球墨铸铁的工艺设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
球墨铸铁的工艺设计
第一节工艺特点
一、球墨铸铁的流动性与浇注工艺
球化处理过程中球化剂的加入,一方面使铁液的温度降低,另一方面镁、稀土等元素在浇包及浇注系统中形成夹渣。因此,经过球化处理后铁液的流动性下降。同时,如果这些夹渣进入型腔,将会造成夹杂、针孔、铸件表面粗糙等铸造缺陷。
为解决上述问题,球墨铸铁在铸造工艺上须注意以下问题:
(1)一定要将浇包中铁液表面的浮渣扒干净,•最好使用茶壶嘴浇包。
(2)严格控制镁的残留量,最好在0.06%以下。
(3)浇注系统要有足够的尺寸,以保证铁液能做尽快充满型腔,并尽可能不出现紊流。
(4)采用半封闭式浇注系统,根据美国铸造学会推荐的数据,直浇道、横浇道与内浇道的比例为4:8:3。
(5)内浇口尽可能开在铸型的底部。
(6)在浇注系统中安放过滤网会有助于排除夹渣。
(7)适当提高浇注温度以提高铁液的充型能力并避免出现碳化物。对于用稀土处理的铁液,其浇注温度可参阅我国有关手册。对于用镁处理的铁液,根据美国铸造学会推荐的数据,当铸件壁厚为25mm时,浇注温度不低于1315℃;当铸件壁厚为6mm时,浇注温度不低于1425℃。
二、球墨铸铁的凝固特性与补缩工艺特点
球墨铸铁与灰铸铁相比在凝固特性上有很大的不同,主要表现在以下方面:(1)球墨铸铁的共晶凝固范围较宽。灰铸铁共晶凝固时,片状石墨的端部始终与铁液接触,因而共晶凝固过程进行较快。球墨铸铁由于石墨球在长大后期被奥氏体壳包围,其长大需要通过碳原子的扩散进行,因而凝固过程进行较慢,以至于要求在更大的过冷度下通过在新的石墨异质核心上形成新的石墨晶核来维持共晶凝固的进行。因此,球墨铸铁在凝固过程中在断面上存在较宽的液固共存区域,其凝固方式具有粥状凝固的特性。这使球墨铸铁凝固过程中的补缩变得困难。
(2)球墨铸铁的石墨核心多。经过球化和孕育处理,球墨铸铁的石墨核心较之灰铸铁多很多,因而其共晶团尺寸也比灰铸铁细得多。
(3)球墨铸铁具有较大的共晶膨胀力。由于在球墨铸铁共晶凝固过程中石墨很快被奥氏体壳包围,石墨长大过程中因体积增大所引起的膨胀不能传递到铁液中,从而产生较大的共晶膨胀力。当铸型刚度不高时,由此产生的共晶膨胀将引起缩松缺陷。
(4)在凝固过程中球墨铸铁的体积变化可以分为三个阶段:铁液浇入铸型后至冷却到共晶温度过程中的液态收缩,共晶凝固过程中由于石墨球的析出引起的体积膨胀,铁液凝固后冷却过程中的体收缩。
由于上述凝固特性,从补缩的角度考虑,球墨铸铁在铸造工艺上有以下特点:(1)铸型要有高的紧实度,以使铸型有足够的刚度以抵抗球墨铸铁共晶凝固时的共晶膨胀力。需要指出的是,此时要特别注意采取适当的措施提高铸型的透气性,同时要尽可能地降低型砂中的水份,以防止出现“呛火”。
(2)合理设置浇冒口。球墨铸铁的冒口与普通钢及白口铁不同,球墨铸铁冒口设置的合理性在于它能够充分补充铁液的液态收缩,而当铁液进入共晶膨胀阶段时,浇注系统和冒口颈及时冷冻,使铸件利用石墨析出的膨胀进行自补缩。
(3)砂箱应有足够的刚度,上箱和下箱之间应有牢固的紧固装置。
第二节冒口设计
一、冒口模数的定义与计算:
一定的液态球铁铸件的冷却速度及其凝固所需要的时间取决于铸型的热性质、所浇注的合金、浇注温度以及铸件的形状和尺寸。假定铸型的性质和浇注温度不变,则冷却和凝固速度完全取决于铸件。为了设计冒口,无论重量或壁厚都不能像模数那样准地代表铸件。对于形状简单的铸件其模数计算是简单的。
二、实用冒口设计
从事实践的铸造工作者对前节的结沦可能感到满意,这个结沦这里要重复。
只要冒口的模数大于它所连接着的铸件的分体的模数(表示为Ms或M L)则冒口保持为液体的时间比铸件分体的要长,这个观点需要立即说明。铸件或其任何部分是不会同对凝固的,下面就这个问题将进一步讨论。说到冒口(明冒口或暗冒口)最重要的是冒口中所包含的液体要与外部大气保持连通。图3-5所示是完全背离正常冒口设计原则的。
楔形冒口(示于上模板)首先在其顶部凝结,而顶部凝固的冒口与大气不连通,因而冒口不能发挥其作用。结果铸件产生缺陷。
通常冒口的形状应使体积与冷却表面的比值(模数)达到最大值。这并不是说推荐冒口应该是球形的,显然球形具有最大的模数。甚至在小冒口中,热流把比较热的(低比重的)液体带到冒口顶部,帮助顶部区域保持为液态。冒口底部温度要稍低一些,也需要有措施以防止冒口颈冻结。所以,一个设计好的冒口其高大于直径,而且冒口下部延伸到冒口颈以下,以便使冒口受热。而且冒口的水平截面通常是圆形的,虽然并非必须这样。因为若用一个冒口补给几个铸件是可以用其它形状的。
由于以上以及其他许多理由,冒口形状不能标准化。然而,在许多设计中可以采用标准的冒口形状,这样可以明显地减少冒口的体积和模数的计算时间。
现在可以从生产陶瓷的厂商买到非常薄的易割芯片,这种易割芯片可以减小所需要的孔口的直径(见图3-8)。而且这种易割芯片也可与预制的暗冒口保温壳
一起组装好造入铸型内,这种方法可以适用于所有生产场合(图3-9)。
三、控制压力冒口
这是实用冒口设计的第三种也是最后一种方法,它同样也是利用了膨胀的好处。控制压力冒口试图控制膨胀所产生的压力,使铸型不致发生塑性交形。
这种方法自从球墨铸铁一开始生产就有采用的,但是,它的应用是根据失败、成功等反复试验以及学习了铸造工作者的经验。这是当前应用最普遍的冒口设计方法,只有在下述条件时才不必采用控制压力冒口:
a)当铸件模数小于0.4cm(0.16in)时(膨胀所产生的压力不应使湿型变形)。
b)当湿型铸件厚壁处内部允许有缩松时。
c)当铸型强度高,能够抵抗膨胀压力而不产生塑性变形时。
因为大部分铸铁件采用湿型或壳型都是强度比较低的,而铸件壁厚(至少部分厚度)往往超过10mm或0.4in,因此,大部分铸件需要用控制压力冒口的方法。它比直接实用冒口设计方法的铸件工艺出品率要低,但是在上述情况时,为完全消除缩松,就必须适用它。
四、冒口颈设计
冒口颈的有效模数应当等于M T,但是它的尺寸总是小于几何形状和大小相同但分开铸造的单体。主要是由于在铸件与冒口相连接处没有冷却表面而获得了好处。实际上,这两个非冷却表面从邻接的铸件和冒口中获得并将热量传送给冒口颈。
延长冒口颈冷却和凝固时间的第二个影响因素是在它附近地区的砂型被炽热。其温度高于铸件和冒口处的砂型,冒口颈愈短,则其温度愈高。内绕道连接冒口(热冒口)也得到类似的及附加的热效果。
冒口颈在造型条件允许的限度内应尽量短一些。因为
M取决于冶金质量,
T
所以M'也是如此。在大多数生产情况下M'值为铸件关键部分模数的35—55%,这不仅是足够的而且也是安全的。冶金质量越是好,则M'能够选得更小一些。
在减小安全系数、使用方形冒口颈的条件下,以上冒口颈设计原则得到了充分的考验。图3-10表示设计中的一例,铸件的断面(图3-10B)清楚地表明了它的成功。