《数字信号处理》课程基本实验

《数字信号处理》课程基本实验
《数字信号处理》课程基本实验

《数字信号处理》课程基本实验

实验1 信号及系统基本特性分析

1.1 实验目的

1、 学习Matlab 编程的基本方法;掌握常用函数用法。

2、 了解不同信号的频域特性,理解时域特性与频域特性之间的关联性。

3、 掌握典型信号序列的时域和频域基本特性。

4、 熟悉理想采样的性质,了解信号采样前后的频谱变化,加深对采样定理的理解。

5、 了解离散系统的时域/频域特性及其对输出信号的影响,掌握系统分析方法。

1.2 实验原理

1.2.1 连续时间信号的采样

采样是从连续时间信号到离散时间信号的过渡桥梁,对采样过程的研究不仅可以了采样前后信号时域和频域特性发生的变化以及信号内容不丢失的条件,而且有助于加深对拉氏变化、傅氏变换、z 变换和序列傅氏变换之间关系的理解。

对一个连续时间信号进行理想采样的过程可以表示为该信号的一个周期冲激脉冲的乘积,即

)()()(?t M t x t x a a = (1-1)

其中)(?t x

a 是连续信号)(t x a 的理想采样,)(t M 是周期冲激脉冲 )()(nT t t M n -=

∑+∞-∞=δ (1-2)

它也可以用傅立叶级数表示为:

∑+∞-∞=Ω=n t jm s e T t M 1)( (1-3)

其中T 为采样周期,T s /2π=Ω是采样角频率。设)(s X a 是连续时间信号)(t x a 的双边拉氏变换,即有:

?+∞

∞--=

dt e t x s X st a a )()( (1-4)

此时理想采样信号)(?t x

a 的拉氏变换为 ?+∞∞--=dt e t x s X st a a )(?)(?

(1-5)

作为拉氏变换的一种特例,信号理想采样的傅立叶变换

)]([1)(?s m a a m j X T j X Ω-Ω=Ω∑+∞-∞= (1-6)

由式(1-5)和式(1-6)可知,信号理想采样后的频谱是原信号频谱的周期延拓,其延拓周期等于采样频率。根据Shannon 取样定理,如果原信号是带限信号,且采样频率高于原信号最高频率分量的2倍,则采样以后不会发生频谱混淆现象。

在计算机处理时,不采用式(1-6)计算信号的频谱,而是利用序列的傅立叶变换计算信号

的频谱,定义序列)()()(?)(x (n)t M t x t x

nT x a a a ===,根据Z 变换的定义,可以得到序列x(n)的Z 变换为:

∑+∞-∞=-=

n n z n x z X )()( (1-7) 以ωj e 代替上式中的z ,就可以得到序列x(n)的傅立叶变换

∑+∞-∞=-=n n j j e n x e X ωω

)()( (1-8)

式(1-6)和式(1-8)具有如下关系:

T j a e X j X Ω==Ωωω|)()(? (1-9)

由式(1-9)可知,在分析一个连续时间信号的频谱时,可以通过取样将有关的计算转化为序列傅立叶变换的计算。

1.2.2 有限长序列分析

一般来说,在计算机上不可能,也不必要处理连续的曲线)(ωj e

X ,通常,我们只要观察、分析)(ωj e X 在某些频率点上的值。对于长度为N 的有限长序列

?∑?∑?∑∞+∞-∞

+-∞=∞+∞-Ω--∞

+-∞

=+∞∞

--+∞-∞=ΩΩ-===)

(1)(11)()(s a m t jm s a m st m t jm a jm s X T dt e t x T dt e e T t x s s

?

??-≤≤=n N n n f n x 其他,010),()( (1-10) 一般只需要在π20-之间均匀地取M 个频率点,计算这些点上的序列傅立叶变换 ∑-=-=1

0n ω j k )()(N n k j e n x e X ω (1-11)

其中M k k /2πω=,k=0,1,..,M-1。)(k j e X ω是一个复函数,它的模就是幅频特性曲线。

1.2.3 信号卷积

一个线性时不变离散系统的响应y(n)可以用它的单位冲激响应h(n)和输入信号x(n)的卷积来表示:

∑+∞-∞=-=

*=m m n h m x n h n x n y )()()()()(

(1-12) 根据傅立叶变换和Z 变换的性质,与式(1-12)对应应该有 )()()(z H z X z Y =

(1-13) )()()(ωωωj j j e H e X e Y =

(1-14) 式(1-12)告诉我们可以通过对两个序列的移位、相乘、累加计算信号响应;而式(1-14)告诉我们卷积运算也可以在频域上用乘积实现。

1.3 实验内容

1.3.1 Matlab 操作与使用

根据所提供的Matlab 操作指南学习Matlab 的使用。完成文件操作;矩阵运算;绘图;图形界面的实现等功能,学会使用Matlab 联机帮助查找信息。

1.3.2 理想采样信号序列的特性分析

对信号)()sin()(0t u t Ae t x t a Ω=-α进行理想采样,可以得到一个理想的采样信号序列:

500),sin()(0<≤Ω=-n nT Ae t x t a α,其中A 为幅度因子,α是衰减因子,0Ω是频率。T 为采样周期。

产生理想采样信号序列)(n x a ,使128.444=A ,ππα250,2500=Ω=。(1)首先选用采样频率为1000Hz ,T=1/1000,观察所得理想采样信号的幅频特性,并做记录;(2)改变采样频率为300Hz ,T=1/300,观察所得到的频谱特性曲线的变化,并做记录;(3)进一步减小采样频率为200Hz ,T=1/200,观察频谱“混淆”现象是否明显存在,说明原因,并记录这时候的幅频特性曲线。

1.3.3 典型信号序列的特性分析

1.3.3.1 信号序列产生

产生如下基本信号:

(1)高斯序列: ?????≤≤=--else n e

n x q p n aa ,0150,)(2

)

( (2)衰减正弦序列:?

??≤≤=-else n fn e n x n bb ,0150,2sin )(πα (3)三角波序列: ??

???≤≤-≤≤+=else n n n n n x cc ,074,830,1)(

(4)反三角序列: ??

???≤≤-≤≤-=else n n n n n x dd ,074,330,4)(

1.3.3.2 观察高斯序列的时域和频域特性

①固定信号)(n x aa 中的参数p=8,改变q 的值,使q 分别等于2,4,8。观察它们的时域和幅频特性,了解q 取不同值的时候,对信号时域特性和幅频特性的影响。②固定q=8,改变p ,使p 分别等于8,13,14,观察参数p 变化对信号序列时域及幅频特性的影响。注意p 等于多少时,会发生明显的泄漏现象,混淆现象是否也随之出现?记录实验中观察到的现象,绘制相应的时域序列和幅频特性曲线。

1.3.3.3 观察衰减正弦序列的时域和幅频特性

针对信号)(n x bb :①令α=0.1并且f=0.0625,检查谱峰出现的位置是否正确,注意频

谱的形状,绘制幅频特性曲线。②改变f=0.4375,再变化f=0.5625,观察这两种情况下,频谱的形状和谱峰出现的位置,有无混淆和泄漏现象发生?说明产生现象的原因。

1.3.3.4 观察三角波序列和反三角波序列的时域和幅频特性

针对信号)(n x cc 和)(n x dd :①用8点FFT 分析信号)(n x cc 和)(n x dd 的幅频特性,观察两者的序列形状和频谱曲线有什么异同?(注意:这时候的)(n x dd 可以看作是)(n x cc 经过圆周移位以后得到的)绘制两者的序列和幅频特性曲线。②在的)(n x cc 和)(n x dd 末尾补零,用16点FFT 分析这两个信号的幅频特性,观察幅频特性发生了什么变化?两个信号之间的FFT 频谱还有没有相同之处?这些变化说明了什么?

1.3.3.5 * 选作内容

将)(n x b 信号的长度N 设为63,用MatLab 中randn(1,N)函数产生一个噪声信号w(n),计算将这个噪声信号叠加到)(n x b 上以后新信号)()()(n w n x n y b +=的频谱,观察发生的变化并记录。

在步骤2的基础上,改变参数α和f ,观察在出现混淆现象和泄漏现象的时候有噪声的y(n)信号的频谱有什么变化,是否明显?

1.3.4 离散信号、系统和系统响应的分析

1.3.4.1 信号序列产生

产生如下信号序列:

(1)理想采样信号序列:对信号)()sin()(0t u t Ae t x t a Ω=-α进行理想采样,可以得到一个

理想的采样信号序列:500),sin()(0<≤Ω=-n nT Ae t x t a α,其中A 为幅度因子,α是衰

减因子,0Ω是频率。T 为采样周期。

(2)单位脉冲序列 ???≠===0

,00,1)()(n n n n x b δ (3)矩形序列 ?

??-<≤==其他,010,1)()(N n n R n x N c ,其中N=10

产生如下系统单位脉冲响应序列,本实验中用到两种FIR 系统:

(1))()(10n R n h a =

(2))3()2(5.2)1(5.2)()(-+-+-+=n n n n n h b δδδδ

1.3.4.2 离散信号、系统和系统响应的分析

(1)观察信号)(n x b 和系统)(n h b 的时域和幅频特性;利用线性卷积求信号通过系统以后的响应。比较系统响应和系统)(n h b 的时域及幅频特性。注意它们之间有无差异,绘出图形。

(2)观察信号)(n x c 和系统)(n h a 的时域和幅频特性,利用线性卷积求系统响应。判断响应序列图形及序列非零值长度是否与理论结果一致,说出一种定性判断响应序列图形正确与否的方法(提示:)()()(10n R n h n x a c ==)。利用序列的傅立叶变换数值计算子程序求出)(k j e Y ω,观察响应序列的幅频特性。定性判断结果正确与否。改变信号)(n x c 的矩形宽度,使N=5,重复以上动作,观察变化,记录改变参数前后的差异。

(3)将实验步骤2-(2)中的信号换为)(n x a ,其中1,0734.2,4.0,10==Ω==T A α。重复实验2-(2)各步骤,改变)(n x a 的参数1.0=α再重复实验2-(2)各步骤;改变参数2516.10=Ω,重复实验2-(2)各步骤。在实验中观察改变0Ω和α对信号及系统响应的时域和幅频特性的影响,绘制相应的图形。

1.3.4.3 卷积定律的验证

利用式(1-14)将)(n x a 和系统)(n h a 的傅氏变换相乘,直接求得)(k j e Y ω,将得到的幅频特性曲线和实验2-(3)中得到的曲线进行比较,观察二者有无差异。验证卷积定律。

1.3.5 *选作内容

改变信号)(t x a 中的衰减因子α,先定性估计频谱可能产生的变化,然后观察其频谱的变化,记录结果,变化是否你所想的一致,这说明了什么?

一个LTI 系统的冲激响应为)()9.0()(n u n h n

=,输入序列为)(n x c ,求系统响应)(ωj e H 和输出信号y(n)及其频谱)(ωj e Y ;如果)()(n x n h c =,其结果又如何?

编写一个程序,将)(n x c 分解为奇偶序列,绘制奇偶序列时域图形并求出它们频谱)(ωj e Xe 和)(ωj e Xo ,同)(n x c 的频谱)(ωj e Xc 进行比较,可以得出什么结论?

针对信号t t t x ππ1000cos 6000cos )(+=分析采样率、信号功率。

1.4 实验报告要求

1、 记录实验内容中要求观察、分析、比较的内容及结果并进行分析。

2、 总结在上机实验内容中要求比较时域、幅频曲线差异差异部分内容的结果,定性分析它

们正确与否,并简要说明这些结果的含义。

3、 在实验报告中附上在实验过程中记录的各个典型信号序列的时域和幅频特性曲线,分析

所得到的结果图形,说明各个信号的参数变化对其时域和幅频特性的影响。

4、 总结一下你在用MatLab 进行数字信号处理实验项目的时候常用的函数及其功能。

5、 总结实验中根据实验现象得到的其他个人结论。

实验2 FFT 算法实现

2.1 实验目的

1、 加深对快速傅里叶变换的理解。

2、 掌握FFT 算法及其程序的编写。

3、 掌握算法性能评测的方法。

2.2 实验原理

一个连续信号)(t x a 的频谱可以用它的傅立叶变换表示为

dt e t x j X t j a a Ω-+∞

∞-?=

Ω)()( (2-1)

如果对该信号进行理想采样,可以得到采样序列

)()(nT x n x a = (2-2)

同样可以对该序列进行z 变换,其中T 为采样周期

∑+∞∞--=n z n x z X )()(

(2-3)

当ωj e

z =的时候,我们就得到了序列的傅立叶变换 ∑+∞

∞-=n j j e n x e X ωω)()(

(2-4)

其中ω称为数字频率,它和模拟域频率的关系为

s f T /Ω=Ω=ω (2-5)

式中的s f 是采样频率。上式说明数字频率是模拟频率对采样率s f 的归一化。同模拟域的情况相似,数字频率代表了序列值变化的速率,而序列的傅立叶变换称为序列的频谱。序列的傅立叶变换和对应的采样信号频谱具有下式的对应关系。

∑+∞∞--=)2(1)(T m j X T e X a j πωω (2-6)

即序列的频谱是采样信号频谱的周期延拓。从式(2-6)可以看出,只要分析采样序列的频谱,就可以得到相应的连续信号的频谱。注意:这里的信号必须是带限信号,采样也必须满足Nyquist 定理。

在各种信号序列中,有限长序列在数字信号处理中占有很重要的地位。无限长的序列也往往可以用有限长序列来逼近。对于有限长的序列我们可以使用离散傅立叶变换(DFT ),这一变换可以很好地反应序列的频域特性,并且容易利用快速算法在计算机上实现当序列的长度是N 时,我们定义离散傅立叶变换为:

∑-===10)()]([)(N n kn N W n x n x DFT k X

(2-7) 其中N j N e W π

2-=,它的反变换定义为:

∑-=-==10)(1)]([)(N k kn N W

k X N k X IDFT n x (2-8)

根据式(2-3)和(2-7)令k N W z -=,则有

∑-====-10)]([)(|)(N n nk N W z n x DFT W n x z X k N

(2-9) 可以得到k N j k

N e W z z X k X π2|)()(===-,k N W -是z 平面单位圆上幅角为k N

πω2=的点,就是将单位圆进行N 等分以后第k 个点。所以,X(k)是z 变换在单位圆上的等距采样,或者说是序列傅立叶变换的等距采样。时域采样在满足Nyquist 定理时,就不会发生频谱混淆;同样地,在频率域进行采样的时候,只要采样间隔足够小,也不会发生时域序列的混淆。

DFT 是对序列傅立叶变换的等距采样,因此可以用于序列的频谱分析。在运用DFT 进行频谱分析的时候可能有三种误差,分析如下:

(1)混淆现象

从式(2-6)中可以看出,序列的频谱是采样信号频谱的周期延拓,周期是2π/T ,因此当采样速率不满足Nyquist 定理,即采样频率T f s /1=小于两倍的信号(这里指的是实信号)频率时,经过采样就会发生频谱混淆。这导致采样后的信号序列频谱不能真实地反映原信号的频谱。所以,在利用DFT 分析连续信号频谱的时候,必须注意这一问题。避免混淆现象的唯一方法是保证采样的速率足够高,使频谱交叠的现象不出现。这就告诉我们,在确定信号的采样频率之前,需要对频谱的性质有所了解。在一般的情况下,为了保证高于折叠频率的分量不会出现,在采样之前,先用低通模拟滤波器对信号进行滤波。

(2)泄漏现象

实际中的信号序列往往很长,甚至是无限长序列。为了方便,我们往往用截短的序列来近似它们。这样可以使用较短的DFT 来对信号进行频谱分析。这种截短等价于给原信号序列乘以一个矩形窗函数。而矩形窗函数的频谱不是有限带宽的,从而它和原信号的频谱进行卷积以后会扩展原信号的频谱。值得一提的是,泄漏是不能和混淆完全分离开的,因为泄露导致频谱的扩展,从而造成混淆。为了减小泄漏的影响,可以选择适当的窗函数使频谱的扩散减到最小。

(3)栅栏效应

因为DFT 是对单位圆上z 变换的均匀采样,所以它不可能将频谱视为一个连续函数。这样就产生了栅栏效应,从某种角度来看,用DFT 来观看频谱就好像通过一个栅栏来观看一幅景象,只能在离散点上看到真实的频谱。这样的话就会有一些频谱的峰点或谷点被“栅栏”挡住,不能被我们观察到。减小栅栏效应的一个方法是在源序列的末端补一些零值,从而变动DFT 的点数。这种方法的实质是认为地改变了对真实频谱采样的点数和位置,相当于搬动了“栅栏”的位置,从而使得原来被挡住的一些频谱的峰点或谷点显露出来。注意,这时候每根谱线多对应的频率和原来的已经不相同了。

从上面的分析过程可以看出,DFT 可以用于信号的频谱分析,但必须注意可能产生的误差,在应用过程中要尽可能减小和消除这些误差的影响。

快速傅立叶变换FFT 并不是与DFT 不相同的另一种变换,而是为了减少DFT 运算次数的一种快速算法。它是对变换式(2-7)进行一次次的分解,使其成为若干小点数DFT 的组合,从而减小运算量。常用的FFT 是以2为基数,其长度M

N 2=。它的运算效率高,程序比较简单,使用也十分地方便。当需要进行变换的序列的长度不是2的整数次方的时候,为了使用以2为基的FFT ,可以用末尾补零的方法,使其长度延长至2的整数次方。IFFT 一般可以通过FFT 程序来完成,比较式(2-7)和(2-8),只要对X(k)取共轭,进行FFT 运算,然后再取共轭,并乘以因子1/N ,就可以完成IFFT 。 2.3 实验内容

1、 编制自己的FFT 算法。

2、 选取实验1中的典型信号序列验证算法的有效性。

3、 对所编制FFT 算法进行性能评估。(从哪些方面进行?有无具体要求?)

2.4 实验报告要求

1、 总结自己实现FFT 算法时候采用了哪些方法减小了运算量。

2、 给出自己的FFT 算法与实验1中自己的DFT 算法的性能比较结果。

3、 给出自己的FFT 算法与Matlab 中FFT 算法的性能比较结果。

4、 总结实验中根据实验现象得到的其他个人结论。

实验3 滤波器设计与滤波器特性分析

3.1 实验目的

1、 掌握Matlab 下滤波器设计工具(fdatool )的使用方法。

2、 掌握IIR 滤波器设计方法与FIR 滤波器设计方法。

3、 了解IIR 滤波器设计与FIR 滤波器设计方法的差异。

4、 掌握滤波器特性分析的方法。

3.2 实验原理

本实验利用Matlab 的工具fdatool 完成,请仔细阅读Matlab 中滤波器设计工具箱fdatool 的联机帮助。IIR 与FIR 滤波器设计的原理请参考课程内容。

3.3 实验内容

3.3.1 IIR 滤波器设计

1、 采样频率为1Hz ,设计一个Chebyshev 高通数字滤波器,其中通带临界频率Hz f p 3.0=,通带内衰减小于0.8dB (dB p 8.0=α),阻带临界频率Hz f s 2.0=,阻带内衰减大于20dB (dB s 20=α)。求这个数字滤波器的传递函数H(z),输出它的幅频特性曲线,观察其通带衰减和阻带衰减是否满足要求。

2、 采样频率为1Hz ,设计一个数字低通滤波器,要求其通带临界频率Hz f p 2.0=,通带内衰减小于1dB(dB p 1=α),阻带临界频率Hz f s 3.0=,阻带内衰减大于25dB

(dB s 25=α)。求这个数字滤波器的传递函数H(z),输出它的幅频特性曲线。

3、 设计Butterworth 带通数字滤波器,其上下边带1dB 处的通带临界频率分别为20kHz 和

30kHz (kHz f p 201=,kHz f p 302=,dB p 1=α),当频率低于15kHz 时,衰减要大于40dB (kHz f s 15=, dB s 40=α),采样周期为10μs ,求这个数字滤波器的传递函数H(z),输出它的幅频特性曲线,观察其通带衰减和阻带衰减是否满足要求。

3.3.2 FIR 滤波器设计

1、 用Hanning 窗设计一个线性相位带通滤波器,其长度N=15,上下边带截至频率分别为

πω3.01=,πω5.02= ,求h(n),绘制它的幅频和相位特性曲线,观察它的实际3dB 和20dB 带宽。如果N=45,重复这一设计,观察幅频和相位特性的变化,注意长度N 变化对结果的影响。

2、 改用矩形窗和Blackman 窗,设计步骤(1)中的带通滤波器,观察并记录窗函数对滤波

器幅频和相位特性的影响,比较这三种窗函数的特点。

3、 用Kaiser 窗设计一个专用的线性相位滤波器。N=40,理想的幅频特性如下图所示:

当β值分别4,6,8时,设计相应的滤波器,比较它们的幅频和相位特性,观察并分析β值不同的时候对结果有什么影响。

3.3.3 滤波器特性分析

针对IIR 滤波器设计实验内容中的三款滤波器(低通、高通和带通),采用基于Blackman 窗函数的FIR 设计方法重新设计,比较用IIR 与FIR 方法得到的滤波器的幅频特性、相频特性、零极点、群延时、相位延时。

对比较的结论进行原理性解释。

3.4 实验报告要求

1、 记录在在上机实验内容中所设计的IIR 滤波器的传递函数H(z)及对应的幅频特性曲线定

0 0.2π 0.4π 0.6π 0.8π π

性分析它们的性能,判断设计是否满足要求。

2、记录在实验过程中FIR滤波器设计结果的h(n)的幅频和相位特性曲线,比较它们的性能,

说明滤波器N和窗函数对滤波器性能的影响。

3、记录滤波器特性分析中滤波器特性比较的结论并进行解释。

4、对IIR滤波器设计和FIR滤波器设计的优缺点进行总结。

5、总结实验中根据实验现象得到的其他个人结论。

数字信号处理实验作业

实验6 数字滤波器的网络结构 一、实验目的: 1、加深对数字滤波器分类与结构的了解。 2、明确数字滤波器的基本结构及其相互间的转换方法。 3、掌握用MA TLAB 语言进行数字滤波器结构间相互转换的子函数及程序编写方法。 二、实验原理: 1、数字滤波器的分类 离散LSI 系统对信号的响应过程实际上就是对信号进行滤波的过程。因此,离散LSI 系统又称为数字滤波器。 数字滤波器从滤波功能上可以分为低通、高通、带通、带阻以及全通滤波器;根据单位脉冲响应的特性,又可以分为有限长单位脉冲响应滤波器(FIR )和无限长单位脉冲响应滤波器(IIR )。 一个离散LSI 系统可以用系统函数来表示: M -m -1-2-m m m=0 012m N -1-2-k -k 12k k k=1 b z b +b z +b z ++b z Y(z)b(z)H(z)=== =X(z)a(z) 1+a z +a z ++a z 1+a z ∑∑ 也可以用差分方程来表示: N M k m k=1 m=0 y(n)+a y(n-k)=b x(n-m)∑∑ 以上两个公式中,当a k 至少有一个不为0时,则在有限Z 平面上存在极点,表达的是以一个IIR 数字滤波器;当a k 全都为0时,系统不存在极点,表达的是一个FIR 数字滤波器。FIR 数字滤波器可以看成是IIR 数字滤波器的a k 全都为0时的一个特例。 IIR 数字滤波器的基本结构分为直接Ⅰ型、直接Ⅱ型、直接Ⅲ型、级联型和并联型。 FIR 数字滤波器的基本结构分为横截型(又称直接型或卷积型)、级联型、线性相位型及频率采样型等。本实验对线性相位型及频率采样型不做讨论,见实验10、12。 另外,滤波器的一种新型结构——格型结构也逐步投入应用,有全零点FIR 系统格型结构、全极点IIR 系统格型结构以及全零极点IIR 系统格型结构。 2、IIR 数字滤波器的基本结构与实现 (1)直接型与级联型、并联型的转换 例6-1 已知一个系统的传递函数为 -1-2-3 -1-2-3 8-4z +11z -2z H(z)=1-1.25z +0.75z -0.125z 将其从直接型(其信号流图如图6-1所示)转换为级联型和并联型。

数字信号处理知识点总结

《数字信号处理》辅导 一、离散时间信号和系统的时域分析 (一) 离散时间信号 (1)基本概念 信号:信号传递信息的函数也是独立变量的函数,这个变量可以是时间、空间位置等。 连续信号:在某个时间区间,除有限间断点外所有瞬时均有确定值。 模拟信号:是连续信号的特例。时间和幅度均连续。 离散信号:时间上不连续,幅度连续。常见离散信号——序列。 数字信号:幅度量化,时间和幅度均不连续。 (2)基本序列(课本第7——10页) 1)单位脉冲序列 1,0()0,0n n n δ=?=?≠? 2)单位阶跃序列 1,0 ()0,0n u n n ≥?=?≤? 3)矩形序列 1,01 ()0,0,N n N R n n n N ≤≤-?=?<≥? 4)实指数序列 ()n a u n 5)正弦序列 0()sin()x n A n ωθ=+ 6)复指数序列 ()j n n x n e e ωσ= (3)周期序列 1)定义:对于序列()x n ,若存在正整数N 使()(),x n x n N n =+-∞<<∞ 则称()x n 为周期序列,记为()x n ,N 为其周期。 注意正弦周期序列周期性的判定(课本第10页) 2)周期序列的表示方法: a.主值区间表示法 b.模N 表示法 3)周期延拓 设()x n 为N 点非周期序列,以周期序列L 对作()x n 无限次移位相加,即可得到周期序列()x n ,即 ()()i x n x n iL ∞ =-∞ = -∑ 当L N ≥时,()()()N x n x n R n = 当L N <时,()()()N x n x n R n ≠ (4)序列的分解 序列共轭对称分解定理:对于任意给定的整数M ,任何序列()x n 都可以分解成关于/2c M =共轭对称的序列()e x n 和共轭反对称的序列()o x n 之和,即

数字信号处理实验一

实验一 离散时间信号分析 班级 信息131班 学号 201312030103 姓名 陈娇 日期 一、实验目的 掌握两个序列的相加、相乘、移位、反褶、卷积等基本运算。 二、实验原理 1.序列的基本概念 离散时间信号在数学上可用时间序列)}({n x 来表示,其中)(n x 代表序列的第n 个数字,n 代表时间的序列,n 的取值范围为+∞<<∞-n 的整数,n 取其它值)(n x 没有意义。离散时间信号可以是由模拟信号通过采样得到,例如对模拟信号)(t x a 进行等间隔采样,采样间隔为T ,得到)}({nT x a 一个有序的数字序列就是离散时间信号,简称序列。 2.常用序列 常用序列有:单位脉冲序列(单位抽样)) (n δ、单位阶跃序列)(n u 、矩形序列)(n R N 、实指数序列、复指数序列、正弦型序列等。 3.序列的基本运算 序列的运算包括移位、反褶、和、积、标乘、累加、差分运算等。 4.序列的卷积运算 ∑∞ -∞==-= m n h n x m n h m x n y )(*)()()()( 上式的运算关系称为卷积运算,式中代表两个序列卷积运算。两个序列的卷积是一个序列与另一个序列反褶后逐次移位乘积之和,故称为离散卷积,也称两序列的线性卷积。其计算的过程包括以下4个步骤。 (1)反褶:先将)(n x 和)(n h 的变量n 换成m ,变成)(m x 和)(m h ,再将)(m h 以纵轴为对称轴反褶成)(m h -。

(2)移位:将)(m h -移位n ,得)(m n h -。当n 为正数时,右移n 位;当n 为负数时,左移n 位。 (3)相乘:将)(m n h -和)(m x 的对应点值相乘。 (4)求和:将以上所有对应点的乘积累加起来,即得)(n y 。 三、主要实验仪器及材料 微型计算机、Matlab6.5 教学版、TC 编程环境。 四、实验内容 (1)用Matlab 或C 语言编制两个序列的相加、相乘、移位、反褶、卷积等的程序; (2)画出两个序列运算以后的图形; (3)对结果进行分析; (4)完成实验报告。 五、实验结果 六、实验总结

数字信号处理作业答案

数字信号处理作业

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~1k X 是周期性的,周期为N ,而)(~2k X 也是周期性的,周期为N 2。试利用)(~1k X 确定)(~2k X 。(76-4)

2. 研究两个周期序列)(~n x 和)(~n y 。)(~n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000) ()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

2020年数字信号处理大作业新版修订

2019~2020年度《数字信号处理》大作业题目与要求 大作业要求: 本学期大作业总分40分,学生可选择任意数量的题目完成,只要所选题目总分达到40分即可,所选题目总分如果超过40分,超过的部分不计入大作业总分。大作业以电子版的形式提交,内容应包括详细的程序设计思路与题目分析(题目分析指的是对该题目中所用到的知识点的说明,不要照搬书上或网上的内容,写出你自己对该知识点的理解。),程序截图,程序源码,其中设计思路和程序截图可写在同一个文档中,程序源码可以是.txt或.m 文件,并在源码中标注代码注释。另:题目中有GUI设计要求的部分占该题目分值的20%,功能实现部分占该题目分值的80%。 注:以下题目均用MATLAB完成。 大作业题目: 1、实现有限长序列的基本运算(包括:加法、乘法、累加、移位、翻褶、抽取、插值、卷积和),并以GUI的形式将这些运算整合起来,使用者可通过向GUI输入任意有限长序列得到对应的运算结果。(5分) 2、设计一个GUI,实现奈奎斯特采样定理,要求:1、在GUI中输入任意一个模拟信号,显示该模拟信号的时域和频域谱图;2、在GUI中设置任意采样频率,对输入的模拟信号进行采样处理,显示采样信号的时域和频域谱图; 3、在GUI中实现采样信号向模拟信号的恢复功能,要求显示恢复后的模拟信号的时域和频域谱图。(10分) 3、通过GUI动态展示z变换与s变换之间的所有关系。(5分) 4、设计一个GUI,通过向GUI输入任意系统函数,得到其对应系统的相关信息(包括:系统频率响应中的幅度响应和相位响应、系统零极点的分布、系统的稳定性判定)。(10分) 5、设计一个GUI,实现利用DFT(或FFT)完成任意时域信号的频谱分析,要求:1、可在GUI中输入时域数字或模拟信号;2、可设置DFT点数;3、在GUI中显示输入信号经DFT(或FFT)处理后的频谱图;3、若输入信号为模拟信号,需完成对该模拟信号的采样,采样频率可在GUI中设置。(10分) 6、在GUI中,实现IIR滤波器的直接型、级联型和并联型三种结构之间的任意转换,要求:在GUI中输入任意一型的系统函数后可在该GUI中显示出对应的另外两型的系统函数。(10分) 7、实现巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的设计,以GUI的形式给出。要求:输入所需的模拟低通滤波器参数指标后,程序能将该指标转化为数字低通滤波器指标(在GUI中应能选择转化方式:冲激响应不变法、双线性变换法),并在GUI中显示出所给参数下巴特沃斯样本模拟低通滤波器及其对应的数字低通滤波器的频率响应中幅度响应的频谱图。(15分) 8、已知某组数字信号(见大作业数据压缩包中HWDATA.mat文件),该信号中除了目标信号之外还掺杂有强噪声,但噪声与目标信号的频率不重叠,要求采用本学期已学的知识对该信

数字信号处理实验

实验一 离散傅里叶变换(DFT )对确定信号进行谱分析 一.实验目的 1.加深对DFT 算法原理和基本性质的理解。 2.熟悉DFT 算法和原理的编程方法。 3.学习用DFT 对信号进行谱分析的方法,了解可能出现的误差及其原因,以便在实际中正确利用。 二.实验原理 一个连续信号)(t x a 的频谱可以用其傅里叶变换表示,即 dt e t x j X t j a a Ω-∞ ∞ -? = Ω)()( 若对)(t x a 进行理想采样可得采样序列 )(|)()(nT x t x n x a nT t a === 对)(n x 进行DTFT ,可得其频谱为: ∑∞ -∞ =-= n n j j e n x e X ωω )()( 其中数字频率ω与模拟频率Ω的关系为: s f T Ω = Ω=ω )(n x 的DFT 为∑∞ -∞ =-= n nk N j e n x k X π 2)()( 若)(t x a 是限带信号,且在满足采样定理的条件下,)(ω j e X 是)(Ωj X a 的周期延拓, )(k X 是)(ωj e X 在单位圆上的等间隔采样值,即k N j e X k X πωω2| )()(= =。 为在计算机上分析计算方便,常用)(k X 来近似)(ω j e X ,这样对于长度为N 的有限 长序列(无限长序列也可用有限长序列来逼近),便可通过DFT 求其离散频谱。 三.实验内容 1.用DFT 对下列序列进行谱分析。 (1))()04.0sin(3)(100n R n n x π=

1 (2)]0,0,0,0,0,0,0,0,1,1,1,1[)(=n x 2.为了说明高密度频谱和高分辨率频谱之间的区别,考察序列 )52.0cos()48.0cos()(n n n x ππ+= (1)当0≤n ≤10时,确定并画出x(n)的离散傅里叶变换。 (2)当0≤n ≤100时,确定并画出x(n)的离散傅里叶变换。 四.实验结果 1. (1) (2)

数字信号处理复习总结-最终版

绪论:本章介绍数字信号处理课程的基本概念。 0.1信号、系统与信号处理 1.信号及其分类 信号是信息的载体,以某种函数的形式传递信息。这个函数可以是时间域、频率域或其它域,但最基础的域是时域。 分类: 周期信号/非周期信号 确定信号/随机信号 能量信号/功率信号 连续时间信号/离散时间信号/数字信号 按自变量与函数值的取值形式不同分类: 2.系统 系统定义为处理(或变换)信号的物理设备,或者说,凡是能将信号加以变换以达到人们要求的各种设备都称为系统。 3.信号处理 信号处理即是用系统对信号进行某种加工。包括:滤波、分析、变换、综合、压缩、估计、识别等等。所谓“数字信号处理”,就是用数值计算的方法,完成对信号的处理。 0.2 数字信号处理系统的基本组成 数字信号处理就是用数值计算的方法对信号进行变换和处理。不仅应用于数字化信号的处理,而且

也可应用于模拟信号的处理。以下讨论模拟信号数字化处理系统框图。 (1)前置滤波器 将输入信号x a(t)中高于某一频率(称折叠频率,等于抽样频率的一半)的分量加以滤除。 (2)A/D变换器 在A/D变换器中每隔T秒(抽样周期)取出一次x a(t)的幅度,抽样后的信号称为离散信号。在A/D 变换器中的保持电路中进一步变换为若干位码。 (3)数字信号处理器(DSP) (4)D/A变换器 按照预定要求,在处理器中将信号序列x(n)进行加工处理得到输出信号y(n)。由一个二进制码流产生一个阶梯波形,是形成模拟信号的第一步。 (5)模拟滤波器 把阶梯波形平滑成预期的模拟信号;以滤除掉不需要的高频分量,生成所需的模拟信号y a(t)。 0.3 数字信号处理的特点 (1)灵活性。(2)高精度和高稳定性。(3)便于大规模集成。(4)对数字信号可以存储、运算、系统可以获得高性能指标。 0.4 数字信号处理基本学科分支 数字信号处理(DSP)一般有两层含义,一层是广义的理解,为数字信号处理技术——DigitalSignalProcessing,另一层是狭义的理解,为数字信号处理器——DigitalSignalProcessor。 0.5 课程内容 该课程在本科阶段主要介绍以傅里叶变换为基础的“经典”处理方法,包括:(1)离散傅里叶变换及其快速算法。(2)滤波理论(线性时不变离散时间系统,用于分离相加性组合的信号,要求信号频谱占据不同的频段)。 在研究生阶段相应课程为“现代信号处理”(AdvancedSignalProcessing)。信号对象主要是随机信号,主要内容是自适应滤波(用于分离相加性组合的信号,但频谱占据同一频段)和现代谱估计。 简答题: 1.按自变量与函数值的取值形式是否连续信号可以分成哪四种类型? 2.相对模拟信号处理,数字信号处理主要有哪些优点? 3.数字信号处理系统的基本组成有哪些?

西电数字信号处理大作业

第二章 2.25 已知线性时不变系统的差分方程为 若系统的输入序列x(x)={1,2,3,4,2,1}编写利用递推法计算系统零状态响应的MATLAB程序,并计算出结果。 代码及运行结果: >> A=[1,-0.5]; >> B=[1,0,2]; >> n=0:5; >> xn=[1,2,3,4,2,1]; >> zx=[0,0,0];zy=0; >> zi=filtic(B,A,zy,zx); >> yn=filter(B,A,xn,zi); >> figure(1) >> stem(n,yn,'.'); >> grid on;

2.28图所示系统是由四个子系统T1、T2、T3和T4组成的,分别用单位脉冲响应或差分方程描述为 T1: 其他 T2: 其他 T3: T4: 编写计算整个系统的单位脉冲响应h(n),0≤n≤99的MATLAB程序,并计算结果。 代码及结果如下: >> a=0.25;b=0.5;c=0.25; >> ys=0; >> xn=[1,zeros(1,99)]; >> B=[a,b,c]; >> A=1; >> xi=filtic(B,A,ys); >> yn1=filter(B,A,xn,xi); >> h1=[1,1/2,1/4,1/8,1/16,1/32]; >> h2=[1,1,1,1,1,1]; >> h3=conv(h1,h2); >> h31=[h3,zeros(1,89)]; >> yn2=yn1+h31; >> D=[1,1];C=[1,-0.9,0.81]; >> xi2=filtic(D,C,yn2,xi); >> xi2=filtic(D,C,ys); >> yn=filter(D,C,yn2,xi); >> n=0:99; >> figure(1) >> stem(n,yn,'.'); >> title('单位脉冲响应'); >> xlabel('n');ylabel('yn');

数字信号处理实验答案完整版

数字信号处理实验答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

实验一熟悉Matlab环境 一、实验目的 1.熟悉MATLAB的主要操作命令。 2.学会简单的矩阵输入和数据读写。 3.掌握简单的绘图命令。 4.用MATLAB编程并学会创建函数。 5.观察离散系统的频率响应。 二、实验内容 认真阅读本章附录,在MATLAB环境下重新做一遍附录中的例子,体会各条命令的含义。在熟悉了MATLAB基本命令的基础上,完成以下实验。 上机实验内容: (1)数组的加、减、乘、除和乘方运算。输入A=[1 2 3 4],B=[3 4 5 6],求C=A+B,D=A-B,E=A.*B,F=A./B,G=A.^B并用stem语句画出A、B、C、D、E、F、G。 clear all; a=[1 2 3 4]; b=[3 4 5 6]; c=a+b; d=a-b; e=a.*b; f=a./b; g=a.^b; n=1:4; subplot(4,2,1);stem(n,a); xlabel('n');xlim([0 5]);ylabel('A'); subplot(4,2,2);stem(n,b); xlabel('n');xlim([0 5]);ylabel('B'); subplot(4,2,3);stem(n,c); xlabel('n');xlim([0 5]);ylabel('C'); subplot(4,2,4);stem(n,d); xlabel('n');xlim([0 5]);ylabel('D'); subplot(4,2,5);stem(n,e); xlabel('n');xlim([0 5]);ylabel('E'); subplot(4,2,6);stem(n,f); xlabel('n');xlim([0 5]);ylabel('F'); subplot(4,2,7);stem(n,g); xlabel('n');xlim([0 5]);ylabel('G'); (2)用MATLAB实现下列序列: a) x(n)= 0≤n≤15 b) x(n)=e+3j)n 0≤n≤15 c) x(n)=3cosπn+π)+2sinπn+π) 0≤n≤15 d) 将c)中的x(n)扩展为以16为周期的函数x(n)=x(n+16),绘出四个周期。

数字信号处理上机作业

数字信号处理上机作业 学院:电子工程学院 班级:021215 组员:

实验一:信号、系统及系统响应 1、实验目的 (1) 熟悉连续信号经理想采样前后的频谱变化关系,加深对时域采样定理的理解。 (2) 熟悉时域离散系统的时域特性。 (3) 利用卷积方法观察分析系统的时域特性。 (4) 掌握序列傅里叶变换的计算机实现方法,利用序列的傅里叶变换对连续信号、离散信号及系统响应进行频域分析。 2、实验原理与方法 (1) 时域采样。 (2) LTI系统的输入输出关系。 3、实验内容及步骤 (1) 认真复习采样理论、离散信号与系统、线性卷积、序列的傅里叶变换及性质等有关内容,阅读本实验原理与方法。 (2) 编制实验用主程序及相应子程序。 ①信号产生子程序,用于产生实验中要用到的下列信号序列: a. xa(t)=A*e^-at *sin(Ω0t)u(t) b. 单位脉冲序列:xb(n)=δ(n) c. 矩形序列: xc(n)=RN(n), N=10 ②系统单位脉冲响应序列产生子程序。本实验要用到两种FIR系统。 a. ha(n)=R10(n); b. hb(n)=δ(n)+2.5δ(n-1)+2.5δ(n-2)+δ(n-3) ③有限长序列线性卷积子程序 用于完成两个给定长度的序列的卷积。可以直接调用MATLAB语言中的卷积函数conv。 conv 用于两个有限长度序列的卷积,它假定两个序列都从n=0 开始。调用格式如下: y=conv (x, h) 4、实验结果分析 ①分析采样序列的特性。 a. 取采样频率fs=1 kHz,,即T=1 ms。 b. 改变采样频率,fs=300 Hz,观察|X(e^jω)|的变化,并做记录(打印曲线);进一步降低采样频率,fs=200 Hz,观察频谱混叠是否明显存在,说明原因,并记录(打印)这时的|X(e^j ω)|曲线。 程序代码如下: close all;clear all;clc; A=50; a=50*sqrt(2)*pi; m=50*sqrt(2)*pi; fs1=1000; fs2=300; fs3=200; T1=1/fs1; T2=1/fs2; T3=1/fs3; N=100;

数字信号处理实验三

实验三:离散LSI 系统的频域分析 一、实验内容 2、求以下各序列的z 变换: 12030() ()sin() ()sin()n an x n na x n n x n e n ωω-=== 程序清单如下: syms w0 n z a; x1=n*a^n;X1=ztrans(x1) x2=sin(w0*n);X2=ztrans(x2) x3= exp(-a*n)*sin(w0*n);X3=ztrans(x3) 程序运行结果如下: X1 =z/(a*(z/a - 1)^2) X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1) X3 =(z*exp(a)*sin(w0))/(exp(2*a)*z^2 - 2*exp(a)*cos(w0)*z + 1) 3、求下列函数的逆z 变换 0 312342 1 1() () () ()() 1j z z z z X z X z X z X z z a z a z e z ω---= = = = ---- 程序清单如下: syms w0 n z a; X1=z/(z-a);x1=iztrans(X1) X2= z/(a-z)^2;x2=iztrans(X2) X3=z/ z-exp(j*w0);x3=iztrans(X3) X4=(1-z^-3)/(1-z^-1);x4=iztrans(X4) 程序运行结果如下: x1 =a^n x2 =n*a^n/a 课程名称 数字信号 实验成绩 指导教师 实 验 报 告 院系 信息工程学院 班级 学号 姓名 日期

x3 =charfcn[0](n)-iztrans(exp(i*w0),w0,n) x4 =charfcn[2](n)+charfcn[1](n)+charfcn[0](n) 4、求一下系统函数所描述的离散系统的零极点分布图,并判断系统的稳定性 (1) (0.3)()(1)(1) z z H z z j z j -= +-++ z1=[0,0.3]';p1=[-1+j,-1-j]';k=1; [b1,a1]=zp2tf(z1,p1,k); subplot(1,2,1);zplane(z1,p1); title('极点在单位圆外); subplot(1,2,2);impz(b1,a1,20); 由图可见:当极点位于单位圆内,系统的单位序列响应随着频率的增大而收敛;当极点位于单位圆上,系统的单位序列响应为等幅振荡;当极点位于单位圆外,系统的单位序列响应随着频率的增大而发散。由此可知系统为不稳定系统。 -1 -0.5 00.51 -2 -1.5-1-0.500.511.5 2Real Part I m a g i n a r y P a r t 极点在单位圆外 n (samples) A m p l i t u d e Impulse Response

数字信号处理作业+答案讲解

数字信号处理作业 哈尔滨工业大学 2006.10

DFT 习题 1. 如果)(~n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1k X 表示)(~n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~ 2k X 表示)(~n x 的离散傅里叶级数之系数。当然,)(~ 1k X 是周期性的,周期为N ,而)(~ 2k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列 )(~n w 定义为)()()(~ ~~n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~n x 的周期为N ,其离散傅里叶级数之系数)(~ k X 的周期也是N 。类似地, 由于)(~n y 的周期为M ,其离散傅里叶级数之系数)(~k Y 的周期也是M 。)(~ n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~ k X 和)(~ k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=000)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

什么是数字信号处理

什么是数字信号处理?有哪些应用? 利用数字计算机或专用数字硬件、对数字信号所进行的一切变换或按预定规则所进行的一切加工处理运算。 例如:滤波、检测、参数提取、频谱分析等。 对于DSP:狭义理解可为Digital Signal Processor 数字信号处理器。广义理解可为Digital Signal Processing 译为数字信号处理技术。在此我们讨论的DSP的概念是指广义的理解。 数字信号处理是利用计算机或专用处理设备,以数字形式对信号进行采集、变换、滤波、估值、增强、压缩、识别等处理,以得到符合人们需要的信号形式。 信号处理的实质是对信号进行变换。 信号处理的目的是获取信号中包含的有用信息,并用更直观的方式进行表达。 DSP的应用几乎遍及电子学每一个领域。 ▲通用数字信号处理器:自适应滤波,卷积,相关,数字滤波,FFT, 希尔伯特变换,波形生成,窗函数等等。 ▲语音信号处理:语音增强、识别、合成、编码、信箱等,文字/语音转换 ▲图形/图像处理:三维动画,图象鉴别/增强/压缩/传输,机器人视觉等等图 ▲特殊应用数字信号处理:振动和噪声分析与处理,声纳和雷达信号处理, 通信信号处理, 地震信号分析与处理,汽车安全及全球定位,生物医学工程等等。 在医疗、军事、汽车等行业,以及通信市场、消费类电子产品等中具有广阔的市场前景。 数字信号处理系统的基本组成:前置预滤波器(PrF)、a/d变换器(ADC)、数字信号处理器(DSP)、d/a变换器(DAC)、模拟滤波器(PoF) 数字信号处理特点: 1.大量的实时计算(FIR IIR FFT), 2.数据具有高度重复(乘积和操作在滤波、卷积和FFT中等常见) 数字信号处理技术的意义、内容 数字信号处理技术是指数字信号处理理论的应用实现技术,它以数字信号处理理论、硬件技术、软件技术为基础和组成,研究数字信号处理算法及其实现方法。 意义: 在21世纪,数字信号处理是影响科学和工程最强大的技术之一 它是科研人员和工程师必须掌握的一门技巧 DSP芯片及其特点 ▲采用哈佛结构体系:独立的程序和数据总线,一个机器周期可同时进行程序读出和数据存取。对应的:冯·诺依曼结构。 ▲采用流水线技术: ▲硬件乘法器:具有硬件连线的高速“与或”运算器 ▲多处理单元:DSP内部包含多个处理单元。 ▲特殊的DSP指令:指令具有多功能,一条指令完成多个动作;如:倒位序指令等 ▲丰富的外设▲功耗低:一般DSP芯片功耗为0.5~4W。采用低功耗技术的DSP芯片只有0.1W/3.3V、1.6V (电池供电) DSP芯片的类别和使用选择 ▲按特性分:以工作时钟和指令类型为指标分类▲按用途分:通用型、专用型DSP芯片 ▲按数据格式分:定点、浮点各厂家还根据DSP芯片的CPU结构和性能将产品分成若干系列。 TI公司的TMS320系列DSP芯片是目前最有影响、最为成功的数字信号处理器,其产品销量一直处于领先地位,公认为世界DSP霸主。 ?目前市场上的DSP芯片有: ?美国德州仪器公司(TI):TMS320CX系列占有90%

数字信号处理实验4

数字信号处理实验四 第一题结果: (1)没有增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 %H(3,13) = 0.75;H(5,11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线

(2)增加过渡点 源码如下: N = 15; H = [1 1 1 0.5 zeros(1,7) 0.5 1 1 1]; %确定抽样点的幅度大小 H(3) = 0.75;H(13) = 0.75;H(5) = 0.25;H(11) = 0.25; %设置过渡点 k = 0:N-1; A = exp(-j*pi*k*(N-1)/N); %抽样点相位大小 HK = H.*A; %求抽样点的H(k) hn = ifft(HK,N); %求出FIR的单位冲激响应h(n) freqz(hn,1,256); %画出幅频相频曲线figure(2); stem(real(hn),'.'); %绘制单位冲激响应的实部 line([0,35],[0,0]);xlabel('n');ylabel('Real(h(n))'); 单位脉冲响应曲线 幅频和相频特性曲线 第二题结果:

数字信号处理作业-答案

数字信号处理作业-答案

数字信号处理作业

DFT 习题 1. 如果)(~ n x 是一个周期为N 的周期序列,那么它也是周期为N 2的周期序列。把)(~ n x 看作周期为N 的周期序列,令)(~ 1 k X 表示)(~ n x 的离散傅里叶级数之系数,再把)(~ n x 看作周期为N 2的周期序列,再令)(~2 k X 表示)(~ n x 的离散傅里叶级数之系数。当然,)(~ 1 k X 是周期性的,周期为N ,而)(~ 2 k X 也是周期性的,周期为N 2。试利用)(~ 1k X 确定)(~ 2 k X 。(76-4)

2. 研究两个周期序列)(~ n x 和)(~ n y 。)(~ n x 具有周期N ,而)(~ n y 具有周期M 。序列)(~ n w 定义为)()()(~~ ~ n y n x n w +=。 a. 证明)(~ n w 是周期性的,周期为MN 。 b. 由于)(~ n x 的周期为N ,其离散傅里叶级数之系数)(~k X 的周期也是N 。类似地,由于)(~ n y 的周期为M ,其离散傅里叶级数之系数)(~ k Y 的周期也是M 。)(~n w 的离散傅里叶级数之系数)(~ k W 的周期为MN 。试利用)(~k X 和)(~k Y 求)(~ k W 。(76-5)

3. 计算下列各有限长度序列DFT (假设长度为N ): a. )()(n n x δ= b .N n n n n x <<-=0 0)()(δ c .10)(-≤≤=N n a n x n (78-7) 4. 欲作频谱分析的模拟数据以10千赫速率被取样,且计算了1024个取样的离散傅里叶变换。试求频谱取样之间的频率间隔,并证明你的回答。(79 -10)

数字信号处理作业-2012

《数字信号处理Ⅰ》作业 姓名: 学号: 学院: 2012 年春季学期

第一章 时域离散信号和时域离散系统 月 日 一 、判断: 1、数字信号处理和模拟信号处理在方法上是一样的。( ) 2、如果信号的取值和自变量都离散,则称其为模拟信号。( ) 3、如果信号的取值和自变量都离散,则称其为数字信号。( ) 4、时域离散信号就是数字信号。( ) 5、正弦序列都是周期的。( ) 6、序列)n (h )n (x 和的长度分别为N 和M 时,则)n (h )n (x *的长度为N+M 。( ) 7、如果离散系统的单位取样响应绝对可和,则该系统稳定。( ) 8、若满足采样定理,则理想采样信号的频谱是原模拟信号频谱以s Ω(采样频率)为周期进行周期延拓的结果。( ) 9、序列)n (h )n (x 和的元素个数分别为21n n 和,则)n (h )n (x *有(1n n 21-+)个元素。( ) 二、选择 1、R N (n)和u(n)的关系为( ): A. R N (n)=u(n)-u(n-N) B. R N (n)=u(n)+u(n-N) C. R N (n)=u(n)-u(n-N-1) D. R N (n)=u(n)-u(n-N+1) 2、若f(n)和h(n)的长度为别为N 、M ,则f(n)*h(n)的长度为 ( ): A.N+M B.N+M-1 C.N-M D.N-M+1 3、若模拟信号的频率范围为[0,1kHz],对其采样,则奈奎斯特速率为( ): A.4kHz B. 3kHz C.2kHz D.1kHz 4、LTIS 的零状态响应等于激励信号和单位序列响应的( ): A.相乘 B. 相加 C.相减 D.卷积 5、线性系统需满足的条件是( ): A.因果性 B.稳定性 C.齐次性和叠加性 D.时不变性 6、系统y(n)=f(n)+2f(n-1)(初始状态为0)是( ): A. 线性时不变系统 B. 非线性时不变系统 C. 线性时变系统 D. 非线性时变系统

长沙理工数字信号处理大作业数字滤波器设计

IIR及FIR数字滤波器 一题干 对模拟信号进行低通滤波处理,要求通带0≤f≤4kHz,通带衰减小于0.5dB,阻带4.5k Hz≤f<∞,阻带衰减大于50dB,设采样频率Fs=20kHz。 (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 (2)分别用脉冲响应不变法和双线性变换法设计IIR低通数字滤波器,求出Ha(z) 的分子、分母多项式系数Bz和Az,并画出幅频响应损耗函数曲线 (3)采用窗函数法(分别用汉宁窗、哈明窗、布莱克曼窗函数)设计满足要求的FIR 低通滤波器,求出h(n),并画出幅频响应损耗函数曲线. (4)用频率采样法设计满足要求的FIR低通滤波器,求出h(n),并画出幅频响应损耗函数曲线。

二求解过程 具体内容如下: (1)设计巴特沃斯模拟低通滤波器,求出Ha(s)的分子、分母多项式系数B和A,并画出幅频响应损耗函数曲线。 程序: wp=2*pi*4000; ws=2*pi*5800; Rp=0.5; As=50; [N,wc]=buttord(wp,ws,Rp,As,'s'); [B,A]=butter(N,wc,'s'); k=0:511; fk=0:20000/512:20000; wk=2*pi*fk; Hk=freqs(B,A,wk); plot(fk/1000,20*log10(abs(Hk))); grid on xlabel('频率/kHz'); ylabel('幅度/dB'); axis([0,6,-65,5]); 波形图:

A = 1.0e+207 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0020 2.1576 B = 1.0e+207 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.1576 N = 46

数字信号处理第三章作业.pdf

数字信号处理第三章作业 1.(第三章习题3)在图P3-2中表示了两个周期都为6的周期性序列,确定这个两个序列的周期卷积的结果3()x n ,并画出草图。 2.(第三章习题5)如果()x n 是一个具有周期为N 的周期性序列,它也是具有周期为2N 的周期性序列。令~1()X k 表示当()x n 看做是具有周期为N 的周期性序列的DFS 系数。而~2()X k 表示当()x n 看作是具有周期为2N 的周期性序列的DFS 系数。当然~1()X k 是具有周期为N 的周期性序列,而~2()X k 是具有周期为2N 的周期性序列,试根据~1()X k 确定~2()X k 。 3.(第三章习题6) (a )试证明下面列出的周期性序列离散傅里叶级数的对称特性。在证明中,可以利用离散傅里叶级数的定义及任何前面的性质,例如在证明性质③时可以利用性质①和②。 序列 离散傅里叶级数 ① *()x n ~*()X k - ②*()x n - ~*()X k ③Re ()x n ???? ~ e ()X k ④Im ()j x n ???? ~()o X k

(b )根据已在(a )部分证明的性质,证明对于实数周期序列()x n ,离散傅里叶级数的下列对称性质成立。 ①~~Re ()Re ()X k X k ????=-???????? ②~~Im ()Im ()X k X k ????=--???????? ③~~()()X k X k =- ④~~arg ()arg ()X k X k ????=--???????? 4.(第三章习题7)求下列序列的DFT (a) {}11 1-,,,-1 (b) {}1 j 1j -,,,- (c) ()cn 0n 1x n N =≤≤-, (d) 2n ()sin 0n 1x n N N π??=≤≤- ??? , 5.(第三章习题8)计算下列各有限长序列的离散傅立叶变换(假设长度为N ) 1 0)()(0) ()()() ()()(00-≤≤=<<-==N n a n x c N n n n n x b n n x a n δδ 6.(第三章习题9)在图P3-4中表示了一有限长序列)(n x ,画出序列)(1n x 和)(2n x 的草图。(注意:)(1n x 是)(n x 圆周移位两个点) )())(()() ())2(()(442441n R n x n x n R n x n x -=-=

数字信号处理

Matlab上机实验 报告 ; 学院:理学院 专业:10 电信 姓名:贺茂海 学号:2010142110 完成日期:2012.10.20

matlab上机实验 实验内容:1)阅读例子程序,观察输出波形,理解每条语句的含义。 (2)已知有限长序列x(n)=[7,6,5,4,3,2],求DFT和IDFT,要求:画出序列傅立叶变换对应的幅度谱和相位谱;画出原信号与傅立叶逆变换IDFT[X(k)]的图形进行比较。 (3)已知周期序列的主值x(n)=[7,6,5,4,3,2],求x(n)周期重复次数为3次时的DFS和IDFS。要求:画出原信号序列的主值和周期序列的图形;画出离散傅立叶变换对应的幅度谱和相位谱。 (4)求x(n)=[7,6,5,4,3,2], 0=

相关文档
最新文档