《数字信号处理》课程基本实验
数字信号处理实验报告
数字信号处理实验报告⼀、课程设计(综合实验)的⽬的与要求⽬的与要求:1.掌握《数字信号处理基础》课程的基本理论; 2.掌握应⽤MATLAB 进⾏数字信号处理的程序设计;实验内容:已知低通数字滤波器的性能指标如下:0.26p ωπ=,0.75dB p R =,0.41s ωπ=,50dB s A =要求:1. 选择合适的窗函数,设计满⾜上述指标的数字线性相位FIR 低通滤波器。
⽤⼀个图形窗⼝,包括四个⼦图,分析显⽰滤波器的单位冲激响应、相频响应、幅频响应和以dB 为纵坐标的幅频响应曲线。
2. ⽤双线性变换法,设计满⾜上述指标的数字Chebyshev I 型低通滤波器。
⽤⼀个图形窗⼝,包括三个⼦图,分析显⽰滤波器的幅频响应、以dB 为纵坐标的幅频响应和相频响应。
3. 已知模拟信号1234()2sin(2)5sin(2)8cos(2)7.5cos(2)x t f t f t f t f t ππππ=+++其中10.12f kHz =,2 4.98f kHz =,3 3.25f kHz =,4 1.15f kHz =,取采样频率10s f kHz =。
要求:(1) 以10s f kHz =对()x t 进⾏取样,得到()x n 。
⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x t 以及()x n (0511n ≤≤)的波形;(2) ⽤FFT 对()x n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数x N ,并⽤⼀个图形窗⼝,包括两个⼦图,分别显⽰()x n 以及()X k 的幅值; (3) ⽤要求1中设计的线性相位低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出1()y n ,并⽤FFT 对1()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
求出⼀个记录长度中的最少点数1y N ,并⽤⼀个图形窗⼝,包括四个⼦图,分别显⽰()x n (01x n N ≤≤-)、()X k 、1()y n (101y n N ≤≤-)和1()Y k 的幅值;(4) ⽤要求2中设计的Chebyshev 低通数字滤波器对()x n 进⾏滤波,求出滤波器的输出2()y n ,并⽤FFT 对2()y n 进⾏谱分析,要求频率分辨率不超过5Hz 。
数字信号处理实验报告
《数字信号处理》实验报告课程名称:《数字信号处理》学院:信息科学与工程学院专业班级:通信1502班学生姓名:侯子强学号:02指导教师:李宏2017年5月28日实验一离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号:ˆ()()()a a xt x t p t = 式中()p t 为周期冲激脉冲,$()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为µ()a X j Ω: 上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T。
也即采样信号的频谱µ()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换()()n P t t nT δ∞=-∞=-∑µ1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑µ()()|j a TX j X e ωω=ΩΩ=2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
数字信号处理实验:基于FFT谱分析中的误差分析及处理
学生实验报告2020 —— 2021 学年第 1学期实验课程数字信号处理实验地点主教414学院电子信息工程学院专业通信工程学号姓名实验项目基于FFT谱分析中的误差分析及处理实验时间10.20 实验台号预习成绩报告成绩一、实验目的1.在理论学习的基础上,通过本次实验,加深对快速傅里叶变换的理解,熟悉FFT算法及其程序的编写2.熟悉应用FFT对典型信号进行频谱分析的方法。
3.了解应用FFT对非周期信号进行频谱分析所面临的问题并掌握其解决方法。
二、实验原理对非周期序列进行频谱分析应注意的问题1、混叠三、预习内容1.混叠,泄漏,栅栏效应的概念2.应用FFT对典型信号进行频谱分析的方法3.应用FFT对非周期信号进行频谱分析所面临的问题并掌握其解决方法4.傅里叶变换的相关性质四、实验内容(一)完成如下实验内容的学习和调试1. 对有限长序列进行谱分析(2)将上述有限长序列x(n)[1,2,3,2,1]末尾补零到N=1000点,使用FFT计算其频谱。
2. 对无限长序列进行谱分析用FFT进行无限长序列的频谱分析,首先要将无限长序列截断成一个有限长序列。
序列长度的取值对频谱有较大的影响,带来的问题是引起频谱的泄漏和波动。
已知一个无限长序列为, x(n)=0(n<0),采样频率Fs=20Hz,要求用FFT求其频谱。
3. 对模拟信号进行谱分析(一)用FFT计算下列连续时间信号的频谱,并观察选择不同的Ts和N值对频谱特性的影响。
(二)记录实验图形结果并结合基本原理,理解每一条语句的含义;(三)讨论有限长序列谱分析时增加分辨率的措施和方法;(四)谈论连续信号谱分析时不同时域采样频率及点数N不同时对频谱分析的影响;(五)对模拟信号进行谱分析,选择采样频率Fs=64Hz,变换区间长度N分别取8、32和64,用FFT分析其频谱。
记录结果并对比、分析和讨论。
五、实验步骤Fs=10;xn=[1,2,3,2,1];N=length(xn);D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(1,2,1);plot(k*D,abs(X),'o:');title('幅度频谱');xlabel('rad/s');subplot(1,2,2);plot(k*D,angle(X),'o:');title('相位频谱');xlabel('rad/s');Fs=10;N=1000;xn=[1,2,3,2,1];Nx=length(xn);xn=[1,2,3,2,1,zeros(1,N-Nx-1)];D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(1,2,1);plot(k*D,abs(X)); title('幅度频谱');xlabel('rad/s'); subplot(1,2,2);plot(k*D,angle(X)); title('相位频谱');xlabel('rad/s');Fs=20;C=[8,16,128];for r=0:2;N=C(r+1);n=0:N-1;xn=exp(-0.5*n);D=2*pi*Fs/N;k=floor(-(N-1)/2:(N-1)/2);X=fftshift(fft(xn,N));subplot(3,2,2*r+1); plot(k*D,abs(X));axis([-80,80,0,3]);subplot(3,2,2*r+2);stairs(k*D,angle(X));axis([-80,80,-1,1]);endT0=[0.5,0.25,0.125,0.125];N0=[256,256,2048,2048];for r=1:4;Ts=T0(r);N=N0(r);n=0:N-1;xn=exp(-0.5*n);D=2*pi/(N*Ts);xa=exp(-0.01*n*Ts).*(sin(2*n*Ts)+sin(2.1*n*Ts)+sin(2.2*n*Ts)); k=floor(-(N-1)/2:(N-1)/2);Xa=Ts*fftshift(fft(xa,N));[r,Xa(1)]subplot(2,2,r);plot(k*D,abs(Xa));axis([1,3,1.1*min(abs(Xa)),1.1*max(abs(Xa))]);end六、总结分析1.离散时间信号的FFT变换,其频谱是以抽样点数N为周期的周期延拓2.当N2为N1的整数倍时,以为抽样点数的抽样的图形就是在以为抽样点数的抽样图形的每两个点之间插入N2/N1个点的谱图形。
《数字信号处理》课程实验题目
计电学院《数字信号处理》课程实验适用专业:电子通信工程专业;实验学时:9 学时一、实验的性质、任务和基本要求(一)本实验课的性质、任务数字信号处理课程实验是数字信号处理课程的有效的补充部分,通过实验,使学生巩固和加深数字信号处理的理论知识的理解和掌握,在实验过程中了解简单但是完整的数字信号处理的工程实现方法和流程。
通过实践进一步加强学生独立分析问题和解决问题的能力、实际动手能力、综合设计及创新能力的培养。
(二)基本要求掌握数字信号处理基本理论知识和滤波器设计及应用。
(三)实验选项二、实验教学内容实验一1、实验目的和要求1)加深理解时域采样定理、体会使用MATLAB的离散FT函数fft( )来解决涉及模拟信号的问题;2)加深理解对带通信号的采样特性,学会采用MATLAB解决该问题;3)加深理解在频率采样法中,过渡点对所设计滤波器特性的影响。
2、实验要求1)提供MATLAB程序,画出每个步骤的曲线图;2)写实验报告,包含有对所得结果进行分析和说明。
第一组:张毅雷凌峰白法聪覃昱滔刘强何新文第二组:邓志强林盛勇李日胜黎少锋梁聪杨晨实验二1、实验目的和要求(1)加深理解采用数字信号处理方法对模拟信号处理的过程、掌握使用MATLAB处理的方法;对一段音乐信号进行处理和输出;要求画出滤波前后语音信号时域波形、信号和滤波器的幅度频率特性曲线、相位频率特性曲线;(2)加深对截断效应的理解;(3)掌握使用MATLAB设计滤波器,并对语音信号处理的方法。
对一段音乐信号进行处理和输出;要求画出滤波前后语音信号时域波形、信号和滤波器的幅度频率特性曲线、相位频率特性曲线。
2、实验要求1)提供MATLAB程序,画出每个步骤的曲线图;2)写实验报告,包含有对所得结果进行分析和说明。
第九组:汪涛张汉毅巫金敏张经中柳泽举第六组:罗涛梁乐杰黄乃生实验三1、实验目的和要求掌握采用MATLAB数字滤波器设计软件编制方法。
软件要求在界面内有不同类型(高通低通带通带阻)滤波器的选择、或者只对低通滤波器采用不同方法设计的选择,应该有不同边界频率和不同衰减的选择,能画出幅度频率特性曲线、相位频率特性曲线。
重邮课程实验报告
一、实验名称数字信号处理实验二、实验目的1. 理解数字信号处理的基本概念和原理。
2. 掌握数字滤波器的设计方法及其应用。
3. 熟悉数字信号处理软件的使用,提高实验技能。
三、实验原理数字信号处理(Digital Signal Processing,DSP)是研究数字信号的产生、处理、分析和应用的科学。
本实验主要涉及以下几个方面:1. 数字滤波器的基本概念:数字滤波器是一种对数字信号进行频率选择的装置,可以用于信号的滤波、增强、抑制等。
2. 滤波器的设计方法:主要包括有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器的设计方法。
3. 数字信号处理软件的使用:利用MATLAB等软件进行数字信号处理实验,提高实验效率。
四、实验器材1. 实验计算机2. MATLAB软件3. 实验指导书五、实验步骤1. 实验一:FIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入FIR滤波器的参数,如滤波器的阶数、截止频率等。
(3)运行脚本文件,观察滤波器的频率响应曲线。
(4)根据实验结果,分析滤波器的性能。
2. 实验二:IIR滤波器设计(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入IIR滤波器的参数,如滤波器的阶数、截止频率等。
(3)运行脚本文件,观察滤波器的频率响应曲线。
(4)根据实验结果,分析滤波器的性能。
3. 实验三:数字信号处理软件的使用(1)打开MATLAB软件,创建一个新的脚本文件。
(2)根据实验指导书的要求,输入信号处理的参数,如采样频率、滤波器类型等。
(3)运行脚本文件,观察信号处理的结果。
(4)根据实验结果,分析数字信号处理软件的应用。
六、实验结果与分析1. 实验一:FIR滤波器设计实验结果表明,所设计的FIR滤波器具有较好的频率选择性,滤波效果符合预期。
2. 实验二:IIR滤波器设计实验结果表明,所设计的IIR滤波器具有较好的频率选择性,滤波效果符合预期。
(完整版)数字信号处理实验三
3.41;3.42 由教材可知: ,即序列的偶部分的傅立叶变换是序列的傅立叶变换的实部。
5、实验步骤
1、进行本实验,首先必须熟悉matlab的运用,所以第一步是学会使用matlab。
2、学习相关基础知识,根据《数字信号处理》课程的学习理解实验内容和目的。
plot(w/pi,angle(h1));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
title('原序列的相位谱')
subplot(2,2,4)
plot(w/pi,angle(h2));grid
xlabel('\omega/\pi');ylabel('以弧度为单位的相位');
grid;
title('相位谱arg[H(e^{j\omega})]');
xlabel('\omega/\pi');
ylabel('以弧度为单位的相位');
3.4
clf;
w=-4*pi:8*pi/511:4*pi;
num1=[1 3 5 7 9 11 13 15 17];
h=freqz(num,1,w);
Q3.32 通过加入合适的注释语句和程序语句,修改程序P3.8,对程序生成的图形中的两个轴加标记。时移量是多少?
Q3.33 运行修改后的程序并验证离散傅里叶变换的圆周时移性质。
Q3.36 运行程序P3.9并验证离散傅里叶变换的圆周卷积性质。
Q3.38 运行程序P3.10并验证线性卷积可通过圆周卷积得到。
数字信号处理实验报告一二
数字信号处理课程实验报告实验一 离散时间信号和系统响应一. 实验目的1. 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解2. 掌握时域离散系统的时域特性3. 利用卷积方法观察分析系统的时域特性4. 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对离散信号及系统响应进行频域分析二、实验原理1. 采样是连续信号数字化处理的第一个关键环节。
对采样过程的研究不仅可以了解采样前后信号时域和频域特性的变化以及信号信息不丢失的条件,而且可以加深对离散傅里叶变换、Z 变换和序列傅里叶变换之间关系式的理解。
对连续信号()a x t 以T 为采样间隔进行时域等间隔理想采样,形成采样信号: 式中()p t 为周期冲激脉冲,()a x t 为()a x t 的理想采样。
()a x t 的傅里叶变换为()a X j Ω:上式表明将连续信号()a x t 采样后其频谱将变为周期的,周期为Ωs=2π/T 。
也即采样信号的频谱()a X j Ω是原连续信号xa(t)的频谱Xa(jΩ)在频率轴上以Ωs 为周期,周期延拓而成的。
因此,若对连续信号()a x t 进行采样,要保证采样频率fs ≥2fm ,fm 为信号的最高频率,才可能由采样信号无失真地恢复出原模拟信号ˆ()()()a a xt x t p t =1()()*()21()n a a a s X j X j P j X j jn T π∞=-∞Ω=ΩΩ=Ω-Ω∑()()n P t t nT δ∞=-∞=-∑计算机实现时,利用计算机计算上式并不方便,因此我们利用采样序列的傅里叶变换来实现,即而()()j j n n X e x n e ωω∞-=-∞=∑为采样序列的傅里叶变换2. 时域中,描述系统特性的方法是差分方程和单位脉冲响应,频域中可用系统函数描述系统特性。
已知输入信号,可以由差分方程、单位脉冲响应或系统函数求出系统对于该输入信号的响应。
《数字信号处理》实验指导书
数字信号处理实验指导书电子与信息工程学院二○一二年前言数字信号处理(DSP)研究数字序列信号的表示方法,并对信号进行运算,以提取包含在其中的特殊信息。
数字信号处理是一门技术基础课程,实验是该课程教学的重要内容,是理论联系实际的重要手段。
学生通过实验,可以验证和巩固所学的理论知识,掌握数字信号处理实验的基本技能,提高分析和解决实际问题的能力,培养认真、严谨、实事求是的工作作风。
我们根据当前通信类新课程体系的流行趋势,充分考虑通信工程类专业的特殊要求,编写了这门实验课程指导书。
在内容安排上,我们在自身的教学基础上,吸收了兄弟院校的先进经验。
我们把重点放在对学生理论联系实际、分析和解决问题能力的训练上,力求丰富实验内容,简化实验方法与步骤,化抽象为具体,让学生通过实验能够举一反三,融会贯通,提高信息处理和信息加工的能力,为以后在信息领域的发明和创造打下牢固的基础。
在实验的具体编排上,我们按照循序渐进的原则,逐步加深实验内容,注意前后实验之间的连贯性,强化基本实验技能的培养,保证实验内容的丰富性、生动性,增强学生对数字信号处理实验课程的兴趣。
目录实验一信号的谱分析 (1)实验二基-2FFT算法的软件实现 (6)实验三 IIR数字滤波器的设计 (12)实验四 FIR数字滤波器的设计 (16)实验一 信号的谱分析一、实验目的1、熟练掌握快速离散傅里叶变换(FFT )的原理及用FFT 进行频谱分析的基本方法;2、熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解;3、进一步了解离散傅里叶变换的主要性质及FFT 在数字信号处理中的重要作用。
二、基本原理1、离散傅里叶变换(DFT )及其主要性质DFT 表示离散信号的离散频谱,DFT 的主要性质中有奇偶对称特性,虚实特性等。
通过实验可以加深理解。
例如:实序列的DFT 具有偶对称的实部和奇对称的虚部,这可以证明如下: 由定义∑-==10)()(N n knNW n x k X∑∑-=-=-=1010)2sin()()2cos()(N n N n kn N n x j kn N n x ππ ∑-=-=-10)()()(N n nk N NW n x k N X∑-=-=1)(N n kn NNnW Wn x∑-=-=10)(N n knN W n x∑∑-=-=+=1010)2sin()()2cos()(N n N n kn N n x j kn N n x ππ)(*)(k N X k X -=∴对于单一频率的三角序列来说它的DFT 谱线也是单一的,这个物理意义我们可以从实验中得到验证,在理论上可以推导如下: 设:)()2sin()(n R n N n x N π=其DFT 为:∑-=-=102)()(N n kn Njen x k X πkn Nj N n e n N ππ210)2sin(--=∑=kn N j N n n Nj nN j e e e j πππ21022)(21--=-∑-=∑-=+----=10)1(2)1(2)(21N n k n Nj k n N j e e j ππ从而∑-=-=-=10220)(21)0(N n n Nj nN j e e j X ππ∑-=--==-=10422)1(21)1(N n n Nj N j j N e j X π0)2(=X0)2(=-N X22)(21)1(102)2(2N j j N e e j N X N n n j n N N j =-=-=-∑-=--ππ以上这串式中)0(X 反映了)(n x 的直流分量,)1(X 是)(n x 的一次谐波,又根据虚实特性)1()1(X N X -=-,而其它分量均为零。
数字信号处理MATLAB实验报告
[H,w]=freqz(B,A,N)
其中,B与A分别表示 的分子和分母多项式的系数向量;N为正整数,默认值为512;返回值w包含 范围内的N个频率等分点;返回值H则是离散时间系统频率响应 在 范围内N个频率处的值。另一种形式为
[H,w]=freqz(B,A,N,’whole’)
与第一种方式不同之处在于角频率的范围由 扩展到 。
上机练习:
试用MATLAB的residuez函数,求出 的部分分式展开和。
b=[2 16 44 56 32];
a=[3 3 -15 18 -12];
[R,P,K]=residuez(b,a)
R =
+
zplane(B,A)
其中,B与A分别表示 的分子和分母多项式的系数向量。它的作用是在Z平面上画出单位圆、零点与极点。
与拉氏变换在连续系统中的作用类似,在离散系统中,z变换建立了时域函数 与z域函数 之间的对应关系。因此,z变换的函数 从形式可以反映 的部分内在性质。我们仍旧通过讨论 的一阶极点情况,来说明系统函数的零极点分布与系统时域特性的关系。
[R,P,K]=residuez(B,A)
其中,B,A分别表示X(z)的分子与分母多项式的系数向量;R为部分分式的系数向量;P为极点向量;K为多项式的系数。若X(z)为有理真分式,则K为零。
离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即
(4-4)
如果系统函数 的有理函数表示式为
x=iztrans(z)
上式中的x和Z分别为时域表达式和z域表达式的符号表示,可通过sym函数来定义。
如果信号的z域表示式 是有理函数,进行z反变换的另一个方法是对 进行部分分式展开,然后求各简单分式的z反变换。设 的有理分式表示为
数字信号处理实验三
数字信号处理实验三数字信号处理实验三是针对数字信号处理课程的一项实践性任务。
本实验旨在通过实际操作,加深对数字信号处理理论的理解,并培养学生的实验能力和问题解决能力。
在本实验中,我们将学习和实践以下内容:1. 实验目的本实验的目的是通过使用MATLAB软件进行数字信号处理,加深对数字信号处理基本概念和算法的理解,掌握数字信号的采样、量化、滤波等基本操作。
2. 实验器材在本实验中,我们将使用以下器材:- 个人计算机- MATLAB软件3. 实验步骤本实验的具体步骤如下:步骤一:信号生成首先,我们需要生成一个模拟信号,可以是正弦信号、方波信号或其他类型的信号。
在MATLAB中,我们可以使用相关函数生成这些信号。
生成信号的目的是为了后续的数字信号处理操作提供输入。
步骤二:信号采样在本步骤中,我们将对生成的模拟信号进行采样。
采样是指在一定的时间间隔内对信号进行离散化处理,得到离散时间上的信号序列。
在MATLAB中,我们可以使用采样函数对信号进行采样。
步骤三:信号量化在本步骤中,我们将对采样后的信号进行量化。
量化是指将连续的信号离散化为一组离散的幅值。
在MATLAB中,我们可以使用量化函数对信号进行量化。
步骤四:信号滤波在本步骤中,我们将对量化后的信号进行滤波。
滤波是指通过一系列滤波器对信号进行处理,以去除不需要的频率成分或噪声。
在MATLAB中,我们可以使用滤波函数对信号进行滤波。
步骤五:信号重构在本步骤中,我们将对滤波后的信号进行重构。
重构是指将离散化的信号恢复为连续的信号。
在MATLAB中,我们可以使用重构函数对信号进行重构。
步骤六:信号分析在本步骤中,我们将对重构后的信号进行分析。
分析是指对信号的频谱、功率等特性进行分析,以了解信号的特点和性能。
在MATLAB中,我们可以使用分析函数对信号进行分析。
4. 实验结果在完成以上步骤后,我们可以得到经过数字信号处理的结果。
这些结果可以是经过采样、量化、滤波和重构后的信号波形,也可以是信号的频谱、功率等特性。
数字信号处理课程设计实验报告(打印)
北京工商大学数字信号处理课程设计实验报告班级:信息081学号:姓名:同组同学姓名:成绩:2011年7月一. 设计任务 1. 设计目的:(1)熟悉和巩固模拟滤波器的设计方法和原理 (2)掌握Butterworth/Chebyshev 滤波器设计方法 (3)实现滤波器设计的有关经典算法(4)熟练掌握使用高级语言程序设计各种要求的数字滤波器 (5)熟练掌握双线性变换方法 2.设计技术指标:(1)按要求设计Butterworth 型数字低通滤波器, (2)性能指标如下:① 通带截止频率πω2.0=p ; ② 通带最大衰减αp =3dB ; ③ 阻带起始频率πω3.0=s ; ④ 阻带最小衰减αs =20dB ;3.设计要求:(1) 根据模拟滤波器的性能指标,确定数字滤波器指标; (2) 程序应具有通用性;(3)采用双线性变换法,设计满足上述性能指标要求的Butterworth 型数字低通滤波器;(4)由软件直接给出数字滤波器的级联型结构;(5)确定数字滤波器的频率响应(幅值响应和相位响应)及群延迟等;4.软件要求:基本要求:软件能根据滤波器性能技术指标要求,能自动设计Butterworth 型、Chebyshev 型或其他滤波器;5.其它要求:(1)学习并巩固模拟滤波器(Butterworth,Chebyshev 型滤波器)设计的基本概念和基本理论;(2)熟悉Butterworth,Chebyshev 型滤波器设计的有关公式; (3)掌握归一化设计方法中各种表格的应用方法;二、实验原理与计算方法1、双线性变换法设计IIR 低通数字滤波器的基本原理和算法双线性变换法设计数字滤波器,采用了二次映射的方法,就是先将整个s 平面压缩到s1平面的一个T j T j ππ~-的横形条带范围内,然后再将这个条带映射到z 平面上,就能建立s 平面到z 平面的一一对应关系。
对于低通数字滤波器,映射关系为z z T z z T s ++-=+-=--11211211 (1) 其中T 为抽样周期。
数字信号处理实验课课程设计
1温情提示各位同学:数字信号处理课程设计分基础实验、综合实验和提高实验三部分。
基础实验、综合实验是必做内容,提高实验也为必做内容,但是为六选一,根据你的兴趣选择一个实验完成即可。
由于课程设计内容涉及大量的编程,希望各位同学提前做好实验准备。
在进实验室之前对实验中涉及的原理进行复习,并且,编制好实验程序。
进入实验室后进行程序的调试。
4课程设计准备与检查在进实验室之前完成程序的编制,在实验室完成编制程序的调试。
在进行综合实验的过程中,检查基础实验结果;在做提高实验的过程中,检查综合实验结果;提高实验结果在课程设计最后四个学时中检查。
检查实验结果的过程中随机提问,回答问题计入考核成绩。
5实验报告格式一、实验目的和要求二、实验原理三、实验方法与内容(需求分析、算法设计思路、流程图等)四、实验原始纪录(源程序等)五、实验结果及分析(计算过程与结果、数据曲线、图表等)六、实验总结与思考6课程设计实验报告要求一、实验报告格式如前,ppt 第5页。
二、实验报告质量计10分。
实验报告中涉及的原理性的图表要自己动手画,不可以拷贝;涉及的公式要用公式编辑器编辑。
MATLAB 仿真结果以及编制的程序可以拷贝。
三、如果发现实验报告有明显拷贝现象,拷贝者与被拷贝者课程设计成绩均为零分。
四、实验报告电子版在课程设计结束一周内发送到指导教师的邮箱。
李莉:***************赵晓晖:*****************王本平:**************叶茵:****************梁辉:*******************7基础实验篇实验一离散时间系统及离散卷积实验二离散傅立叶变换与快速傅立叶变换实验三IIR 数字滤波器设计实验四FIR数字滤波器设计8实验一离散时间系统及离散卷积一、实验目的(1)熟悉MATLAB 软件的使用方法。
(2)熟悉系统函数的零极点分布、单位脉冲响应和系统频率响应等概念。
(3)利用MATLAB 绘制系统函数的零极点分布图、系统频率响应和单位脉冲响应。
数字信号处理实验:利用FFT分析连续信号频谱
数字信号处理课程实验实验报告实验一 利用FFT 分析连续信号频谱一、 实验目的1、 进一步加深离散傅里叶变换DFT 原理的理解;2、 应用离散傅里叶变换DFT (实际应用FFT 计算)分析连续信号的频谱;3、 深刻理解利用DFT 分析连续信号的频谱的原理,分析工程中常出现的现象及解决方法。
二、 实验原理1、 利用DFT 分析连续时间周期信号的频谱周期为Tp 的周期性连续时间信号)(t x p 的频谱(傅里叶级数的系数))(Ωjk x p 是非周期离散谱,定义为)(Ωjk x p =dt e t x p1tjk p p 0Ω-⎰)(T T 其中f 2p2ππ==ΩT 为信号的基频,Ωk 为信号的谐频,谱线间隔为Ω。
通过时域采样就可以利用DFT 分析连续周期信号的频谱。
其步骤为: ① 确定周期信号的基本周期Tp ;② 计算一个周期内的采样点数N ,若周期信号的最高频谱为Ωp ,则频谱中有2p+1 根谱线;若周期信号的频谱无限宽,则认为集中信号90%以上(或根据实际需要)能量的前p+1 个谐波为近似的频谱范围,其余的谐波忽略不计。
取N ≥2p+1; ③ 对连续周期信号以采样间隔NT T p=进行采样 ; ④ 利用FFT 计算采样信号的N 点DFT ,得到()k X ; ⑤ 最后求出连续周期信号的频谱为)(Ωjk x p =N1()k X 。
因为对连续周期信号按采样间隔NT T p=进行采样,每个周期抽取N 点时,则有 t=nT ,Tp=NT那么 )(Ωjk x p =dt et x p 1tjk p p 0Ω-⎰)(T T =∑-=-10n n p 2jk e n x p N T T T T T π)( =∑-=-1n n N 2jk e n x N 1N T π)(=)(k N 1X若能按照满足采样定理的采样间隔进行抽样,并且采取整周期为信号分析的长度,则利用FFT 计算得到的离散频谱值等于连续周期信号频谱)(Ωjk x p 的准确值。
数字信号处理课程实验报告
数字信号处理课程实验报告课题名称:IIR滤波器相位校正实验一、实验内容与分析1、实验目的和内容1)利用MATLAB设计一个IIR滤波器;2)结合课本关于全通滤波器特性知识(课本p128),在IIR滤波器后级联一个全通相位滤波器进行相位校正,使此滤波器最终实现线性相位特性;3)分别使用相位校正前后两滤波器实现对某一信号的处理;4)画出IIR滤波器、全通滤波器、相位校正后滤波器的幅度频率特性曲线、相位频率特性曲线,信号时域波形、信号的幅度频率特性曲线、相位频率特性曲线;5)详述实验设计原理,分析相位校正前后两类滤波器对信号处理后的区别。
2、实验的分析1)、IIR滤波器的设计通过对实验内容的理解,我们首先需要设计一个IIR滤波器,对课本第六章的学习我们知道IIR数字滤波器有两种设计方法:间接设计法和直接设计法。
间接设计法中有巴特沃斯滤波器,切比雪夫I型、II型滤波器,椭圆滤波器和贝塞尔滤波器五种。
我们选择设计切比雪夫II型低通滤波器,其中的技术指标为:通带边界频率fp=1000Hz,阻带边界频率fs=2000 Hz,阻带最小衰减As=40 dB,通带最大衰减Ap=1 dB。
2)全通滤波器的设计全通滤波器的幅度特性是在整个频带上均等于常数,或者等于1.信号通过全通滤波器后,其输出的幅度特性保持不变,仅相位发生变化。
由于IIR滤波器后需要级联一个全通相位滤波器,使整个系统实现线性相位特性,为了求解全通滤波器的参数,我们先假设整个系统具有线性相位特性,再根据已经设计好了的切比雪夫II 型滤波器的系统参数,求解全通滤波器的参数。
二、实验的过程1、切比雪夫II型滤波器的设计过程在确定了滤波器的参数之后,我们运用cheb2ord函数计算模拟低通滤波器的最小阶数;然后用cheby2计算滤波器传输函数的系数。
然后运用脉冲响应不变法将模拟低通滤波器转换成数字滤波器。
这样我们就设计出了满足给定参数的切比雪夫II型滤波器。
数字信号处理实验报告
实验报告课程名称:数字信号处理授课班级:学号:姓名:指导老师:实验一离散时间信号及系统的时域分析实验类别:基础性实验1实验目的:(1)了解MA TLAB 程序设计语言的基本特点,熟悉MA TLAB软件运行环境。
(2)熟悉MA TLAB中产生信号和绘制信号的基本命令,学会用MA TLAB在时域中产生一些基本的离散时间信号,并对这些信号进行一些基本的运算。
(3)通过MA TLAB仿真一些简单的离散时间系统,并研究它们的时域特性。
(4)通过MA TLAB进行卷积运算,利用卷积方法观察分析系统的时域特性。
2. 实验报告要求●简述实验原理及目的。
●结合实验中所得给定典型序列幅频特性曲线,与理论结果比较,并分析说明误差产生的原因以及用FFT作谱分析时有关参数的选择方法。
●记录调试运行情况及所遇问题的解决方法。
3.实验内容:思考题:9.2.1 运行程序P9.2.1,哪个参数控制该序列的增长或衰减:哪个参数控制该序列的振幅?若需产生实指数序列,应对程序作何修改?9.2.2运行程序P9.2.1,该序列的频率是多少?怎样改变它?哪个参数控制该序列的相位?哪个参数可以控制该序列的振幅?该序列的周期是多少?9.2.3 运行程序P9.2.3,对加权输入得到的y(n)与在相同权系数下输出y1(n)和y2(n)相加得到的yt(n)进行比较,这两个序列是否相等?该系统是线性系统吗?9.2.4 假定另一个系统为y(n)=x(n)x(n-1)修改程序,计算这个系统的输出序列y1(n),y2(n)和y(n)。
比较有y(n)和yt(n)。
这两个序列是否相等?该系统是线性系统吗?(提高部分)9.2.5运行程序P9.2.4,并比较输出序列y(n)和yd(n-10)。
这两个序列之间有什么关系?该系统是时不变系统吗?9.2.6 考虑另一个系统:修改程序,以仿真上面的系统并确定该系统是否为时不变系统。
(选做)n = 0:40; D = 10;a = 3.0;b = -2;x = a*cos(2*pi*0.1*n) + b*cos(2*pi*0.4*n);[x1,n1]=sigmult(n,n,x,n)[x2,n2]=sigshift(x,n,1)[y,ny1]= sigadd(x1,n1,x2,n2)[y1,ny11]= sigshift(y,ny1,D)[sx,sn]= sigshift(x,n,D)[sx1,sn1]=sigmult(n,n, sx,sn)[sx2,sn2]=sigshift(sx,sn,1)[y2,ny2]= sigadd(sx1,sn1,sx2,sn2)D= sigadd(y1,ny11,y2,ny22)六、实验心得体会:实验时间批阅老师实验成绩实验二 FFT 实现数字滤波实验类别:提高性实验 1.实验目的(1) 通过这一实验,加深理解FFT 在实现数字滤波(或快速卷积)中的重要作用,更好的利用FFT 进行数字信号处理。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数字信号处理》课程基本实验实验1 信号及系统基本特性分析1.1 实验目的1、 学习Matlab 编程的基本方法;掌握常用函数用法。
2、 了解不同信号的频域特性,理解时域特性与频域特性之间的关联性。
3、 掌握典型信号序列的时域和频域基本特性。
4、 熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。
5、 了解离散系统的时域/频域特性及其对输出信号的影响,掌握系统分析方法。
1.2 实验原理1.2.1 连续时间信号的采样采样是从连续时间信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了采样前后信号时域和频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变化、傅氏变换、z 变换和序列傅氏变换之间关系的理解。
对一个连续时间信号进行理想采样的过程可以表示为该信号的一个周期冲激脉冲的乘积,即)()()(ˆt M t x t x a a = (1-1)其中)(ˆt xa 是连续信号)(t x a 的理想采样,)(t M 是周期冲激脉冲 )()(nT t t M n -=∑+∞-∞=δ (1-2)它也可以用傅立叶级数表示为:∑+∞-∞=Ω=n t jm s e T t M 1)( (1-3)其中T 为采样周期,T s /2π=Ω是采样角频率。
设)(s X a 是连续时间信号)(t x a 的双边拉氏变换,即有:⎰+∞∞--=dt e t x s X st a a )()( (1-4)此时理想采样信号)(ˆt xa 的拉氏变换为 ⎰+∞∞--=dt e t x s X st a a )(ˆ)(ˆ(1-5)作为拉氏变换的一种特例,信号理想采样的傅立叶变换)]([1)(ˆs m a a m j X T j X Ω-Ω=Ω∑+∞-∞= (1-6)由式(1-5)和式(1-6)可知,信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期等于采样频率。
根据Shannon 取样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频谱混淆现象。
在计算机处理时,不采用式(1-6)计算信号的频谱,而是利用序列的傅立叶变换计算信号的频谱,定义序列)()()(ˆ)(x (n)t M t x t xnT x a a a ===,根据Z 变换的定义,可以得到序列x(n)的Z 变换为:∑+∞-∞=-=n n z n x z X )()( (1-7) 以ωj e 代替上式中的z ,就可以得到序列x(n)的傅立叶变换∑+∞-∞=-=n n j j e n x e X ωω)()( (1-8)式(1-6)和式(1-8)具有如下关系:T j a e X j X Ω==Ωωω|)()(ˆ (1-9)由式(1-9)可知,在分析一个连续时间信号的频谱时,可以通过取样将有关的计算转化为序列傅立叶变换的计算。
1.2.2 有限长序列分析一般来说,在计算机上不可能,也不必要处理连续的曲线)(ωj eX ,通常,我们只要观察、分析)(ωj e X 在某些频率点上的值。
对于长度为N 的有限长序列⎰∑⎰∑⎰∑∞+∞-∞+-∞=∞+∞-Ω--∞+-∞=+∞∞--+∞-∞=ΩΩ-===)(1)(11)()(s a m t jm s a m st m t jm a jm s X T dt e t x T dt e e T t x s s⎩⎨⎧-≤≤=n N n n f n x 其他,010),()( (1-10) 一般只需要在π20-之间均匀地取M 个频率点,计算这些点上的序列傅立叶变换 ∑-=-=10n ω j k )()(N n k j e n x e X ω (1-11)其中M k k /2πω=,k=0,1,..,M-1。
)(k j e X ω是一个复函数,它的模就是幅频特性曲线。
1.2.3 信号卷积一个线性时不变离散系统的响应y(n)可以用它的单位冲激响应h(n)和输入信号x(n)的卷积来表示:∑+∞-∞=-=*=m m n h m x n h n x n y )()()()()((1-12) 根据傅立叶变换和Z 变换的性质,与式(1-12)对应应该有 )()()(z H z X z Y =(1-13) )()()(ωωωj j j e H e X e Y =(1-14) 式(1-12)告诉我们可以通过对两个序列的移位、相乘、累加计算信号响应;而式(1-14)告诉我们卷积运算也可以在频域上用乘积实现。
1.3 实验内容1.3.1 Matlab 操作与使用根据所提供的Matlab 操作指南学习Matlab 的使用。
完成文件操作;矩阵运算;绘图;图形界面的实现等功能,学会使用Matlab 联机帮助查找信息。
1.3.2 理想采样信号序列的特性分析对信号)()sin()(0t u t Ae t x t a Ω=-α进行理想采样,可以得到一个理想的采样信号序列:500),sin()(0<≤Ω=-n nT Ae t x t a α,其中A 为幅度因子,α是衰减因子,0Ω是频率。
T 为采样周期。
产生理想采样信号序列)(n x a ,使128.444=A ,ππα250,2500=Ω=。
(1)首先选用采样频率为1000Hz ,T=1/1000,观察所得理想采样信号的幅频特性,并做记录;(2)改变采样频率为300Hz ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3)进一步减小采样频率为200Hz ,T=1/200,观察频谱“混淆”现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。
1.3.3 典型信号序列的特性分析1.3.3.1 信号序列产生产生如下基本信号:(1)高斯序列: ⎪⎩⎪⎨⎧≤≤=--else n en x q p n aa ,0150,)(2)( (2)衰减正弦序列:⎩⎨⎧≤≤=-else n fn e n x n bb ,0150,2sin )(πα (3)三角波序列: ⎪⎩⎪⎨⎧≤≤-≤≤+=else n n n n n x cc ,074,830,1)((4)反三角序列: ⎪⎩⎪⎨⎧≤≤-≤≤-=else n n n n n x dd ,074,330,4)(1.3.3.2 观察高斯序列的时域和频域特性①固定信号)(n x aa 中的参数p=8,改变q 的值,使q 分别等于2,4,8。
观察它们的时域和幅频特性,了解q 取不同值的时候,对信号时域特性和幅频特性的影响。
②固定q=8,改变p ,使p 分别等于8,13,14,观察参数p 变化对信号序列时域及幅频特性的影响。
注意p 等于多少时,会发生明显的泄漏现象,混淆现象是否也随之出现?记录实验中观察到的现象,绘制相应的时域序列和幅频特性曲线。
1.3.3.3 观察衰减正弦序列的时域和幅频特性针对信号)(n x bb :①令α=0.1并且f=0.0625,检查谱峰出现的位置是否正确,注意频谱的形状,绘制幅频特性曲线。
②改变f=0.4375,再变化f=0.5625,观察这两种情况下,频谱的形状和谱峰出现的位置,有无混淆和泄漏现象发生?说明产生现象的原因。
1.3.3.4 观察三角波序列和反三角波序列的时域和幅频特性针对信号)(n x cc 和)(n x dd :①用8点FFT 分析信号)(n x cc 和)(n x dd 的幅频特性,观察两者的序列形状和频谱曲线有什么异同?(注意:这时候的)(n x dd 可以看作是)(n x cc 经过圆周移位以后得到的)绘制两者的序列和幅频特性曲线。
②在的)(n x cc 和)(n x dd 末尾补零,用16点FFT 分析这两个信号的幅频特性,观察幅频特性发生了什么变化?两个信号之间的FFT 频谱还有没有相同之处?这些变化说明了什么?1.3.3.5 * 选作内容将)(n x b 信号的长度N 设为63,用MatLab 中randn(1,N)函数产生一个噪声信号w(n),计算将这个噪声信号叠加到)(n x b 上以后新信号)()()(n w n x n y b +=的频谱,观察发生的变化并记录。
在步骤2的基础上,改变参数α和f ,观察在出现混淆现象和泄漏现象的时候有噪声的y(n)信号的频谱有什么变化,是否明显?1.3.4 离散信号、系统和系统响应的分析1.3.4.1 信号序列产生产生如下信号序列:(1)理想采样信号序列:对信号)()sin()(0t u t Ae t x t a Ω=-α进行理想采样,可以得到一个理想的采样信号序列:500),sin()(0<≤Ω=-n nT Ae t x t a α,其中A 为幅度因子,α是衰减因子,0Ω是频率。
T 为采样周期。
(2)单位脉冲序列 ⎩⎨⎧≠===0,00,1)()(n n n n x b δ (3)矩形序列 ⎩⎨⎧-<≤==其他,010,1)()(N n n R n x N c ,其中N=10产生如下系统单位脉冲响应序列,本实验中用到两种FIR 系统:(1))()(10n R n h a =(2))3()2(5.2)1(5.2)()(-+-+-+=n n n n n h b δδδδ1.3.4.2 离散信号、系统和系统响应的分析(1)观察信号)(n x b 和系统)(n h b 的时域和幅频特性;利用线性卷积求信号通过系统以后的响应。
比较系统响应和系统)(n h b 的时域及幅频特性。
注意它们之间有无差异,绘出图形。
(2)观察信号)(n x c 和系统)(n h a 的时域和幅频特性,利用线性卷积求系统响应。
判断响应序列图形及序列非零值长度是否与理论结果一致,说出一种定性判断响应序列图形正确与否的方法(提示:)()()(10n R n h n x a c ==)。
利用序列的傅立叶变换数值计算子程序求出)(k j e Y ω,观察响应序列的幅频特性。
定性判断结果正确与否。
改变信号)(n x c 的矩形宽度,使N=5,重复以上动作,观察变化,记录改变参数前后的差异。
(3)将实验步骤2-(2)中的信号换为)(n x a ,其中1,0734.2,4.0,10==Ω==T A α。
重复实验2-(2)各步骤,改变)(n x a 的参数1.0=α再重复实验2-(2)各步骤;改变参数2516.10=Ω,重复实验2-(2)各步骤。
在实验中观察改变0Ω和α对信号及系统响应的时域和幅频特性的影响,绘制相应的图形。
1.3.4.3 卷积定律的验证利用式(1-14)将)(n x a 和系统)(n h a 的傅氏变换相乘,直接求得)(k j e Y ω,将得到的幅频特性曲线和实验2-(3)中得到的曲线进行比较,观察二者有无差异。
验证卷积定律。
1.3.5 *选作内容改变信号)(t x a 中的衰减因子α,先定性估计频谱可能产生的变化,然后观察其频谱的变化,记录结果,变化是否你所想的一致,这说明了什么?一个LTI 系统的冲激响应为)()9.0()(n u n h n=,输入序列为)(n x c ,求系统响应)(ωj e H 和输出信号y(n)及其频谱)(ωj e Y ;如果)()(n x n h c =,其结果又如何?编写一个程序,将)(n x c 分解为奇偶序列,绘制奇偶序列时域图形并求出它们频谱)(ωj e Xe 和)(ωj e Xo ,同)(n x c 的频谱)(ωj e Xc 进行比较,可以得出什么结论?针对信号t t t x ππ1000cos 6000cos )(+=分析采样率、信号功率。