多元函数微分讲义学(1)

合集下载

《高等数学》(同济六版)教学课件★第9章.多元函数微分法及其应用(1)

《高等数学》(同济六版)教学课件★第9章.多元函数微分法及其应用(1)

例如, f ( x, y )
4
x2 y 2 2 2 xy 2 , x y 0 2 x y 0, x2 y 2 0
2 2 4
x 4x y y 2 2 y , x y 0 2 2 2 f x ( x, y ) (x y ) 0, x2 y2 0 x4 4x2 y 2 y 4 2 2 x , x y 0 2 2 2 f y ( x, y ) (x y ) 0, x2 y2 0 y f x (0, y ) f x (0, 0) lim 1 f x y (0,0) lim y 0 y y 0 y f y ( x, 0) f y (0, 0) x 1 lim f y x (0,0) lim x 0 x x 0 x
目录 上页 下页 返回 结束
r2
定理. 若 f x y ( x,y) 和 f y x ( x,y) 都在点 ( x0 , y0 ) 连续, 则
f x y ( x0 , y0 ) f y Байду номын сангаас ( x0 , y0 )
本定理对 n 元函数的高阶混合导数也成立.
(证明略)
例如, 对三元函数 u = f (x , y , z) , 当三阶混合偏导数 在点 (x , y , z) 连续时, 有
x 0 y 0
0

x 0 y 0
lim f ( x x, y y ) f ( x, y )
即 函数 z = f (x, y) 在点 (x, y) 可微
z f ( x x, y y) f ( x , y ) 函数在该点连续
下面两个定理给出了可微与偏导数的关系:
目录 上页 下页 返回

多元函数微分学-讲稿

多元函数微分学-讲稿

∂f = 0. ∂ρ
7. 设 函 数 f ( x, y ) 可 微 , f ( 0, 0 ) = 0, f x ( 0, 0 ) = m, f y ( 0, 0 ) = n, ϕ ( t ) = f t , f ( t , t ) , 则
(
)
(
(
) ) ,求 ϕ (1) , ϕ ′ (1) .
2
(4)设 f ( x, y ) 具有一、二阶连续的偏导数,且 f xx′′ ( x, y ) = f yy′′ ( x, y ) , f ( x, 2 x ) = x ,
f x′ ( x, 2 x ) = x, 试求 f xx′′ ( x, 2 x ) 与 f xy′′ ( x, 2 x ) . (赛.1994.苏)
多元函数微分学
一.极限.连续.偏导数及微分
【例 1】求下列极限
xy x2 + y2 x3 + y 3 (1) lim 4 ; (2) lim 2 ; (3) lim 2 ; x →+∞ x + y 2 x →∞ x + y 4 x →0 x + y 2 y →+∞ y →∞ y →0 x2 y + 1 − 1 xy ( y − x) x ; ; (5) lim (4) lim (6) lim 2 2 2 x →+∞ x + y 2 x →0 x →0 x +y x2 + y 2 y →+∞ y →0 y →0
∂z ∂z + x = 0. 并求 z. ∂x ∂y
u = x − 2 y ∂2 z ∂2 z ∂2 z (2)写出方程 6 2 + − 2 = 0 在变量置换 下的新方程的形式,并求其 ∂x ∂x∂y ∂y v = x + 3y

高数多元函数微分学教案 第一讲 多元函数的基本概念

高数多元函数微分学教案  第一讲  多元函数的基本概念

第八章 多元函数微分法及其应用第一讲 多元函数的基本概念授课题目:§8.1多元函数的基本概念教学目的与要求:1、理解多元函数的概念.2、了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质.教学重点与难点:重点:多元函数的概念、二元函数的极限和连续的概念. 讲授内容:一、平面点集 n 维空间1、平面点集平面上一切点的集合称为二维空间, 记为R 2 即R 2=R ⨯R={(x , y ):x , y ∈R }坐标平面上具有某种性质P 的点的集合, 称为平面点集,记作E ={(x , y ):(x , y )具有性质P }.例如,平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y ):x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P :|OP |<r }.回顾数轴上点的邻域。

邻域:设P 0(x 0, y 0)是xOy 平面上的一个点,δ是某一正数,与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体,称为点P 0的δ邻域,记为U (P 0, δ),即}||{),(00δδ<=PP P P U :或 })()(),{(),(20200 y y x x y x P U δδ<-+-=:. 点P 0的去心δ邻域, 记作) ,(0δP U ,即 }||0{),(00δδ<<=P P P P U :.如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U..点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点:如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点.(2)外点:如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点.(3)边界点:如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E .(4)聚点:如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集E ={(x , y )|1<x 2+y 2≤2}.,则满足1<x 2+y 2<2的一切点(x , y )都是E 的内点;满足x 2+y 2=1的一切点(x , y )都是E 的边界点;它们都不属于E ;满足x 2+y 2=2的一切点(x , y )也是E 的边界点;它们都属于E ;点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集:如果点集E 的点都是内点, 则称E 为开集.闭集:如果点集的余集E c 为开集, 则称E 为闭集.例如,E ={(x , y )|1<x 2+y 2<2}是开集;E ={(x , y )|1≤x 2+y 2≤2}是闭集; 集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性:如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域):连通的开集称为区域或开区域.例如,E ={(x , y )|1<x 2+y 2<2}是区域.闭区域:开区域连同它的边界一起所构成的点集称为闭区域. 例如,E = {(x , y )|1≤x 2+y 2≤2}.有界集:对于平面点集E , 如果存在某一正数r ,使得E ⊂U (O , r ),其中O 是坐标原点, 则称E 为有界点集.无界集:一个集合如果不是有界集,就称这集合为无界集.例如,集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域;集合{(x , y )| x +y >1}是无界开区域;集合{(x , y )| x +y ≥1}是无界闭区域..2.n 维空间设n 为取定的一个自然数,我们用表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合记为R n ,即R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n ):x i ∈R ,i =1, 2, ⋅ ⋅ ⋅, n }.这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与点y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )之间的距离,记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中,通常将||x ||记作|x |), 即22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号,结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .二、多元函数概念回顾一元函数的概念。

第五章多元函数微分学讲解

第五章多元函数微分学讲解

第五章 多元函数微分学知识点拔5.1 多元函数的概念一、二元函数的概念 1、二元函数的定义设在某一变化过程中,有三个变量y x ,和z ,如果对于变量y x ,在某一范围D 内任取一对数值,按照一定的对应法则,总有一个确定的值z 与它对应,则称变量z 是变量y x ,的二元函数,记作:),(y x f z =或),(y x z z =,其中y x ,称为自变量,z 称为因变量或称为y x ,的二元函数,变量y x ,取值范围D 称为该函数的定义域.2、二元函数的几何意义 二元函数),(y x f z =在几何上一般表示空间直角坐标系中的一个曲面.二、二元函数的极限 1、二元函数极限的定义设二元函数),(y x f z =在点),(000y x P 的某去心邻域内有定义,如果动点),(y x P 在该邻域内以任何方式无限地趋于点),(000y x P 时,函数),(y x f 总是无限地趋于一个常数A ,则称A 是函数),(y x f z =在),(y x P 趋于),(000y x P 时的极限(也称二重极限),记作A y x f y y X x =→→),(lim 0或A y x f y x y x =→),(lim),(),(00,若记点),(y x P 与点),(000y x P 之间的距离为20200)()(||y y x x PP -+-==ρ,则有A y x f =→),(lim 0ρ .注释:(1)极限的几何意义:当),(y x P 在),(000y x P 附近的某个范围内变化时,函数值),(y x f 与常数A 的距离恒小于任意给定的正数ε;(2)二元函数极限存在是指:动点P 必须以任意方式趋于点0P 时,),(y x f 都无限趋于常数A ,则二元函数的二重极限存在,但即使动点P 沿过0P 的无穷多条路径趋于0P 时极限都等于A ,也不能说明0P P →时,A y x f →),( .(3)二元函数极限不存在的判定方法:如果当点),(y x P 以两种不同的方式趋于点),(000y x P 时,函数),(y x f 分别趋于不同的常数,则可以断定函数),(y x f 在点),(000y x P 处的极限不存在。

《数学分析》第十七章 多元函数微分学

《数学分析》第十七章 多元函数微分学

第十七章 多元函数微分学 ( 1 6 时 ) §1 可微性 ( 4 时 )一. 可微性与全微分:1. 可微性:由一元函数引入.))()((22y x ∆+∆ο亦可写为y x ∆+∆βα,→∆∆) , (y x ) 0 , 0 (时→) , (βα) 0 , 0 (.2. 全微分:例1 考查函数xy y x f =),(在点) , (00y x 处的可微性. [1]P 105 E1二. 偏导数:1. 偏导数的定义、记法:2. 偏导数的几何意义: [1]P 109 图案17—1.3. 求偏导数:例2 , 3 , 4 . [1]P 142—143 E2 , 3 , 4 .例5 设 . 0, 0, 0 ,),(22222223⎪⎩⎪⎨⎧=+≠+++=y x y x y x y x y x f证明函数),(y x f 在点) 0 , 0 (连续 , 并求) 0 , 0 (x f 和) 0 , 0 (y f .证ρθθρρρθρθρ)sin cos (lim ),(lim2320sin ,cos )0,0(),(+===========→==→y x y x y x f=)0,0(0)sin cos (lim 230f ==+→θθρρρ. ),(y x f 在点) 0 , 0 (连续 .) 0 , 0 (x f =0||lim )0,0()0,(lim300==-→→x x x x f x f x x , ) 0 , 0 (y f ||lim )0,0(),0(lim 200y y y yf y f y y →→=-= 不存在 .Ex [1]P 116—117 1⑴—⑼,2 — 4 .三. 可微条件:1. 必要条件:Th 1 设) , (00y x 为函数),(y x f 定义域的内点.),(y x f 在点) , (00y x 可微⇒) , (00y x f x 和) , (00y x f y 存在, 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆. (证)由于dy y dx x =∆=∆ , ,微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy . 定理1给出了计算可微函数全微分的方法.两个偏导数存在是可微的必要条件 , 但不充分.例6 考查函数⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f 在原点的可微性. [1]P 110 E5 .2. 充分条件:Th 2 若函数),(y x f z =的偏导数在的某邻域内存在, 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微. (证) [1]P 111 Th 3 若),(y x f y 在点) , (00y x 处连续, ),(y x f x 点) , (00y x 存在,则函数f 在点) , (00y x 可微.证 f y y x x f -∆+∆+) , (00) , (00y x[][]) , () , () , () , (00000000y x f y x x f y x x f y y x x f -∆++∆+-∆+∆+= 0 1,0 ),() , (0000→<<∆+∆+∆∆+∆+=αθαθx x y x f y y y x x f x y []x x y x f y y x f x y ∆+∆+∆+=αβ),(),(0000 0→β y x y y x f x y x f y x ∆+∆+∆+∆=βα) , () , (0000.即f 在点) , (00y x 可微 .要求至少有一个偏导数连续并不是可微的必要条件 .例7 设⎪⎩⎪⎨⎧=+≠+++=.0 , 0, 0 ,1sin )(),(22222222y x y x y x y x y x f验证函数),(y x f 在点) 0 , 0 (可微, 但x f 和y f 在点) 0 , 0 (处不连续 . 证).0 , 0(),( , 01sin),(2222→→++=y x yx y x y x f ρ因此)(),(ρο=y x f ,即 )(00)0,0(),(ρο+∆+∆=-y x f y x f ,f 在点)0 , 0(可微,0)0,0( , 0)0,0(==y x f f . 但≠),(y x ) 0 , 0 (时, 有2222221cos1sin2),(yx y x x yx x y x f x ++-+=,沿方向,kx y = 2221||limlimkx xy x x x x +=+→→不存在, ⇒沿方向,kx y = 极限22221cos limyx y x x x ++→不存在; 又→),(y x ) 0 , 0 (时, 01sin222→+yx x ,因此,),(lim)0,0(),(y x f x y x →不存在, x f 在点) 0 , 0 (处不连续.由f 关于x 和y 对称,y f 也在点) 0 , 0 (处不连续 .四. 中值定理:Th 4 设函数f 在点) , (00y x 的某邻域内存在偏导数. 若),(y x 属于该邻域, 则存在)(010x x x -+=θξ和)(020y y y -+=θη, 10 , 1021<<<<θθ, 使得))( , ())( , (),(),(00000y y x f x x y f y x f y x f y x -+-=-ηξ. ( 证 ) 例8 设在区域D 内0==y x f f . 证明在D 内c x f ≡)(.五. 连续、偏导数存在及可微之间的关系:六.可微性的几何意义与应用:1. 可微性的几何意义: 切平面的定义. [1]P 115.Th 5 曲面),(y x f z =在点)) , ( , , (0000y x f y x P 存在不平行于Z 轴的切平面的充要条件是函数),(y x f 在点),(000y x P 可微 . (证略) 2. 切平面的求法: 设函数),(y x f 在点),(000y x P 可微,则曲面),(y x f z =在点)) , ( , , (0000y x f y x P 处的切平面方程为 (其中),(000y x f z =)))(,())(,(0000000y y y x f x x y x f z z y x -+-=-, 法线方向数为()1 , ),( , ),( 0000-±y x f y x f y x , 法线方程为1),(),(0000000--=-=-z z y x f y y y x f x x y x . 例9试求抛物面 22by ax z +=在点),,(000z y x M 处的切平面方程和法线方程 .[1] P 115 E63.作近似计算和误差估计: 与一元函数对照, 原理.例10 求96.308.1的近似值. [1] P 115 E7例11 应用公式C ab S sin 21=计算某三角形面积.现测得50.12=a , 30 , 30.8==C b . 若测量b a , 的误差为C , 01.0±的误差为1.0± . 求用此公式计算该三角形面积时的绝对误差限与相对误差限. [1] P 116 E8 Ex [1]P 116—117 5—14 ;§ 2复合函数微分法 ( 5 时 )简介二元复合函数 : ),( , ),( , ),(t s y t s x y x f z ψφ===. 以下列三种情况介绍复合线路图: 参阅[4] P 327—328 . ),( , ),( , ),(t s y t s x y x f z ψφ===;, ),,(z y x f u =),( , ),( t s y t s x ψφ==, ),(t s z η=;, ),,(z y x f u = ),,( , ),,( z t s y z t s x ψφ==.一. 链导法则: 以“外二内二”型复合函数为例.Th 设函数),( , ),( t s y t s x ψφ==在点∈),(t s D 可微, 函数),(y x f z =在点=),(y x ()),( , ),(t s t s ψφ可微 , 则复合函数f z =()),( , ),(t s t s ψφ在点),(t s 可微, 且),(),(),(),(),(t s y x t s y x t s s y y z s x x z s z ∂∂∂∂+∂∂∂∂=∂∂,),(),(),(),(),(t s y x t s y x t s ty yz tx xz tz ∂∂∂∂+∂∂∂∂=∂∂. ( 证 ) [1] P 155称这一公式为链导公式. 该公式的形式可在复合线路图中用所谓“分线加,沿线乘”(或“并联加,串联乘”)来概括.对所谓“外三内二”、“外二内三”、“外一内二”等复合情况,用“并联加,串联乘”的原则可写出相应的链导公式.链导公式中内函数的可微性可减弱为存在偏导数. 但对外函数的可微性假设不能减弱. 如[1] P 156的例.对外m 元),,,(21m u u u f , 内n 元),,,(21n i k x x x u φ= ) , , 2 , 1(m k =, 有∑=∂∂∂∂=∂∂mk ikk i x u u f x f 1 , n i , , 2 , 1 =. 外n 元内一元的复合函数为一元函数 . 特称该复合函数的导数为全导数. 例1 y x v e u v u z y x +==+=+22 , , )ln(2. 求x z ∂∂和y z∂∂. [1] P 157 E1 例2 22uv v u z -=, y x v y x u sin , cos ==. 求x z ∂∂和yz ∂∂. 例3 ())3(222y x yx z ++=, 求x z ∂∂和yz ∂∂. 例4 设函数),,(w v u f 可微 . ),,(),,(xyz xy x f z y x F =. 求x F 、y F 和z F . 例5 用链导公式计算下列一元函数的导数 :ⅰ> xx y = ; ⅱ> xx xx y cos sin ln )1(2++= . [1] P 158 E4例6 设函数),(y x u u =可微. 在极坐标变换θθsin , cos r y r x ==下 , 证明222221⎪⎪⎭⎫⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂+⎪⎭⎫ ⎝⎛∂∂y u x u u r r u θ. [1] P 157 E2 例7 设函数)(u f 可微 , )(22y x yf z -=. 求证xz yzxy x z y=∂∂+∂∂2. 二. 复合函数的全微分: 全微分和全微分形式不变性 .例8 )sin(y x e z xy+=. 利用全微分形式不变性求dz , 并由此导出x z ∂∂和yz∂∂. [1] P 160 E5Ex [1]P 160—161 1—5.三. 高阶偏导数:1. 高阶偏导数的定义、记法: 例9 ,2yx ez += 求二阶偏导数和23xy z∂∂∂. [1]P 167 E1 例10 xyarctgz =. 求二阶偏导数. [1]P 167 E2 2. 关于混合偏导数: [1]P 167—170.3. 求含有抽象函数的二元函数的高阶偏导数: 公式 , [1]P 171例11 ) , (y xx f z =. 求22xz ∂∂和y x z ∂∂∂2. [1]P 171 E34. 验证或化简偏微分方程:例12 22ln y x z +=. 证明22x z ∂∂ + 22y z∂∂0=. ( Laplace 方程 )例13 将方程0=∂∂-∂∂xu y y u x变为极坐标形式. 解 xyarctgy x r r y r x =+=⇒==θθθ , .sin , cos 22.r xy x x xr =+=∂∂22, r y y r =∂∂ , 2ry x -=∂∂θ ,2r x y =∂∂θ. θθθ∂∂-∂∂=∂∂∂∂+∂∂∂∂=∂∂ur y r u r x x u x r r u x u 2, θθθ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂u r x r u r y y u y r r u y u 2; 因此, θθθθ∂∂=∂∂+=∂∂+∂∂-∂∂+∂∂=∂∂-∂∂uu ry x u r y r u r xy u r x r u r xy x u y y u x 2222222 . 方程化简为0=∂∂θu. 例14 试确定a 和b , 利用线性变换 by x t ay x s +=+= , 将方程03422222=∂∂+∂∂∂+∂∂yu y x u x u 化为02=∂∂∂ts u. 解tus u x t t u x s s u x u ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂ , t u b s u a y t t u y s s u y u ∂∂+∂∂=∂∂∂∂+∂∂∂∂=∂∂. 22x u ∂∂=x∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂t u s u 22s u ∂∂x s ∂∂+t s u ∂∂∂2x t ∂∂+s t u ∂∂∂2x s ∂∂+22t u ∂∂xt∂∂= =22s u∂∂+2t s u ∂∂∂2+22t u ∂∂.y x u ∂∂∂2=y∂∂=⎪⎭⎫ ⎝⎛∂∂+∂∂t u s u 22s u ∂∂y s ∂∂+t s u ∂∂∂2y t ∂∂+s t u ∂∂∂2y s ∂∂+22t u ∂∂yt∂∂= =22s ua ∂∂+)(b a +t s u ∂∂∂2+b 22tu ∂∂.22y u ∂∂=y ∂∂==⎪⎭⎫ ⎝⎛∂∂+∂∂ t u b s u a 222s u a ∂∂+ab 2t s u ∂∂∂2+2b 22t u ∂∂. 因此 , =∂∂+∂∂∂+∂∂2222234yuy x u x u)341(2a a ++=22s u ∂∂ + ()6442ab b a +++t s u ∂∂∂2 + )341(2b b ++22t u ∂∂. 令 03412=++a a , 1 , 31 , 03412-=-=⇒=++b a b b 或31 , 1-=-=b a 或 ……, 此时方程03422222=∂∂+∂∂∂+∂∂yuy x u x u 化简为02=∂∂∂t s u .Ex [1]P 183 1,2 .§3 方向导数和梯度 ( 3 时 )一. 方向导数:1. 方向导数的定义:定义 设三元函数f 在点),,(0000z y x P 的某邻域)(0P ⊂3R 内有定义.l 为从点0P 出发的射线.),,(z y x P 为l 上且含于)(0P 内的任一点,以ρ表示P 与0P 两点间的距离.若极限 ρρρρfP f P f l ∆=-++→→000lim )()(lim存在,则称此极限为函数f 在点0P 沿方向l 的方向导数,记为P lf ∂∂或)(0P f l 、),,(000z y x f l .对二元函数),(y x f z =在点),(000y x P , 可仿此定义方向导数. 易见,x f ∂∂、y f ∂∂ 和 zf ∂∂是三元函数f 在点0P 分别沿X 轴正向、Y 轴正向和Z 轴正向的方向导数 .例1 ),,(z y x f =32z y x ++. 求f 在点0P ) 1 , 1 , 1 (处沿l 方向的方向导数,其中ⅰ> l 为方向) 1 , 2 , 2 (-; ⅱ> l 为从点) 1 , 1 , 1 (到点) 1 , 2 , 2 (-的方向.解 ⅰ> l 为方向的射线为令===-=--=-112121z y x )0 ( >t . 即)0 ( , 1 , 12 , 12≥+=+-=+=t t z t y t x .3) 1, 1 , 1 ()(0==f P f ,37) 1 () 12 () 12 ( ) 1 , 12 , 12 ()(2332+++=+++-++=++-+=t t t t t t t t t f P ft t t t z y x 3)2()2()1()1()1(222222=+-+=-+-+-=ρ.因此 ,.3137lim )()(lim 23000=++=-=∂∂++→→t t t t P f P f lft P ρρ ⅱ> 从点) 1 , 1 , 1 (到点) 1 , 2 , 2 (-的方向l 的方向数为), 0 , 3 , 1 (-l 方向的 射线为 ) 0 ( , 1 , 13 , 1≥=+-=+=t z t y t x .359) 1 , 13 , 1()(2+-=+-+=t t t t f P f , 3) 1, 1 , 1 ()(0==f P f ;t t t z y x 10)3()1()1()1(22222=-+=-+-+-=ρ.因此 ,.1051059lim )()(lim 2000-=-=-=∂∂++→→tt t P f P f lft P ρρ2. 方向导数的计算:Th 若函数f 在点),,(0000z y x P 可微, 则f 在点0P 处沿任一方向l 的方向导数都存在, 且 =)(0P f l )(0P f x αcos +)(0P f y βcos +)(0P f z γcos ,其中αcos 、βcos 和γcos 为l 的方向余弦. ( 证 ) [1]P 163对二元函数),(y x f , =)(0P f l )(0P f x αcos +)(0P f y βcos , 其中α和β是l 的方向角.注:由=)(0P f l )(0P f x αcos +)(0P f y βcos +)(0P f z γcos=()(0P f x , )(0P f y , )(0P f z )(⋅αcos , βcos , γcos ),可见, )(0P f l 为向量()(0P f x , )(0P f y , )(0P f z )在方向l 上的投影.例2 ( 上述例1 )解 ⅰ> l 的方向余弦为αcos =321)2(22222=+-+, βcos =32-, γcos =31.)(0P f x =1 , )(0P f y =221==y y , )(0P f z =3312==z z .因此 ,l f ∂∂=)(0P f x αcos +)(0P f y βcos +)(0P f z γcos =31313) 32(232=⋅+-⋅+. ⅱ> l 的方向余弦为αcos =101)11()12()12(12222=-+--+--, βcos =103-, γcos =0 .因此 ,l f∂∂=10510321011-=⋅-⋅.可微是方向导数存在的充分条件 , 但不必要 .例3 [1]P 164 E2 .二. 梯度 ( 陡度 ):1. 梯度的定义: =gradf ()(0P f x , )(0P f y , )(0P f z ) .||gradf =()()()202020)()()(P f P f P f z y x ++.易见, 对可微函数f , 方向导数是梯度在该方向上的投影.2. 梯度的几何意义: 对可微函数 , 梯度方向是函数变化最快的方向 . 这是因为=)(0P f l =⋅l gradf ||)(0P gradf θcos .其中θ是l 与)(0P gradf 夹角. 可见0=θ时)(0P f l 取最大值 , 在l 的反方向取最小值 . 3. 梯度的运算:ⅰ> grad =+)(c u grad u .ⅱ> grad (αu +βv ) = αgrad u +βgrad v .ⅲ> grad (u v ) = u grad v +v grad u .ⅳ> grad 2uvgradu ugradv u v -=. ⅴ> grad f (u ) = gradu u f )('.证ⅳ> 2u v u uv u v x x x -=⎪⎭⎫ ⎝⎛ , 2u v u uv u v y y y-=⎪⎭⎫ ⎝⎛. grad =--=) , (12v u uv v u uv uu v y y x x []=-=) , ( ) , (12v u v u v u uv uy x y x []=-=) , () , (12y x y x u u v v v u u 2u vgradu ugradv -.Ex [1]P 165 1,2 ,3 ,6 .§4 Taylor 公式和极值问题 ( 4 时 )一. 中值定理: 凸区域 . Th 1 设二元函数f 在凸区域D 2R ⊂上连续, 在D 的所有内点处可微. 则对D 内任意两点int ) , ( , ),(∈++k b h a Q b a P D , 存在) 10 ( <<θθ, 使k k b h a f h k b h a f b a f k b h a f x ) , () , (),() , (θθθθ+++++=-++. 证 令 , ) , ()(tk b th a f t ++=Φ.在闭凸区域上的情况: [1]P 173—174.推论 若函数f 在区域D 上存在偏导数 , 且x f ≡y f ≡0, 则f 是D 上的常值函数.二. Taylor 公式:Th 2 (Taylor 公式) 若函数f 在点),(000y x P 的某邻域)(0P 内有直到1+n 阶连续偏导数, 则对)(0P 内任一点) , (00k y h x ++,存在相应的) 1 , 0(∈θ, 使∑=+++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂++⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=++ni n i k y h x f y k x h n y x f y k x h i k y h x f 00010000). , ()!1(1),(!1 ) , (θθ 证 [1]P 175 例1 求函数y x y x f =),(在点) 4 , 1 (的Taylor 公式 ( 到二阶为止 ) . 并用它计算.) 08.1 (96.3 [1]P 175—176 E4 .三. 极值问题:1. 极值的定义: 注意只在内点定义极值.例2 [1]P 176 E5Ex [1]P 183 5,6,7⑴⑷.2. 极值的必要条件:与一元函数比较 .Th 3 设0P 为函数)(P f 的极值点. 则当)(0P f x 和存在时,有)(0P f x =)(0P f y 0=. (证)函数的驻点、不可导点 , 函数的可疑点 .3. 极值的充分条件:代数准备: 给出二元( 实 )二次型 222),(cy bxy ax y x g ++=. 其矩阵为 ⎪⎪⎭⎫ ⎝⎛c b b a . ⅰ> ),(y x g 是正定的,⇔ 顺序主子式全0 >,),(y x g 是半正定的,⇔ 顺序主子式全 0 ≥;ⅱ> ),(y x g 是负定的,⇔ 0||) 1(1>-k ij k a , 其中k ij a 1||为k 阶顺序主子式. ),(y x g 是半负定的, ⇔ 0||) 1(1≥-k ij k a .ⅲ> ⎪⎪⎭⎫ ⎝⎛c b b a < 0时, ),(y x g 是不定的. 充分条件的讨论: 设函数),(y x f 在点),(000y x P 某邻域有二阶连续偏导数.由Taylor公式, 有)()(!21)(),() , (20200000ρ +⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=-++P f y k x h P f y k x h y x f k y h x f =)(0P f x h +)(0P f y k + [])()()(2)(!21220020ρ +++k P f hk P f h P f yy xy xx . 令 )(0P f A xx = , )(0P f B xy =, )(0P f C yy =, 则当0P 为驻点时, 有[])(221),() , (2220000ρ +++=-++Ck Bhk Ah y x f k y h x f . 其中22k h +=ρ. 可见式),() , (0000y x f k y h x f -++的符号由二次型222Ck Bhk Ah ++完全决定.称该二次型的矩阵为函数),(y x f 的Hesse 矩阵. 于是由上述代数准备, 有ⅰ> 0 , 02>->B AC A , 0 P ⇒为 ( 严格 ) 极小值点 ;ⅱ> 0 , 02>-<B AC A , 0 P ⇒为 ( 严格 ) 极大值点 ;ⅲ> 0 2<-B AC 时, 0P 不是极值点;ⅳ> 0 2=-B AC 时, 0P 可能是极值点 , 也可能不是极值点 . 综上, 有以下定理.Th 4 设函数)(P f 在点0P 的某邻域内有连续的二阶偏导数, 0P 是驻点. 则ⅰ> ()0)( , 0)(020>->P f f f P f xy yy xx xx 时 , 0P 为极小值点; ⅱ> ()0)( , 0)(020>-<P f f f P f xy yy xx xx 时 , 0P 为极大值点;ⅲ> ()0)( 02<-P f f f xy yy xx 时 , 0P 不是极值点;ⅳ> ()0)( 02=-P f f f xy yy xx 时 , 0P 可能是极值点 , 也可能不是极值点 .例3—7 [1]P 179—182 E6—10 .四. 函数的最值:例8 求函数),(y x f y x y xy x 4102422+--+=在域D = } 4 , 0 , 0 |),( {≤+≥≥y x y x y x 上的最值 .解 令 ⎩⎨⎧=+-==-+=.04 44),(,01042),(y x y x f y x y x f yx 解得驻点为) 2 , 1 (. 1) 2 , 1 (-=f . 在边界) 40 ( 0≤≤=y x 上 , y y y f 42),0(2+-=, 驻点为1=y , 2)1,0(=f ; 在边界) 40 ( 0≤≤=x y 上 , x x x f 10)0,(2-=, 没有驻点;在边界) 40 ( 4≤≤-=x x y 上 , 16185)4 , (2-+-=-x x x x f ,驻点为8.1=x , 2.0)8.14 , 8.1(=-f .又24)0,4( , 16)4,0( , 0)0,0(-=-==f f f .于是 , )}0,4( , )4,0( , )0,0( , )2.2 , 8.1( , )1,0( , )2,1(max{),(max f f f f f f y x f D = 2.0} 24 , 16 , 0 , 2.0 , 2 , 1 max{=---=.),(min y x f D24} 24 , 16 , 0 , 2.0 , 2 , 1 min{-=---=.Ex [1]P 184 8⑴⑵,9⑴⑵,10,11 .。

第十七章多元函数的微分学

第十七章多元函数的微分学

第十七章 多元函数的微分学 §1 可微性教学目的 掌握多元函数偏导数,可微性与全微分的定义,可微的必要条件. 教学要求(1) 基本要求:掌握多元函数偏导数,可微性与全微分的定义,熟记可微的必要条件与充分条件.(2) 较高要求:切平面存在定理的证明.教学建议(1)本节的重点是多元函数偏导数,可微性与全微分的定义.(2) 通过讨论可微的必要条件与充分条件,弄清多元函数连续,存在偏导数与可微这三个分析性质之间的关系.教学程序一、 可微性与全微分:由一元函数可微性引入二元函数可微性.定义1(可微性) 设函数(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,对于0()U P 中的点00(,)(,)P x y x x y y =+∆+∆,若函数f 在点0P 处的全增量可表示为 00(,)(,)()z f x x y y f x y A x B y ρ∆=+∆+∆-=∆+∆+,其中A ,B 是仅与点0P 有关的常数,22,()x y ρρ=∆+∆是较ρ高阶的无穷小量,则称函数f 在点0P 处可微。

全微分:当,x y ∆∆充分小时0000(,)(,)()()dz zf x y f x y A x x B y y ≈∆≈+-+-. 例1 考查函数xy y x f =),(在点) , (00y x 处的可微性 .二 、 偏导数(一)、偏导数的定义、记法),(y x f 在点),(00y x 存在偏导数定义为:000000),(),(lim ),(0x x y x f y x f y x f x x x --=→ 或 xy x f y x x f y x f x x x ∆-∆+=→∆),(),(lim ),(0000000 000000),(),(lim ),(0y y y x f y x f y x f y y y --=→ 或 y y x f y y x f y x f y y y ∆-∆+=→),(),(lim ),(0000000 偏导数的几何意义:(二)、求偏导数:例2 ),(y x f =)12sin()32(2+++y x x . 求偏导数.例3 ),(y x f = 1)1ln(2+++y x x . 求偏导数.例4 ),(y x f =22y x y x ++. 求偏导数, 并求) 1 , 2 (-x f . 三 、 可微条件(一)、必要条件定理17.1设) , (00y x 为函数),(y x f 定义域的内点 . ),(y x f 在点) , (00y x 可微的必要条件是) , (00y x f x 和) , (00y x f y 存在 , 且==),(00),(00y x df dfy x ) , (00y x f x +∆x ) , (00y x f y y ∆.证明:由于dy y dx x =∆=∆ , , 微分记为=),(00y x df ) , (00y x f x +dx ) , (00y x f y dy .定理17.1给出了计算可微函数全微分的方法. 但是两个偏导数存在只是可微的必要条件, 而不是充分条件.例5.考查函数 ⎪⎩⎪⎨⎧=+≠++=0 , 0, 0 , ),(222222y x y x y x xy y x f在原点的可微性 .这个例子说明,偏导存在不一定可微,(这一点与一元函数不同!)(二)、充分条件定理17.2(可微的充分条件)若函数),(y x f z =的偏导数在的某邻域内存在 , 且x f 和y f 在点) , (00y x 处连续 . 则函数f 在点) , (00y x 可微。

多元函数微分学1

多元函数微分学1

多元函数微分学多元函数的极限1. 求函数y x z -=的定义域.解 二元函数的定义域. 由二次根式, 得0≥y 且0≥-y x .2. 设=)1,1(x y f yx x y x 2)(--, 求),(y x f .解1 复合函数.改写, 得=)1,1(x y f yx x y x 2)(--22111xxy y x --=. 于是)2(),(y x y x y y x f --=. 解2 令xv y u 1,1==. 代入化简, 得)2(),(v u v uv v u f --=.即)2(),(y x y xy y x f --=.习题(a) 已知=),(y x f 22y x xy+, 求)1,(x y f . (b) 设22),(y x xyy x f -=+, 求),(y x f .3. 计算极限22sin 00)1(lim y x xy x xy +→→+.解 用一元函数极限的法则与定理.因为x y →→00,, 所以xy →0. 这是1∞型未定式. 因为)(21||22y x xy +≤, 所以22|sin |||y x x xy +|sin |21x ≤. 根据极限存在准则1, lim x y →→000|sin |||22=+y x x xy . 再由函数连续性有lim()sin x y xxy xy →→++01= 1.4. 求证: 极限lim x y →→00x y x y2222-+不存在. 证 选择不同路径(相当于数列或一元函数的子列), 证明极限不存在.一种常用的(不是万能的!)路径是沿直线y y k x x -=-00()趋向于点(,)x y 00. 在这里是沿直线y kx =趋向于坐标原点.lim x y →→00x y x y 2222-+=lim x k k →-+02211=1122-+k k 因为极限值与k 有关, 即沿不同直线趋向于坐标原点时, 有不同极限值, 所以原极限不存在.5. 求证: 极限lim x y →→00x y x y22++不存在.证 选择不同路径, 证明极限不存在.例5中的直线路径在这里无效. 需要寻找曲线路径. 当动点沿抛物线y x kx =-+2趋向于坐标原点时, 有limx y →→00y x y x ++22=k k x k kx x 222lim 220=+-→ 极限值与k 有关, 原极限不存在.6. 研究函数z x yy y =≠=⎧⎨⎪⎩⎪sin ,,1000的连续性. 解 用定义判定连续.根据初等函数的连续性, 当y ≠0时, 函数连续. 因为lim x y →→0x ysin10=, 所以函数在坐标原点也连续.当沿着与y 轴平行的直线趋向于x 轴上其它的点时, 极限不存在. 于是这些点是函数的间断点.7. 设函数f x y (,)关于自变量x 连续, 又存在常数L >0, 使得对于任意两点(,),(,)x y x y 12, 有|(,)(,)|||f x y f x y L y y 1212-≤-, 则函数f x y (,)连续.证 用定义判定连续.任意取点(,)x y 00. 对于任意给定的0>ε, 由于对于取定的y 的值, 函数关于自变量x 连续, 存在01>δ, 使得当10||δ<-x x 时, 有2|),(),(|000ε<-y x f y x f .取}2,min{1Lεδδ=, 则当δ<-||0x x , δ<-||0y y 时, 有|)],(),([)],(),([||),(),(|000000y x f y x f y x f y x f y x f y x f ---=-|),(),(|0y x f y x f -≤|),(),(|000y x f y x f -+ εεδε≤+≤+-≤22||0L y y L偏导数与全微分1. 设函数f x y xy x y x y x y (,),,=++≠==⎧⎨⎪⎩⎪2222000 , 计算y fx f ∂∂∂∂,. 解 用定义求偏导数.当x y 220+≠时, 用导数公式得2/3223)(y x y x f +=∂∂, 2/3223)(y x x y f +=∂∂. 当x y ==0时, 用偏导数定义, 得f x (,)00=lim(,)(,)x f x f x→-=00000. 同理有f y (,)000=.2. 设函数22),(y x y x f +=, 则它在坐标原点连续, 但没有偏导数.解 用定义证连续,求偏导数因为)0,0(0lim 2200f y x y x ==+→→,函数在所以坐标原点连续。

多元函数微分学

多元函数微分学

第11章 多元函数微分学1 本章概述1.1 本章主要教学内容本章知识主要为:多元函数概念及其重极限、连续性;多元函数的偏导数、微分的概念及计算;连续、偏导数存在及可微三者之间的关系;链式规则;偏导数的几何应用,切平面与法向量;方向导数、梯度;隐函数存在性、可微性定理;多元函数最值求法,条件极值与Lagrange 乘数法.本章的较多篇幅是讲述偏导数的计算法,尤其是抽象复合函数的一阶、二阶偏导数的计算法,以及由方程确定的隐函数的偏导数的计算法.1.2 本章知识逻辑结构在以下图表中揭示出本章知识的逻辑关系.箭头前的是必须先学习的知识.1.3 在学习本章之前的必修知识学习本章——多元函数微分学应该具备一元函数微分学基本知识,空间解析几何基础知识, 具有线性代数基础知识更好.一元函数微分学基本知识具体为: 一元函数概念性质、极限概念及其性质、连续; 闭区间上连续函数的性质; 导数定义, 导数意义;微分、导数的四则运算、复合运算、高阶导数;微分中值定理;泰勒公式; 极值与最值.空间解析几何基础知识具体为:空间直线方程、平面方程和常见的二次曲面等知识.线性代数基础知识具体为:线性方程组解法;行列式及其运算;二次型概念及正定与负定二次型的判别法.( 线性代数不是学习本章的必要条件).1.4 本章对后继章节的影响在学习重积分、曲线积分、曲面积分时都必须先学本章知识. 本章知识与全微分方程有一定的相关性.1.5 本章的重点本章的关键点是: 偏导数的计算法本章的重点是:多元函数的连续性、偏导数、微分的概念, 连续、偏导数存在及可微三者隐函数求导法则 多元函数 极限 连续 有界闭区域上连续函数的性质 偏导数全微分 全微分形式不变性 极值 泰勒公式 最值无条件极值区域 方向导数 梯度 多元复合 求导法则 偏导数几何应用条件极值Lagrange 乘数法之间的关系;多元复合函数求导方法;偏导数的几何应用;极值及最值的求法.1.6 本章的难点区域有关概念, 二元函数极限, 全微分概念以及一阶微分形式不变性, 含有抽象函数的复合函数的一阶、二阶偏导数运算, 方程(组)确定的隐函数的一阶、二阶偏导数运算, 方向导数与偏导数间的关系,梯度的意义,无条件极值的充分条件的证明.2 .教学内容提要及教学建议(评注)2.1 多元函数的基本概念以二元函数为例叙述,可以平行推广到n 元函数的内容不再叙述. 2.1.1平面点集有关概念平面点集概念中最常说到的是邻域、区域. 其他的概念在初学时可以不讲. 某点的邻域是一个以该点为圆心的开圆盘,即一个开圆盘称为圆心的邻域.类似于一元函数时的区间,讨论二元函数时常常用到区域. 形象地说,区域就是连成一块的一个平面图形. 不含边界的区域叫开区域,含有全部边界在内的区域叫闭区域. 开区域或闭区域、半开半闭区域我们统称为区域.区域的严格数学定义为:区域是连通的开集.所谓连通集,即该集中任意两点都可以用含在该集中的连续曲线连接起来. 所谓开集,即该集中的每一点都有一个邻域含在此集中.能被一个圆盘包含的区域称为有界区域,否则称为无界区域.平面区域相关概念如内点、界点、聚点等建议不要在讲解二元函数概念之前先介绍, 因为对于非数学专业学生来说,学习内点,界点,聚点等这些是很难理解的,容易让学生感到抽象.可以先讲解二元函数的概念,然后几何意义,接着介绍二元函数定义域的求法与表示法,让学生从具体的定义域中感性的认识区域的有关概念,然后接着严格或者通俗的介绍这些概念.2.1.2 二元函数概念我们把二元函数定义为是从平面点集到实数集的映射. 注意使学生熟悉函数的记号,如函数与自变量的记号无关,f (x , y )既表示函数也表示函数值,函数记为z = f (x ,y )时,函数值,可记作00(,)f x y 或00(,)|x y z 等等.二元函数与一元函数类似,也只与定义域和对应法则有关,而与自变量,因变量用什么字母表示无关.一元函数可以看成是特殊的二元函数,而把二元函数的一个自变量固定,就得到一元函数. 二元函数z = f (x ,y ),其图形为空间一张曲面,该曲面在oxy 平面上的投影区域就是该函数的定义域. 也可以说该区面的方程是z = f (x ,y ).如函数z z =.注:三元及更多元函数的图形不是直观的图形..2.2 二元函数的极限与连续 2.2.1二重极限定义 设函数()z f P =在区域D 上有定义,点000(,)P x y 是D 的点或边界点.若当动点(,)P x y 在D 内无限趋向000(,)P x y 时, ()f P 总是无限的趋向于同一个常数A ,则称A 为()f P 当00(,)(,)x y x y →时的极限,记作00(,)(,)lim(,)x y x y f x y A →=, 或(,)f x y A → (00(,)(,)x y x y →).或 0lim ()P P f P A →=, 或()f P A → (0P P →).上面定义的极限叫二重极限. 二元函数还有一种极限叫二次极限,二者不同.二重极限仍有四则运算、无穷小乘有界量还是无穷小等性质,但没有洛比达法则.二重极限主要先从描述定义出发讲解,这样容易理解二元函数极限的本质,然后再向精确定义过度;要特别强调二元函数若当点(,)P x y 在D 内以任意方式任意方向趋向000(,)P x y 时,()f P 总是无限的趋向于同一个常数A ,则称A 为()f P 当00(,)(,)x y x y →时的极限,记作00(,)(,)lim (,)x y x y f x y A →=或0lim ()P P f P A →=.其次介绍二元极限与一元函数极限的不同点,让学生理解二元函数极限比一元要复杂,主要是体现的动点趋于的方向与方式上的多样性上.这个其实也是导致多元函数微分学会产生与一元不同的结果的根源所在.一元与二元函数极限的区别最后介绍二元函数极限的一些常规的求法及其证明二元函数极限不存在的一些作法. 如证明0lim ()P P f P →不存在: 一般寻找两条趋于P 0的不同的路径(首先考虑直线,其次是其他特殊的曲线)C 1;C 2若1C f A −−−→沿;2Cf B −−−→沿;而A B ≠,或,A B 中有一个不存在,则0lim ()P P f P →不存在, 例如考虑在原点O(0,0)的极限时,选直线 y kx =,假如有(,)(0,0)lim (,)x y f x kx A →=.① 若A 中含有k ,或A 不存在,则lim ()P Of P →不存在.②若A 中不含有k ,则lim ()P Of P →存在与否不能判断,此时需要选择其它曲线去考虑.因为这些是后面要讨论连续与可偏导,可偏导与可微分之间关系常用的方法.2.2.2二元连续函数二元函数连续性的定义与一元函数类似.定义 若()z f P =在区域D 上有定义且000(,)P x y D ∈,若有0lim ()()P P f P f P →= 或0000(,)(,)lim(,)(,)x y x y f x y f x y →=则称函数()f P 在0P 处连续,或称点0P 是函数()f P 的连续点.否则称为0P 为函数的间断点.若()f P 在区域D 上每一点都连续,则称()f P 在D 上连续.或称()f P 为D 上的连续函数. 二元连续函数性的性质也与一元函数类似,如:二元连续函数的四则运算及复合运算后仍是连续函数. 二元初等函数在其定义区域内都是连续的.最值定理: 若()f P 在有界闭区域D 上连续,则存在12,P P D ∈,使得P D ∀∈,有12()()()f P f P f P ≤≤ 4.介值定理: 若()f P 在有界闭区域D 上连续,则()f P 必取介于最大值与最小值之间的任一值.注:更一般的介值定理是:区域上的连续函数的值域是区间.2.3 偏导数2.3.1 偏导数的定义偏导数本质上是一元函数的导数.定义 设函数 (,)z f x y =在点),(00y x 的某邻域内有定义,当y 固定在0y ,考虑一元函数0(,)z f x y =,若它在0x x =处的导数存在,即00000(,)(,)limx f x x y f x y x∆→+∆-∆存在则称此极限值为函数),(y x f z =在点),(00y x 处对x 的偏导数,记作00|x x y y z x ==∂∂,00|x x y y z x ==∂∂ ,00|x x x y y z =='或00(,)x f x y '. 类似地,如果极限00000(,)(,)lim y f x y y f x y y∆→+∆-∆存在, 则称此极限值为函数),(y x f z =在点),(00y x 处对y 的偏导数, 记作0|x x y y z y==∂∂,00|x x y y z y==∂∂,00y y x x yz ==' 或00(,)y f x y '注1:00|x x y y z x ==∂∂=0),(0x x y x f dxd=. 或写0000(,)[(,)]|x x x f x y f x y =''= 用此式求一些分段函数在分段点处的偏导数很方便.注2: 000000(,)(,)|[(,)]x x x x x y y f x y f x y f x y =='''=≠注3:二元函数在某点的连续性与偏导数存在之间没有因果关系.如果函数),(y x f z =在区域D 内每一点),(y x 处对自变量x 或y 的偏导数(,)x f x y '、(,)y f x y ' 都存在,则这两个偏导数仍是y x 、的函数,称它们为函数),(y x f 对自变量x 或y 的偏导函数,简称偏导数,分别记作x z ',(,)x f x y ',x z ∂∂,xf ∂∂或y z ', (,)y f x y ', yz ∂∂,yf ∂∂.一元函数的变化率就是导数,对于二元函数由于自变量多,研究变化率就显得复杂,为了方便起见,我们仅限于讨论当点沿着平行于坐标轴方向变化时函数的变化率,即固定一个自变量,研究函数对另一个自变量的变化率即偏导数.其本质就是把二元函数当做一元函数去研究变化率. 即 0000(,)[(,)]|x x x f x y f x y =''=例 设(,)f x y =arctan22ln()y xex y ⋅+,求x f ')0,1(.解 如果先求出偏导函数x f '),(y x ,再求x f ')0,1(,可以发现求x f '运算比较繁杂.但若按偏导数定义即把y 固定在y =0,则有(,0)f x =2ln ||x 从而2(,0)x f x x'=,于是x f ')0,1(=2 .2.3.2 偏导数的计算方法由偏导数的定义可知,偏导数本质上是一元函数的导数,故求偏导数并不需要什么新的方法.对于给出具体表达式的显函数来说,在求它对某一自变量的偏导数时,只需将其它自变量看成常数,按照一元函数的求导法则进行求导.2.3.3. 偏导数的几何意义),(00y x f x '就是曲线C x :⎩⎨⎧==0),,(y y y x f z 在点)),(,,(00000y x f y x M 处切线x T M 0对x 轴的斜率, 即αtan ),('00=y x f x .同理,偏导数),(00y x f y '的几何意义是曲面S 与平面0x x =的交线C y 在点0M 处的切线y T M 0对y 轴的斜率,即),(00y x f y '= tan b .2.4 全微分可微、全微分紧接着偏导数之后讲的优点是:便于给出链式规则;便于给出求抽象函数、隐函数的偏导数的各种方法;便于讲述切平面.2.4.1全微分的概念(1)函数在一点处可微及全微分定义.定义 设函数(,)z f x y =在点0P 的某邻域0()U P 内有定义,若函数(,)f x y 在点000(,)P x y处的全增量0000(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为(),z A x B y o ρ∆=∆+∆+其中,A B 是仅与点0P 有关,而与,x y ∆∆无关的常数,ρ则称函数(,)z f x y =在点0P 处可微分;并称线性函数A x B y ∆+∆为函数(,)z f x y =在点0P 处的全微分,记作00(,)|x y dz , 即(,)||x yx x y y dz df A x B y ====∆+∆. 对于二元函数,规定自变量的增量为自变量的微分:x dx ∆=,y dy ∆=.于是00(,)|x y dz Adx Bdy =+.注 微分d z 是自变量增量,x y ∆∆的线性函数, 容易计算;当||,||x y ∆∆很小时,有z dz ∆≈的误差较小,故d z 是函数增量z ∆的容易计算又精确的近似值.(2) 函数的微分定义 若),(y x f z =在区域D 内每一点都可微,则称),(y x f z =在D 内可微或称此函数是区域D 内的可微函数.此时全微分记作dz . 即(,)x dz f x y dx '=+(,)y f x y dy '.一般的,dx y x f y x df dz x ),(),('==dy y x f y ),('+注 函数的微分是一个形式符号,有时用它较为方便.2.4.2 可微与连续、偏导数存在之间的关系定理(可微的必要条件)若函数),(y x f z =在点00(,)x y 可微,则 ①函数(,)f x y 在点00(,)x y 处连续;②函数(,)f x y 在点00(,)x y 处的偏导数00(,)x f x y ',00(,)y f x y '都存在,且有00(,)00|(,)x y x dz f x y x '=∆+00(,)y f x y y '∆.定理(可微的充分条件)若函数),(y x f z =在点000(,)P x y 的某邻域0()U P 内偏导数都存在,且(,)x f x y ',(,)y f x y '在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 处可微. 这两个定理的逆命题都不成立.学习微分概念与可微分的必要条件后,建议结合定义补充如下与可微等价的结论.用此定理判定一个函数的可微性时较方便,初学者易于理解掌握. 有了这个结论后对于学习理解可微有积极的帮助.定理: 若),(y x f z =在点000(,)P x y 处的两个偏导数,x y f f ''都存在,在点0P 处满足000[()()]lim0x y z f P x f P y ρρ→''∆-∆+∆=则),(y x f z =在000(,)P x y 处可微. 且00(,)00|(,)x y x dz f x y x '=∆+00(,)y f x y y '∆.可微的充分条件可以弱化为:两个偏导数之一连续,函数就可微.定理(可微的充分条件)若函数),(y x f z =在点000(,)P x y 的某邻域0()U P 内偏导数都存在,且(,)x f x y '与(,)y f x y '二者中至少有一个在点000(,)P x y 处连续,则函数(,)f x y 在点000(,)P x y 处可微.证 我们只需证明函数的全增量z ∆满足可微的定义.证明思想就是通过插项方法把二元函数化为一元函数处理. ),(y x f z =在点000(,)P x y 的邻域0()U P 内改变量0000(,)(,)z f x x y y f x y ∆=+∆+∆-0000[(,)(,)]f x x y y f x y y =+∆+∆-+∆0000[(,)(,)]f x y y f x y ++∆-因且(,)x f x y ',(,)y f x y '在0()U P 内存在,于是一元函数0(,)z f x y y =+∆关于x 在点0x 可导,即可微. 0000001(,)(,)(,)x f x x y y f x y y f x y y x x ε'+∆+∆-+∆=+∆∆+⋅∆ (1) 同理可得 0000002(,)(,)(,)y f x y y f x y f x y y y ε'+∆-=∆+⋅∆ (2)再由(,)x f x y '在000(,)P x y 点连续知 00003(,)(,)x x f x y y f x y y ε''+∆=+⋅∆ (3)(1)+(2)并将(3)带入,即得0000123(,)(,)x y z f x y x f x y y x y x y εεε''∆=∆+∆+⋅∆+⋅∆+∆∆而 123123||||||||x y x y εεεεεερρ⋅∆+⋅∆+∆∆≤++由于 123lim[||||||]0x y εεερ∆→∆→++=. 所以0000(,)(,)()x y z f x y x f x y y o ρ''∆=∆+∆+,故(,)f x y 在点000(,)P x y 处可微.此定理的逆命题也不成立.学习完偏导数,可微概念后,及时对它们之间的关系对照一元函数画出关系图,以便学生理解一元函数与二元函数微分学的不同点.二元函数几个概念间的关系下面常见的函数可以成为表述上述关系的重要的例子.可微例1函数22221()sin ,(,)(0,0)(,)0,(,)(0,0)x y x y x y f x y x y ⎧+=⎪+=⎨⎪=⎩在(0,0)O 处可微, 但偏导数在(0,0)O 处不连续.例2函数,)(0,0),(,)0, (,)(0,0),x y f x y x y ≠==⎩在原点(0,0)连续, 可偏; 但不可微性. 例3 函数22,(,)(0,0),(,)0,(,)(0,0)xyx y x y f x y x y ⎧≠⎪+⎪=⎨⎪⎪=⎩在点(0,0)O 存在偏导数;但却不连续. 例4 函数),(y x f 22y x +=在点(0, 0)处连续但偏导数不存在.注 全微分在近似计算中的应用由全微分的定义可知,若函数(,)z f x y =在点00(,)x y 处可微分,且00(,),x f x y '00(,)y f x y '不全为零, 当||,||x y ∆∆都很小时,有近似公式z ∆≈00(,)x f x y x '∆+00(,)y f x y y '∆ (*)或写为 0000(,)(,)f x x y y f x y +∆+∆≈+00(,)x f x y x '∆+00(,)y f x y y '∆. (**)这表示在点00(,)x y 邻域内,可以把(,)f x y 近似地线性化.右侧就是一次线性逼近,这种逼近可以用来解决复杂近似计算.学习完微分后,务必要讲解微分的近似计算,因为这才能让学生明白和理解,微分的真正意义是当自变量的改变量很小时,可以用微分近似逼近函数的改变量.2.5 多元复合函数的微分法 2.5.1.链式法则链式法则大体上有两种叙述,条件有所不同,结论也相应不同,但计算偏导数的公式是一样的.差别仅在于如果要求内函数是可微的,则复合函数也可微,如果要求内函数仅是可偏导的,则复合函数也仅是可偏导的.定理 1 设),(v u f z =,),(y x u φ=,),(y x v ψ=可以构成复合函数)],(),,([y x y x f z ψφ=.若),(y x u φ=及),(y x v ψ=在点),(y x 处对x 、y 的偏导数均存在,函数),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψφ=在点),(y x 处对,x y 的偏导数存在,且有z f u fv x u x v x z f u fv y u y vy ∂∂∂∂∂⎫=+⎪∂∂∂∂∂⎪⎬∂∂∂∂∂⎪=+∂∂∂∂∂⎪⎭定理 2 设),(v u f z =,),(y x u φ=,),(y x v ψ=可以构成复合函数)],(),,([y x y x f z ψφ=.若),(y x u φ=及),(y x v ψ=都在点),(y x 处可微,函数),(v u f z =在对应点),(v u 处可微,则复合函数)],(),,([y x y x f z ψφ=在点),(y x 处可微,且有z f u fv x u x v x z f u fv y u y vy ∂∂∂∂∂⎫=+⎪∂∂∂∂∂⎪⎬∂∂∂∂∂⎪=+∂∂∂∂∂⎪⎭注① 定理中的条件并非必要条件.注② 特别地,当),(v u f z =,而)(x u φ=,)(x v ψ=时, 上述两个定理就是一样的,由于复合函数)](),([x x f z ψφ=为x 的一元函数,这时z 对x 的导数称为全导数,应写为dz f du f dv dx u dx v dx∂∂=⋅+⋅∂∂.链式法则对多层复合的函数依然成立,对多元函数也依然成立.以三个中间变量为例,定理1是:若(,)u x y ϕ=,),(y x v ψ=及),(y x w ω=都在),(y x 具有对x 及对y 的偏导数,函数),,(w v u f z =在对应点),,(w v u 处可微,则[(,),(,),(,)]z f x y x y x y φψω=在点),(y x 处的偏导数都存在,且有z f u f v f w x u x v x w x∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂ z f u f v f w yu yv yw y∂∂∂∂∂∂∂=++∂∂∂∂∂∂∂求抽象复合函数的偏导数,是重点,也是难点,需多作讲解和练习.因为学习了偏导数后,学生会知道偏导数计算与一元函数求导本质上相同.似乎偏导数计算问题我们完满的解决了.其实对于复杂点的函数,或者含有抽象函数时复合函数我们还是很难计算或表达他们的偏导数.如:设空间曲线(),(),()x g t y h t z k t ===其上一点(,,)x y x 的温度为(,,)w f x y z =,对t 的每个值,在点(,,)x y x 处的温度是复合函数[(),(),()]w f g t h t k t =,现在我们想研究f 沿着路径随时间t 的变化率.即要求复合函数(,,)w f x y z =对t 的导数.若上述曲线,温度的表达式很复杂,或者干脆这些表达式都不能具体的表达出来,就是一个抽象的式子,那么如何求f 对t 的导数?这就需要学习的复合函数的链式法则.这个也就是为什么还要学习这个法则的原因.由于多元复合求导法则是微分学的基础,所以要加强这个地方的训练.要求学生要掌握该法则.记忆可以通过与一元复合求导法则对比,介绍记忆方法;即一般所谓的树形图形法. 然后通过习题介绍应该注意的事项.其次要提醒学生, 多元复合求导法则主要用在含有抽象函数求偏导时.可以用该法则把复合函数求导问题表示出来.当不含有抽象函数时,一般采用直接求偏导数就可以,若此时使用复合函数求导法则,有时反而复杂化.2.5.2 一阶全微分形式的不变性若(,)z f u v =可微,(,),(,)u x y v x y ϕψ==也可微,则函数(,)z f u v =与复合函数[(,),(,)]z f x y x y ϕψ=的微分相等,即不论,u v 作为(,)z f u v =的自变量; 还是作为复合函数[(,),(,)]z f x y x y ϕψ=的中间变量,均有dv v z du u z dz ∂∂+∂∂=.这一性质称为一阶全微分形式的不变性.利用一阶全微分形式不变性,可以证明不论,u v 是自变量,还是中间变量下列全微分的四则运算法则都成立.定理 设,u v 可微分,则,,(0)uu v uv v v±≠亦可微分,且有 (1) ();d u v du dv ±=± (2) ();d uv vdu udv =+ 特别有(),d ku kdu k =∈.(3) 2().u vdu udvd v v-=我们常常是在不知不觉中就用到了一阶全微分形式不变性.2.6 隐函数微分法2.6.1. 一个方程的情形 ( 1) 由方程(,)0F x y =所确定的一元隐函数的存在性、可微性定理 (隐函数存在定理)设函数),(y x F 在点000(,)P x y 的某一邻域0()U P 内有连续的偏导数,且0),(00=y x F ,0),(00≠'y x F y ,则存在点0x 某一邻域0()U x ,和唯一一个定义在0()U x 上的、有连续导数的函数)(x f y =,它满足)(00x f y =及在0()U x 的恒等式(,())0F x f x ≡,且有y x F F dx dy ''-=.常称函数)(x f y =为由方程0),(00=y x F 确定的隐函数.此定理本身不易理解. 定理条件中应强调0),(00≠'y x F y ,可结合定理结论中的导数公式yx F F dx dy''-=来理解、记忆此条件.(2) 由方程(,,)0F x y z =所确定的二元隐函数的的存在性、可微性定理 若函数(,,)F x y z 在点0000(,,)P x y z 的某一邻域0()U P 内具有连续偏导数,且0()0F P =,0()0z F P '≠,则存在点0x 某一邻域0()U x ,和唯一一个定义在0()U x 上的、有连续偏导数的二元隐函数),(y x f z =,它满足),(000y x f z =及在0()U x 的恒等式,(,,(,))0F x y f x y ≡且有 x z F z xF '∂=-'∂, y z F z yF '∂=-'∂.常称函数),(y x f z =为由方程(,,)0F x y z =确定的隐函数. 2.6.2. 方程组的情形定理 设(,,,)F x y u v ,(,,,)G x y u v 均在点00000(,,,)P x y u v 的某一邻域0()U P 内对各个变量具有连续偏导数,且0()0F P =,0()0G P =;且偏导数构成的行列式0(,)0(,)u v u v P PF F FG J G G u v ''∂==≠''∂,则方程组(,,,)0(,,,)0F x y u vG x y u v ==⎧⎨⎩在点0P 的某一邻域0()U P 内能唯一确定一组具有连续偏导数的函数(,),(,)u u x y v v x y ==,它们满足000000(,),(,)u u x y v v x y ==及恒等式[,,(,),(,)]0F x y u x y v x y ≡,[,,(,),(,)]0G x y u x y v x y ≡且有1(,)(,)u F G x J x v ∂∂=-∂∂, 1(,)(,)u F G y J y v ∂∂=-∂∂1(,)(,)v F G x J u x ∂∂=-∂∂, 1(,)(,)v F G y J x y ∂∂=-∂∂2.6.3 隐函数求导法方法1 利用隐函数导数公式 y x F F dx dy ''-=,或x z F z xF '∂=-'∂, y z F z yF '∂=-'∂.或1(,)(,)u F G x J x v ∂∂=-∂∂, 1(,)(,)u F G y J y v ∂∂=-∂∂1(,)(,)v F G x J u x ∂∂=-∂∂, 1(,)(,)v F G y J x y ∂∂=-∂∂方法2 方程(组)两边同时求(偏)导,再解出所求(偏)导数.方法3方程(组)两边同时求微分,解出隐函数的微分,再解出所求(偏)导数.隐函数求导其实是复合函数求导的应用,隐函数求导在关于微分学在几何方面有一些重要的应用. 如曲线Γ由一般方程(,,)0(,,)0F x y zG x y z =⎧⎨=⎩, 给出时,就可以方便的求出其切线与法平面.以及曲面的切平面与法线求法.对于隐函数求导法,要强调方法1(直接套用隐函数求(偏)导数公式)与另两种方法的区别,即作为隐函数的那个变量在求导时是自变量还是中间变量. 要特别注意它们的求导树形图的区别.例如三元方程(,,)0F x y z =所确定的二元隐函数),(y x f z =公式求导法(方法1)关系为 直接求导法(方法2)关系为即: 用公式法求偏导数时,(,,)F x y z 中的所有变量都是独立的自变量.而对于用直接法求偏导数时,即对方程(,,)0F x y z =两边求偏导时,(,,)0F x y z =中的,x y 是独立自变量,但z 须看成,x y 的函数.采用方法3(两边同时求微分)时,实际上用到了一阶全微分形式不变性,即使对于复合结构比较复杂的函数,以及出比较难以分清变量之间的关系时,是很有用的,出错的可能性较小一些. 对于方程组确定的隐函数情形,也是如此.对于涉及含有抽象复合函数与隐函数求导问题,建议用方程组模式处理,或者微分形式不变性的方法处理,这样可以避免出现计算错误, 避免学生难以区分自变量与中间变量问题.避免中间变量的关错综复杂的关联关系. 这两种方法是处理这种问题比较有效的方法.例如,四元方程组(,,,)0(,,,)0F x y u vG x y u v ==⎧⎨⎩满足以函数存在定理,可以确定(,),(,)u u x y v v x y == 一般采用直接对方程组两端分别对自变量x ;y 求偏导数,只需把其中的,u v 看作,x y的隐函数.最后解所得线性方程组.将方程组两边分别关于x 求偏导,由复合函数求导的链式法则有0,0.x u x v x xu x v x F F u F v G G u G v '''''+⋅+⋅≡⎧⎨'''''+⋅+⋅≡⎩ 解该方程组就可得到,x x u v ''.同理将方程组两边分别关于y 求偏导, 由复合函数求导的链式法则有0,0.y u y v y yu y v y F F u F v G G u G v '''''+⋅+⋅≡⎧⎪⎨'''''+⋅+⋅≡⎪⎩ xFyz公式法多元隐函数树形图yxFxyz解该方程组就可得到,y y u v ''的表达式.如上的这种求偏导数的方法也就方程组求导法.注: 使用方程组求导法求方程组确定隐函数的导数时,隐函数中自变量个数=方程组中所含变量个数-方程组中所含方程的个数.2.7 切平面、法线和切线、法平面 在曲面的一个点处求出切平面、法线,可以用切平面和法线构成该点处的一个直角坐标系,该点附近的小片曲面就可以近似看成切面上的一片. 切线、法平面同理.2.7.1 曲面的切平面与法线求法 设曲面S 的一般方程为 :(,,)0S F x y z =. 其中0000(,,)M x y z S ∈,函数(,,)F x y z 在该点可微,且偏导数不同时为零.定理 设曲面S 的方程为:(,,)0S F x y z =,0000(,,)M x y z S ∈.函数(,,)F x y z 在0M 处可微且偏导数不同时为零. 则曲面S 上任意一条通过0000(,,)M x y z 且在0000(,,)M x y z 处光滑曲线,其在0000(,,)M x y z 的切线都在下述平面上000000))()(()(()()0x y z F x F F M x M y y M z z '''++---= 此平面称为曲面S 在0000(,,)M x y z 出的切平面.过切点且与切平面垂直的直线称为法线,曲面S 在0000(,,)M x y z 处的法线方程为000000.()()()x y z x x y y z z F M F M M F ---=='''注 ①定理仅适用于曲面方程由一般方程给出情况.② 曲面S 由显函数(,)z f x y =方程给出时,在点00000(,,()),M x y f x S y ∈处的切平面为0000000))(,)((,)(x y x f z z f x y x x y y y '+'-=--法线方程为000000.()()1,,x y x x y y z z x f x f y y ---=='-'③ 对于(,)z f x y =而言,在点0M S ∈的切平面为0000000))(,)((,)(x y x f z z f x y x x y y y '+'-=--,即 000000000(,)))|(,)((,)(x y x y x f df z z f x y x x y y y '+='-=-- 由此给出微分的几何解释.2.7.2 空间曲线一般方程下其切线与法平面求法 若曲线Γ由一般方程表处(,,)0(,,)0F x y zG x y z =⎧⎨=⎩, 可以将其看作参数方程,比如以x 为参数,上述方程组确定两个隐函数)(),(x z z x y y ==,Γ的参数方程为:x x =,)(),(x z z x y y ==.Γ上与参数0x x =相对应的点处的切线方程是00000.1()()x x y y z z y x z x ---=='' 法平面方程为00000:()()()()0x x y x y y z x z z π''-+-+-=还有另一个求法:求出曲面0),,(:1=z y x F S 和曲面0),,(:2=z y x G S 在某点的切平面, 这两个切平面的交线就是该点处的切线.2.8 高阶偏导数定义 如果),(y x f z =在区域D 内的偏导数(,)x f x y '与(,)y f x y '仍可求偏导,则称它们的偏导数为函数(,)f x y 的二阶偏导数,按照对变量求偏导次序的不同,二阶偏导数共有以下四个:),()(22y x f z x z x z x xx xx ''=''=∂∂=∂∂∂∂, ),()(2y x f z yx z x z y xy xy ''=''=∂∂∂=∂∂∂∂, ),()(2y x f z x y z y z x yx yx''=''=∂∂∂=∂∂∂∂, ),()(22y x f z yz y z y yy yy ''=''=∂∂=∂∂∂∂, 其中偏导数yx xy z z '''',通常称为二阶混合偏导数.类似地可以定义更高阶的偏导数,例如混合偏导数(,)xyf x y '',再对y 求偏导数是 232()(,)xyyxyy z zz f x y y x y x y∂∂∂''''''===∂∂∂∂∂ 二阶及二阶以上的偏导数统称为高阶偏导数.定理 (求高阶偏导数与次序无关定理)若函数),(y x f z =的二阶混合偏导数xy z ''和yx z ''在区域D 内连续,,则在该区域D 内必有xy yx z z ''''= .即连续的二阶混合偏导数与其求导次序无关.对于含有抽象函数求高阶偏导数,学生容易对复合结构产生一些偏差,再此要特别强调含有抽象函数计算高阶偏导数时与计算一阶偏导数时函数的复合结构关系(树形图)是完全一致的,或者多元函数求偏导后其复合结构不变.即若设),(v u f z =,),(y x u φ=,),(y x v ψ=u vx y 12f ''x yuv x x yy uv x x yy f '在对一阶偏导数求二、三阶偏导数时,112()()u uv f f f f ''''''==、仍是以,u v 为中间变量,,x y 为自变量的复合函数,即复合关系或复合树形图不变.2.9方向导数与梯度2.9.1.方向导数方向导数的定义有两种,有微小差别.定义1 设(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,l 为一个向量,其单位向量为0{cos ,cos }l αβ=.在以0P 为始点沿着l 方向的射线上任取一点00(cos ,cos )P x h y h αβ++ (h 足够小使0()P U P ∈),若极限00000000()()(cos ,cos )(,)lim lim ||h h f P f P f x h y h f x y P P hαβ+→→-++-= 存在,则称此极限为函数(,)f x y 在点0P 处沿着方向l 的方向导数,记作|P f l∂∂或0()l D f P ,即|P f l∂∂=0()l D f P 00000(cos ,cos )(,)lim h f x h y h f x y hαβ+→++-=.定义2设(,)z f x y =在点000(,)P x y 的某邻域0()U P 内有定义,l 为一个向量,其单位向量为0{cos ,cos }l αβ=.过0P 作与l 平行的直线(有向直线)l 00(cos ,cos )P x h y h αβ++()h ∈且0()P U P ∈.若极限00000(cos ,cos )(,)limh f x h y h f x y hαβ→++-存在,则称此极限为函数(,)f x y 在点0P 处沿着方向l 的方向导数,记作|P f l∂∂或0()l D f P ,即|P fl ∂∂=0()l D f P 00000(cos ,cos )(,)limh f x h y h f x y hαβ→++-=.方向导数与偏导数的关系为:按定义1,函数在某点沿指定方向的方向导数本质是函数在该点沿着指定方向的单侧变化率,而偏导数是函数沿着平行于坐标轴正向的变化率,即双侧变化率.故在某点M 沿平行于坐标轴的方向导数都存在也不能推断出偏导数存在;但反之,偏导数存在时,在点M 沿坐标轴正负向的方向导数都存在,且满足()f f l l∂∂=-∂-∂=-l f∂∂(M ),其中l 表示坐标轴正向,即P 0lP 0P 0ll 是x 或y .总之,按定义1,函数在点M 处偏导数存在,则在点M 沿坐标轴正向的方向导数存在,且二者相等,反之不真.即有(按定义1):只有在()f fl l∂∂=-∂-∂时,偏导数才存在.按定义2,函数在点M 处偏导数存在等价于在点M 沿坐标轴正向的方向导数存在,且二者相等. 即这时可以认为偏导数是方向导数的特殊情况,或者方向导数是偏导数的推广. 这时总有0|()|P P f l fl∂∂-∂=-∂. 两个定义的比较:有相同的计算公式(见下);但方向导数存在的范围前者大于后者;前者是沿射线的变化率,后者是沿直线的变化率;前者与偏导数不一致,后者不一致;前者适应实际情况,便于应用,后者以偏导数为特例,可以将偏导数和方向导数统一解释为沿直线的变化率,有利于初学者的理解学习.方向导数的计算定理1 若函数(,)z f x y =在点000(,)P x y 处可微分,则函数(,)f x y 在该点沿着任一方向l 的方向导数都存在,且有000|()cos ()cos P x y f fP f Plαβ'=∂'+∂ 其中0{cos ,cos }l αβ=是方向l 的单位向量.注 三元函数(,,)u f x y z =的方向导数可类似定义和计算.如类似于定义1,(,,)u f x y z =在空间一点0000(,,)P x y z 处沿着方向0{cos ,cos ,cos }l αβγ=的方向导数为0000000(cos ,cos ,cos )(,,)|lim P h f x h y h z h f x y z f hlαβγ+→+++-∂=∂.2.9.2 梯度(1)定义 若函数(,)z f x y =在点000(,)P x y 处可微分,则称向量00{(),()}x y f P f P ''为(,)f x y 在点0P 处的梯度向量,简称为梯度,记作0()gradf P 或0()f P ∇,即0000()(){(),()}x y gradf P f P f P f P ''=∇=.偏导数存在.。

09-7多元隐函数微分法(1)

09-7多元隐函数微分法(1)

设 F ,G C1, 方程组 F(x, y,u,v) 0 G(x, y,u,v) 0
确定函数 u u(x, y) ,v v(x, y) , 求 u , u , v , v 。
x y x y
1.几个方程确定几个函数; 2.自变量的个数=方程个数-函数个数。
将 y 看成常数
当 (F,G) 0时, (u, v)
2. F (x0 , y0 , z0 ) 0 ; 隐函数存 3. Fz(x0 , y0 , z0 ) 0 , 在的条件 则方程 F(x, y, z) 0 在N (( x0 , y0 )) 内唯一 确定一个函数
z f ( x, y ) C 1( N ( x0 , y0 ))
且 z0 f (x0 , y0 ) , F (x, y, f (x, y)) 0 .
整理得:
dz
exy y ez 2
dx
e xy x ez 2
dy
由微分公式可得:
z e xy y z e xyx
x
ez
2
, y
ez
2
设 F(x y z, xyz) 0 确定 z z(x, y),

求 z ,
x
z y
,
其中,
F C1.

F x
F1
yzF2
,
F y
F1
xzF2
,
F z
F1
xyF2
J
(u1, u2 ,, un ) (x1, x2 ,, xn )
(F1, F2 ,, Fn ) (x1, x2 ,, xn )
F1 F1 x1 x2
雅可比行列式记号
F1 xn
F2
x1
F2
F2

第八章 多元函数的微分学

第八章  多元函数的微分学
y y0 y y0
二元函数偏导数的定义可以类推到三元或三元以上的 函数. 如果函数 z f ( x, y ) 在区域 D 内每一点处,对 x 的偏 导数都存在, 那么在 D 内定义了一个函数, 称为 z f ( x, y ) 的偏导函数,记作 z f 或 或 z x ( x, y ) 或 f x ( x, y ) x x 类似地,函数 z f ( x, y ) 对 y 的偏导函数,记作 z f 或 或 z y ( x, y ) 或 f y ( x, y ) . y y 偏导函数简称为偏导数.
x x0 y y0
上面定义的二元函数的极限又称二重极限,二重极限 是一元函数极限的推广,有关一元函数的运算法则和定理 均可类推到二重极限.
例 4 求极限 lim
x2 y 2 1 x2 y 2 1
x x0 y y0
解 显然,当 x 0, y 0 时, x 2 y 2 0 ,根据极限的 加法法则及有关复合函数的极限定理,有 lim 1 x 2 y 2 lim1 lim( x 2 y 2 ) 1 0 1,
x 0 y 0 x 0 y 0 x 0 y 0
所以
lim
x0 y 0
x2 y 2 1 x2 y 2 1 ( x 2 y 2 )( 1 x 2 y 2 1) ( 1 x 2 y 2 1)( 1 x 2 y 2 1)
lim
x0 y 0
例 6 求极限 lim
x0 y 1
ex y2 1 x2 Leabharlann 2 ex y21 x y
2 2
解 函数 f ( x, y ) 续的, 所以
在点(0,1)处有定义,是连
1 x2 y 2 1 02 12 在有界区域上连续的二元函数有以下性质:

多元函数微分学

多元函数微分学
d
面,点P为切点.
定理3 曲面z f (x, y)在点P(x0, y0, f (x0, y0))存在 不平行于z轴的切平面的充要条件是函数 f 在点 P0(x0, y0)可微. 定理3说明若函数 f 在(x0, y0)可微, 则曲面z f (x, y) 在点P(x0, y0, z0)处的切平面方程为 z z0 f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 ). 过切点P与切平面垂直的直线称为曲面在点P的 法线. 由切平面方程知道, 法线的方向数是
1
z f ( x, y )
S
S1
R2
P1
1
1
y y0 曲线P0 N z f ( x, y) x x0 曲线P0 R z f ( x, y)
P1 S1 P1 R2 R2 S1 z P1 R2 Q1 R1 dy y M 0
0
M ( x0 dx, y0 dy)
f x
x
tan
M0
偏导与连续的关系.
例 讨论函数
x 2 y 2 , xy 0 f ( x, y) , xy 0 1,
在(0,0)点的偏导数及连续性.
二、 可微性与全微分
定义 设函数 z = f (x, y)在点P0(x0, y0)的某邻域U (P0) 内有定义, 对于U (P0)中的点P(x, y) (x0 x, y0 y), 若函数 f 在P0处的全增量z可表示为: z f (x0 x, y0 y) f (x0, y0) Ax By o(), 其中A, B是仅与点P0有关的常数, (1)
d f |(x0, y0) fx(x0, y0)· fy(x0, y0)· dx dy.

多元函数微分学(1)

多元函数微分学(1)

微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
9
二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
10
题型 1 求二元函数的极限
解题思路 (1) 利用多元初等函数的连续性求二元
函数的极限 (如例 1); 如例 (2) 利用变量替换将求二元函数极限的问题转化为 求一元函数极限的问题 (如例 2); 如例 (3) 利用夹逼定理求二元函数的极限 (如例 3); 如例 (4) 判定二元函数的极限不存在 (如例 4). 如例
多元函数微分学
21
例 5 设 z = z(x, y) 是由方程 x2 + y2 − z = ϕ( x + y + z) 所确定的函数, 所确定的函数 其中 ϕ 具有二阶导数且 ϕ′ ≠ −1 , (1) 求 dz ;
∂u 1 ∂z ∂z ( − ), 求 (2) 记 u( x, y) = . ∂x x − y ∂x ∂y
第八章
多元函数微分学
1
多元函数微分学】 【多元函数微分学】习题课 一、主要内容 二、典型例题分析
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
2
一、主要内容
微积分Ⅰ 微积分Ⅰ
第八章
多元函数微分学
3
1、区域 、 (1) 邻域
U ( P0 , δ ) = { P | PP0 | < δ }
= {( x , y ) | ( x − x0 ) 2 + ( y − y0 ) 2 < δ }.
F ( x , y , u, v ) = 0 (1)F ( x , y ) = 0; (2)F ( x , y , z ) = 0; (3) . G ( x , y , u, v ) = 0

《高等数学教学课件》高数-第八章-多元函数微分学

《高等数学教学课件》高数-第八章-多元函数微分学
邻域U(P, ), 使U(P, ) E为空集,则
称点P为E的 外点。
边界点的定义:
若点P的任意的邻域内,既有属于E的点
也 有 不 属 于E的 点, 则 称 点P是E的 边 界 点 。
边界的定义:
E的边界点的全体称为E的 边 界 。
3、聚点、孤立点
设E是一个平面点集
聚点的定义:
若点P的任意邻域都含有E的无穷多个点,
为P0的 邻域。
0
U(P0 , ) {( x, y) 0 ( x x0 )2 ( y y0 )2 2 }
为P0的 去心邻域。
2、内点、外点、边界点
设E是一个平面点集.
内点的定义:
若点P E,并且存在P点的一个
邻域U(P, ), 使U(P, ) E,则称点P
为E的内点。
外点的定义: 若点P E,并且存在P点的一个
一切多元初等函数在其定义区域内是连续的。
例6、讨论下列函数的连续性
(1)、f
(
x,
y)
x
3 xy 2 2
y
2
x2 y2 0
解 0
x2 y2 0
当x 2 y 2 0时, f ( x, y) 3xy 是初等函数, x2 2y2
且 有 定 义, 连 续.
3kx 2
lim f ( x, y) lim
lim
x0
x2 2y4
02 2(1)4
. 2
y1
在有界闭区域上连续的多元函数的重要性质如下:
定理1、(最大最小值定理)
在有界闭区域D上连续的多元函数f , 在D上必有
最大值和最小值,亦即在D上有点P1和P2 , 使对D上任意
点P,恒有 f P1 f P f P2 , P D

高等数学讲义——多元函数微分法

高等数学讲义——多元函数微分法
(x)2 (y)2 . 则称 z f (x, y) 在点(x, y)处可微, Ax By 为z f (x, y) 在点(x, y)的全微分,记为dz,即
dz Ax By
定理2 (必要条件) 若函数 z f (x, y)在点(x, y)可微,则
(1) f (x, y)在(x, y)处连续;
xy
yx
例4 证明u
1
满足拉普拉斯方程
x2 y2 z2
2u x 2
2u y 2
2u z 2
0
证明:
u
1
(x2
y2
z
2
)
3 2
2x
x 2
x
3
(x2 y2 z2)2
2u x 2
(x2
1 y2
3
z2)2
x[ 3 (x2 2
y2
5
z2) 2
2x]
2x2 y2 z2
5
(x2 y2 z2)2
F f xy (x 3x, y 4y)xy 0 3 , 4 1
f yx (x 2x, y 4y) f xy (x 3x, y 4y)
由于f xy , f yx连续, 令x 0, y 0得 : f xy (x, y) f yx (x, y)
二. 全微分
1. 概念
x
(3)u z yx
z 6x2 y 2 ex y
(2) z x
1
1
y2 x2
(
y) x2
x2
y
y2
;
z x y x2 y2
(3) u z y x ln z y x ln y; u z y x ln z xy x1;
x
y
u y x z y x 1 z

4考研数学大纲知识点解析(第四章多元函数的微分学-数一

4考研数学大纲知识点解析(第四章多元函数的微分学-数一

满足 .
.则
【解析】由题设
可知,当
时,有

,从而有
由二元函数全微分的定义, 有
在点
处可微,且
. ,
. ,故
【全微分存在的必要条件和充分条件】 【极限,连续,偏导数,可微分之间的关系】 一元函数:
二元函数:
【例题】(02 年,数学一)考虑二元函数
的下面 条性质:

在点
处连续. ②
在点
处的两个偏导数连续,
确.
选项(C),(D)取 不存在,故排除(C),(D).
,显然
在点
处可微,但
【综合题】设

点处( ).
(A)不连续. (B)偏导函数不存在. (C)不可微. (D)可微.
【解析】(1)


点连续.
(2)
同理
(3)
从而
不存在.

点不可微. 故选(C).
【综合题】设
则在
(A)偏导不存在. (B)偏导函数连续. (C)可微. (D)不可微.
第四章 多元函数的微分学 【多元函数的概念】 【二元函数的定义】
类似的可以定义三元函数 【二元函数的几何意义】 二元函数
. 一般表示空间直角坐标系下的一个空间曲面.
【二元函数极限的概念】
【注】二元函数极限存在,是指 以所有路径趋于
时,对应的函数值趋于相同
的一个常数.如果 沿着两条不同路径趋于
时,对应的函数值趋于不同的值,

有连续的一阶偏导数,又函数

分别由下列两式确定

求.


【解析】

两边对 求导,得

高等数学动画图片讲义-多元微分

高等数学动画图片讲义-多元微分

z = f (x,y)
N
y l
6. 七框图
将二元函数z = f(x , y)在点(x , y)的以下七个命题填入框图: (1)有定义 (2)有极限 (3)连续 (4)偏导存在 (5)方向导数存在 (6)偏导连续 (7)可微
(3)
(6)
(7)
(4)
(1) (2)
(5) 问题:箭头是否可逆? 不可逆的试举出反例。
z
M(x0 , y0 , z0 )
N ( x0 x, y0 y, z0 z)
z =AN :曲面立标的增量
M
z= f (x ,y) ()
z
过点M的切平面:
f x ( x0 , y0 )( x x0 ) f y ( x0 , y0 )( y y0 )
(z z0 ) 0
xy
z
, ( x, y) (0,0)
x2 y2
点P( x , y) 沿直线 y kx
(,)时 , 有
xy
k
lim
x0
x2 y2 1 k2
y kx 0
.
故 lim f ( x, y)不存在. x y
那么,曲面在点(0,0)附近
a
? 的形状是怎样的呢
曲面与z轴无交点;
x M x0
x
固定 y =y0 得曲线
z f (x, y)
L:

y

y0
由一元函数导数的几何意义:
z = tan
x M
x

z Tx
L
M
复习一元函数导数
z= f (x,y)
y =y0 0
y
(x , y )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分Ⅰ
第八章 多元函数微分学
19
x2f 2f y2f
y
x2
2 xy x
y2
x (2x y3ex2 y2 y
)
2(xe 2y22x2y2ex2y2) y(2x3yex2y2) x
2ex2y2 .
微积分Ⅰ
第八章 多元函数微分学
20
例 4 求函数 z arctan x y 的全微分. x y
.
微积分Ⅰ
第八章 多元函数微分学
18
例 3

f(x, y)
xyet2dt, 求
0
x2f y x2
2f y2f
2 xy x
y2
.
解 f yex2y2 , f xex2y2 ,
x
y
2f x2
2xy3ex2y2,
2 f y2
2x3yex2y2 ,
2 f (yex2y2 ) xy y
ex2y22x2y2ex2y2,

z
1 1(xy)(xy)1
x 1(xy)2
(xy)2
x2
y
y2
,
xy
z
1 1(xy)(xy)(1) x
y 1(xy)2
(xy)2
x2 y2 ,
xy
dz
yx
x2 lim
x0 x tan x
2x lxi m0 1sec2
x
2x
lim
x0
tan 2
x
lim
x 0
2x x2
,
ln(1 xy)
lim (x, y)(0,0)
xtan y
不存在.
yx
微积分Ⅰ
第八章 多元函数微分学
15
题型 2 求多元函数的偏导数与全微分
解题思路 (1) 已知二元函数的偏导数, 求二元函 数 (如例 1);
6、偏导数概念及求法 7、高阶偏导数及求法 二阶及二阶以上的偏导数统称为高阶偏导数.
8、全微分概念及求法 9、多元函数连续、偏导存在、可微的关系
微积分Ⅰ
第八章 多元函数微分学
6
函数连续
偏导存在
函数可微 偏导数连续
微积分Ⅰ
第八章 多元函数微分学
7
10、复合函数求导法则
(1) 复合函数的中间变量均为一元函数的情形; (2) 复合函数的中间变量均为多元函数的情形; (3) 复合函数的中间变量既有一元函数, 又有多元 函数的情形.
1 cos t
lim t 0
3t 2
1 t2
lim
t 0
2 3t2
1 6
.
微积分Ⅰ
第八章 多元函数微分学
13
例3
求极限
lim
(x,y)(,)
x2
xy xyy2
.
解 x2y22|x|y ,
0x2xxyy y2
x2 |xy 2y||xy |
|
x | xy
y |
|
|x|| y| 1 1 , | xy | | x | | y |
微积分Ⅰ
第八章 多元函数微分学
10
题型 1 求二元函数的极限
解题思路 (1) 利用多元初等函数的连续性求二元 函数的极限 (如例 1);
(2) 利用变量替换将求二元函数极限的问题转化为 求一元函数极限的问题 (如例 2);
(3) 利用夹逼定理求二元函数的极限 (如例 3); (4) 判定二元函数的极限不存在 (如例 4).
y
z(x,y)(2x)siyn1ln1y. y 1xy
微积分Ⅰ
第八章 多元函数微分学
17
x
2z 2z
例 2 设 z e y , 求 x2 , xy .

z
1
x
ey,
x y
2z x2
(1 x y
x
ey
)
1 y2
e
x y
,
2z xy
(
1
e
x y
y y
)
1 y2
x
ey

x y3
x
ey
x y3
y
e
x y
多元函数微分学(1)
精品
第八章 多元函数微分学
2
一、主要内容
微积分Ⅰ
第八章 多元函数微分学
3
1、区域 (1) 邻域
U(P0,){P|P0P|}
{x (,y)| (xx 0)2 (yy0)2}.
(2) 区域 连通的开集称为区域或开区域. (3) 聚点. (4) n 维空间.
微积分Ⅰ
第八章 多元函数微分学
16
例1

z
z(x,
y)
满足
x
sin
y 1 1 xy ,
求 z (x, y).
z(1, y) sin y
解 两边对 x 积分, 得
z(x,y)xsiny1ln1xy(y),
y
其中 (y) 为待定函数.
代入题设条件, 得
siyn1ln 1y(y)siyn,
y
(y)2sin y1ln1y,
4
2、多元函数概念 (1) 二元函数. (2) 当 n ≥ 2 时, n 元函数统称为多元函数. 3、多元函数的极限及求法 注意: 定义中 P → P0 的方式是任意的. 4、多元函数的连续性 5、多元连续函数的性质 (1) 最大值和最小值定理; (2) 介值定理.
微积分Ⅰ
第八章 多元函数微分学
5
2.
微积分Ⅰ
第八章 多元函数微分学
12
x2y2 sin x2y2
例 2 求极限 lim (x,y)(0,0)
3
.
(x2 y2)2
解 令 x2 y2 t, 则 (x ,y ) (0 ,0 ) t 0 ,
lim (x,y)(0,0)
x2y2 sin x2y2
3
(x2y2)2
lim
t0
t
sin t t3
微积分Ⅰ
第八章 多元函数微分学
11
x2 y2
例1
求极限 lim 1 (x,y)(0,0)
. 1x2 y2
x2 y2 解 lim
1 (x,y)(0,0) 1x2 y2
(x2y2)(11x2y2) lim
(x,y) (0,0)(11x2y2)(11x2y2)
lim(1 1x2y2) (x,y) (0,0)
(2) 利用偏导数的概念求函数的偏导数 (如例 2 ~ 3); (3) 利用全微分的概念求函数的全微分 (如例 4 ~ 5); (4) 利用多元复合函数的求导法则求函数的全导数 或偏导数 (如例 6 ~ 11); (5) 用隐函数的求导公式求偏导数 (如例 12 ~ 14).
微积分Ⅰ
第八章 多元函数微分学
而 lim ( 1 1 )0, (x,y)(,) | x| | y|
xy
lim (x,y)(,)
x2xyy2
0.
微积分Ⅰ
第八章 多元函数微分学
14
ln(1 xy)
例4
判定极限
lim
(x, y)(0,0)
xtan y
是否存在.

lim
ln(1 xy)
ln(1 x2)
lim
(x,y)(0,0) x tan y x0 x tan x
11、全微分形式不变性
12、隐函数的求导法则
(1)F(x,y)0;
(2)F(x,y,z)0;
F(x, (3)G(x,
y,u,v) 0 .
y,u,v) 0
微积分Ⅰ
第八章 多元函数微分学
8
13、多元函数的极值与最值 (1) 定义及求法 (2) 条件极值及求法.
微积分Ⅰ
第八章 多元函数微分学
9
二、典型例题分析
相关文档
最新文档