中D 称为T 的定义域,记为D(T),TD 称为T 的值域,记为R(T),当T 取值于实(或复)数域时,就称T 为实(或复)线性泛函、定义2 设X 与Y 就是两个赋范线性空间,T 就是X 的线性子空间D(T)到Y 中的线性算子,如果存在常数c,使对所有x ∈D(T),有‖Tx ‖≤c ‖x ‖, (3)则称T 就是D(T)到Y 中的有界线性算子,当D(T)= X 时,称T 为X 到Y 中的有界线性算子,简称为有界算子、对于不满足条件(3)的算子,称为无界算子、本书主要讨论有界算子、 定理1 设T 就是赋范线性空间X 到赋范线性空间Y 中的线性算子,则T 为有界算子的充要条件为T 就是X 上连续算子、定理2 设X 就是赋范线性空间,f 就是X 上线性泛函,那么f 就是X 上连续泛函的充要条件为f 的零空间N(f)就是X 中的闭子空间定义3 T 为赋范线性空间X 的子空间D(T)到赋范线性空间Y 中的线性算子,称()0supx x D T Tx T x≠∈= (4) 为算子T 在D(T)上的范数、引理1 设T 就是D(T)上有界线性算子,那么()()11sup sup x D T x D T x x T Tx Tx ∈∈=≤== (6)Ⅲ、 有界线性算子与连续线性泛函的例子例6 赋范线性空间X 上的相似算子Tx=αx 就是有界线性算子,且‖T ‖=|α|,特别‖I X ‖=1,‖O ‖=0、第二节 有界线性算子空间与共轭空间Ⅰ、 有界线性算子全体所成空间定理1 当Y 就是Banach 空间时,B(X →Y)也就是Banach 空间、Ⅱ、 共轭空间定义1 设X 就是赋范线性空间,令X ′表示X 上连续线性泛函全体所成的空间,称为X的共轭空间、定理2任何赋范线性空间的共轭空间就是Banach空间、定义2设X与Y就是两个赋范线性空间,T就是X到Y中的线性算子,并且对所有x∈X,有‖Tx‖=‖x‖,则称T就是X到Y中的保距算子,如果T又就是映射到Y上的,则称T就是同构映射,此时称X与Y同构、。

相关文档
最新文档