初中数学_巧添辅助线__解证几何题
初中几何添辅助线方法
初中几何添辅助线方法初中几何学中,添辅助线是解题的常用方法之一。
通过巧妙地引入辅助线,可以简化问题,帮助我们更好地理解和解决几何问题。
本文将介绍几种常见的初中几何添辅助线方法。
一、三角形的辅助线方法1. 垂心和垂足当我们遇到一个三角形,需要证明某条线段平行于另一条线段时,可以考虑引入垂心和垂足。
通过引入垂心和垂足,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
2. 中位线中位线是连接三角形两个顶点和中点的线段。
在解决三角形问题时,可以考虑引入中位线。
中位线将三角形分成两个全等的三角形,从而简化问题。
3. 角平分线角平分线将一个角分成两个相等的角。
在解决三角形问题时,可以考虑引入角平分线。
通过引入角平分线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
二、四边形的辅助线方法1. 对角线对角线是四边形两个非相邻顶点之间的线段。
在解决四边形问题时,可以考虑引入对角线。
通过引入对角线,我们可以将四边形分成两个全等的三角形,从而简化问题。
2. 中线中线是连接四边形两个相邻顶点中点的线段。
在解决四边形问题时,可以考虑引入中线。
中线将四边形分成两个全等的三角形,从而简化问题。
三、圆的辅助线方法1. 半径和切线在解决圆的问题时,可以考虑引入半径和切线。
通过引入半径和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
2. 弦和切线在解决圆的问题时,可以考虑引入弦和切线。
通过引入弦和切线,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
四、其他几何图形的辅助线方法1. 高和底边在解决梯形或三角形问题时,可以考虑引入高和底边。
通过引入高和底边,我们可以得到一些等腰三角形或全等三角形,从而简化证明过程。
2. 中线在解决平行四边形问题时,可以考虑引入中线。
中线将平行四边形分成两个全等的三角形,从而简化问题。
初中几何学中的添辅助线方法是解题的重要手段之一。
通过巧妙地引入辅助线,我们可以简化问题,帮助我们更好地理解和解决几何问题。
巧添辅助线解证几何题
龙源期刊网
巧添辅助线解证几何题
作者:倪小芳
来源:《数理化学习·初中版》2013年第06期
在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的问题加以解决.值得注意的是辅助线的添加目的与已知条件和所求结论有关.下面我们分别举例加以说明.
一、倍角问题
二、中点问题
三、线段的和差问题
四、垂线段问题
五、梯形问题
[江苏省金坛市第五中学(213200)]。
巧添辅助线解几何题(辅导练习题目)
巧添辅助线解几何题(辅导练习题目)(答题时间:25分钟)1. 如图,求∠A +∠B +∠C +∠D +∠E 的度数。
AB EOC D2. 如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F 。
求证:AF=EF 。
AFEB D C3. 已知E 是正方形ABCD 边CD 上的中点,点F 在BC 上,且∠DAE=∠FAE 。
求证:AF=AD +CF 。
A DEB F C4. 已知:在△ABC 中,∠BAC=90°,AB=AC ,BE 平分∠ABC ,CE ⊥BE 。
求证:CE=12BD 。
AEB C D【试题答案】1. 解:连结CDAB EOC D∵∠ECD+∠BDC=∠B+∠E=180°-∠BOE=180°-∠COD∴∠A+∠B+∠ACE+∠ADB+∠E=∠A+∠ECD+∠BDC+∠ACE+∠ADB=∠A+(∠ECD+∠ACE)+(∠BDC+∠ADB)=∠A+∠ACD+∠ADC=180°2. 证明:延长AD至G,使DG=AD,连结BGAFEB D CG∵BD=DC,∠BDG=∠ADC∴△BGD≌△CAD∴BG=AC=BE,∠G=∠CAD∴∠G=∠BEG=∠AEF∴∠AEF=∠CAD ∴AF=EF3. 过E作EG⊥AF于GA DEGB F C∵∠D=90°,∠AGE=90°AE平分∠DAF ∴ED=EG∵ED=EC ∴EG=EC∵∠EGF=∠C=90°EF=EF∴△EGF ≌△ECF (HL ) ∴GF=FC ∵ED=EG ,AE=AE ,∠D=∠AGE=90° ∴△ADE ≌△AGE (HL ) ∴AD=AG ∴AF=AG +GF=AD +FC即AF=AD +FC4. 证明:延长BA 交CE 的延长线于FFD AE B C∵BE 平分∠ABC ,CE ⊥BE∴CE=12CF又∵AB=AC ,∠BAC=∠CAF=90°∠ACF=∠ABD=90°-∠F∴△ACF ≌△ABD ∴CF=BD∴CE=12CF BD。
初中数学中考几何如何巧妙做辅助线大全
人教版北师大初中数学中考几何如何巧妙做辅助线大全人们从来就就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这就是解决问题常用的策略。
一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往就是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线就是个基本图形:当几何中出现平行线时添辅助线的关键就是添与二条平行线都相交的等第三条直线(2)等腰三角形就是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段就是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段就是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点就是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中数学常用辅助线添加技巧
初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:1 按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
北京数学中考添加辅助线题型解题方法
北京数学中考添加辅助线题型解题方法
北京数学中考中,添加辅助线是一种常见的解题方法。
通过添加辅助线,可以将复杂的几何图形转化为更简单的图形,从而更容易找到解题思路。
以下是一些常见的添加辅助线的解题方法:
1. 连接两点:如果两个点与另一个点或线段有关联,可以考虑连接这两点,从而将问题转化为三角形或平行四边形的问题。
2. 作平行线:如果需要证明两条直线平行,可以考虑作一条与这两条直线都平行的线段,从而利用平行线的性质来证明。
3. 作垂线:如果需要证明一条直线与另一条直线垂直,可以考虑作一条与这两条直线都垂直的线段,从而利用垂直线的性质来证明。
4. 延长线段:如果需要证明一条线段的长度等于另一条线段的长度,可以考虑延长这条线段,从而利用全等三角形的性质来证明。
5. 构造中点:如果需要证明一条线段是另一条线段的一半,可以考虑构造一个中点,从而利用中点的性质来证明。
在添加辅助线时,需要注意以下几点:
1. 辅助线不是任意画的,需要符合题目的条件和要求。
2. 辅助线的作用是帮助解题,而不是增加难度。
因此,在添加辅助线时要考虑其作用和目的。
3. 在添加辅助线时,需要考虑其与已知条件和要求的关系,从而找到正确的解题思路。
总之,添加辅助线是解决几何问题的一种有效方法。
通过掌握常见的添加辅助线的解题方法,可以更好地解决几何问题。
初中数学几何证明题画辅助线的技巧
初中数学几何证明题画辅助线的技巧Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】初中数学几何证明题画辅助线的技巧在几何学习中,如何添加是许多同学感到头疼的问题,许多同学常因辅助线的添加方法不当,造成解题困难。
以下是常见的辅助线作法编成了一些“” 歌诀。
人人都说几何难,难就难在辅助线。
辅助线,如何添把握和概念。
还要刻苦加钻研,找出规律凭经验。
图中有角平分线,可向两边作。
角平分线平行线,来添。
角平分线加垂线,试试看。
,常向两端把线连。
中两中点,连接则成。
三角形中有中线,延长中线等中线。
出现,对称中心等分点。
梯形里面作,平移一腰试试看。
平行移动对角线,补成三角形常见。
证相似,比线段,添线平行成习惯。
等积式子比例换,寻找线段很关键。
有困难,少麻烦。
斜边上面作高线,一大片。
半径与弦长计算,弦心距来中间站。
圆上若有一切线,切点圆心半径连。
切线长度的计算,最方便。
要想证明是切线,半径垂线仔细辨。
是直径,成半圆,想成直角径连弦。
弧有中点圆心连,要记全。
边两条弦,直径端点连。
边切线弦,同弧对角等找完。
如果遇到相交圆,不要忘作。
内外相切的两圆,经过切点。
若是添上,切点肯定在上面。
辅助线,是虚线,画图注意勿改变。
基本很关键,平时掌握要熟练。
解题还要多心眼,经常总结方法显。
切勿盲目乱添线,方法灵活应多变。
分析综合方法选,困难再多也会减。
虚心勤学加苦练,成绩上升成直线。
初中数学】几何题,辅助线的添加方法和典型例题
初中数学】几何题,辅助线的添加方法和典型例题初中数学:几何题型,辅助线的画法和典型例题1.倍长中线法已知在△ABC中,D是BC中点,DE⊥DF,需要判断BE+CF与EF的大小关系,并证明结论。
思路点拨:利用倍长中线法,倍长过中点的线段DF使DG=DF,再证明△XXX≌△EDF,△FDC≌△GDB,将BE、CF与EF线段转化到△BEG中,利用两边之和大于第三边证明。
解析:连接BG、EG,因为D是BC中点,所以BD=CD。
又因为DE⊥DF,在△XXX和△EDF中,ED=ED,∠XXX∠EDF,DG=DF,因此△XXX≌△EDF(SAS),所以EG=EF。
在△XXX与△GDB中,CD=BD,∠1=∠2,DF=DG,因此△FDC≌△GDB(SAS),所以CF=BG。
因为BG+BE>EG,所以BE+CF>EF。
结论得证。
总结升华:有中点的时候作辅助线可以考虑倍长中线法(或倍长过中点的线段)。
变式:已知CE、CB分别是△ABC与△ADC的中线,且∠ACB=∠ABC,需要证明CD=2CE。
解析:连接BF,延长CE至F使EF=CE。
因为EC为中线,所以AE=BE。
在△AEC与△BEF中,AE=BE,∠AEC =∠BEF,CE=EF,因此△AEC≌△BEF(SAS)。
所以AC =BF,∠A=∠FBE。
又因为∠ACB=∠ABC,∠XXX∠ACB+∠A,∠XXX∠ABC+∠A,所以AC=AB,∠XXX∠XXX。
因此AB=BF,BC为△ADC的中线,所以AB=BD,即BF=BD。
在△FCB与△DCB中,∠XXX∠DBC,BC=BC,因此△FCB≌△DCB(SAS),所以CF=CD。
结论得证。
2.以角平分线为对称轴的翻折变换构造全等三角形已知在△ABC中,∠C=2∠B,∠1=∠2,需要证明XXX。
解析:在AB上截取AE=AC,连接CE,作角ACE的平分线交AB于D,连接CD。
因为∠C=2∠B,所以∠ACE=∠XXX∠B,∠XXX∠A=∠1=∠2,所以△AED≌△ACD (SAS),因此ED=CD。
初中数学辅助线添加及例题大全
初中数学辅助线的添加人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
一.添辅助线有二种情况:(按定义添辅助线:如证明二直线垂直可延长使它们,相交后证交角为90 °;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
(按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1 )平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2 )等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3 )等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5 )三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
初中数学常用辅助线添加技巧
初中数学常用辅助线添加技巧人们从来就是用自己的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这是解决问题常用的策略。
初中数学常用辅助线添加技巧一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
绍兴市初中添线题技巧
绍兴市初中添线题技巧
添辅助线是解决初中几何问题的一种重要技巧,特别是在证明一些复杂几何关系或求解一些难以直接处理的几何问题时。
以下是绍兴市初中添线题的常见技巧:
1. 按定义添辅助线:如证明二直线垂直,可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2. 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,叫做基本图形。
当基本图形不完整时,需要补完整基本图形。
例如,当几何中出现平行线时,添辅助线的关键是添与二条平行线都相交的第三条直线;当出现等腰三角形底边上的中点时,添底边上的中线;当出现直角三角形斜边上的中点时,添斜边上的中线;当出现三角形中位线时,添中位线等。
3. 考虑全等三角形和相似三角形:全等三角形有轴对称形、中心对称形、旋转形与平移形等。
当出现两条相等线段或两个档相等角关于某一直线成轴对称时,可以添加轴对称形全等三角形或添对称轴,或将三角形沿对称轴翻转。
当出现一组或两组相等线段位于一组对顶角两边且成一直线时,可以添加中心对称形全等三角形加以证明。
4. 考虑特殊图形的性质:例如,等腰三角形的三线合一,直角三角形的勾股定理等。
这些性质可以帮助你快速找到添加辅助线的方法。
5. 理解题目意图:有时,题目可能并没有直接给出需要证明的结论,而是给出了一些暗示或线索。
理解题目的意图可以帮助你找到正确的添加辅助线的方法。
以上是绍兴市初中添线题的常见技巧,希望对你有所帮助。
当然,这些技巧并不是绝对的,还需要结合具体的问题和情境进行分析和应用。
初中数学常用辅助线添加技巧
初中数学常用辅助线添加技巧初中数学常用辅助线添加技巧一.添辅助线有二种情况:1按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。
2按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。
举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。
出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。
(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。
(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。
出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。
(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形; 当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。
(6)全等三角形:全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。
初中数学_巧添辅助线__解证几何题
巧添辅助线解证几何题[引出问题] 在几何证明或计算问题中.经常需要添加必要的辅助线.它的目的可以归纳为以下三点:一是通过添加辅助线.使图形的性质由隐蔽得以显现.从而利用有关性质去解题;二是通过添加辅助线.使分散的条件得以集中.从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。
值得注意的是辅助线的添加目的与已知条件和所求结论有关。
一、倍角问题研究∠α=2∠β或∠β=12∠α问题通称为倍角问题。
倍角问题分两种情形:1、∠α与∠β在两个三角形中.常作∠α的平分线.得∠1=12∠α.然后证明∠1=∠β;或把∠β翻折.得∠2=2∠β.然后证明∠2=∠α(如图一)2、∠α与∠β在同一个三角形中.这样的三角形常称为倍角三角形。
倍角三角形问题常用构造等腰三角形的方法添加辅助线(如图二)[例题解析]例1:如图1.在△ABC中.AB=AC,BD⊥AC于D。
求证:∠DBC=12∠BAC.分析:∠DBC、∠BAC所在的两个三角形有公共角∠C.可利用三角形内角和来沟通∠DBC、∠BAC和∠C的关系。
证法一:∵在△ABC中.AB=AC.∴∠ABC=∠C=12(180°-∠BAC)=90°-12∠BAC。
∵BD⊥AC于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-12∠BAC)=12∠BAC即∠DBC= 12∠BAC分析二:∠DBC、∠BAC分别在直角三角形和等腰三角形中.由所证的结论“∠DBC= ½∠BAC”中含有角的倍、半关系.因此.可以做∠A的平分线.利用等腰三角形三线合一的性质.把½∠A 放在直角三角形中求解;也可以把∠DBC沿BD翻折构造2∠DBC求解。
证法二:如图2.作AE⊥BC于E.则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC∵BD⊥AC于D∴∠DBC+∠C=90°∴∠EAC=∠DBC(同角的余角相等)即∠DBC=12∠BAC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学_巧添辅助线__解证几何题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN巧添辅助线 解证几何题[引出问题] 在几何证明或计算问题中,经常需要添加必要的辅助线,它的目的可以归纳为以下三点:一是通过添加辅助线,使图形的性质由隐蔽得以显现,从而利用有关性质去解题;二是通过添加辅助线,使分散的条件得以集中,从而利用它们的相互关系解题;三是把新问题转化为已经解决过的旧问题加以解决。
值得注意的是辅助线的添加目的与已知条件和所求结论有关。
下面我们分别举例加以说明。
[例题解析]一、 倍角问题例1:如图1,在△ABC 中,AB=AC,BD ⊥AC 于D 。
求证:∠DBC=12∠BAC.分析:∠DBC 、∠BAC 所在的两个三角形有公共角∠C三角形内角和来沟通∠DBC 、∠BAC 和∠C 证法一:∵在△ABC 中,AB=AC , ∴∠ABC=∠C=12(180°-∠BAC )=90°-12∠BAC。
∵BD ⊥AC 于D ∴∠BDC=90°∴∠DBC=90°-∠C=90°-(90°-12∠BAC)= 12∠BAC即∠DBC= 12∠BAC分析二:∠DBC 、∠BAC 分别在直角三角形和等腰三角形中,由所证的结论“∠DBC= ½∠BAC ”中含有角的倍、半关系,因此,可以做∠A 的平分线,利用等腰三角形三线合一的性质,把½∠A 放在直角三角形中求解;也可以把∠DBC 沿BD 翻折构造2∠DBC 求解。
证法二:如图2,作AE ⊥BC 于E ,则∠EAC+∠C=90°∵AB=AC ∴∠EAG=12∠BAC ∵BD ⊥AC 于D∴∠DBC+∠C=90°∴∠EAC=∠DBC (同角的余角相等) 即∠DBC=12∠BAC 。
证法三:如图3,在AD 上取一点E ,使DE=CD 连接BE∵BD⊥AC∴BD是线段CE的垂直平分线∴BC=BE ∴∠BEC=∠C∴∠EBC=2∠DBC=180°-2∠C ∵AB=AC∴∠ABC=∠C∴∠BAC=180°-2∠C∴∠EBC=∠BAC∴∠DBC= 12∠BAC说明:例1也可以取BC中点为E,连接DE,利用直角三角形斜边的中线等于斜边的一半和等腰三角形的性质求解。
同学们不妨试一试。
例2、如图4,在△ABC中,∠A=2∠B求证:BC2=AC2+AC•AB分析:由BC2=AC2+AC•AB= AC(AC+AB),启发我们构建两个相似的三角形,且含有边BC、AC、AC+AB.又由已知∠A=2∠B知,构建以AB为腰的等腰三角形。
证明:延长CA到D,使AD=AB,则∠D=∠DBA∵∠BAC是△ABD的一个外角∴∠BAC=∠DBA+∠D=2∠D∵∠BAC=2∠ABC∴∠D=∠ABC又∵∠C=∠C∴△ABC∽△BDC ∴AC BCBC CDAB C∴BC 2=AC •CD AD=AB ∴BC 2= AC (AC+AB )=AC 2+AC •AB二、 中点问题例3.已知:如图,△ABC 中,AB=AC,在AB 上取一点D ,在AC 的延长线上取一点E,连接DE 交BC 于点F,若F 是DE 的中点。
求证:BD=CE分析:由于BD 、CE 的形成与D 、E 两点有关, 但它们所在的三角形之间因为不是同类三角形,所以 关系不明显,由于条件F 是DE 的中点,如何利用这个 中点条件,把不同类三角形转化为同类三角形式问题的关键。
由已知AB=AC,联系到当过D 点或E 点作平行线,就可以形成新 的图形关系——构成等腰三角形,也就是相当于先把BD 或CE 移动一下位置,从而使问题得解。
证明:证法一:过点D 作DG ∥AC,交BC 于点G (如上图) ∴∠DGB=∠ACB, ∠DGF=∠FCE ∵AB=AC ∴∠B=∠ACB ∴∠B=∠DGB ∴BD=DG ∵F 是DE 的中点 ∴DF=EF在△DF G 和△DEFC 中,DFG= EFC DGF= FCE DF=EF ∠∠⎧⎪∠∠⎨⎪⎩∴△DF G ≌EFC ∴DG=CE ∴BD=CE证法二:如图,在AC 上取一点H,使CH=CE,连接DH ∵F 是DE 的中点∴CF 是△EDH 的中位线 ∴DH ∥BC∴∠ADH=∠B, ∠AHD=∠BCA ∵AB=AC ∴∠B=∠BCA ∴∠ADH=∠AHD ∴AD=AH ∴AB-AD=AC-AH ∴BD=HC ∴BD=CE说明:本题信息特征是“线段中点”。
也可以过E 作EM ∥BC,交AB 延长线于点G ,仿照证法二求解。
例4.如图,已知AB ∥CD ,AE 平分∠BAD ,且E 是BC 的中点 求证:AD=AB+CD证法一:延长AE 交DC 延长线于F ∵AB ∥CD ∴∠BAE=∠F, ∠B=∠ECF∵E 是BC 的中点 ∴BE=CE 在△ABE 和△CEF 中AB C DHEF ABCEFBAE= F B= ECF BE=CE ∠∠⎧⎪∠∠⎨⎪⎩∴△ABE ≌△CEF ∴AB=CF ∵AE 平分∠ABD ∴∠BAE=∠DAE ∴∠DAE=∠F ∴AD=DF ∵DF=DC+CF CF=AB ∴AD=AB+DC证法二:取AD 中点F ,连接EF∵AB ∥CD ,E 是BC 的中点 ∴EF 是梯形ABCD 的中位线 ∴EF ∥AB , EF=12(AB+CD ) ∴∠BAE=∠AEF ∵AE 平分∠BAD ∴∠BAE=∠FAE ∴∠AEF=∠FAE ∴AF=EF ∵AF=DF∴EF=AF=FD=12AD ∴12 (AB+CD)= 12ADDA BCEF∴AD=AB+CD三.角平分线问题例5.如图(1),OP是∠MON的平分线,请你利用图形画一对以OP所在直线为对称轴的全等三角形。
请你参考这个全等三角形的方法,解答下列问题。
(1)如图(2),在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC、∠BCA 的平分线,AD、CE相交于点F,请你判断并写出EF与FD之间的数量关系。
(2)如图(3),在△ABC中,如果∠ACB不是直角,而(1)中的其他条件不变,请问,你在(1)中所得的结论是否仍然成立?若成立,请证明;若不成立,请说明理由。
(3)分析:本题属于学习性题型。
这类题型的特点是描述一种方法,要求学生按照指定的方法解题。
指定方法是角平分问题的“翻折法”得全等形。
解:(1)EF=FD(2)答:(1)结论EF=FD 仍然成立理由:如图(3),在AC 上截取AG=AE,连接FG 在△AEF 和△AGF 中,AE=AG EAF= FAG AF=AF ⎧⎪∠∠⎨⎪⎩∴△AEF ≌△AGF ∴EF=GF, ∠EFA=∠GFA由∠B=60°,AD 、CE 分别是∠BAC ∠BCA 的平分线 可得∠FAG+∠FCA=60° ∴∠EFA=∠GFA=∠DFC=60° ∴∠GFC=60° 在△CFG 和△CFD 中GFC= DFC CF=CF DCE= ACE ∠∠⎧⎪⎨⎪∠∠⎩∴△CFG ≌△CFD ∴FG=FD 又因为EF=GF ∴EF=FD说明:学习性问题是新课程下的新型题,意在考查学生现场学习能力和自学能力。
抛开本题要求从角平分线的角度想,本题也可以利用角平分线的性质“角平分线上的点到角的两边的距离相等”达到求解的目的。
解法二:(2)答(1)中的结论EF=FD 仍然成立。
理由:作FG ⊥AB 于G,FH ⊥AC 于H,FM ⊥BC 于M ∵∠EAD=∠DAC ∴FG=FH∵∠ACE=∠BCE ∴FH=FG∵∠B=60° ∴∠DAC+∠ACE=60° ∴∠EFD=∠AFC=180°- 60°=120° 在四边形BEFD 中 ∠BEF+∠BDF=180°∵∠BDF+∠FDC=180° ∴∠FDC =∠BEF 在△EFG 和△DFM 中0 FDC = BEF EGF= DMF=90FG=FM ∠∠⎧⎪∠∠⎨⎪⎩∴EFG ≌△DFM ∴EF=DF四、 线段的和差问题例6 如图,在△ABC 中,AB=AC,点P 是边BC 上一点,PD ⊥AB 于D,PE ⊥AC 于E,CM ⊥AB 于M,试探究线段PD 、PE 、CM 的数量关系,并说明理由。
分析:判断三条线断的关系,一般是指两较短线段的和与较长线段的大小关系,通过测量猜想PD+PE=CM.分析:在CM 上截取MQ=PD ,得□PQMD,再证明CQ=PE答:PD+PE=CM证法一:在CM 上截取MQ=PD ,连接PQ. ∵CM ⊥AB 于M, PD ⊥AB 于D ∴∠CMB=∠PDB=90° ∴CM ∥DP∴四边形PQMD 为平行四边形 ∴PQ ∥AB∴∠CQP=∠CMB=90°∠QPC=∠B ∵AB=AC ∴∠B=∠ECP ∴∠QPC=∠ECP ∵PE ⊥AC 于E ∴∠PEC=90° 在△PQC 和△PEC 中PQC= PEC QPC= ECP PC=PC ∠∠⎧⎪∠∠⎨⎪⎩∴△PQC ≌△PEC ∴QC=PE ∵MQ=PD ∴MQ+QC=PD+PE ∴PD+PE=CM分析2:延长DF 到N 使DN=CM,连接CN,得平行四边形再证明PN=PE证法2:延长DF 到N ,使DN=CM ,连接CN同证法一得平行四边形DNCM ,及△PNC ≌△PEC∴PN=PE ∴PD+PE=CM分析3:本题中含有AB=AC 及三条垂线段PD 、DE 、CM , 且PABPACABCSSS+=证法三:连接AP,∵PD ⊥AB 于D,PE ⊥AC 于E,CM ⊥AB 于M ∠PQC=∠PEC ∠QPC=∠ECP PC=PC ∴121212ABPACPABCS AB PD S AC PE SAB CM =•=•=• ∵AB=AC 且PABPACABCSSS+=∴111222AB PD AB PE AB CM AB PD PE CM•+•=•≠∴+= 说明:当题目中含有两条以上垂线段时,可以考虑面积法求解。
五、 垂线段问题例7 在平行四边形ABCD 中,P 是对角线BD 上一点,且,,PE AB PF BC ⊥⊥垂足分别是E 、F求证:AB PF BC PE=FEDCBA分析:将比例式ABPF BC PE=转化为等积式AB PE BC PF •=•,联想到AB PE BC PF •=•1122, 即△PAB 与△PBC 的面积相等,从而用面积法达到证明的目的。
证明:连接AC 与BD 交于点O,连接PA 、PC 在平行四边形ABCD 中,AO=COAOBBOCSS∴=同理,AOPCOP AOBAOPBOCCOPPAB PBCS S SS SSSS=∴-=-=∵,,PE AB PF BC ⊥⊥,11221122PAB PBC SAB PE S BC PF AB PE BC PF AB PE BC PF AB PFBC PE∴=•=•∴•=•∴•=•∴=例8求证:三角形三条边上的中线相交于一点。