整式恒等变形一览

合集下载

整式恒等变形

整式恒等变形

第8讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法【例1】(第14届“希望杯”邀请赛试题)如果x2+x-1=0,那么x3+2x2+3=__________.【练1】(1990年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7的值.题型二 整体代入消元法【例2】(第14届希望杯1试)若x +y =-1,求x 4+5x 3y +x 2y +8x 2y 2+xy 2+5xy 3+y 4的值.【练2】当x -y =1时,求x 4-xy 3-x 3y -3x 2y +3xy 2+y 4的值.题型三 换元法强化挑战【例3】化简(y +z -2x )2+(z +x -2y )2+(x +y -2z )2-3(y -z )2-3(x -y )2-3(x -z )2.【练3】已知x ,y ,z 为有理数(y -z )2+(z -x )2+(x -y )2=(y +z -2x )2+(x +z -2y )2+(x +y -2z )2,求()()()()()()222111111yz zx xy x y z ++++++的值.模块二 恒等变形→因式分解与不定方程题型一 因式分解基础夯实【例4】(1)已知a 5-a 4b -a 4+a -b -1=0,且2a -3b =1,则a 3+b 3的值等于________.(2)若a 4+b 4=a 2-2a 2b 2+b 2+6,则a 2+b 2=________.【练4】(1)若x 满足x 5+x 4+x =-1则x +x 2+x 3+…+x 2012=__________.(2)已知15x 2-47xy +28y 2=0,求x y的值.强化挑战【例5】已知:a 、b 、c 为三角形的三条边,且a 2+4ac +3c 2-3ab -7bc +2b 2=0,求证:2b =a +c .【练5】(1)在三角形ABC 中,a 2-16b 2-c 2+6ab +10bc =0,其中a ,b ,c 是三角形的三边,求证:a +c =2b .(2)已知△ABC 三边a 、b 、c ,满足条件a 2c -a 2b +ab 2-b 2c +c 2b -ac 2=0,试判断△ABC 的形状,并说明理由.题型二 不定方程【例6】(1)方程xy -2x -2y +7=0的整数解(x ≤y )为___________.(2)已知a >b >c ≥0,求适合等式abc +ab +ac +bc +a +b +c =2011的整数a ,b ,c 的值.【练6】(1)长方形的周长为16cm ,它的两边长x ,y 均为整数,且满足x -y -x 2+2xy -y 2+2=0,求它的面积.(2)矩形的周长28cm ,两边长为x cm 、y cm ,且x 3+x 2y -xy 2-y 3=0,求矩形的面积.【例7】(2000年联赛)实数x ,y 满足x ≥y ≥1和2x 2-xy -5x +y +4=0,则x +y =_______.【练7】当x 变化时,分式22365112x x x x ++++的最小值是________.模块三 恒等变形→配方法【例8】已知x 2+2xy +2y 2+4y +4=0,求x ,y .【练8】已知x 2-6xy +10y 2-4y +4=0,求x ,y .【例9】已知x2+2xy+2y2+4x+8=0,求x,y.【练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.【例10】已知实数a、b、c满足a-b+c=7,ab+bc+b+c2+16=0.则ba的值等于____.【练10】已知a-b=4,ab+c2+4=0,则a+b=________.模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=__________.(2)(a-b)2=__________.2、三元二次:(3)(a+b+c)2=_________.(4)a2+b2+c2+ab+bc+ca=_______.3、二元三次:(5)(a+b)3=______________.(6)a3+b3=______________.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc(9)(a+b+c)(ab+bc+ca)=a2b+b2c+c2a+ab2+bc2+ca2+3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:(11)(a+b+c)(a+b-c)(b+c-a)(c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a26、二元n次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+…+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+…-ab n-2+b n-1)(n为奇数)7、n元二次:(14)(a1+a2+…+a n)2=a12+a22+…+a n2+2a1a2+2a1a3+…+2a1a n+2a2a3+2a2a4+…+2a n-1a n.(15)a12+…+a n2+a1a2+…+a1a n+a2a3+…+a2a n+…+a n-1a n=1[(a1+a2)2+…+(a n-1+a n)2]强化挑战【例11】已知实数a、b、x、y满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.【练11】(第6届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-172(a+b)的值.【例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.【练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=___________.【例13】(2009年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=83,(1)求abc的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.【练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.【拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013.第8讲课后作业【习l】已知x2+x-1=0,求x8-7x4+11的值.【习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc的值.【习3】若m=20062+20062×20072+20072,则m( )A.是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数【习4】正整数a、b、c是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有( ) A.1个B.2个C.3个D.4个【习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值( ) A.恒正B.恒负C.可正可负D.非负【习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.【习7】已知实数a、b、x、y满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.【习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.【习9】(1999年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010的值.的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,…,a2007,是彼此互不相等的负数,且M=(a1+a2+…+a2006)(a2+a3+…+a2007),N=(a1+a2+…+a2007)(a2+a3+…+a2006),试比较M、N的大小.【习12】(2013年联赛)已知实数x,y,z满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=_______.【习13】(2013年竞赛)已知正整数a、b、c满足a+b2-2c-2=0,3a2-8b+c=0,则abc的最大值为____________.【习14】(2001年联赛)求实数x,y的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。

学案NO.5(整式的恒等变形)

学案NO.5(整式的恒等变形)

高一数学校本课程NO.5——整式的恒等变形一. 知识方法梳理:把一个代数式变换成另一个和它恒等的代数式,叫做代数式的恒等变形。

整式的恒等变形是代数式恒等变形的一种,它既是代数式恒等变形的基础,又具有独特的复杂性和技巧性。

整式恒等变形涉及到的主要内容有:整式的各种运算性质和法则;各种乘法公式的正、逆应用,变形应用;因式分解的有关知识等。

其中主要乘法公式除教科书上的平方差公式、完全平方公式、立方和与立方差公式外,有时还用到下面几个:(1)33223)(33b a b ab b a a ±=±+±))((3)2(222333ca bc ab c b a c b a abcc b a ---++++=-++(3)))((1221----++++-=-n n n n n n b ab b a a b a b a(4)2222)(222c b a ac bc ab c b a ++=+++++二.典型例题(一)运用运算性质和法则例1.已知d cx x x a y +++=356,当x=0时,y=-3,当x=-5时,y=9,求当x=5时y 的值。

(二)灵活运用乘法公式例2.(1)计算1)12()12)(12(123242+++++ )( (2)已知整数a,b,(a-b)都不是3的倍数,试证33b a +是9的倍数。

例3.试求x x x x x x +++++392781243被x-1除的余数。

变式:求12534812162024+-+-+-a a a a a a 被a-1除的余数例4.当1,0222=++=++c b a c b a 时,试求下列各式的值:(1)ab ca bc ++ 444)2(c b a ++(三)配方法例5. (1)证明:当a,b 取任意有理数时,多项式116222++-+b a b a 的值总是正数。

(2)已知a,b,c,d 为四边形的四条边,且abcd d c b a 44444=+++,求证:此四边形是菱形(即a=b=c=d )(3)若a,b,c,d 是整数,且2222,d c n b a m +=+=,求证mn 可表示成两个整数的平方和。

L15-S-整式与分的恒等变形

L15-S-整式与分的恒等变形

������ ± ������ = (������ ± ������)(������ ∓ ������������ + ������ ) ������ + ������ + ������ − 3������������������ = (������ + ������ + ������)(������ + ������ + ������ − ������������ − ������������ − ������������)
������ + ������ + ������ ± ������������ ± ������������ ± ������������ =
1 1 1 ������������ + ������������ + ������������ = [(������ + ������ + ������) − ������ − ������ − ������ ] = (������ + ������ + ������) − [(������ − ������) + (������ − ������) + (������ − ������) ] 2 3 6
解:(1)原式= ������ − 2 ∙ ������ ∙ 2 + 2 − 9 = (������ − 2) − 3 = (������ − 2 + 3)(������ − 2 − 3) = (������ + 1)(������ − 5) (2)原式= (������ − 4������ + 4) + (������ + 6������ + 9) + 5 = (������ − 2) + (������ + 3) + 5 ∴ 当������ = 2, ������ = −3 时,原式取最小值 5 (3)原式= ������ − 2(������ + 1)������ + (������ + 1) − (������ + 1) + 2������ − 4������ + 27 = (������ − ������ − 1) − ������ − 2������ − 1 + 2������ − 4������ + 27 = (������ − ������ − 1) + ������ − 6������ + 9 + 17 = (������ − ������ − 1) + (������ − 3) + 17 ∴当 ������ = 4 ������ − ������ − 1 = 0 即 时 ������ = 3 ������ − 3 = 0

整式乘法中的恒等变形技巧有哪些

整式乘法中的恒等变形技巧有哪些

整式乘法中的恒等变形技巧有哪些整式乘法中的恒等变形技巧,那可是数学学习中的一把神奇钥匙!咱们一起来瞧瞧都有哪些好用的技巧。

先来说说“提取公因式法”。

这就好比从一堆水果中挑出大家都有的那个共同特点,比如式子“3x +6”,这里 3 就是公因式,咱们一提出来,就变成 3(x + 2)啦。

我记得有一次给学生们讲这个,有个小调皮一直搞不明白,我就拿他们爱吃的糖果举例,说假如有 3 颗红色糖果和 6 颗蓝色糖果,咱们可以先把 3 颗这个共同的数量提出来,就相当于把这些糖果分成了 3 份,一份是 1 颗红色和 2 颗蓝色。

这么一说,那小调皮恍然大悟,眼睛都亮了起来。

再讲讲“公式法”,这里面最常用的就是平方差公式和完全平方公式。

平方差公式(a + b)(a b) = a² b²,就像两个人比赛跑步,速度快的和速度慢的一比较,差距就出来了。

完全平方公式(a ± b)²= a² ± 2ab +b²呢,就像是给一个小房子搭建框架,长、宽和面积的关系一目了然。

还有“分组分解法”,这招有点像整理书包,把不同类的东西先分分组,再分别处理。

比如说对于式子“ax + ay + bx +by”,咱们可以把含 x 的放一组,含 y 的放一组,即 a(x + y) + b(x + y),然后再提取公因式(x + y),就变成了(a + b)(x + y)。

“十字相乘法”也是个厉害的角色。

这就像是拼图游戏,要找到合适的数字组合。

比如对于式子“x² + 5x +6”,咱们要找到两个数,它们相加等于 5,相乘等于 6,那就是 2 和 3,所以就可以分解为(x + 2)(x + 3)。

在实际解题中,这些技巧往往不是单独使用的,而是要灵活组合,就像炒菜要放各种调料一样,搭配好了才能做出美味的“数学大餐”。

我曾经碰到过一道题,式子长得那叫一个复杂“4x² 12xy +9y² 25”,一开始好多同学都被吓住了。

整式的恒等变形精品讲义

整式的恒等变形精品讲义

整式的恒等变形1. 乘法公式也叫作简乘公式,就是把一些特殊的多项式相乘的结果加以总结,直接应用。

公式中的每一个字母,一般可以表示数字、单项式、多项式,有的还可以推广到分式、根式。

公式的应用不仅可从左到右的顺用(乘法展开),还可以由右到左逆用(因式分解),还要记住一些重要的变形及其逆运算――除法等。

⒉ 基本公式就是最常用、最基础的公式,并且可以由此而推导出其他公式。

完全平方公式:()2222a b a ab b ±=±+,平方差公式:()()22a b a b a b +-=-. 立方和(差)公式:()()2233a b a ab b a b ±+=±.⒊ 公式的推广:①多项式平方公式:()22222222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++即:多项式平方等于各项平方和加上每两项积的2倍。

②二项式定理:()3322333a b a a b ab b ±=+±()4432234464a b a a b a b ab b ±=±+±+()554322345510105a b a a b a b a b ab b ±=±+±+±…………注意观察右边展开式的项数、指数、系数、符号的规律 ③由平方差、立方和(差)公式引伸的公式()()322344a b a a b ab b a b +-+-=-()()43223455a b a a b a b ab b a b +-+-+=+()()5432234566a b a a b a b a b ab b a b +-+-+-=-…………注意观察左边第二个因式的项数、指数、系数、符号的规律 在正整数指数的条件下,可归纳如下:设n 为正整数()()2122232222122n n n n n n n a b a a b a b ab b a b -----+-+-+-=-()()2212222122121n n n n n n n a b a a b a b ab b a b ---+++-+--+=+类似地: ()()123221n n n n n n n a b a a b a b ab b a b ------+++++=-⒋ 公式的变形及其逆运算由()2222a b a ab b +=++得()2222a b a b ab +=+-由()()3322333333a b a a b ab b a b ab a b +=+++=+++得()()3333a b a b ab a b +=+-+ 由公式的推广③可知:当n 为正整数时 n n a b -能被a b -整除, 2121n n a b +++能被a b +整除,22n n a b -能被a b +及a b -整除。

初中的六个恒等变形式

初中的六个恒等变形式

初中的六个恒等变形式好吧,今天我们来聊聊初中数学里的六个恒等变形,嘿,听上去有点儿干,但咱们把它聊得轻松点儿,保证你能乐在其中。

数学这东西啊,很多人都觉得它是个“死板”的存在,殊不知,它其实像个魔法师,能把复杂的问题变得简单明了。

说到恒等变形,它们就像是数学界的小小法宝,帮我们解决了不少难题。

首先啊,咱们得提到“完全平方公式”。

这玩意儿真的是个宝藏,啥时候用都合适。

比如说,(a + b)²= a² + 2ab + b²,听起来是不是有点复杂?但你想啊,平时生活中,咱们买东西,两个朋友一起凑钱,计算总价的时候,这公式就能帮到你。

每次看到这个公式,我脑海里都浮现出两个小伙伴一起购物的场景,算来算去,最后大家开心地一起分摊账单,哈哈,真是有趣。

然后呢,咱们再说说“平方差公式”。

它是(a + b)(a b) = a² b²。

这个可好了,看到这个公式,我总能想到“好事成双,坏事也成双”的道理。

就像你和朋友在公园里踢足球,突然有一个人进了球,结果对方球员气得不轻,两队就像在打“平方差”一样,瞬间变得紧张起来。

哈哈,别担心,大家心里都明白,这只是场比赛,最终大家还是会欢笑着回家。

接下来咱们得提“立方和与立方差公式”。

这个公式有点儿复杂,不过别怕,听我说。

立方和是a³ + b³ = (a + b)(a² ab + b²),立方差是a³ b³ = (a b)(a² + ab + b²)。

说实话,我一开始看到这公式的时候,简直想把它扔到一边去,真的是让人头疼。

但是当我把它应用到实际问题上,突然感觉自己像个数学侦探,解决问题的快感简直不要太爽。

想象一下,跟朋友一起组队解谜,咱们俩凭着这个公式,一步步找到线索,最后大功告成,那感觉,简直就像打通了游戏里的每一关,爽翻了!再来呢,就是“根式的性质”。

初中联赛题型解读一:整式与恒等变形

初中联赛题型解读一:整式与恒等变形

联赛题型解读(一)——整式与恒等变形左右。

而代数的基础便是整式,其中乘法公式、因式分解以及恒等变形,为代数提供了丰富的知识和技巧。

下面我们通过统计近16 年初中数学联赛中整式的分值(注:至少在结构和形式上是对整式的考察才会计入分值统计),帮助大家更好的了解整式在联赛中考察的分值比重。

总结这几年来初中数学联赛对整式的考察,整式一般会考察2道题左右,考察的分值最高达到41 分(3 道一试题外加 1 道二试题),而且整体趋势是在有一两年的高分值之后跟随几年的低峰。

我们可以认为在接下来的一两年内,会在一试中进行2 题左右的考察。

而且近三年的趋势就是这一块的内容有加强考察的趋势,说明这方面的能力要求在提升。

恒等变形的技巧贯穿了整个代数,可以说整式是整个初中代数的基础与灵魂所在。

整式中的知识大体来说包含了:乘法公式,因式分解及恒等变形,三个部分,这里简单的介绍前两个部分的基础知识。

1.乘法公式这里介绍常用的八个乘法公式:(1)平方差:a2 -b2 =(a +b)(a -b);⎣⎦(2) 平方: (a ± b )2= a 2 ± 2ab + b 2 ;(3) 三元完全平方: (a + b + c )2= a 2 + b 2 + c 2 + 2ab + 2bc + 2ca ;(4)a 2 +b 2 +c 2 ± ab ± bc ± ca = 1 ⎡(a ± b )2 + (b ± c )2 + (c ± a )2⎤ ; 2 (5) 和(差)的立方: (a + b )3= a 3 + b 3 + 3ab (a + b );(a - b )3= a 3 - b 3 - 3ab (a - b );(6) 立方和(差): a 3 + b 3 = (a + b )(a 2 - ab + b 2 ); a 3 - b 3 = (a - b )(a 2 + ab + b 2 );(7)(8) a 3 + b 3 + c 3 - 3abc = (a + b + c )(a 2 + b 2 + c 2 - ab - bc - ca )-a 4 - b 4 - c 4 + 2a 2b 2 + 2b 2c 2 + 2c 2 a 2= (a + b + c )(a + b - c )(b + c - a )(c + a - b )2. 因式分解简单的介绍一下初中阶段可以学习和使用的 10 种常见因式分解的方法: (1) 提取公因式:上午+下午=(上+下)午;(2) 公式法: x 6 - y 6 = (x 3 + y 3 )(x 3 - y 3 ) = (x + y )(x - y )(x 2 + xy + y 2 )(x 2 - xy + y 2 ); (3) 分组分解法: ax + ay + bx + by = a (x + y ) + b (x + y ) = (a + b )(x + y ) ; (4) 十字相乘:二次三项式 abx 2 + (ad + bc ) x + cd = (ax + b )(cx + d ) ;(5) 双十字相乘:选定两个二次三项式进行十字相乘;分步两次十字相乘大致相同; (6) 拆项天项: a 4 + a 2b 2 + b 4 = a 4 + 2a 2b 2 + b 4 - a 2b 2 = (a 2 + ab + b 2 )(a 2 - ab + b 2 ) ; (7) 整体换元:对于较复杂的式子可以进行适当换元让结构形式变得简单;(8) 主元法:多字母的代数式,可以选择结构较好的字母当做主元进行因式分解; (9) 因式定理:多项式 f (x ) ,当 x = a 的时候 f (a ) = 0 ,则 f ( x ) 有因式 x - a (10) 轮换对称式:简单举例:若关于 x 、y 、z 的轮换式有因式 x - y ,则其有因式(x - y )( y - z )(z - x )前 8 种因式分解的方法在初中均要求学生掌握,后 2 种有兴趣有精力的学生可以选择性的进行学习。

第13讲 整式恒等变形

第13讲 整式恒等变形

第十三讲整式恒等变形知识模块一、降次与消元知识梳理:通过已知等式变形后代入需求的代数式中,可以将所求表达式进行降次或消元使复杂代数式得到化简,例如:已知x2−x−1=0,可将等式变形为x2=x+1,将其代入所有x的次数不低于二次的项中,从而达到降次目的。

例1.(1)若3x3−x=1,求9x4+12x3−3x2−7x+2013的值;(2)已知a3+2a=−2,求3a6+12a4−a3+12a2−2a−4的值;(3)已知x2+x−1=0,求x8−7x4+11的值。

例2.已知a、b、c都是正整数,并且a+b+c=55,a−bc=−8,求abc的最大值及最小值。

知识模块二、配方法知识梳理:配方法是指将一个式子或一个式子的某一部分通过恒等变形化为完全平方式或几个完全平方式的和。

重要性质:平方式的非负性常可通过配方法,得到非负的完全平方式求解不定方程、做差比较大小、求解代数式的最值。

例3.(1)若m2+n2+6n−4m+13=0,则(m+n)2017= ;(2)已知a2b2+a2+b2+10ab+16=0,求a2+b2的值;(3)已知14(b−c)2=(a−b)(c−a)且a≠0,求b ca+的值。

例4.(1)若A=x2+4xy+y2−4,B=4x+4xy−6y−25,试比较A、B的大小关系。

(2)若x≠y,则x4+y4x3y+xy3(填“>”或“<”)例5.阅读下面的材料:我们可以用配方法求一个二次三项式的最大值或最小值,例如:求代数式a2−2a+5的最小值。

方法如下:a2−2a+5=a2−2a+1+4=(a−1)2+4,由(a−1)2≥0,得(a−1)2+4≥4,代数式a2−2a+5的最小值是4。

(1)仿照上述方法求代数式x2+6x−5的最小值;(2)代数式−a2−4a+10有最大值还是最小值?请用配方法求出这个最值。

例6.(1)求代数式(a+2b)2+(a−1)2+(b−1)2−7的最小值;(2)已知实数a、b满足a2+b2=1,试求a4+a2b2+b4的最大值和最小值。

北师大版七年级数学下 整式乘除的拓展恒等变形和竖式在整式乘除中的应用课件(23张PPT)

北师大版七年级数学下 整式乘除的拓展恒等变形和竖式在整式乘除中的应用课件(23张PPT)
② (a±b)2=a2±2ab+b2
③ (a+b) (a2-ab+b2)=a3+b3 ④ (a-b) (a2+ab+b2)=a3-b3 ⑤ (a+b+c)2= a2+b2+c2+2ab+2bc+2ca ⑥ (a+b+c) (a2+b2+c2-ab-bc-ca)= a3+b3+c3-3abc
⑦ (a±b)3= a3±3a2b+3a b2±b3
已知x+y= -3,x3+y3= -18,求x7+y7的值
求证:(x2-xy+y2)3+(x2+xy+y2)3能被2x2+2y2整除
试求x285-x83+x71+x9-x3+x被x-1除所得的余数。
研究84×86,98×92,…的简便运算,并请你用整式运算形式表示这一简便运算 规律。
若m=10x3-6x2+5x-4,n=2+9x3+4x-2x2,则19x3-8x2+9x-2等于(
计算 (2x3-x+6)•(3x2+5x-2)
求(2x6-3x5+4x4-7x3+2x-5) (3x5-x3+2x2+3x-8)展开式中x8的系数
计算 (3x4-5x3+x2+2)÷(x2+3)
用竖式进行整式除法要注意: (1)被除式和除式要按同一字母的降幂排列; (2)如被除式和除式中有缺项,要留有空位; (3)余式的次数要低于除式的次数; (4)被除式、除式、商式、余式之间的关系是:被除式=除式×商式+余式

七年级数学上册2.1整式恒等变形素材新人教版

七年级数学上册2.1整式恒等变形素材新人教版

恒等变形恒等概念是对两个代数式而言,如果两个代数式里的字母换成任意的数值,这两个代数式的值都相等,就说这两个代数式恒等.表示两个代数式恒等的等式叫做恒等式.如:a+b=b+a;2x+5x=7x都是恒等式.而t2+6=5t,x+7=4都不是恒等式.以前学过的运算律都是恒等式.将一个代数式换成另一个和它恒等的代数式,叫做恒等变形(或恒等变换).以恒等变形的意义来看,它不过是将一个代数式,从一种形式变为另一种形式,但有一个条件,要求变形前和变形后的两个代数式是恒等的,就是“形”变“值”不变.如何判断一个等式是否是恒等式,通常有以下两种判断多项式恒等的方法.1.如果两个多项式的同次项的系数都相等,那么这两个多项式是恒等的.如2x2+3x-4和3x-4+2x2当然恒等,因为这两个多项式就是同一个.反之,如果两个多项式恒等,那么它们的同次项的系数也都相等(两个多项的常数项也看作是同次项).2.通过一系列的恒等变形,证明两个多项式是恒等的.如:如果ax2+bx+c=px2+qx+r是恒等式,那么必有:a=p,b=q,c=r.例:求b、c的值,使下面的恒等成立.x2+3x+2=(x-1)2+b(x-1)+c ①解一:∵①是恒等式,对x的任意数值,等式都成立设x=1,代入①,得12+3.再设x=2,代×1+2=(1-1)2+b(1-1)+c,c=6入①,由于已得c=6,故有22+3×2+2=(2-1)2+b(2-1)+6,b=5.∴x2+3x+2=(x-1)2+5(x-1)+6.解二:将右边展开x2+3x+2=(x-1)2+b(x-1)+c,=x2-2x+1+bx-b+c,=x2+(b-2)x+(1-b+c).比较两边同次项的系数,得由②得b=5,将b=5代入③得,1-5+c=2,c=6.∴x2+3x+2=(x-1)2+5(x-1)+6.这个问题为依照x-1的幂展开多项式x2+3x+2,这个解题方法叫做待定系数法,它是先假定一个恒等式,其中含有待定的系数,如上例的b、c,然后根据恒等的意义或性质,列出b、c应适合的条件,然后求出待定系数值.。

常用的14个恒等变形公式

常用的14个恒等变形公式

常用的14个恒等变形公式恒等变形公式是数学中的重要概念,它指的是在等式两边同时进行相同的运算,从而得到等价的新式子的过程。

在数学中,恒等变形公式被广泛应用于各种数学问题的解决中。

本文将介绍常用的14个恒等变形公式,希望能够帮助读者更好地理解数学知识。

1. 平方差公式平方差公式是指:$a^2-b^2=(a+b)(a-b)$。

这个公式在代数中是非常常用的,它可以帮助我们快速计算两个数之间的平方差。

2. 完全平方公式完全平方公式是指:$a^2+2ab+b^2=(a+b)^2$。

这个公式可以帮助我们快速计算一个二次项的平方。

3. 二次差公式二次差公式是指:$a^2-b^2=(a+b)(a-b)$。

这个公式与平方差公式相同,但它更适用于计算两个数的平方差。

4. 一次多项式恒等式一次多项式恒等式是指:$ax+by=c$。

这个公式可以帮助我们快速求解一次方程。

5. 一次多项式因式分解公式一次多项式因式分解公式是指:$ax+ay+bx+by=a(x+y)+b(x+y)=(x+y)(a+b)$。

这个公式可以帮助我们快速因式分解一次多项式。

6. 二次多项式恒等式二次多项式恒等式是指:$ax^2+bx+c=(x-p)(x-q)$,其中$p$和$q$是二次方程的解。

这个公式可以帮助我们快速求解二次方程。

7. 二次多项式完全平方公式二次多项式完全平方公式是指:$ax^2+bx+c=a(x+p)^2+q$,其中$p$是二次方程的解。

这个公式可以帮助我们快速将二次多项式变成完全平方的形式。

8. 二次多项式配方法二次多项式配方法是指:$ax^2+bx+c=a(x+frac{b}{2a})^2-frac{b^2-4ac}{4a}$。

这个公式可以帮助我们快速将二次多项式配成平方的形式。

9. 欧拉公式欧拉公式是指:$e^{ix}=cos x+isin x$。

这个公式是数学中的重要公式,它将复数与三角函数联系起来。

10. 对数公式对数公式是指:$log_ab=frac{log_cb}{log_ca}$。

整式恒等变形一览

整式恒等变形一览

整式恒等变形一览 The following text is amended on 12 November 2020.初中数学中的整式恒等式一览表草根雾岩@初中理科班数学学完乘法公式和因式分解后,对比较常见的整式恒等式进行总结,以方便学生们进行查阅. 比较重要的恒等式都有自己的名字,一般以恒等式的形式或者发现者的名字命名;另外一些虽然在“中考中不能使用,但却是广大劳动人民智慧的结晶,所谓的‘民间定理’”!【1】 在恒等式的群山之巅闪耀着不朽的光辉!本文试着按照不同难度要求对恒等式进行分类.【课内涉及的恒等式】(1)平方差公式()()22a b a b a b +-=-()()22a b a b b a ---=-(2)完全平方和、差公式222()2a b a ab b +=++222()2a b a ab b -=-+(3)平方和与完全平方和差的关系()2222a b a b ab +=+-()2222a b a b ab +=-+(4)完全平方和差的关系()()224a b a b ab +--=()()()22222a b a b a b ++-=+(5)三项和完全平方公式()2222222a b c a b c ab bc ca ++=+++++(6)两项轮换差的完全平方和()()()22222212a b c ab bc ca a b b c c a ⎡⎤++---=-+-+-⎣⎦ (7)十字相乘法()()()2x p x q x p q x pq ++=+++(8)分组分解法()()ax by ay bx a b x y +++=++【自招中涉及的公式】(1)立方和、差公式2233()()a b a ab b a b +-+=+2233()()a b a ab b a b -++=-(2)完全立方和、差公式33223()33a b a a b ab b +=+++33223()33a b a a b ab b -=-+-(3)立方和差与完全立方和差的关系()()3333a b a b ab a b +=+-+()()3333a b a b ab a b -=-+-(4)杨辉三角()554322345510105a b a a b a b a b ab b +=+++++ ()554322345510105a b a a b a b a b ab b -=-+-+-(5)四项和完全平方公式()22222222222a b c d a b c d ab ac ad bc bd cd +++=+++++++++【几个比较有名的配方公式】(1)()()()()()()22222222a b c d ac bd ad bc ac bd ad bc ++=++-=-++ 这是着名的菲波那切(Fibonacci ,1170--1250)恒等式. 该恒等式可以推出二元柯西不等式. (2)()()2444222a b a b a ab b +++=++(3)()()()222222111n n n n n n +⋅+++=++(4)()()()2224444222242a b c d abcd a b c d ab cd +++-=-+-+-该恒等式可以推出四元的均值不等式. (5)()()()()22123131x x x x x x ++++=++该恒等式可以说明连续四个正整数的积不是完全平方数.(6)()()()()()22222223122a b b c c a a b c a b c -+-+-=++-++ 一个求最值问题的变形,奥精上有这道题,去年某区初赛考了它的推广形式.(7)()()44222242222n k n nk k n nk k +=++-+双二次式的因式分解,配方法和平方差结合的典例,类似的方法可以证明对于一切整数1n >,441n +及44n +都是合数,前者被称为哥德巴赫定理(Goldbach ,1690--1764),后者被称为吉梅茵(Germain ,1776--1831)定理【2】.当然,4这个系数还可以改为64、324、1024等具有形式44t 的数。

整式恒等变形

整式恒等变形

第8 讲整式恒等变形模块一恒等变形→降幂迭代与换元基础夯实题型一降幂迭代法与大除法)如果x2+x-1=0,那么x3+2x2+3=____________ 【例1】(第14 届“希望杯”邀请赛试题练1】(1990 年第一届希望杯初二第一试)已知3x2+4x-7=0,求6x4+11x3-7x2-3x-7 的值.题型二整体代入消元法【例2】(第14届希望杯1 试)若x+y=-1,求x4+5x3y+x2y+8x2y2+xy2+5xy3+y4的值.【练2】当x-y=1 时,求x4-xy3-x3y-3x2y+3xy2+y4的值.题型三换元法强化挑战【例3】化简(y+z-2x)2+(z+x-2y)2+( x+y-2z)2-3(y-z)2-3(x-y)2-3(x-z)2.【练3】已知x,y,z 为有理数(y-z)2+(z-x)2+(x-y)2=(y+z-2x)2+(x+z-2y)2+(x+y-2z)2,求yz 1 zx 1 xy 1 的值.x2 1 y2 1 z2 1模块二题型一恒等变形→因式分解与不定方程因式分解基础夯实【例4】(1)已知a5-a4b-a4+a-b-1=0,且2a-3b=1,则a3+b3的值等于(2)若a4+b4=a2-2a2b2+b2+6,则a2+b2=______________ .【练4】(1)若x满足x5+x4+x=-1则x+x2+x3+⋯+x2012=______________ .(2)已知15x2-47xy+28y2=0,求x的值.y强化挑战【例5】已知:a、b、c 为三角形的三条边,且a2+4ac+3c2-3ab-7bc+2b2=0,求证:2b=a+c.练5】(1)在三角形ABC 中,a2-16b2-c2+6ab+10bc=0,其中a,b,c 是三角形的三边,求证:a+c =2b.(2)已知△ ABC 三边a、b、c,满足条件a2c-a2b+ab2-b2c+c2b-ac2=0,试判断△ ABC 的形状,并说明理由.题型二不定方程【例6】(1)方程xy-2x-2y+7=0 的整数解(x≤y)为_____________ .(2)已知a> b> c≥0,求适合等式abc+ab+ac+bc+a+b+c=2011 的整数a,b,c的值.【练6】(1)长方形的周长为16cm,它的两边长x,y 均为整数,且满足x-y-x2+2xy-y2+2=0,求它的面积.(2)矩形的周长28cm,两边长为xcm、ycm,且x3+x2y-xy2-y3=0,求矩形的面积.例7】(2000 年联赛)实数x,y 满足x≥y≥1 和2x2-xy-5x+y+4=0,则x+y=_________2练7】当x 变化时,分式3x 6 x 5的最小值是 ___________________1 x2 x 12模块三恒等变形→配方法【例8】已知x2+2xy+2y2+4y+4=0,求x,y.练8】已知x2-6xy+10y2-4y+4=0,求x,y.例9】已知x2+2xy+2y2+4x+8=0,求x,y.练9】已知x2-6xy+10y2+2x-8y+2=0,求x,y.例10】已知实数a、b、c 满足a-b+c=7,ab+bc+b+c2+16=0.则b的值等于a练10】已知a-b=4,ab+c2+4=0,则a+b=__________模块四恒等变形→乘法公式知识点睛【常见乘法公式】1、二元二次:(1)(a+b)(a-b)=.2 ____________________ (2)(a-b)2=.2、三元二次:(3)(a+b+c)2=_____ .222(4)a +b +c +ab+bc+ca= __ .3、二元三次:3(5)(a+b)3=___________ .(6) ___________________a3+b3=.4、三元三次:(7)(a+1)(b+1)(c+1)=abc+ab+bc+ca+a+b+c+1(8)(a+b)(b+c)(c+a)=a2b+b2c+c2a+ab2+bc2+ca2+2abc2 2 2 2 2 2(9)(a+b+c)(ab+bc+ca)=a b+b c+c a+ab +bc +ca +3abc(10)a3+b3+c3-3abc=(a+b+c)(a2+b2+c2-ab-bc-ca)5、三元四次:3 4 4 2 2 2 2 2 2(11)(a+b+c)(a+b-c)(b+c-a)( c+a-b)=-a4-b4-c4+2a2b2+2b2c2+2c2a2 6、二元n 次:(12)a n-b n=(a-b)(a n-1+a n-2b+a n-3b2+⋯+ab n-2+b n-1)(13)a n+b n=(a+b)(a n-1-a n-2b+a n-3b2+⋯-ab n-2+b n-1)(n 为奇数)7、n 元二次:(14)( a1+a2+⋯+a n)2=a12+a22+⋯+a n2+2a1a2+2a1a3+⋯+2a1a n+2a2a3+2a2a4+⋯+2a n-1a n.2 2 1 2 2(15)a1 +⋯+a n +a1a2+⋯+a1a n+a2a3+⋯+a2a n+⋯+a n-1a n=[(a1+a2)+⋯+(a n-1+a n) ]强化挑战【例11】已知实数a、b、x、y 满足a+b=x+y=3,ax+by=4,求(a2+b2)xy+ab(x2+y2)的值.2【练11】(第6 届希望杯初一)已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995( x 17 +y)+6xy-( a+b)的值.2例12】若a+b+c=0,a3+b3+c3=0,求证:a2011+b2011+c2011=0.练12】若a+b-c=3,a2+b2+c2=3,那么a2012+b2012+c2012=__________________【例13】(2009 年北京市初二数学竞赛)设a+b+c=0,a2+b2+c2=1.(1)求ab+bc+ca 的值;(2)求a4+b4+c4的值.【练13】若a+b+c=1,a2+b2+c2=2,a3+b3+c3=8,3 (1)求abc 的值;(2)求a4+b4+c4的值.巅峰突破【例14】若x+y=a+b,且x 2+y2=a2+b2,求证:x2014+y2014=a2014+b2014.练14】已知a+b=c+d,a3+b3=c3+d3,求证:a2013+b2013=c2013+d2013.拓14】已知a+b=c+d,a5+b5=c5+d5,求证:a2013+b2013=c2013+d2013第8 讲课后作业习l】已知x2+x-1=0,求x8-7x4+11 的值.习2】已知a+b+c=1,b2+c2-4ac+6c+1=0,求abc 的值.习3】若m=20062+20062×20072+20072,则m()A .是完全平方数,还是奇数B.是完全平方数,还是偶数C.不是完全平方数,但是奇数D.不是完全平方数,但是偶数习4】正整数a、b、c 是等腰三角形三边的长,并且a+bc+b+ca=24,则这样的三角形有() A.1 个B.2个C.3 个D.4 个习5】已知a、b、c是一个三角形的三边,则a4+b4+c4-2a2b2-2b2c2-2c22a2的值()A .恒正B .恒负C.可正可负 D .非负习6】如果a+2b+3c=12,且a2+b2+c2=ab+bc+ca,求a+b2+c3的值.2 2 2 2习7】已知实数a、b、x、y 满足a+b=x+y=2,ax+by=5,求(a2+b2)xy+ab(x2+y2)的值.习8】已知x是实数并且x3+2x2+2x+1=0.求x2008+x2011+x2014的值.习9】(1999 年北京市初二数学竞赛)若3x3-x=1,求9x4+12x3-3x2-7x+2010 的值.习10】(第18 届希望杯初一)有理数a,b,c 满足a:b:c=2:3:5,且a2+b2+c2=abc,求a+b+c的值.【习11】(十八届希望杯初二二试)已知a1,a2,a3,⋯,a2007,是彼此互不相等的负数,且M=(a1+a2+⋯+a2006)(a2+a3+⋯+a2007),N=( a1+a2+⋯+a2007)(a2+a3+⋯+a2006),试比较M、N 的大小.习12】(2013 年联赛)已知实数x,y,z 满足x+y=4,|z+1|=xy+2y-9,则x+2y+3z=____________ 习13 】(2013 年竞赛)已知正整数a、b、c 满足a+b2-2c-2=0,3a2-8b+c=0,则abc 的最大值为习14】(2001年联赛)求实数x,y 的值,使得(y-1)2+(x+y-3)2+(2x+y-6)2达到最小值.。

七年级(上)数学自招班--第7讲 整式恒等变形 教师版

七年级(上)数学自招班--第7讲  整式恒等变形  教师版

a
a
b
c
a
2
b
c
b2
bc c2
b c a2 b2 c2 2ab 2bc 2ca a2 ab ac a2 b2 bc c2
b c3a2 3ab 3bc 3ca
3b ca bc a
左边.
思维拓展
【拓1】 已知 a ,b ,c ,d ,适合 a b c d , a3 b3 c3 d 3 .求证: a2014 b2014 c2014 d 2014 . 【解析】⑴ 若 a b c d 0 ,则 a b ,c d ,
7
整式恒等变形
板块一 消元与降次
经典例题
【例1】 已知 a b c 1, b2 c2 4ac 6c 1 0 ,求 abc 的值. 【解析】∵ a b c 1,∴ a 1 b c ,
∴ b2 c2 41 b cc 6c 1 0 ,
∴ b2 5c2 4bc 2c 1 0 ,
2
c2 a2
2 0.
2 七年级数学自招班·第 7 讲·教师版
所以 a2 b2 c2 ,即 a b c . 所以 △ABC 为等边三角形.
【例7】 能将任意 8 个连续的正整数分为两组,使得每组四个数的平方和相等吗?如果能,请给出一 种分组法,并加以验证;如果不能,请说明理由.
【解析】 能 设任意八个连续的正整数为 a , a 1, a 2 , a 3 , a 4 , a 5 , a 6 , a 7 . 分它们为如下两组: a 1,a 2,a 4,a 7 , a,a 3,a 5,a 6 即满足要求. 验证如下:
【例8】 证明: 3a bb cc a a b c3 a3 b3 c3 .
【解析】 本题可以把两边展开,只要计算没有错误,肯定两边运算结果是相同的,从而达到证明的目 的,但这样运算繁琐,不妨利用因式分解证明。

整式的恒等变形例题

整式的恒等变形例题

整式的恒等变形例题
哎哟喂,各位看官,今儿咱来聊点有趣的——整式的恒等变形例题。

别瞅着这名儿高深,咱用咱大中国的四方方言来唠唠,保准你听得津津有味,还能学点真东西。

首先咱从四川话开始。

要说这整式的恒等变形,就像咱四川的火锅,看似一锅乱炖,实则各种调料恰到好处,味道巴适得板。

你瞧这式子,左边一堆,右边一堆,变个形儿,嘿,两边就相等了,多神奇啊!
再来说说贵州话。

这整式的恒等变形,就跟咱贵州的山路十八弯一样,弯弯绕绕,看似复杂,实则有规律可循。

你得多走走看看,才能摸清楚其中的门道,不然就得绕晕咯。

陕西方言也不能少。

这整式的恒等变形啊,就得像咱陕西人一样,实诚、直接。

别搞那些花里胡哨的,直接上手干,把式子变个形儿,看看两边是不是就相等了。

简单明了,这才是咱陕西人的风格嘛!
最后说说北京话。

这整式的恒等变形啊,其实就跟咱北京的四合院一样,看着规整,实则内涵丰富。

你得细细品味,才能发现其中的奥妙。

别小看这变形,有时候稍微一调整,整个式子的意思就变了,多有意思啊!
好啦好啦,说了这么多,大家也听累了吧。

咱就总结一下吧:整式的恒等变形,就像咱大中国的四方方言一样,各有各的特色,各有各的魅力。

只要咱用心去学,用心去品,就能发现其中的乐趣和奥妙。

下次再见啦,各位看官!。

06(整式的恒等变形)

06(整式的恒等变形)

初一数学巩固提高(6)整式的恒等变形一、知识要点1、整式的恒等变形把一个整式通过运算变换成另一个与它恒等的整式叫做整式的恒等变形2、整式的四则运算整式的四则运算是指整式的加、减、乘、除,熟练掌握整式的四则运算,善于将一个整式变换成另一个与它恒等的整式,可以解决许多复杂的代数问题,是进一步学习数学的基础。

3、乘法公式乘法公式是进行整式恒等变形的重要工具,最常用的乘法公式有以下几条:① (a+b) (a-b)=a2-b2② (a±b)2=a2±2ab+b2③ (a+b) (a2-ab+b2)=a3+b3④ (a-b) (a2+ab+b2)=a3-b3⑤ (a+b+c)2= a2+b2+c2+2ab+2bc+2ca⑥ (a+b+c) (a2+b2+c2-ab-bc-ca)= a3+b3+c3-3abc⑦ (a±b)3= a3±3a2b+3a b2±b34、整式的整除如果一个整式除以另一个整式的余式为零,就说这个整式能被另一个整式整除,也可说除式能整除被除式。

5、余数定理多项式()x f除以 (x-a) 所得的余数等于()a f。

特别地()a f=0时,多项式()x f能被(x-a) 整除二、例题精讲例1 在数1,2,3,…,1998前添符号“+”和“-”并依次运算,所得可能的最小非负数是多少?分析要得最小非负数,必须通过合理的添符号来产生尽可能多的“0”解因1+2+3+ (1998)()19999992199811998⨯=+⨯是一个奇数,又在1,2,3,…,1998前添符号“+”和“-”,并不改变其代数和的奇偶数,故所得最小非负数不会小于1。

先考虑四个连续的自然数n、n+1、n+2、n+3之间如何添符号,使其代数和最小。

很明显 n-(n+1)-(n+2)+(n+3)=0所以我们将1,2,3,…,1998中每相邻四个分成一组,再按上述方法添符号,即(-1+2)+(3-4-5+6)+ (7-8-9+10)+…+ (1995-1996-1997+1998)= -1+2=1故所求最小的非负数是1。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学中的整式恒等式一览表
草根雾岩@初中理科班数学学完乘法公式和因式分解后,对比较常见的整式恒等式进行总结,以方便学生们进行查阅. 比较重要的恒等式都有自己的名字,一般以恒等式的形式或者发现者的名字命名;另外一些虽然在“中考中不能使用,但却是广大劳动人民智慧的结晶,所谓的‘民间定理’”!【1】在恒等式的群山之巅闪耀着不朽的光辉!本文试着按照不同难度要求对恒等式进行分类.
【课内涉及的恒等式】
(1)平方差公式
(2)完全平方和、差公式
(3)平方和与完全平方和差的关系
(4)完全平方和差的关系
(5)三项和完全平方公式
(6)两项轮换差的完全平方和
(7)十字相乘法
(8)分组分解法
【自招中涉及的公式】
(1)立方和、差公式
(2)完全立方和、差公式
(3)立方和差与完全立方和差的关系(4)杨辉三角
(5)四项和完全平方公式
【几个比较有名的配方公式】
(1)()()()()()()22222222a b c d ac bd ad bc ac bd ad bc ++=++-=-++
这是着名的菲波那切(Fibonacci ,1170--1250)恒等式. 该恒等式可以推出二元柯西不等式.
(2)()()244422
2a b a b a ab b +++=++ (3)()()()222222111n n n n n n +⋅+++=++
(4)()()()222
4444222242a b c d abcd a b c d ab cd +++-=-+-+- 该恒等式可以推出四元的均值不等式.
(5)()()()()22123131x x x x x x ++++=++
该恒等式可以说明连续四个正整数的积不是完全平方数.
(6)()()()()()22222223122
a b b c c a a b c a b c -+-+-=++-++ 一个求最值问题的变形,奥精上有这道题,去年某区初赛考了它的推广形式.
(7)()()44222242222n k n nk k n nk k +=++-+
双二次式的因式分解,配方法和平方差结合的典例,类似的方法可以证明对于一切整数1n >,441n +及44n +都是合数,前者被称为哥德巴赫定理(Goldbach ,1690--1764),后者被称为吉梅茵(Germain ,1776--1831)定理【2】.
当然,4这个系数还可以改为64、324、1024等具有形式44t 的数。

【竞赛中常见的恒等式】
(1)()()3332223a b c abc a b c a b c ab bc ca ++-=++++---
一个非常有名的“民间定理”,很多的竞赛题与它有关. 这个恒等式有很多称号,小编还查不到不知道哪个是真的. 从它可以得到下面的恒等式:
从它还可以推出三项的均值不等式.
(2)两项n 次方差公式
(Ⅰ)()()1221...n n n n n n a b a b a a b ab b -----=-++++(n 为正整数)
(Ⅱ)()()1221...n n n n n n a b a b a a b ab b -----=+-++-(n 为正偶整数) (Ⅲ)()()1221...n n n n n n a b a b a a b ab b ----+=+-+-+(n 为正奇整数)
后两个公式都源于公式(Ⅰ),都是b 取b -后,公式(Ⅰ)分别在奇数次幂和偶数次幂条件下展现的结果. 所以只要记住第一个公式就可以啦!
(3)()()()1111a b c abc ab bc ca a b c +++=+++++++
这个公式的多元推广形式可用于求正整数n 的所有正因数的和. 展开后的结果非常好记忆. 它的姊妹就稍微难一点:
(4)()()()1111a b c abc ab bc ca a b c ---=---+++-
(5)()()2222223a b c ab bc ca a b ab b c b a a a c c c b c ++++=++++++
(6)()()()2222222a b b c c a a b ab b c bc c a ca abc +++=++++++
上面这两个恒等式经常一起出现,它们只差一个abc ,常被用于证明一些有关分式的条件恒等式.
(7)()()()222222a b b c c a ab bc ca a b b c c a ---=++---
式子左边再乘以一些对称式(例如a b c ++、222a b c ab bc ca ++---)可以得到一些很漂亮的结果.
(8)()()()()444222222222a b c a b c a b c a b c a b c a b b c c a -++-++-++-=++--- 等式左边将来会出现在着名的“海伦公式”中.
(9)()()()1111n n n n n n αβαβαβαβαβ++--+=+⋅+-⋅+
这个公式主要用于求递推数列n n n T αβ=+的值,对给定,k l αβαβ+== ,上式可改写为:
11n n n T k T l T +-=⋅-⋅. 这样可逐步递推求得n T 的值. 可解决例如这样的问题:求2016的末位数. 其推广形式为牛顿公式.
(10)()()33
33611x x x x x =++---
由这个恒等式可以证明任何整数都能表示成五个整数的立方和的形式.
【学生小课题级别】
(1)多项和完全平方公式
(2)三项和的完全立方展开式:()3a b c ++
(3)牛顿公式法
即用基本对称式()1i i n σ≤≤表达1n k k i i S x ==∑. 例如:考虑3n =时,记
则有:
78年的上海数学竞赛中出现过这样一个条件恒等式的证明
【2】. 若,,a b c 是实数,且满足0a b c ++=,试证明:
(Ⅰ)555222333523a b c a b c a b c ++++++=⋅. (Ⅱ)777222555
725a b c a b c a b c ++++++=⋅
以及求下面这个恰定方程的实根问题,都可以用牛顿公式顺利解决.
确定方程组 222555333
x y z x y z x y z ++=⎧⎪++=⎨⎪++=⎩ 的所有实数根.
附注:
【1】 听到 @ Xu 老师调侃时的妙句,改编收录于此!
【2】 来自王志雄老师的一本书.
【3】 题引自《数学奥林匹克试题背景研究》刘培杰着.。

相关文档
最新文档