有效汽蚀余量和必需汽蚀余量的定义与关系

合集下载

泵与风机部分思考题与习题答案.(何川_郭立君.第四版)

泵与风机部分思考题与习题答案.(何川_郭立君.第四版)

泵与风机(思考题答案)绪论3.泵与风机有哪些主要的性能参数?铭牌上标出的是指哪个工况下的参数?答:泵与风机的主要性能参数有:流量、扬程(全压)、功率、转速、效率和汽蚀余量。

在铭牌上标出的是:额定工况下的各参数5.离心式泵与风机有哪些主要部件?各有何作用?答:离心泵叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能。

吸入室:以最小的阻力损失引导液体平稳的进入叶轮,并使叶轮进口处的液体流速分布均匀。

压出室:收集从叶轮流出的高速流体,然后以最小的阻力损失引入压水管或次级叶轮进口,同时还将液体的部分动能转变为压力能。

导叶:汇集前一级叶轮流出的液体,并在损失最小的条件下引入次级叶轮的进口或压出室,同时在导叶内把部分动能转化为压力能。

密封装置:密封环:防止高压流体通过叶轮进口与泵壳之间的间隙泄露至吸入口。

轴端密封:防止高压流体从泵内通过转动部件与静止部件之间的间隙泄漏到泵外。

离心风机叶轮:将原动机的机械能传递给流体,使流体获得压力能和动能蜗壳:汇集从叶轮流出的气体并引向风机的出口,同时将气体的部分动能转化为压力能。

集流器:以最小的阻力损失引导气流均匀的充满叶轮入口。

进气箱:改善气流的进气条件,减少气流分布不均而引起的阻力损失。

9.试简述活塞泵、齿轮泵及真空泵、喷射泵的作用原理?答:活塞泵:利用工作容积周期性的改变来输送液体,并提高其压力。

齿轮泵:利用一对或几个特殊形状的回转体如齿轮、螺杆或其他形状的转子。

在壳体内作旋转运动来输送流体并提高其压力。

喷射泵:利用高速射流的抽吸作用来输送流体。

真空泵:利用叶轮旋转产生的真空来输送流体。

第一章1.试简述离心式与轴流式泵与风机的工作原理。

答:离心式:叶轮高速旋转时产生的离心力使流体获得能量,即流体通过叶轮后,压能和动能都得到提高,从而能够被输送到高处或远处。

流体沿轴向流入叶轮并沿径向流出。

轴流式:利用旋转叶轮、叶片对流体作用的升力来输送流体,并提高其压力。

流体沿轴向流入叶轮并沿轴向流出。

临界汽蚀余量和必需汽蚀余量

临界汽蚀余量和必需汽蚀余量

临界汽蚀余量和必需汽蚀余量在液体输送系统中,汽蚀是指液体中的气体被抽入泵中,形成气蚀现象。

汽蚀会导致泵的性能下降,甚至造成泵的损坏。

因此,为了保证液体输送系统的正常运行,需要对汽蚀进行控制和防止。

在液体泵中,临界汽蚀余量和必需汽蚀余量是两个重要的参数,它们能够帮助我们判断泵的性能和工作状态。

1. 临界汽蚀余量临界汽蚀余量是指液体在泵中达到临界汽蚀状态时,离液面的垂直距离。

临界汽蚀余量的大小是衡量泵的抗汽蚀性能的重要指标之一。

如果临界汽蚀余量过小,意味着泵的抗汽蚀性能较差,容易发生汽蚀现象。

而如果临界汽蚀余量较大,说明泵的抗汽蚀能力较强,不容易发生汽蚀。

临界汽蚀余量的大小与液体的物理性质、泵的结构和工作条件等因素有关。

一般来说,液体的温度越高,临界汽蚀余量越小;液体的黏度越大,临界汽蚀余量越大;泵的转速越高,临界汽蚀余量越小。

因此,在设计和选择液体泵时,需要根据具体情况来确定临界汽蚀余量的要求,并选择合适的泵型和工作条件。

2. 必需汽蚀余量必需汽蚀余量是指液体在泵中达到必需汽蚀状态时,离液面的垂直距离。

必需汽蚀余量是保证泵能正常工作的最小要求。

如果汽蚀余量小于必需汽蚀余量,泵将无法正常工作,流量减小甚至完全停止。

因此,必需汽蚀余量是泵的最小工作条件之一。

必需汽蚀余量的大小与液体的物理性质、泵的结构和工作条件等因素有关。

一般来说,必需汽蚀余量随着液体的黏度的增加而增加;必需汽蚀余量随着泵的转速的增加而减小。

因此,在设计和选择液体泵时,需要根据具体情况来确定必需汽蚀余量的要求,并选择合适的泵型和工作条件。

临界汽蚀余量和必需汽蚀余量是两个重要的参数,它们能够帮助我们判断液体泵的性能和工作状态。

通过合理设置临界汽蚀余量和必需汽蚀余量的大小,可以保证液体输送系统的正常工作,提高泵的抗汽蚀性能,延长泵的使用寿命。

在实际应用中,需要根据液体的物理性质、泵的结构和工作条件等因素来确定临界汽蚀余量和必需汽蚀余量的要求,并进行合理的选择和设计。

有效汽蚀余量和必需汽蚀余量的计算公式

有效汽蚀余量和必需汽蚀余量的计算公式

有效汽蚀余量和必需汽蚀余量是液体泵设备设计中非常重要的参数,它们直接影响着设备的运行安全和效率。

在液体泵的设计和选择中,必需要计算出这两个参数,以保证设备在使用过程中不会出现汽蚀现象,同时也要保证设备能够正常、高效地工作。

在液体泵设备运行过程中,液体的流动速度会受到各种因素的影响,其中就包括压力、液体性质和泵的设计结构等因素。

在液体的流动速度超过一定数值后,液体中的气体和液体之间的界面会产生泡沫,使得泵的效率下降甚至造成气蚀。

为了保证设备的正常运行,就需要根据液体的性质和泵的设计参数来计算出有效汽蚀余量和必需汽蚀余量。

对于计算有效汽蚀余量和必需汽蚀余量,最常用的方法是根据泵的设计参数和液体的性质来确定。

其中,有效汽蚀余量是指在泵的正常工作条件下,液体的流动速度达到一定数值后,泵的进口压力低于液体饱和蒸汽压力的余量。

而必需汽蚀余量则是指在泵的设计工况下,液体的流动速度达到一定数值后,泵的进口压力低于气蚀能够发生的压力的余量。

通常情况下,计算有效汽蚀余量和必需汽蚀余量需要根据具体的泵的设计参数和液体的性质来确定相应的计算公式。

在一般情况下,有效汽蚀余量和必需汽蚀余量的计算公式可以表示为:1. 有效汽蚀余量计算公式:有效汽蚀余量 = (Ps - Pv) / ρg其中,Ps为液体在泵进口处的静压;Pv为液体的饱和蒸汽压力;ρ为液体的密度;g为重力加速度。

2. 必需汽蚀余量计算公式:必需汽蚀余量 = (Ps - Pv') / ρg其中,Pv'为液体在泵进口处的蒸汽压力。

在实际应用中,通过上述公式的计算,可以得到液体在泵中运动时的有效汽蚀余量和必需汽蚀余量的数值。

这些数值可以为设备的选择和设计提供重要的依据,从而保证设备的安全、高效运行。

从个人角度来看,有效汽蚀余量和必需汽蚀余量的计算是液体泵设备设计中重要的一环。

只有在有了准确的计算结果之后,才能确保设备在运行过程中不会出现汽蚀现象,并且能够满足工作要求。

有效汽蚀余量NPSHa与必须汽蚀余量NPSHr解读

有效汽蚀余量NPSHa与必须汽蚀余量NPSHr解读

泵的汽蚀余量,这是生产好了就固有了的性能!也就是设备结构决定了的,当然,采用诱导轮等降低汽蚀余量的措施的泵,结构上就多了一个部件。

从叶轮的角度来说,其水力模型决定了汽蚀余量的高低,加工上,流道的阻力,叶片的切入角度都对吸入性能有影响。

目前,但还没有特别的标准之类的,都是水力曲线实验测得的数据。

查表法来选择。

苏尔寿的水力模型基本是通吃的了,各家泵厂大都采用,特别是流程泵基本都是。

汽蚀余量的知识请参照如下专题资料:举例和概念都有,呵呵,这是我用来与师傅们共同学习时用的 5 U F. M8 c, H/ f" ?气蚀余量专题* P7 O: M' w8 T! C1、气蚀余量:4 G! U P" O# XNPSH:气蚀余量,指泵入口液体压力超过液体气化压力的富余能力; _# H6 E1 e! R3 Y& w# BNPSHa:装置气蚀余量,也称有效气蚀余量或者可用气蚀余量,是指油泵装置系统确定的气蚀余量,大小由泵吸液管路系统参数和管道中流量所决定,与泵结构无关;! \& E' _4 o8 W NPSHr:必须气蚀余量,由泵自身结构决定,由泵生产厂家通过实验确定。

一般情况下要求NPSHa不小于NPSHr,经验取值:NPSHa大于NPSHr1.3倍.' S7 ^( v2 F0 [9 L0 i7 D9 P! T2、为什么要计算NPSHa?对于离心泵,直接造成气蚀(Cavitation)就是因为气泡的形成。

7 K( ? V- G$ J5 @( P8 F如果泵吸入侧的压力(Suction Pressure)远大于饱和蒸汽压(Vapour Pressure),那液中气泡将在完全形成之前崩溃,无法与泵叶轮接触然后进行破坏;如果吸入侧的压力接近或等值蒸汽压,则气泡会产生并与叶轮接触进行破坏。

离心泵的运作原理就是利用叶轮转动离心力形成低压把液体吸入,然后把能量转移到排出的液体。

关于汽蚀、气蚀余量、NPSHr、NPSHa概念的介绍

关于汽蚀、气蚀余量、NPSHr、NPSHa概念的介绍

关于汽蚀、NPSHr、NPSHa概念的介绍
汽蚀余量有两个, 分别是必需汽蚀余量(NPSHr)和有效汽蚀余量(NPSHa), 有的人搞不清楚它们的区别. 下面用通俗易懂的语言解释一下:
NPSHr——泵汽蚀余量,又叫必需的汽蚀余量或泵进口动压降,越小抗汽蚀性能越好;你所说的就是这个,它是泵本身结构决定的。

NPSHa——装置汽蚀余量,又叫有效汽蚀余量,越大越不易汽蚀;它是安装决定的。

有时我们说这么泵的气蚀余量是6米,是指NPSHr这个参数。

就是说要泵不气蚀,则装置实际汽蚀余量大于6米即可不汽蚀,而假定该值为8米,则装置实际汽蚀余量必须大于8米才能不汽蚀,所以说汽蚀余量越大,泵的抗气蚀能力越弱。

打个比方,当兵必须身高要大于1.6米,某人实际身高1.8米,1.6米相当于必须(需)汽蚀余量,1.8米相当于装置汽蚀余量(有效)。

1.8-1.6=0.2米反映了身高余量,如果当兵必须身高提高到1.7米,则身高余量就少了,相当于泵的抗气蚀能力越弱。

所谓有效汽蚀余量(NPSHa)这个说法容易使人混淆。

即使是“有效的净正吸入压头”这个概念,我也更愿意理解为“实际存在的净正吸入压头”。

它是指实际工况下,对应泵的实际流体,实际安装位置计算得到的净正吸入压头,当然是越大越不会发生汽蚀了.
有的时候我们需要计算吸程, 吸程即为必需汽蚀余量Δ/h:即泵允许吸液体的真空度,亦即泵允许几何安装高度。

单位用米。

吸程计算公式为: 吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)标准大气压能压管路真空高度10.33米。

例如:某泵气蚀余量为4.0米,求吸程Δh。

解:Δh=10.33-4.0-0.5=5.83米。

有效汽蚀余量和必需汽蚀余量的定义与关系

有效汽蚀余量和必需汽蚀余量的定义与关系

有效汽蚀余量和必需汽蚀余量的定义与关系泵的有效汽蚀余量和必需汽蚀余量是什么?它们之间的关系是什么?1.有效汽蚀余量:有效汽蚀余量亦称装置汽蚀余量,它表示液体由吸入液面流至泵吸入口处,单位重量具有的超过饱和蒸汽压力的富余能量用△ha表示,或以符号[NPSH]s表示。

影响有效汽蚀余量的因素有吸入液面的表面压力,被吸液体的密度,泵的几何安装高度,还有管路的阻力损失等。

总之,有效汽蚀余量由泵吸入侧管路系统决定,与泵本身无关,在给定的吸入条件下,有效汽蚀余量是可以计算得到的。

有效汽蚀余量越大,说明泵吸入口处单位重量液体所具有的超过饱和蒸汽压力的富余能量越大,这样出现汽蚀的可能性不会太大。

2.必需汽蚀余量:有效汽蚀余量的大小并不能说明泵是否产生气泡,发生汽蚀。

因为有效汽蚀余量仅指液体从吸入液面流至泵吸入口处所具有的超过饱和蒸汽压力的富余能量,但泵吸入口处的液体压力并不是泵内压力最低处的液体压力。

液体从泵吸入口流至叶轮进口的过程中,能量没有增加,它的压力还要继续降低。

这一方面是由于过流断面的逐渐收缩,流速增大而造成;另一方面由于泵吸入口到叶片入口处的流动阻力也会造成液体压力的进一步降低。

所以我们把单位重量的液体从泵吸入口流至叶片进口压力最低处的压力降,称为必需汽蚀余量,用△hr表示,或用符号[NPSH]r表示。

必需汽蚀余量与吸入管路装置系统无关,它只与泵吸入室的结构、液体在叶轮进口处的流速等因素有关,所以必需汽蚀余量由泵入口各因素决定。

必需汽蚀余量,是液体从泵吸入口流至叶片进口压力最低处的压力降,所以△hr越大,则表示压力降也大,泵的抗汽蚀能力越差,反之抗汽蚀能力就高。

3.有效汽蚀余量和必需汽蚀余量的关系有效汽蚀余量在吸入管路系统确定后,它随流量增大而降低。

必需汽蚀余量在吸入室、叶轮入口形状已定的情况下,它随流量的增大而升高。

所以要使泵压力最低点处不发生汽化,必需使有效汽蚀余量大于必需汽蚀余量,即△ha>△hr。

水泵必须汽蚀余量名词解释

水泵必须汽蚀余量名词解释

水泵必须汽蚀余量名词解释本文主要介绍了水泵必须汽蚀余量的定义、分类、影响因素以及在水泵选型和配套安装中的应用。

下面是本店铺为大家精心编写的5篇《水泵必须汽蚀余量名词解释》,供大家借鉴与参考,希望对大家有所帮助。

《水泵必须汽蚀余量名词解释》篇1一、定义水泵必须汽蚀余量(NPSHr)是指水泵在规定转速和流量下,必须具备的超过汽化压力的富余能量,以保证水泵不发生汽蚀破坏。

水泵必须汽蚀余量是水泵的特性参数,由设计决定。

二、分类水泵必须汽蚀余量分为必需汽蚀余量和有效汽蚀余量。

1. 必需汽蚀余量(NPSHr):是指在给定转速和流量下,水泵必须具备的超过汽化压力的富余能量,以保证水泵不发生汽蚀破坏。

必需汽蚀余量由泵本身头定的,与液体性质无关。

2. 有效汽蚀余量(NPSHa):是指由泵安装条件所确定的汽蚀余量,即吸入装置提供的在泵进口处单位重量液体具有的超过汽化压力水头的富余能量。

有效汽蚀余量与装置参数及液体性质(如压力、速度等)有关。

三、影响因素水泵必须汽蚀余量的大小主要与以下因素有关:1. 泵的转速和流量:转速和流量的增加会导致水泵必须汽蚀余量的增加。

2. 泵的结构和叶片形状:不同的泵结构和叶片形状会对水泵必须汽蚀余量产生影响。

3. 吸入装置的特性:吸入装置的水力损失和流量的平方成正比,因此吸入装置的特性会对有效汽蚀余量产生影响。

4. 液体的物理性质:如液体的密度、粘度、温度等会对水泵必须汽蚀余量产生影响。

四、在水泵选型和配套安装中的应用在水泵选型和配套安装中,应根据液体的性质、流量、压力等参数,合理选择水泵的必需汽蚀余量和有效汽蚀余量。

基本原则如下: 1. 尽量选择必需汽蚀余量较小的水泵,以提高水泵的抗汽蚀性能。

2. 在确定吸入装置的特性时,应根据水泵必需汽蚀余量和有效汽蚀余量的要求,合理设计吸入装置的流道和部件。

3. 在确定水泵的安装高度时,应根据水泵的有效汽蚀余量和管道阻力损失等因素,合理计算并确定安装高度,以确保水泵正常运行。

泵 的 汽 蚀

泵   的   汽   蚀

第九章泵的汽蚀1.本章教学提纲:一、汽蚀现象对泵工作的影响:(1)材料破坏汽蚀发生时,由于机械剥蚀与化学腐蚀的共同作用,致使材料受到破坏。

(2)噪声和振动汽蚀发生时,不仅使材料受到破坏,而且还会出现噪声和振动。

汽泡破裂和高速冲击会引起严重的噪声。

但是,在于厂由于其他来源的噪声已相当高,—般情况下,往往感觉不到汽蚀所产生的噪声。

汽蚀过程本身是一种反复凝结、冲击的过程,伴随很大的脉动力。

如果这些脉动力的某一频率与设备的自然频率相等,就会引起强烈的振动。

(3)性能下降汽蚀发展严重时,大量汽泡的存在会堵塞流道的截面,减少流体从叶轮获得的能量,导致扬程下降,效率也相应降低。

对水泵而言,汽蚀问题是影响其向高速化发展的一个突出障碍。

随着科技事业的不断发展,汽蚀研究仍将是一个重要的课题。

二、反映和控制汽蚀现象的指标:(1)真空高度Hs :对某一台水泵,尽管其性能可以满足使用要求,但是如果几何安装高度不合适,由于汽蚀的原因,则会限制流量的增加,从而导致性能达不到设计要求。

因此,确定泵的几伺安装高度是保证泵在设计工况下工作时不发生汽蚀的重要条件。

(2)汽蚀余量△h :用符号△h表示,或用NPSH 表示(NetPositiveSuctionHead)。

汽蚀余量又分为有效汽蚀余量△ha或[NPSH] a和必需汽蚀余量△hr或[NPSH] r。

(3)汽蚀相似定律及汽蚀比转数:汽蚀余量只能反映泵汽蚀性能的好坏,而不能对不同泵进行汽蚀性能的比较,因此需要一个包括泵的性能参数及汽蚀性能参数在内的综合相似特征数,这个相似特征数称为汽蚀比转数,用符号c表示。

三、提高泵抗汽蚀性能的措施:(1)降低叶轮入口部分流速(2)采用双吸式叶轮(3)增加叶轮前盖板转弯处的曲率半径这样可以减小局部阻力损失。

(4)叶片进口边适当加长即向吸人方向延伸,并作成扭曲(5)首级叶轮采用抗汽蚀性能好的材料如采用含镍铬的不锈钢、铝青铜、磷青铜。

(6)减小吸人管路的流动损失即可适当加大吸人管直径,尽量减少管路附件,如弯头、阀门等,并使吸人管长最短。

容积泵的汽蚀余量

容积泵的汽蚀余量

容积泵的汽蚀余量容积泵的汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。

它表示液体在泵入口处具有的总水头与液体汽化时的压力头之差,单位用米(水柱)标注,用(NPSH)表示。

汽蚀余量分为有效汽蚀余量(NPSHr)和必需汽蚀余量(NPSHr)。

有效汽蚀余量(NPSHr)是指单位重量液体从泵入口到泵内部压力最低点的能量损失。

它与泵的内部结构和工作状态有关,可以通过改进泵的设计或更换高效能泵来减少有效汽蚀余量。

必需汽蚀余量(NPSHr)是指为了保证泵不发生汽蚀,单位重量液体在泵入口处所具有的超过汽化压力的富余能量。

它是泵安装高度和吸程的函数,可以通过提高吸程或降低安装高度来减少必需汽蚀余量。

容积泵的汽蚀余量一般要求在15%~25%之间。

如果汽蚀余量低于这个范围,可能会导致泵运行不稳定,产生噪音和振动等问题,甚至损坏泵。

因此,在设计、选型和使用容积泵时需要考虑汽蚀余量的影响,以确保泵的稳定运行和寿命。

为了防止容积泵发生汽蚀,可以采取以下措施:1. 提高吸程:尽可能减小泵的安装高度,保证泵的入口压力足够高,避免液体在泵入口处汽化。

2. 降低液体温度:降低泵入口液体的温度可以减小有效汽蚀余量,因为液体的温度升高会导致汽化压力提高。

3. 改进泵的设计:优化泵的结构和参数,减小泵内部的能量损失,提高泵的效率,从而减小有效汽蚀余量。

4. 增加安全余量:在设计和选型时考虑一定的安全余量,以保证泵在运行时不会发生汽蚀。

5. 安装回流装置:在泵的入口处安装回流装置,保证泵入口有足够的流量,避免液体在泵入口处滞留汽化。

6. 定期维护检查:对泵进行定期维护和检查,保证泵的入口和出口畅通,避免杂物堵塞和流体物性变化对泵性能的影响。

总之,汽蚀余量是容积泵设计和使用中需要考虑的重要因素。

通过采取相应的措施,可以有效地减小汽蚀余量,提高泵的运行稳定性和寿命。

汽蚀余量曲线

汽蚀余量曲线

汽蚀余量曲线摘要:1.汽蚀余量定义2.汽蚀余量曲线3.汽蚀余量曲线应用4.总结正文:一、汽蚀余量定义汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量,单位用米标注,用(npsh)r。

吸程即为必需汽蚀余量h:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

二、汽蚀余量曲线汽蚀余量曲线是一条表示泵在不同流量下所需汽蚀余量的曲线。

该曲线可以帮助用户了解泵在不同工作条件下的汽蚀性能,从而为泵的选型和安装提供依据。

汽蚀余量曲线通常分为有效汽蚀余量、必需汽蚀余量、临界汽蚀余量和许用汽蚀余量四个区域。

1.有效汽蚀余量:泵在正常运行时,为了防止汽蚀现象的发生,泵入口处的液体需要具有一定的汽蚀余量。

这个汽蚀余量称为有效汽蚀余量。

2.必需汽蚀余量:也称为允许汽蚀余量,是指泵允许吸液体的真空度,即泵允许的安装高度。

3.临界汽蚀余量:当泵的汽蚀余量降至临界值时,泵内开始出现气泡,此时的汽蚀余量称为临界汽蚀余量。

4.许用汽蚀余量:当泵的汽蚀余量降至许用值时,泵的性能开始受到影响,此时的汽蚀余量称为许用汽蚀余量。

三、汽蚀余量曲线应用汽蚀余量曲线在泵的选型、安装和运行过程中具有重要作用。

通过分析汽蚀余量曲线,可以:1.选择合适的泵型:根据工程需要,选择具有合适汽蚀余量曲线的泵,以确保泵在不同流量下的汽蚀性能。

2.确定泵的安装高度:根据泵的必需汽蚀余量,确定泵的安装高度,以保证泵能够正常吸液。

3.控制泵的运行参数:通过监测泵的汽蚀余量,调整泵的运行参数,避免泵在临界汽蚀余量或许用汽蚀余量下运行,以保证泵的安全运行。

四、总结汽蚀余量曲线是描述泵在不同流量下所需汽蚀余量的曲线,它可以为泵的选型、安装和运行提供重要依据。

离心泵各种汽蚀余量的精心整理——有效汽蚀余量、必需汽蚀余量、临界汽蚀余量和许用汽

离心泵各种汽蚀余量的精心整理——有效汽蚀余量、必需汽蚀余量、临界汽蚀余量和许用汽

由于时间仓促,不免有不合适的地方,请大家斧正。 2011 年 11 月 3 日
油气储运网 - 储运专业资料分享、技术交流平台!
油气储运网 - 储运专业资料分享、技术交流平台!
离心泵各种汽蚀余量的精心整理
第 4 页 2011 年 11 月
S
K
本图由油气储运网制
速度能头s
摩阻损失S-K △hr 速度能头K
有效能头 (△ha)
汽蚀余量指泵入口处液体所具有的总水头高出液体汽化压力的部分。国外称之为“净正吸上水头” , 用NPSH(NetPositiveSuctionHead)表示,国内用△h表示。 离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的K点处,液体压力PK最低。 此后由于叶轮对液体作功,液体压力很快上升。当叶轮叶片入口附近的压力PK小于液体输送温度下的饱和 蒸汽压力PV时,液体就汽化。 汽蚀余量具体分为如下几类:
临界汽蚀余量是指泵内最低压力点的压力为汽化压力时水泵进口处的汽蚀余量,即 PK=Pv 时泵入口液 体高过饱和蒸汽压的有效能头。也就是说,临界汽蚀余量为泵内发生汽蚀的临界条件。
4. [NPSH]([△h])——许用汽蚀余量
是确定泵使用条件用的汽蚀余量。 ①取[△h]=△hr+K,K 取(0.3~0.5)m;——来自书上 ②通常取[△et Positive Suction Head Available, )——有效汽蚀余量,又叫 装置汽蚀余量
有效汽蚀余量与泵安装方式有关,越大越不易汽蚀。 《泵和压缩机》一书对效汽蚀余量的定义是:指流体自吸液罐经吸入管路到达泵吸入口后,所具有的 推动和加速液体进入叶道而高出汽化压力以上的明:
油气储运网 - 储运专业资料分享、技术交流平台!

离心泵的气蚀余量

离心泵的气蚀余量

离心泵的气蚀余量摘要:I.离心泵气蚀余量的概念- 气蚀现象的定义- 气蚀余量的定义和作用II.离心泵气蚀余量的计算- 必需汽蚀余量和有效汽蚀余量的区别- 计算公式及其参数含义III.离心泵气蚀余量的影响因素- 液体性质- 泵的安装高度和进出口压力- 泵的类型和结构IV.防止离心泵气蚀的方法- 选择合适的泵型- 采取相应的设计措施- 调整泵的运行参数正文:离心泵的气蚀余量是指在特定条件下,液体在泵内产生汽蚀时,泵所需具备的最低吸入压力。

气蚀余量是离心泵运行中一个重要的参数,直接影响到泵的性能、效率和寿命。

离心泵气蚀余量的计算较为复杂,需要考虑多种因素。

其中,必需汽蚀余量是指在标准条件下,泵能够正常吸入液体的最小压头;有效汽蚀余量则是在实际工况下,泵能够克服液体汽蚀所需的最低压头。

两者的区别在于,必需汽蚀余量是基于标准条件下的计算,而有效汽蚀余量则考虑了实际工况下的影响。

影响离心泵气蚀余量的因素包括:1.液体性质:液体的密度、粘度、饱和蒸汽压力和温度等性质,都会对气蚀余量产生影响。

一般来说,密度越大、粘度越小、饱和蒸汽压力越低的液体,其气蚀余量越大。

2.泵的安装高度和进出口压力:泵的安装高度和进出口压力的大小关系,直接影响到泵的吸入压头。

当泵的安装高度增加或进出口压力降低时,泵所需的气蚀余量也会相应增大。

3.泵的类型和结构:不同类型的离心泵,其气蚀余量也不同。

例如,蜗壳泵的气蚀余量较小,而螺旋泵的气蚀余量较大。

此外,泵的结构和叶片的设计,也会影响到气蚀余量的大小。

为了防止离心泵气蚀,可以采取以下方法:1.选择合适的泵型:根据实际工况,选择具有较大气蚀余量的泵型,以降低气蚀现象的发生。

2.采取相应的设计措施:通过优化泵的结构和叶片设计,提高泵的抗气蚀性能。

3.调整泵的运行参数:合理调整泵的流量、扬程、进出口压力等参数,以降低气蚀余量,提高泵的运行效率和寿命。

总之,离心泵的气蚀余量是一个关键参数,对泵的性能和寿命具有重要影响。

泵与风机复习题概念填空简答计算

泵与风机复习题概念填空简答计算

概念1、流量:单位时间内泵与风机所输送的流体的量称为流量;2、扬程:流经泵的出口断面与进口断面单位重量流体所具有总能量之差称为泵的扬程;3、全压:流经风机出口断面与进口断面单位体积的气体具有的总能量之差称为风机的全压4、有效功率:有效功率表示在单位时间内流体从泵与风机中所获得的总能量;5、轴功率:原动机传递到泵与风机轴上的输入功率为轴功率6、泵与风机总效率:泵与风机的有效功率与轴功率之比为总效率7、绝对速度:是指运动物体相对于静止参照系的运动速度;8、相对速度:是指运动物体相对于运动参照系的速度;9、牵连速度:指运动参照系相对于静止参照系的速度;10、泵与风机的性能曲线:性能曲线通常是指在一定转速下,以流量qv作为基本变量,其他各参数扬程或全压、功率、效率、汽蚀余量随流量改变而变化的曲线;11、泵与风机的工况点:在给定的流量下,均有一个与之对应的扬程H或全压p,功率P及效率η值,这一组参数,称为一个工况点;12、比转速:在相似定律的基础上寻找一个包括流量、扬程、转速在内的综合相似特征量;13、通用性能曲线:由于泵与风机的转速是可以改变的,根据不同转速时的工况绘制出的性能和相应的等效曲线绘制在同一张图上的曲线组,称为通用性能曲线;14、泵的汽蚀:泵内反复出现液体的汽化与凝聚过程而引起对流道金属表面的机械剥蚀与氧化腐蚀的破坏现象称为汽蚀现象,简称汽蚀;15、吸上真空高度:液面静压与泵吸入口处的静压差;16、有效的汽蚀余量:按照吸人装置条件所确定的汽蚀余量称为有效的汽蚀余量或称装置汽蚀余量17、必需汽蚀余量:由泵本身的汽蚀性能所确定的汽蚀余量称为必需汽蚀余量或泵的汽蚀余量或液体从泵吸入口至压力最低k点的压力降;18、泵的工作点:将泵本身的性能曲线与管路特性曲线按同一比例绘在同一张图上,则这两条曲线相交于M点,M点即泵在管路中的工作点;填空1、1工程大气压等于千帕,等于10m水柱高,等于毫米汞柱高;2、根据流体的流动情况,可将泵和风机分为以下三种类别:离心式泵与风机;轴流式泵与风机;混流式泵与风机;3、风机的压头全压p是指单位体积气体通过风机所获的的能量增量;5、单位时间内泵或风机所输送的流体量称为流量;6、泵或风机的工作点是泵与风机的性能曲线与管路的性能曲线的交点;7、泵的扬程H的定义是:泵所输送的单位重量流量的流体从进口至出口的能量增值;8、安装角是指叶片进、出口处的切线与圆周速度反方向之间的交角;9、泵和风机的全效率等于容积效率 ,水力效率及机械效率的乘积;10、当泵的扬程一定时,增加叶轮转速可以相应的减少轮径;11、离心式泵与风机的流体离开叶轮时是沿径向流出;12、轴流式泵与风机的流体沿轴向方向流出叶轮;13、叶片式泵与风机按叶轮数目可以分为单级和多级泵与风机;14、叶片式泵与风机按转轴安装位置可以分为立式与卧式两种;15、泵与风机的性能参数包括:扬程全风压、流量、功率、效率、转速等;16、泵与风机的效率等于输出功率与输入功率之比;17、离心式泵与风机的叶轮按叶片出口安装角的不同,叶轮可分为前弯、后弯、径向叶片式三种叶轮;18、影响泵与风机效率的损失有:机械损失、容积损失、流动损失;19、泵与风机串联工作的目的是提高流体的扬程,输送流体;20、节流调节是通过改变阀门或档板的开度使管道特性曲线发生变化,改变泵与风机的工作点实现调节;22、节流调节调节方便,但存在节流损失,经济性差;23、离心泵启动前的充水目的是排出泵体内的空气,泵运行后在吸入口建立和保持一定的真空;24、离心泵的主要部件有叶轮、轴、吸入室、导叶、压水室、密封装置、轴向推力平衡装置;25、叶片出口安装角β2确定了叶片的型式,有以下三种:当β2a<90°,这种叶片的弯曲方向与叶轮的旋转方向相反,称为后弯式叶片;当β2a=90°,叶片的出口方向为径向,称径向式叶片;当β2a>90°,叶片的弯曲方向与叶轮的旋转方向相同,称为前弯式叶片;26、离心式泵和大型风机中,为了增加效率和降低噪声水平,几乎都采用后向叶型;27、为保证流体流动相似,必须具备几何相似、运动相似和动力相似三个条件,28、泵内汽蚀对泵工作的危害是:材料的破坏、噪声和振动加剧、性能下降29、确定泵的几伺安装高度是保证泵在设计工况下工作时不发生汽蚀的重要条件;判断题阴影为X1、容积式泵与风机是通过改变工作室容积大小实现工作的;2、叶轮后弯叶片型泵与风机易引起电机过载,叶片前弯叶片型泵与风机电机不易过载;X3、当泵的入口绝对压力小于输送流体温度对应下的饱和温度时,泵将会发生汽蚀现象;4、多级离心泵平衡轴向推力的装置一般采用平衡盘平衡;5、平衡孔和平衡管都可以平衡泵的轴向推力,但增加了泵与风机的容积损失;6、离心泵与风机启动时应关闭出口和入口阀门;X7、当泵的吸上真空高度小于最大吸上真空高度时,泵不会发生汽蚀;X8、当泵发生汽蚀后,应及时调节运行工况,增大转速,开大再循环门,可以有效减轻汽蚀;9、动叶调节可以扩大泵与风机的高效区,调节经济性高;10、目前最理想的调节方法是变速调节,具有很高的经济性;10、防止泵与风机不稳定工作的措施是:限制最小流量,避免工作点落在不稳定区域;11、性能相同的两台泵与风机串联后,流体获得的能头等于单台转机的能头的2倍;X12、流线是光滑的曲线,不能是折线,流线之间可以相交; X13、水泵的安装高度取决于水泵的允许真空值、供水流量和水头损失;14、水泵的扬程就是指它的提水高度; X 15、某点的绝对压强小于一个大气压强时即称该点产生真空;16、两台同型号的泵并联工作时,扬程等于单台泵的扬程,流量等于两台泵独立工作时流量之和;X17、两台同型号的泵串联工作时,扬程等于两台泵单独工作时扬程之和,流量等于单台泵的流量;X18、泵的调节可以采用吸入口节流调节;X19、出口节流调节是效率最高的调节方法;X简答题1、什么是几何相似、运动相似和动力相似答: 几何相似是指流动空间几何相似,即形成此空间任意相应两线段交角相同,任意相应线段长度保持一定的比例;运动相似是指两流动的相应流线几何相似,即相应点的流速大小成比例,方向相同;动力相似是指要求同名力作用,相应的同名力成比例;2、什么是泵的扬程答: 泵所输送的单位重量流量的流体从进口至出口的能量增值; 也就是单位重量流量的流体通过泵所获得的有效能量;单位是m ;3、什么是气蚀现象产生气蚀现象的原因是什么答:气蚀是指浸蚀破坏材料之意,它是空气泡现象所产生的后果;原因有下:泵的安装位置高出吸液面的高差太大;泵安装地点的大气压较低;泵所输送的液体温度过高;4、为什么要考虑水泵的安装高度什么情况下,必须使泵装设在吸水池水面以下答: 避免产生气蚀现象;吸液面压强处于气化压力之下或者吸水高度大于10米时必须使泵装设在吸水池水面以下;5、试述离心泵与风机的工作原理答: 当叶轮随轴旋转时,叶片间的流体也随叶轮旋转而获得离心力,并使流体从叶片间的出口处甩出;被甩出的流体及入机壳,于是机壳内的流体压强增高,最后被导向出口排出;流体被甩出后,叶轮中心部分的压强降低;外界气体就能使泵与风机的的吸入口通过叶轮前盘中央的孔口吸入,源源不断地输送流体;6、欧拉方程:)(11122∞∞∞∞∞⋅-⋅=T u T T u T T v u v u gH 有哪些特点 答:1用动量矩定理推导基本能量方程时,并未分析流体在叶轮流道中途的运动过程,于是流体所获得的理论扬程,仅与液体在叶片进、出口的运动速度有关,而与流动过程无关;2流体所获得的理论扬程,与被输送流体的种类无关;也就是说无论被输送的流体是水或是空气,乃至其它密度不同的流体;只要叶片进、出口的速度三角形相同,都可以得到相同的液柱或气柱高度扬程;7、为什么离心式泵与风机多采用后向叶型答:动压水头成分大,流体在蜗壳及扩压器中的流速大,从而动静压转换损失必然较大;因为在其它条件相同时,尽管前向叶型的泵和风机的总的扬程较大,但能量损失也大,效率较低;因此离心式泵全采用后向叶轮;在大型风机中,为了增加效率或见得噪声水平,也几乎都采用后向叶型;8、流体流经过泵或风机时,共包括那些损失答:1水力损失降低实际压力;2容积损失减少流量;3机械损失;9、欧拉方程对流体有哪些基本假设答:1流动为恒定流2流体为不可压缩流体3叶轮的叶片数目为无限多,叶片厚度为无限薄4流体在整个叶轮中的流动过程为一理想过程,即泵与风机工作时没有任何能量损失10、对欧拉方程的分析,我们可以得出哪些结论1.推导基本能量方程时,未分析流体在叶轮流道中途的运动过程,得出流体所获得的理论扬程,仅与流体在叶片进、出口处的速度三角形有关,而与流动过程无关;2.流体所获得的理论扬程HT ∞与被输送流体的种类无关;11、欧拉方程的物理意义第一项表示流体在叶轮内旋转时产生的离心力所做的功;第二项表示由于叶道展宽,相对速度降低而获得的压能;第三项表示动压水头增量12、轴流式泵与风机的工作原理是轴流式泵与风机的工作原理是:旋转叶片的挤压推进力使流体获得能量,升高其压能和动能;13、混流式泵与风机的特点有哪些流体是沿介于轴向与径向之间的圆锥面方向流出叶轮,部分利用叶型升力,部分利用离心力流量较大、压头较高,是一种介于轴流式与离心式之间的叶片式泵与风机14、简述离心泵各部件的主要作用;叶轮是将原动机输入的机械能传递给液体,提高液体能量的核心部件;轴是传递扭矩的主要部件;离心泵吸人管法兰至叶轮进口前的空间过流部分称为吸人室;其作用是在最小水力损失情况下,引导液体平稳地进入叶轮,并使叶轮进口处的流速尽可能均匀地分布;液体从叶轮中流出,由螺旋线部分收集起来,而扩散管将大部分动能转换为压能,进入过渡区,起改变流动方向的作用,再流入反导叶,消除速度环量,并把液体引向次级叶轮的进口;由此可见,导叶兼有吸入室和压出室的作用;压水室是指叶轮出口到泵出口法兰对节段式多级泵是到后级叶轮进口前的过流部分;其作用是收集从叶轮流出的高速液体,并将液体的大部分动能转换为压力能,然后引入压水管;密封装置是减小叶轮与泵体之间的泄漏损失;另一方面可保护叶轮,避免与泵体摩擦;轴推力平衡装置是用以平衡离心泵运行时产生的轴向推力;15、如图所示为离心泵的平衡盘,请说明其工作原理;从末级出来的带有压力的液体,经过调整套径向间隙流入平衡盘前的空腔中,空腔处于高压状态;平衡盘后有平衡管与泵入口相连,其压力近似为入口压力;这样平衡盘两侧压力不相等,因而也就产生了向后的轴向推力,即平衡力;平衡力与轴向力相反,因而自动地平衡了叶轮的轴向推力;16、通过对叶片型式的分析,对于离心式泵与风机的扬程或全压,我们可以得出哪些结论泵与风机的扬程或全压:前向叶片叶轮给出的能量最高,后向叶片叶轮给出的能量最低,径向叶片叶轮给出的能量居中;17、相似理论在泵与风机中主要解决以下问题1对新设计的产品,需将原型泵与风机缩小为模型,进行模化试验以验证其性能是否达到要求; 2在现有效率高、结构简单、性能可靠的泵与风机资料中,选一台合适的比转数接近的作为模型,按相似关系对该型进行设计;3由性能参数的相似关系,在改变转,速、叶轮几何尺寸及流体密度时,可进行性能参数的相似换算18、计算或使用泵与风机的比转速时,需要注意哪些1同一台泵或风机,在不同工况下有不同的比转数,一般是用最高效率点的比转数, 作为相似准则的比转数;2比转数是用单级单吸入叶轮为标准,如结构型式不是单级单吸,则应按下式计算:双吸单级泵,流量应以qv/2代人计算单吸多级泵,扬程应以H/i代人计算,i为叶轮级数;3多级泵第一级为双吸叶轮,则流量应以qv/2代人计算,扬程应以qv/2代人计算; 计算风机比转数的原则与水泵相同;4比转数是由相似定律推导而得,因而它是一个相似准则数切不能与转速混淆,即几何相似的泵与风机在相似工况下其比转数相等;反之,比转数相等的泵与风机不一定相似,因为对同一比转数的泵或风机,可设计成不同的型式;19、比转速的应用有哪些1用比转数对泵与风机进行分类2用比转数进行泵和风机的相似设计20、下式时泵的允许几何安装高度与允许吸上真空高度的关系式,为提高泵的几何安装高度,需要注意哪些因素为了提高泵允许的几何安装高度,应该尽量减小速度水头和吸入管路的流动损失;为了减小速度水头,在同一流量下,可以选用直径稍大的吸入管路;为了减小流动损失除了选用直径稍大的吸入管以外,吸人管段应尽可能的短,并尽量减少如弯头等增加局部损失的管路附件;泵制造厂只能给出Hs值,而不能直接给出Hg值,为什么因为每台泵由于使用地区不同、水温不同,吸人管路的布置情况也各异;因此,只能由用户根据具体条件进行计算确定Hg;安装地点的海拔越高,大气压力就越低,允许吸上真空高度就越小;输送水的温度越高时,所对应的汽化压力就越高,水就越容易汽化;这时,泵的允许吸上真空高度也就越小;21、有效汽蚀余量的物理意义是什么物理意义:吸入口液面上的压力水头,在克服吸水管路装置中的流动损失,并把水提高到一定高度后,所剩余的超过汽化压头的能量;22、有效汽蚀余量和必须汽蚀余量的关系是什么△ha是吸人系统所提供的在泵吸人口大于饱和蒸汽压力的富余能量;△ha越大,表示泵抗汽蚀性能越好;而必需汽蚀余量是液体从泵吸入口至k点的压力降,△hr越小,则表示泵抗汽蚀性能越好,可以降低对吸人系统提供的有效汽蚀余量△hr的要求;23、提高泵本身抗汽蚀性能的措施有哪些1降低叶轮入口部分流速2采用双吸式叶轮此时单侧流量减小一半,从而使v0减小3增加叶轮前盖板转弯处的曲率半径这样可以减小局部阻力损失;4叶片进口边适当加长即向吸人方向延伸,并作成扭曲;5首级叶轮采用抗汽蚀性能好的材料;24、提高吸入系统装置的有效汽蚀余量的措施有哪些1减小吸人管路的流动损失即可适当加大吸人管直径,尽量减少管路附件,如弯头、阀门等,并使吸人管长最短;2合理确定两个高度即几何安装高度及倒灌高度;3设置前置泵;4采用诱导轮;5采用双重翼叶轮;6采用超汽蚀泵;计算题1.某一单吸单级泵,流量Q=45m3/h,扬程H=,转速n=2900r/min,试求其比转数n sp为多少如该泵为双吸式,应以Q/2作为比转数中的流量计算值,则其比转数应为多少当该泵设计成八级泵,应以H/8作为比转数中的扬程计算值,则比转数为多少解 根据计算公式可得:双吸式:八级泵:2、某单吸单级离心泵Q =h ,H =,用电机皮带拖动,测得n=1420r/min , N = ;后因改为电机直接联动,n 增大为1450r/min ,试求此时泵的工作参数为多少解 以下脚“1”表示有滑动现象时的参数,无下脚为改善运转后的参数;则:3、有一台多级锅炉给水泵,要求满足扬程H =176m,流量Q =h,试求该泵所需的级数和轴功率各为多少计算中不考虑涡流修正系数;其余已知条件如下:叶轮外径D = 254mm水力效率ηh = 92%容积效率ηv = 90%机械效率ηm = 95%转速n = 1440 r/min流体出口绝对流速的切向分速度为出口圆周速度的55%解 先求出出口圆周速度及出口速度的切向分速度,以便求出理论压头;当不计涡流损失时,每级压头为:满足扬程176m176/=≈11级轴功率:4、已知下列数据,试求泵所需要的扬程;水泵轴线标高130m,吸水面标高126m,上水池液面标高170m,吸人管段阻力,压力管段阻力; 解 130-126+170-130++=5、由泵样品中得知某台离心泵的汽蚀余量为NPSH=,欲安装在海拔500m 高度的地方工作,该地区夏天最高水温为40℃,若吸水管路的流动损失为1m,速度水头为,求该泵的允许几何安装高度H g 注:海拔500米大气压头为;水温40℃时水的饱和蒸汽压力为解:[][]m h NPSH g p g p H w v amb g 66.4129.3752.07.9=---=---=ρρ。

泵汽蚀余量

泵汽蚀余量

汽蚀余量有两个概念:我们一般讲得汽蚀余量,就是“有效汽蚀余量”,与泵得安装方式有关,它就是指流体经吸入管路到达泵吸入口后所余得高出临界压力能头得那部分能量,就是可利用得气蚀余量,属于“用户参数”;另一个,我们称为“临界得气蚀余量”,也称“必需得气蚀余量”,它就是流体由泵吸入口至压力最低处得压力降低值,就是临界得气蚀余量,属于“厂方参数”。

前者,越大,泵系统性能越好;后者,越小,泵得吸入性能越好。

即:不易发生气蚀。

实际情况证明,叶轮吸人过程中最低压力点就是在叶片人口稍后得某断面处、为了避免离心泵发生汽蚀,应使叶片人口处得最低液流压力PK大于该温度下得液体饱与蒸汽压Pt,即在水泵入口K处得液流具有得能头除了要高出液体得汽化压力Pt外,还应当有一定得富余能头、这个富余能头称为泵装置得有效汽蚀余量,用符号△Ha表示、吸人装置能量平衡示意图可知,从由吸液缸液面至泵人口得能量平衡方程可写为:△Ha=(PAP1)/ρgHG Has式中PA——吸人缸液面上得压力;Pt——输送温度下液体得饱与蒸汽压;ρ——液体得密度;Hg——泵安装高度(泵轴中心与吸人液面垂直距离);Has——吸人管路内得流动损失、液流从泵人口流到叶轮内最低压力点K处得过程中,不仅没有能量加入,而且还需克服这段流道内得局部阻力损失、这部分能量损失,称为泵必须得最小汽蚀余量,用符号△hr,表示、在泵人口到K点得能量平衡方程,并简化可得Ps/ρPt/ρ+CS2/2=λ1C0/2+λ2W02/2式中 Cs——吸人池流速,一般为零;C0——叶轮人I=1处得平均流速;W0——叶轮人口处液流得相对速度;λ1——与泵人口几何形状有关得阻力系数;λ2——与叶片数与叶片头部形状有关得阻力系数、上式等号左端称为△忍、,就是靠压差吸人后,在叶轮人口处得能量,可以理解为吸人动力;等号右端就是叶轮人口处流动与分离得能量损失Ah,、这个公式,只能供理解用,即△危,可理解为叶轮吸人I=1处水力阻力与水力分离损失,就是一种水力消耗、在设计时用此公式就是难以算准得,其确切数值只能由实验决定、为了防止汽蚀,工程上得实验值上再多留0、3m得安全余量,称为允许汽蚀余量,用符号[△h]表示,即[△h]= △hr,+0、3m可知,△危,大小与流量有关,可画出△hrp得关系曲线,所示,称为吸人特性、泵样本上给出得[△h]Q曲线,都就是制造厂用水在常温下试验测出得(输油时需要换算)、重复强调一下,汽蚀余量得概念,从能量消耗角度来说,就是指叶轮人口得流动阻力与流动分离所损失消耗得能量,国外用脚表示,称为为保证不发生汽蚀所必需得净正吸人压力;从能量提供角度来说,就是指在叶轮人口处,应具有得超过汽化压力得富余能量,国外用NPSHa表示,就是推动与加速液体进入叶轮人口得高出汽化压力以上得有效压力或水头、以上就是一个问题两种角度得说法,显然:若Aha>Ah,时,不会发生汽蚀;若Aha=Ah,时,正就是汽蚀得临界点;若Aha<Ah,时,则将发生严重汽蚀、由于叶轮机械中流体运动得复杂性,很难从理论上计算出流场中何处可能出现气蚀,再加上气蚀现象不仅仅取决于流体得流动特性,还取决于流体本身得热力学性质,所以,更难于从理论上提出气蚀发生得判据。

泵汽蚀余量、必须汽蚀余量和有效汽蚀余量的区别与联系

泵汽蚀余量、必须汽蚀余量和有效汽蚀余量的区别与联系

泵汽蚀余量、必须汽蚀余量和有效汽蚀余量的区别与联系汽蚀余量分有效气蚀余量NPSHa和必须气蚀余量NPSHr。

A代表available有效的,可以提供的,这个由系统和管路决定,必须经过严格计算;
r代表required必需的,由泵本体决定,具体与转速,叶轮形式等有关;
要保证泵不气蚀,NPSHa必须大于NPSHr。

具体大多少,各种不同形式的泵都有经验值;
1、泵发生汽蚀的基本条件是:
(1)叶片入口处的最低液流压力Pk≤该温度下液体的饱和蒸汽压Pt。

2、有效汽蚀余量和必需汽蚀余量
(1)有效汽蚀余量:液体流自吸液罐,经吸入管路到达泵吸入口后,所富余的高出液体饱和蒸汽压的那部分能头。

用Δha表示。

(2)泵的必须汽蚀余量:液流从泵入口到叶轮内最低压力点K处的全部能量损失,用Δhr表示。

(3)Δhr与Δha的区别和联系:
泵的有效汽蚀余量大于泵的必须汽蚀余量:泵不汽蚀
泵的有效汽蚀余量等于泵的必须汽蚀余量:泵开始汽蚀
泵的有效汽蚀余量小于泵的必须汽蚀余量:泵严重汽蚀
(4)一般把泵的必须汽蚀余量增加0.5-1m的富余能头作为允许汽蚀余量。

3、泵的必须汽蚀余量是泵的特性,有设计决定,泵的有效汽蚀余量由工艺管路决定。

泵汽蚀余量

泵汽蚀余量

汽蚀余量有两个概念:我们一般讲的汽蚀余量,是“有效汽蚀余量”,与泵的安装方式有关,它是指流体经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;另一个,我们称为“临界的气蚀余量”,也称“必需的气蚀余量”,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。

前者,越大,泵系统性能越好;后者,越小,泵的吸入性能越好。

即:不易发生气蚀。

实际情况证明,叶轮吸人过程中最低压力点是在叶片人口稍后的某断面处.为了避免离心泵发生汽蚀,应使叶片人口处的最低液流压力PK大于该温度下的液体饱和蒸汽压Pt,即在水泵入口K处的液流具有的能头除了要高出液体的汽化压力Pt外,还应当有一定的富余能头.这个富余能头称为泵装置的有效汽蚀余量,用符号△Ha表示.吸人装置能量平衡示意图可知,从由吸液缸液面至泵人口的能量平衡方程可写为:△Ha=(PA-P1)/ρg-HG- Ha-s式中PA——吸人缸液面上的压力;Pt——输送温度下液体的饱和蒸汽压;ρ——液体的密度;Hg——泵安装高度(泵轴中心和吸人液面垂直距离);Ha-s——吸人管路内的流动损失.液流从泵人口流到叶轮内最低压力点K处的过程中,不仅没有能量加入,而且还需克服这段流道内的局部阻力损失.这部分能量损失,称为泵必须的最小汽蚀余量,用符号△hr,表示.在泵人口到K点的能量平衡方程,并简化可得Ps/ρ-Pt/ρ+CS2/2=λ1C0/2+λ2W02/2式中 Cs——吸人池流速,一般为零;C0——叶轮人I=1处的平均流速;W0——叶轮人口处液流的相对速度;λ1——与泵人口几何形状有关的阻力系数;λ2——与叶片数和叶片头部形状有关的阻力系数.上式等号左端称为△忍.,是靠压差吸人后,在叶轮人口处的能量,可以理解为吸人动力;等号右端是叶轮人口处流动和分离的能量损失Ah,.这个公式,只能供理解用,即△危,可理解为叶轮吸人I=1处水力阻力和水力分离损失,是一种水力消耗.在设计时用此公式是难以算准的,其确切数值只能由实验决定.为了防止汽蚀,工程上的实验值上再多留0.3m的安全余量,称为允许汽蚀余量,用符号[△h]表示,即[△h]= △hr,+0.3m可知,△危,大小与流量有关,可画出△hr-p的关系曲线,所示,称为吸人特性.泵样本上给出的[△h]-Q曲线,都是制造厂用水在常温下试验测出的(输油时需要换算).重复强调一下,汽蚀余量的概念,从能量消耗角度来说,是指叶轮人口的流动阻力和流动分离所损失消耗的能量,国外用脚表示,称为为保证不发生汽蚀所必需的净正吸人压力;从能量提供角度来说,是指在叶轮人口处,应具有的超过汽化压力的富余能量,国外用NPSHa表示,是推动和加速液体进入叶轮人口的高出汽化压力以上的有效压力或水头.以上是一个问题两种角度的说法,显然:若Aha>Ah,时,不会发生汽蚀;若Aha=Ah,时,正是汽蚀的临界点;若Aha<Ah,时,则将发生严重汽蚀.由于叶轮机械中流体运动的复杂性,很难从理论上计算出流场中何处可能出现气蚀,再加上气蚀现象不仅仅取决于流体的流动特性,还取决于流体本身的热力学性质,所以,更难于从理论上提出气蚀发生的判据。

有效汽蚀余量NPSHa与必须汽蚀余量NPSHr解读

有效汽蚀余量NPSHa与必须汽蚀余量NPSHr解读

泵的汽蚀余量,这是生产好了就固有了的性能!也就是设备结构决定了的,当然,采用诱导轮等降低汽蚀余量的措施的泵,结构上就多了一个部件。

从叶轮的角度来说,其水力模型决定了汽蚀余量的高低,加工上,流道的阻力,叶片的切入角度都对吸入性能有影响。

目前,但还没有特别的标准之类的,都是水力曲线实验测得的数据。

查表法来选择。

苏尔寿的水力模型基本是通吃的了,各家泵厂大都采用,特别是流程泵基本都是。

汽蚀余量的知识请参照如下专题资料:举例和概念都有,呵呵,这是我用来与师傅们共同学习时用的 5 U F. M8 c, H/ f" ?气蚀余量专题* P7 O: M' w8 T! C1、气蚀余量:4 G! U P" O# XNPSH:气蚀余量,指泵入口液体压力超过液体气化压力的富余能力; _# H6 E1 e! R3 Y& w# BNPSHa:装置气蚀余量,也称有效气蚀余量或者可用气蚀余量,是指油泵装置系统确定的气蚀余量,大小由泵吸液管路系统参数和管道中流量所决定,与泵结构无关;! \& E' _4 o8 W NPSHr:必须气蚀余量,由泵自身结构决定,由泵生产厂家通过实验确定。

一般情况下要求NPSHa不小于NPSHr,经验取值:NPSHa大于NPSHr1.3倍.' S7 ^( v2 F0 [9 L0 i7 D9 P! T2、为什么要计算NPSHa?对于离心泵,直接造成气蚀(Cavitation)就是因为气泡的形成。

7 K( ? V- G$ J5 @( P8 F如果泵吸入侧的压力(Suction Pressure)远大于饱和蒸汽压(Vapour Pressure),那液中气泡将在完全形成之前崩溃,无法与泵叶轮接触然后进行破坏;如果吸入侧的压力接近或等值蒸汽压,则气泡会产生并与叶轮接触进行破坏。

离心泵的运作原理就是利用叶轮转动离心力形成低压把液体吸入,然后把能量转移到排出的液体。

化工原理-汽蚀余量

化工原理-汽蚀余量

化工原理-汽蚀余量转我以前关于汽蚀余量的总结贴,希望对大家有所帮助,有不对之处请指正。

NPSH,汽蚀余量,是水泵进口的水流能量相对汽化压力的富余水头。

要谈允许汽蚀余量的由来,首先讲NPSH的一种:有效汽蚀余量NPSHa(NPSH available,也有以Δha表示),取决于进水池水面的大气压强、泵的吸水高度、进水管水头损失和水流的工作温度,这些因素均取决于水泵的装置条件,与水泵本身性能无关,所以也有叫装置汽蚀余量的。

再来说说NPSHr(NPSH required,Δhr),必需汽蚀余量。

由上所述,在一定装置条件下,有效汽蚀余量Δha为定值,此时对于不同的泵,有些泵发生了汽蚀,有些泵则没有,说明是否汽蚀还与泵的性能有关。

因为Δha仅说明泵进口处有超过汽化压力的富余能量,并不能保证泵内压力最低点(与泵性能有关)的压力仍高于汽化压力。

将泵内的水力损失和流速变化引起的压力降低值定义为必须汽蚀余量Δhr,也就是说要保证泵不发生汽蚀,必要条件是Δha>Δhr。

Δhr与泵的进水室、叶轮几何形状、转速和流量有关,也就是与泵性能相关,而与上述装置条件无关。

一般来讲Δhr不能准确计算,所以通常通过试验方法确定。

这时就引入临界汽蚀余量NPSHc (NPSH critical,Δhc),即试验过程泵刚好开始汽蚀时的汽蚀余量,此时Δha=Δhc=Δhr,这样即可确认Δhr。

而由于临界状况很难判断(因为此时性能可能并无大变化),按GB7021-86规定,临界Δhc这样确定:在给定流量情况下,引起扬程或效率(多级泵则为第一级叶轮)下降(2+k/2)%时的Δha值;或在给定扬程情况下,引起流量或效率下降(2+k/2)%时的Δha 值。

k 为水泵的型式数。

而以上均为理论值。

要保证水泵不发生汽蚀,引入允许汽蚀余量([NPSH],[Δh]),是根据经验人为规定的汽蚀余量,对于小泵[Δh]=Δhc+0.3m,大型水泵[Δh]=(1.1~1.3)Δhc。

必需气蚀余量与气蚀余量关系

必需气蚀余量与气蚀余量关系

必需气蚀余量与气蚀余量关系
本文研究了必需气蚀余量与气蚀余量之间的关系。

气蚀是指在高速液体中,液体中的气体因为压力变化而产生气泡,并在流体中形成涡流和冲蚀,从而损坏设备和管道。

气蚀余量是指需要保留的流量,以防止设备和管道被气蚀损坏。

必需气蚀余量是指在流量超过气蚀余量时,设备和管道会立即受到气蚀的损害。

通过实验和数学模型的分析,发现必需气蚀余量与气蚀余量之间存在一定的关系。

具体来说,必需气蚀余量随着气蚀余量的增加而增加,但增加速度逐渐减缓。

这是因为当气蚀余量增加到一定程度时,设备和管道已经能够承受一定程度的气蚀损害,所以必需气蚀余量的增加速度不再那么快。

这项研究对于设备和管道的设计和运行非常重要。

通过确定必需气蚀余量和气蚀余量之间的关系,可以更好地保护设备和管道,减少气蚀损害,提高设备和管道的寿命和安全性。

- 1 -。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

泵的有效汽蚀余量和必需汽蚀余量是什么?它们之间的关系是什么?
1.有效汽蚀余量:有效汽蚀余量亦称装置汽蚀余量,它表示液体由吸入液面流至泵吸入口处,单位重量具有的超过饱和蒸汽压力的富余能量用△ha表示,或以符号[NPSH]s表示。

影响有效汽蚀余量的因素有吸入液面的表面压力,被吸液体的密度,泵的几何安装高度,还有管路的阻力损失等。

总之,有效汽蚀余量由泵吸入侧管路系统决定,与泵本身无关,在给定的吸入条件下,有效汽蚀余量是可以计算得到的。

有效汽蚀余量越大,说明泵吸入口处单位重量液体所具有的超过饱和蒸汽压力的富余能量越大,这样出现汽蚀的可能性不会太大。

2.必需汽蚀余量:有效汽蚀余量的大小并不能说明泵是否产生气泡,发生汽蚀。

因为有效汽蚀余量仅指液体从吸入液面流至泵吸入口处所具有的超过饱和蒸汽压力的富余能量,但泵吸入口处的液体压力并不是泵内压力最低处的液体压力。

液体从泵吸入口流至叶轮进口的过程中,能量没有增加,它的压力还要继续降低。

这一方面是由于过流断面的逐渐收缩,流速增大而造成;另一方面由于泵吸入口到叶片入口处的流动阻力也会造成液体压力的进一步降低。

所以我们把单位重量的液体从泵吸入口流至叶片进口压力最低处的压力降,称为必需汽蚀余量,用△hr表示,或用符号[NPSH]r表示。

必需汽蚀余量与吸入管路装置系统无关,它只与泵吸入室的结构、液体在叶轮进口处的流速等因素有关,所以必需汽蚀余量由泵入口各因素决定。

必需汽蚀余量,是液体从泵吸入口流至叶片进口压力最低处的压力降,所以△hr越大,则表示压力降也大,泵的抗汽蚀能力越差,反之抗汽蚀能力就高。

3.有效汽蚀余量和必需汽蚀余量的关系
有效汽蚀余量在吸入管路系统确定后,它随流量增大而降低。

必需汽蚀余量在吸入室、叶轮入口形状已定的情况下,它随流量的增大而升高。

所以要使泵压力最低点处不发生汽化,必需使有效汽蚀余量大于必需汽蚀余量,即△ha>△hr。

相关文档
最新文档