数学符号及公式
计算公式符号读法
计算公式符号读法在数学和物理学中,我们经常会遇到各种各样的计算公式。
这些公式往往包含了许多符号和符号组合,这些符号的读法对于理解和运用公式至关重要。
在本文中,我们将介绍一些常见的计算公式符号的读法,帮助大家更好地理解和运用这些公式。
1. 加号(+)。
加号是最基本的运算符号之一,表示两个数相加。
在口语中,我们通常称之为“加”,比如“三加四等于七”。
在书面语中,我们也可以称之为“加”,比如“3 + 4 = 7”。
2. 减号(-)。
减号表示两个数相减。
在口语中,我们通常称之为“减”,比如“五减二等于三”。
在书面语中,我们也可以称之为“减”,比如“5 2 = 3”。
3. 乘号(×)。
乘号表示两个数相乘。
在口语中,我们通常称之为“乘”,比如“六乘以九等于五十四”。
在书面语中,我们也可以称之为“乘”,比如“6 × 9 = 54”。
4. 除号(÷)。
除号表示一个数除以另一个数。
在口语中,我们通常称之为“除”,比如“十除以二等于五”。
在书面语中,我们也可以称之为“除”,比如“10 ÷ 2 = 5”。
5. 等于号(=)。
等于号表示两个数相等。
在口语和书面语中,我们都可以称之为“等于”,比如“三加四等于七”或“3 + 4 = 7”。
6. 开方号(√)。
开方号表示一个数的平方根。
在口语中,我们通常称之为“根号”,比如“九的平方根等于三”。
在书面语中,我们也可以称之为“根号”,比如“√9 = 3”。
7. 指数符号(^)。
指数符号表示一个数的幂。
在口语中,我们通常称之为“的几次方”,比如“二的三次方等于八”。
在书面语中,我们也可以称之为“的几次方”,比如“2^3 = 8”。
8. 积分符号(∫)。
积分符号表示对一个函数进行积分运算。
在口语和书面语中,我们都可以称之为“积分”,比如“对函数f(x)进行积分”。
9. 微分符号(d)。
微分符号表示对一个函数进行微分运算。
在口语和书面语中,我们都可以称之为“微分”,比如“对函数f(x)进行微分”。
初中数学常用符号和公式
初中数学常用符号和公式全文共四篇示例,供读者参考第一篇示例:初中数学符号和公式是学习数学的基础,掌握这些符号和公式不仅可以帮助我们更好地理解数学知识,也可以帮助我们更快地解决数学题目。
以下是一些初中数学常用符号和公式的介绍。
一、常用符号1. 加号(+):表示两个数相加的运算符号,如2 + 3 = 5。
9. 括号(()):用于改变计算的优先顺序。
10. 分数线(/):用于表示一个数除以另一个数,如1/2表示1除以2。
12. 阶乘号(!):表示一个数的阶乘,如5! = 5 × 4 × 3 × 2 × 1 = 120。
13. 无穷大符号(∞):表示没有上限的数,如数轴两端。
14. π(pi):表示圆周率,约等于3.14159。
15. Σ(sigma):表示求和的符号,如Σn表示将n从1到无穷大的所有数相加。
二、常用公式1. 一次函数:y = kx + b。
3. 直角三角形三边关系:a² + b² = c²。
4. 直角三角形正弦定理:sinA/a = sinB/b = sinC/c。
6. 圆的周长公式:C = 2πr。
8. 三角形的面积公式:S = 1/2 × 底× 高。
9. 数列通项公式:an = a1 + (n - 1)d。
第二篇示例:初中数学是每个学生都要学习的一门学科,其符号和公式是学习数学的基础。
在初中数学中,常用的符号和公式有很多种,掌握这些符号和公式对于学习数学非常重要。
本文将介绍一些初中数学常用符号和公式,帮助大家更好地学习数学知识。
一、基本符号1. 加号(+):用于表示两个数的和,例如3+4=7。
6. 大于号(>):表示一个数大于另一个数,例如5>3。
10. 括号(()):用于改变运算的次序,例如(2+3)×4=20。
11. 分数线(/):表示分数,例如1/2表示1除以2。
二、常用公式1. 直角三角形的勾股定理:a²+b²=c²,其中a、b为直角三角形的两条直角边长,c为斜边长。
数学符号及运算公式
数学符号+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮is not less than 不小于号≯is not more than 不大于号≤ is less than or equal to 小于或等于号≥ is more than or equal to 大于或等于号% per cent 百分之…‰ per mill 千分之…∞ infinity 无限大号∝varies as 与…成比例√ (square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∠angle 角⌒semicircle 半圆⊙circle 圆○ circumference 圆周π pi 圆周率△triangle 三角形⊥perpendicular to 垂直于∪union of 并,合集∩ intersection of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃second 秒℃Celsius system 摄氏度^指上标,譬如x^2指的是x的2次方,x^3指的是x的3次方1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
认识和运用数学中的常见符号和公式
认识和运用数学中的常见符号和公式数学是一门精确而又广泛应用于各个领域的学科,其中符号和公式的运用是数学表达和推理的重要工具。
本文将介绍一些数学中常见的符号和公式,帮助读者更好地理解和运用数学知识。
一、常见数学符号1. 加号(+):表示两个数的相加。
2. 减号(-):表示两个数的相减。
3. 乘号(×):表示两个数的相乘。
4. 除号(÷):表示两个数的相除。
5. 等号(=):表示两个数或式子相等。
6. 大于号(>):表示一个数大于另一个数。
7. 小于号(<):表示一个数小于另一个数。
8. 不等号(≠):表示两个数或式子不等。
9. 百分号(%):表示百分数,计数单位为1/100。
10. 平方根(√):表示一个数的平方根。
11. 绝对值(|x|):表示一个数的非负值。
12. Σ(sigma)符号:表示求和,将一系列数相加。
13. π(pi)符号:表示圆周率,约等于3.14159。
14. ∞(无穷大):表示趋于无穷大的数。
15. ∴(则):表示推理和逻辑关系。
二、常见数学公式1. 一元一次方程:形如ax+b=0的方程,其中a和b为常数,x为未知数。
求解一元一次方程的方法是通过运用相反数的性质,移项和化简,最终得到x的值。
2. 二次方程:形如ax^2+bx+c=0的方程,其中a、b和c为常数,x为未知数。
求解二次方程的方法主要有配方法、因式分解法和求根公式法。
3. 三角函数公式:包括正弦函数、余弦函数、正切函数等的定义和性质,如正弦函数的周期性、正切函数的单调性等。
这些公式在三角方程的求解、解析几何、物理等领域有广泛应用。
4. 指数函数和对数函数公式:指数函数和对数函数是互为反函数的函数,它们的定义和性质常用于解决指数方程和对数方程,以及在概率统计、复利计算、科学实验等方面的应用。
5. 数列公式:数列是按照一定规律排列的一系列数的集合,数列公式描述了数列的通项公式和前n项和的公式。
数学符号及运算公式
数学符号+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮is not less than 不小于号≯is not more than 不大于号≤ is less than or equal to 小于或等于号≥ is more than or equal to 大于或等于号% per cent 百分之…‰ per mill 千分之…∞ infinity 无限大号∝varies as 与…成比例√ (square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∠angle 角≲semicircle 半圆≰circle 圆○ circumference 圆周π pi 圆周率△triangle 三角形≱perpendicular to 垂直于∪union of 并,合集∩ intersection of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃second 秒℃Celsius system 摄氏度^指上标,譬如x^2指的是x的2次方,x^3指的是x的3次方1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
高中数学公式与符号大全
高中数学公式与符号大全用文本方式表达(原非文本结构的)数学公式的初步的标准(希望可以给大家一个参考)x^n 表示x 的n 次方,如果n 是有结构式,n 应外引括号;(有结构式是指多项式、多因式等表达式)x^(n/m) 表示x 的n/m 次方;SQR(x) 表示x 的开方;sqrt(x) 表示x 的开方;√(x) 表示x 的开方,如果x 为单个字母表达式,x 的开方可简表为√x ;x^(-n) 表示x 的n 次方的倒数;x^(1/n) 表示x 开n 次方;log_a,b 表示以a 为底b 的对数;x_n 表示x 带足标n ;∑(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连加和,如果f(n)是有结构式,f(n)应外引括号;∑(n=p,q ; r=s,t)f(n,r) 表示∑(r=s,t)[∑(n=p,q)f(n,r)],如果f(n,r)是有结构式,f(n,r)应外引括号;∏(n=p,q)f(n) 表示f(n)的n从p到q逐步变化对f(n)的连乘积, 如果f(n)是有结构式,f(n)应外引括号;∏(n=p,q ; r=s,t)f(n,r) 表示∏(r=s,t)[∏(n=p,q)f(n,r)], 如果f(n,r)是有结构式,f(n,r)应外引括号;lim(x→u)f(x) 表示f(x) 的x 趋向u 时的极限,如果f(x)是有结构式,f(x)应外引括号;lim(y→v ; x→u)f(x,y) 表示lim(y→v)[lim(x→u)f(x,y)],如果f(x,y)是有结构式,f(x,y)应外引括号;∫(a,b)f(x)dx 表示对f(x) 从x=a 至x=b 的积分,如果f(x)是有结构式,f(x)应外引括号;∫(c,d ; a,b)f(x,y)dxdy 表示∫(c,d)[∫(a,b)f(x,y)dx]dy, 如果f(x,y)是有结构式,f(x,y)应外引括号;∫(L)f(x,y)ds 表示f(x,y) 在曲线L 上的积分,如果f(x,y)是有结构式,f(x,y)应外引括号;∫∫(D)f(x,y,z)dσ表示f(x,y,z) 在曲面 D 上的积分,如果f(x,y,z)是有结构式,f(x,y,z)应外引括号;∮(L)f(x,y)ds 表示f(x,y) 在闭曲线L 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号;∮∮(D)f(x,y,z)dσ表示f(x,y,z) 在闭曲面 D 上的积分, 如果f(x,y)是有结构式,f(x,y)应外引括号;∪(n=p,q)A(n) 表示n从p到q之A(n)的并集,如果A(n)是有结构式,A(n)应外引括号;∪(n=p,q ; r=s,t)A(n,r) 表示∪(r=s,t)[∪(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号;∩(n=p,q)A(n) 表示n从p到q逐步变化对A(n)的交集, 如果A(n)是有结构式,A(n)应外引括号;∩(n=p,q ; r=s,t)A(n,r) 表示∩(r=s,t)[∩(n=p,q)A(n,r)], 如果A(n,r)是有结构式,A(n,r)应外引括号;当文本格式表达找不到表达符的表达代替字符初步标准有:a(≤A 表示a为A的子集;A ≥)a 表示A包含a;a(<A 表示a为A的真子集;A >)a 表示a为A的真子集;注:顺序结构的表达式是按以下的优先级决定运算次序:1. 函数;2. 幂运算;3. 乘、除;4. 加、减。
整数数学公式符号
整数数学公式符号
整数是指不带小数点的数,包括正整数、负整数和零。
在数学中,我们使用一些符号来表示整数的特定属性或运算。
以下是一些常见的整数数学公式符号:
1. 自然数符号:N
自然数是指正整数,包括1、2、3、4、5……无限延伸下去。
在数学中,我们使用符号N来表示自然数的集合。
例如:N = {1, 2, 3, 4, 5, …}
2. 整数符号:Z
整数是指正整数、负整数和零的集合,包括1、2、3、4、5……以及-1、-2、-3、-4、-5……和0。
在数学中,我们使用符号Z来表示整数的集合。
例如:Z = {…, -3, -2, -1, 0, 1, 2, 3, …}
3. 绝对值符号:|x|
绝对值是指一个数离原点的距离,无论这个数是正数还是负数,它的绝对值都是正数。
在数学中,我们使用一个竖线符号来表示绝对值。
例如:|3| = 3,|-3| = 3
4. 整除符号:a | b
整除是指一个整数a能够整除另一个整数b,即b可以被a整除,而没有余数。
在数学中,我们使用符号“|”来表示整除。
例如:2 | 6,表示2可以整除6,6被2整除,没有余数。
5. 模符号:a mod b
模是指一个整数a除以另一个整数b所得的余数。
在数学中,我们使用符号“mod”来表示模。
例如:7 mod 3 = 1,表示7除以3所得的余数是1。
这些整数数学公式符号在数学中起到了非常重要的作用,通过它们的运用,我们可以更加方便地表示和计算整数的各种属性和运算。
高等数学教材附录
高等数学教材附录附录一:数学符号在高等数学中,有许多特定的数学符号被广泛使用。
下面列举了一些常见的数学符号及其含义:1. 基本运算符号加法:$+$,减法:$-$,乘法:$\times$,除法:$\div$2. 常用运算符号等于:$=$,不等于:$\neq$,小于:$<$,大于:$>$,小于等于:$\leq$,大于等于:$\geq$3. 集合符号属于:$\in$,不属于:$\notin$,子集:$\subset$,包含:$\supset$,真子集:$\subsetneq$,真包含:$\supsetneq$,并集:$\cup$,交集:$\cap$,空集:$\emptyset$4. 指数和根号上标:$a^b$,下标:$a_b$,指数:$a^{bc}$,根号:$\sqrt{a}$5. 极限极限:$\lim$,导数:$\frac{d}{dx}$,偏导数:$\frac{\partial}{\partial x}$6. 微积分符号积分:$\int$,定积分:$\int_a^b$,不定积分:$\int dx$,微分:$dx$7. 求和求和:$\sum$,无穷求和:$\sum_{n=1}^{\infty}$,乘积符号:$\prod$8. 向量和矩阵符号向量:$\vec{a}$,矩阵:$\mathbf{A}$,转置:$^T$,内积:$\cdot$,叉乘:$\times$9. 特殊函数符号绝对值:$|x|$,自然对数:$\ln$,常用对数:$\log$,三角函数:$\sin, \cos, \tan$,反三角函数:$\arcsin, \arccos, \arctan$,指数函数:$e^x$此外,还有许多其他的数学符号和表达方式,在具体的数学领域中有特定的使用方法。
熟练运用这些数学符号,将有助于更好地理解和表达高等数学的概念和原理。
附录二:常用公式以下为一些常见的高等数学公式,在学习过程中可以作为参考和复习之用:1. 三角函数公式$\sin^2x + \cos^2x = 1$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$2. 指数与对数公式$a^m \cdot a^n = a^{m + n}$$\frac{a^m}{a^n} = a^{m - n}$$(a^m)^n = a^{mn}$$\log_a (mn) = \log_a m + \log_a n$$\log_a \frac{m}{n} = \log_a m - \log_a n$3. 微分与积分公式导数公式:$\frac{d(u \pm v)}{dx} = \frac{du}{dx} \pm \frac{dv}{dx}$$\frac{d(uv)}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$\frac{d(\frac{u}{v})}{dx} = \frac{v\frac{du}{dx}-u\frac{dv}{dx}}{v^2}$$\frac{d(e^x)}{dx} = e^x$$\frac{d(\ln x)}{dx} = \frac{1}{x}$$\frac{d(\sin x)}{dx} = \cos x$$\frac{d(\cos x)}{dx} = -\sin x$积分公式:$\int x^n dx = \frac{1}{n+1}x^{n+1} + C$$\int e^x dx = e^x + C$$\int \sin x dx = -\cos x + C$$\int \cos x dx = \sin x + C$$\int \frac{1}{x} dx = \ln |x| + C$4. 三角函数的导数与积分公式$\frac{d(\sin x)}{dx} = \cos x$$\frac{d(\cos x)}{dx} = -\sin x$$\frac{d(\tan x)}{dx} = \sec^2 x$$\int \sin x dx = -\cos x + C$$\int \cos x dx = \sin x + C$$\int \tan x dx = -\ln |\cos x| + C$附录三:参考书目以下是一些优秀的高等数学教材供您进一步学习和参考:1. 《高等数学》(同济大学版)作者:郭家著、刘畅、杨健编出版社:高等教育出版社2. 《高等数学》(科学出版社版)作者:郭家著、邓约威、史钟智编出版社:科学出版社3. 《高等数学》(清华大学版)作者:陈纪修、李荣华、李维善编出版社:高等教育出版社4. 《高等数学教程》(第7版)作者:冯震、陈建中、貌涌臣编出版社:高等教育出版社这些教材内容丰富、结构清晰,适合高等数学的学习和教学使用。
(完整版)高考数学公式大全
1高考数学公式大全 一、集合1.集合的运算符号:交集“ ”,并集“ "补集“C ”子集“⊆”2.非空集合的子集个数:n 2(n 是指该集合元素的个数)3。
空集的符号为∅ 二、函数1。
定义域(整式型:R x ∈;分式型:分母0≠;零次幂型:底数0≠;对数型:真数0>;根式型:被开方数0≥)2.偶函数:)()(x f x f -= 奇函数:0)()(=-+x f x f 在计算时:偶函数常用:)1()1(-=f f奇函数常用:0)0(=f 或0)1()1(=-+f f3.单调增函数:当在x 递增,y 也递增;当x 在递减,y 也递减 单调减函数:与增函数相反4.指数函数计算:nm nmaa a +=⋅;nm n m aa a -=÷;nm n m aa ⋅=)(;m n mn a a =;10=a指数函数的性质:x a y =;当1>a 时,x a y =为增函数; 当10<<a 时,x a y =为减函数 指数函数必过定点)1,0(5。
对数函数计算:1log =aa ;0log 1=a;nm an a m a ⋅=+log log log ;nm ana m a log log log =-;ma m an nlog log =;m a mannlog 1log =对数的性质:xa y log = ;当10<<a 时,xa y log =为减函数.当1>a 时,xa y log =为增函数 对数函数必过定点)0,1( 6.幂函数:a x y =7。
函数的零点:①)(x f y =的零点指0)(=x f②)(x f y =在),(b a 内有零点;则0)()(<•b f a f三、三角函数①计算:1cos sin 22=+αα;θθθtan cos sin =2②正负符号判断:“一全正,二正弦,三切,四余弦” ③和差公式:βαβαβαsin cos cos sin )sin(±=± βαββαsin sin cos cos )cos( a =± βαβαβαtan tan 1tan tan )tan(•±=±④二倍角公式:αααcos sin 22sin •=;ααααα2222sin cos sin 211cos 22cos -=-=-= ααα2tan 1tan 2)2tan(-=; ⑤特殊角⑥诱导公式口诀“奇变偶不变;符号看象限.”⑦如何将三角函数化为)sin()(ϕ+=wx A x f ;利用三角函数相关的公式三看:一看平方:)2cos 1(21cos );2cos 1(21sin 22αααα+=-=二看乘积:ααα2sin 21cos sin =•三看加减:)sin(cos sin 22ϕααα±+=±b a b a 其中a b =ϕtan ; 41πϕ=⇒=a b633πϕ=⇒=a b33πϕ=⇒=a b3特别强调当a<0时:)sin(cos sin 22ϕααα±+-=+b a b a ⑧三角函数 )sin(ϕ+=wx A y 的性质:⑴单调增减区间:⎥⎦⎤⎢⎣⎡+-22,22ππππk k ↑ ⎥⎦⎤⎢⎣⎡++232,22ππππk k ↓⑵对称轴方程: 2ππ+=k x ;对称中心:)0,(πk⑶周期: wT π2=④max y 时,22;22min ππππ-=+=k x y k x 时:⑸值域:[]A A ,- ⑥记死:两条相邻对称轴之间距离为2T 两条相邻对称中心距离为2T9.由图像求)sin(ϕ+=wx A y ,三步:第一步:由图找到振幅A第二步:由图找到周期T ,然后由wT π2=求出w 具体值 第三步:代“特殊点”利用特殊角求出ϕ的值10.)sin(ϕ+=wx A y −−−−−→−个单位向左右平移a []ϕ+±=)(sin a x w A y 11.wx A y sin =−−−→−如何变成)sin(ϕ+=wx A y 平移wϕ个单位四、正余弦定理①边与角之间的转化:用正弦定理R A a 2sin =;R B b 2sin =;R Cc2sin = A R a sin 2=, B R b sin 2=,C R c sin 2= (把边转化为角)R a A 2sin = ,R b B 2sin =,R cC 2sin = (把角转化成边)②余弦定理:夹边夹边对边夹边夹边•+=2-cos 222θ③面积公式:B ac A bc C ab S ABC sin 21sin 21sin 21===∆ ④诱导公式:C B A sin )sin(=+ C B A cos )cos(-=+五、向量①),(11y x a =→),(22y x b =→则),(2121y y x x b a ++=+→→,),(2121y y x x b a --=-→→4θcos 2121⋅•=+⋅=•→→→→b a y y x x b a②2121y x a += 212122y x a a +== →b 向量同理 ③→→b 与a 的夹角公式:222221212121cos yx yx y y x x +++=θ④002121=+⇒⊥=•⇒⊥→→→→y y x x b a b a b a 或者 ⑤0//1221=-⇒→→→→y x y x b a b a 共线与或者 ⑥()2wb a wb a ±=±λλ⑦单位向量指“模”为1:a a 则1=为单位向量 六、数列①后一项减去前一项的值为一个常数:d a a n n =--1 ②后一项除以前一项的值为一个常数:q a a n n=-1③等差数列通项公式:()d n a a n 11-+= 等比数列通项公式:11-=n n q a a ④等差数列求和公式:()()d n n nan a a s n n 21211-+=⨯+=等比数列求和公式:()qq a s nn --=111⑤111s a a s s n n n ==--且⑥等差数列中项公式:112-++=n n n a a a 等比数列中项公式:112-+•=n n n a a a ⑦求和公式:“分组求和 ”等比求和等差求和nn b b a a a a ++++++...b (21321)“裂项相消”⎪⎭⎫⎝⎛-•-=大小小大111n a“错位相减”:等比通项等差通项•七、统计以概率:①众数指“出现次数最多的那个数” 中位数指“从小排到大的中间那个数”②方差 []2212)(...)()(1x x x x x x ns n -++-+-=5标准方差:2s ③频率;总数频数概率==频率组距组距频率=⨯各组频率之和=1④极差:极差=-min max⑤学会认茎叶图⑥分层抽样:第一步求出各组的比例 第二步用样本总数⨯比例=分组频数 ⑦回归方程当0>∧b 时,x 与y 正相关 当0<∧b 时,x 与y 负相关⑧))()()(())((22d c b a d b c a bc ad d c b a k ++++-+++=;二联表总a bcd总八、命题①原命题:否命题(条件和结论都否定);逆命题(条件和结论互换位置);逆否命题(将逆命题进行否定)②“或"∨⇒ “且”∧⇒ “非”⌝⇒p一真全真 ↓ 一假全假 ↓ 真假互换 ↓③B A ⊆则A 是B 充分不必要6B A ⊇则A 是B 的必要不充分B A =则A 是B 的充要条件④全称量词:符号:∀ 存在量词:符号∃“ ∀”与 “ ∃" 相互否定,“所有” −−→←否定“存在 ” 九、导数①基本函数求导:1')(-•=m m nx m nx ;)0(1)(ln '>=x xx ;x x e e =')((本身) 0'=c (常数求导=0);x x cos )(sin '=;x x sin )(cos '-=②乘法求导:[])()()()()()('''x f x g x g x f x g x f ⋅+⋅=•;除法求导:)()()()()()()(2''x g x f x g x g x f x g x f -= ③复合求导:[][]→=)().()('''x g f x g x g f 这个公式记题型④斜率)(0'x f k = 切线方程:)(00x x k y y -=- ⑤在a x =处取极值⇒0)('=a f⑥求单调区间:令0)('>x f 求单调增区间 。
数学中的符号与公式
数学中的符号与公式数学作为一门精确且普遍的学科,离不开各种符号和公式的运用。
这些符号和公式不仅仅是一种简洁的表达方式,更是数学思维的核心与灵魂。
本文将探讨数学中常见的符号与公式,以及它们在各个数学分支中的应用。
一、基本算术符号1. 加法符号:+加法符号是数学中最基本的算术符号之一,用于表示两个数的和。
比如 2 + 3 = 5,表示2和3相加等于5。
2. 减法符号:-减法符号常用于表示两个数的差。
比如 5 - 2 = 3,表示5减去2的结果为3。
3. 乘法符号:×乘法符号用于表示两个数的乘积。
比如 2 × 3 = 6,表示2乘以3的结果为6。
4. 除法符号:÷除法符号表示两个数的商。
比如 6 ÷ 2 = 3,表示6除以2的结果为3。
以上这些基本算术符号是数学运算中最基础且最常见的符号,它们在日常生活中也得到广泛应用。
二、代数符号1. 等于符号:=等于符号用于表示等式两边的值相等。
比如 2 + 3 = 5,表示2 + 3的结果等于5。
2. 不等于符号:≠不等于符号表示不等关系。
比如2 + 3 ≠ 6,表示2 + 3的结果不等于6。
3. 大于符号:>大于符号表示大于关系。
比如 5 > 2,表示5大于2。
4. 小于符号:<小于符号表示小于关系。
比如 2 < 5,表示2小于5。
这些代数符号常用于比较和表示数与数之间的关系,是解方程和不等式等数学问题中必不可少的工具。
三、几何符号1. 等于号:=等于号在几何学中用于表示两个量、线段或角等的相等关系。
比如AB = CD,表示线段AB和线段CD的长度相等。
2. 平行符号:||平行符号用于表示两条直线互不相交、且方向相同的关系。
比如AB || CD,表示线段AB与线段CD平行。
3. 垂直符号:⊥垂直符号表示两条直线或线段之间的垂直关系。
比如 AB ⊥ CD,表示线段AB垂直于线段CD。
这些几何符号在几何学中有着重要的作用,能够准确地描述平行、垂直等关系。
数学符号及运算公式
数学符号+ plus 加号;正号- minus 减号;负号± plus or minus 正负号× is multiplied by 乘号÷ is divided by 除号=is equal to 等于号≠ is not equal to 不等于号≡ is equivalent to 全等于号≌is equal to or approximately equal to 等于或约等于号≈ is approximately equal to 约等于号<is less than 小于号>is more than 大于号≮is not less than 不小于号≯is not more than 不大于号≤ is less than or equal to 小于或等于号≥ is more than or equal to 大于或等于号% per cent 百分之…‰ per mill 千分之…∞ infinity 无限大号∝varies as 与…成比例√ (square) root 平方根∵since; because 因为∴hence 所以∷equals, as (proportion) 等于,成比例∠angle 角⌒semicircle 半圆⊙circle 圆○ circumference 圆周π pi 圆周率△triangle 三角形⊥perpendicular to 垂直于∪union of 并,合集∩ intersection of 交,通集∫ the integral of …的积分∑ (sigma) summation of 总和° degree 度′ minute 分〃second 秒℃Celsius system 摄氏度^指上标,譬如x^2指的是x的2次方,x^3指的是x的3次方1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^247勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2 ,那么这个三角形是直角三角形48定理四边形的内角和等于360°49四边形的外角和等于360°50多边形内角和定理n边形的内角的和等于(n-2)×180°51推论任意多边的外角和等于360°52平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(a×b)÷267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)÷2 S=L×h83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d85 (3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三点确定一个圆。
数学公式符号大全
数学公式符号大全引言数学是一门研究数量、结构、变化以及空间等概念的学科。
在数学中,公式是表达数学关系或规律的一种符号表示方式。
数学公式符号的正确使用和理解对于学习和应用数学具有重要意义。
本文将介绍一些常见的数学公式符号,帮助读者更好地理解数学表达和推理。
希腊字母希腊字母是用于表示数学中常见概念和变量的符号。
以下是一些常见的希腊字母及其对应的大写和小写形式:•α (Alpha): \(\alpha\) 或 \(A\)•β (Beta): \(\beta\) 或 \(B\)•γ (Gamma): \(\gamma\) 或 \(Γ\)•δ (Delta): \(\delta\) 或 \(Δ\)•ε (Epsilon): \(\epsilon\) 或 \(E\)•ζ (Zeta): \(\zeta\) 或 \(Z\)•η (Eta): \(\eta\) 或 \(H\)•θ (Theta): \(\theta\) 或 \(Θ\)•ι (Iota): \(\iota\) 或 \(I\)•κ (Kappa): \(\kappa\) 或 \(K\)•λ (Lambda): \(\lambda\) 或 \(Λ\)•μ (Mu): \(\mu\) 或 \(M\)•ν (Nu): \(u\) 或 \(N\)•ξ (Xi): \(\xi\) 或 \(Ξ\)•ο (Omicron): \(\omicron\) 或 \(O\)•π (Pi): \(\pi\) 或 \(Π\)•ρ (Rho): \(\rho\) 或 \(P\)•σ (Sigma): \(\sigma\) 或 \(Σ\)•τ (Tau): \(\tau\) 或 \(T\)•υ (Upsilon): \(\upsilon\) 或 \(Υ\)•φ (Phi): \(\phi\) 或 \(Φ\)•χ (Chi): \(\chi\) 或 \(X\)•ψ (Psi): \(\psi\) 或 \(Ψ\)•ω (Omega): \(\omega\) 或 \(Ω\)这些希腊字母在数学中广泛使用,代表不同的数学符号、常数和变量。
数学公式及符号大全
数学符号及读法大全常用数学输入符号:≈ ≡ ≠ =≤≥ <>≮≯∷±+-× ÷/∫ ∮∝∞ ∧∨∑ ∏ ∪∩ ∈∵∴⊥‖ ∠⌒≌∽√()【】{}ⅠⅡ⊕⊙‖α β γ δ ε ζ η θ Δ大写小写英文注音国际音标注音中文注音Ααalpha alfa 阿耳法Ββbeta beta 贝塔Γγgamma gamma 伽马Δδdeta delta 德耳塔Εεepsilon epsilon 艾普西隆Ζζzeta zeta 截塔Ηηeta eta 艾塔Θθtheta θita西塔Ιιiota iota 约塔Κκkappa kappa 卡帕∧λlambda lambda 兰姆达Μμmu miu 缪Ννnu niu 纽Ξξxi ksi 可塞Οοomicron omikron 奥密可戎∏πpi pai 派Ρρrho rou 柔∑σsigma sigma 西格马Ττtau tau 套Υυupsilon jupsilon 衣普西隆Φφphi fai 斐Χχchi khai 喜Ψψpsi psai 普西Ωωomega omiga 欧米符号含义i -1的平方根f(x) 函数f在自变量x处的值sin(x) 在自变量x处的正弦函数值exp(x) 在自变量x处的指数函数值,常被写作exa^x a的x次方;有理数x由反函数定义ln x exp x 的反函数ax 同a^xlogba 以b为底a的对数;blogba = acos x 在自变量x处余弦函数的值tan x 其值等于sin x/cos xcot x 余切函数的值或cos x/sin xsec x 正割含数的值,其值等于1/cos xcsc x 余割函数的值,其值等于1/sin xasin x y,正弦函数反函数在x处的值,即x = sin yacos x y,余弦函数反函数在x处的值,即x = cos yatan x y,正切函数反函数在x处的值,即x = tan yacot x y,余切函数反函数在x处的值,即x = cot yasec x y,正割函数反函数在x处的值,即x = sec yacsc x y,余割函数反函数在x处的值,即x = csc yθ角度的一个标准符号,不注明均指弧度,尤其用于表示atan x/y,当x、y、z用于表示空间中的点时i, j, k 分别表示x、y、z方向上的单位向量(a, b, c) 以a、b、c为元素的向量(a, b) 以a、b为元素的向量(a, b) a、b向量的点积a•b a、b向量的点积(a•b)a、b向量的点积|v| 向量v的模|x| 数x的绝对值∑表示求和,通常是某项指数。
符号大全 常用符号公式含义
符号大全常用符号公式含义数学物理里面的公式符号读法:Α α:阿尔法AlphaΒ β:贝塔BetaΓ γ:伽玛GammaΔ δ:德尔塔DelteΕ ε:艾普西龙EpsilonΖ ζ :捷塔ZetaΕ η:依塔EtaΘ θ:西塔ThetaΙ ι:艾欧塔IotaΚ κ:喀帕Kappa∧λ:拉姆达LambdaΜ μ:缪MuΝ ν:拗NuΞ ξ:克西XiΟ ο:欧麦克轮Omicron∏ π:派PiΡ ρ:柔Rho∑ σ:西格玛SigmaΤ τ:套TauΥ υ:宇普西龙UpsilonΦ φ:fai PhiΧ χ:器ChiΨ ψ:普赛PsiΩ ω:欧米伽Omega符号大全:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率∏。
(2)运算符号:如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(),对数(log,lg,ln),比(∶),微分(d),积分(∫)等。
(3)关系符号:如“=”是等号,“≈”或“ ”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“‖”是平行符号,“⊥”是垂直符号,“∝”是正比例符号,“∈”是属于符号等。
(4)结合符号:如圆括号“()”方括号“[]”,花括号“{}”括线“—”(5)性质符号:如正号“+”,负号“-”,绝对值符号“‖”(6)省略符号:如三角形(△),正弦(sin),X的函数(f(x)),极限(lim),因为(∵),所以(∴),总和(∑),连乘(∏),从N个元素中每次取出R个元素所有不同的组合数(C ),幂(aM),阶乘(!)等。
符号意义∞ 无穷大PI 圆周率|x| 函数的绝对值∪集合并∩ 集合交≥ 大于等于≤ 小于等于≡ 恒等于或同余ln(x) 以e为底的对数lg(x) 以10为底的对数floor(x) 上取整函数ceil(x) 下取整函数x mod y 求余数小数部分x - floor(x)∫f(x)δx 不定积分∫[a:b]f(x)δx a到b的定积分P为真等于1否则等于0∑[1≤k≤n]f(k) 对n进行求和,可以拓广至很多情况如:∑[n is prime][n < 10]f(n)∑∑[1≤i≤j≤n]n^2lim f(x) (x->?) 求极限f(z) f关于z的m阶导函数C(n:m) 组合数,n中取mP(n:m) 排列数m|n m整除nm⊥n m与n互质a ∈A a属于集合A#A 集合A中的元素个数初中物理公式:物理量(单位)公式备注公式的变形速度V(m/S)v= S:路程/t:时间重力G (N)G=mg m:质量g:9.8N/kg或者10N/kg 密度ρ (kg/m3)ρ=m/V m:质量V:体积合力F合(N)方向相同:F合=F1+F2方向相反:F合=F1—F2 方向相反时,F1>F2浮力F浮(N) F浮=G物—G视G视:物体在液体的重力浮力F浮(N) F浮=G物此公式只适用物体漂浮或悬浮(N) F浮=G排=m排g=ρ液gV排G排:排开液体的重力m排:排开液体的质量ρ液:液体的密度V排:排开液体的体积(即浸入液体中的体积)杠杆的平衡条件F1L1= F2L2 F1:动力L1:动力臂F2:阻力L2:阻力臂定滑轮F=G物S=h F:绳子自由端受到的拉力G物:物体的重力S:绳子自由端移动的距离h:物体升高的距离动滑轮F= (G物+G轮)S=2 h G物:物体的重力G轮:动滑轮的重力滑轮组F= (G物+G轮)S=n h n:通过动滑轮绳子的段数机械功W(J)W=Fs F:力s:在力的方向上移动的距离有用功W有总功W总W有=G物hW总=Fs 适用滑轮组竖直放置时机械效率η= ×100%功率P(w)P=W:功t:时间(Pa)P=F:压力S:受力面积液体压强p(Pa)P=ρgh ρ:液体的密度h:深度(从液面到所求点的竖直距离)热量Q(J)Q=cm△t c:物质的比热容m:质量△t:温度的变化值燃料燃烧放出的热量Q(J)Q=mq m:质量q:热值常用的物理公式与重要知识点一.物理公式单位)公式备注公式的变形串联电路电流I(A)I=I1=I2=…… 电流处处相等串联电路电压U(V)U=U1+U2+…… 串联电路起分压作用串联电路电阻R(Ω)R=R1+R2+……并联电路电流I(A)I=I1+I2+…… 干路电流等于各支路电流之和(分流)并联电路电压U(V)U=U1=U2=……并联电路电阻R(Ω)= + +……欧姆定律I=电路中的电流与电压成正比,与电阻成反比电流定义式I=Q:电荷量(库仑)t:时间(S)电功W(J)W=UIt=Pt U:电压I:电流t:时间P:电功率电功率P=UI=I2R=U2/R U:电压I:电流R:电阻电磁波波速与波长、频率的关系C=λν C:物理量单位公式名称符号名称符号质量m 千克kg m=pv温度t 摄氏度°C速度v 米/秒m/s v=s/t密度p 千克/米3 kg/m3 p=m/v力(重力)F 牛顿(牛)N G=mg压强P 帕斯卡(帕)Pa P=F/S功W 焦耳(焦)J W=Fs功率P 瓦特(瓦)w P=W/t电流I 安培(安)A I=U/R电压U 伏特(伏)V U=IR电阻R 欧姆(欧)R=U/I电功W 焦耳(焦)J W=UIt电功率P 瓦特(瓦)w P=W/t=UI热量Q 焦耳(焦)J Q=cm(t-t°)比热c 焦/(千克°C)J/(kg°C)真空中光速3×108米/秒g 9.8牛顿/千克15°C空气中声速340米/秒初中物理公式汇编【力学部分】1、速度:V=S/t2、重力:G=mg3、密度:ρ=m/V4、压强:p=F/S5、液体压强:p=ρgh6、浮力:(1)、F浮=F’-F (压力差)(2)、F浮=G-F (视重力)(3)、F浮=G (漂浮、悬浮)(4)、阿基米德原理:F浮=G排=ρ液gV排7、杠杆平衡条件:F1 L1=F2 L28、理想斜面:F/G=h/L9、理想滑轮:F=G/n10、实际滑轮:F=(G+G动)/ n (竖直方向)11、功:W=FS=Gh (把物体举高)12、功率:P=W/t=FV13、功的原理:W手=W机14、实际机械:W总=W有+W额外15、机械效率:η=W有/W总16、滑轮组效率:(1)、η=G/ nF(竖直方向)(2)、η=G/(G+G动) (竖直方向不计摩擦) (3)、η=f / nF (水平方向)【热学部分】1、吸热:Q吸=Cm(t-t0)=CmΔt2、放热:Q放=Cm(t0-t)=CmΔt3、热值:q=Q/m4、炉子和热机的效率:η=Q有效利用/Q燃料5、热平衡方程:Q放=Q吸6、热力学温度:T=t+273K【电学部分】1、电流强度:I=Q电量/t2、电阻:R=ρL/S3、欧姆定律:I=U/R4、焦耳定律:(1)、Q=I2Rt普适公式)(2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5、串联电路:(1)、I=I1=I2(2)、U=U1+U2(3)、R=R1+R2(4)、U1/U2=R1/R2 (分压公式)(5)、P1/P2=R1/R26、并联电路:(1)、I=I1+I2(2)、U=U1=U2(3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] (4)、I1/I2=R2/R1(分流公式)7定值电阻:(1)、I1/I2=U1/U2(2)、P1/P2=I12/I22(3)、P1/P2=U12/U228电功:(1)、W=UIt=Pt=UQ (普适公式)(2)、W=I2Rt=U2t/R (纯电阻公式)9电功率:(1)、P=W/t=UI (普适公式)(2)、P=I2R=U2/R (纯电阻公式)【常用物理量】1、光速:C=3×108m/s (真空中)2、声速:V=340m/s (15℃)3、人耳区分回声:≥0.1s4、重力加速度:g=9.8N/kg≈10N/kg5、标准大气压值:760毫米水银柱高=1.01×105Pa6、水的密度:ρ=1.0×103kg/m37、水的凝固点:0℃8、水的沸点:100℃9、水的比热容:C=4.2×103J/(kg?℃)10、元电荷:e=1.6×10-19C11、一节干电池电压:1.5V12、一节铅蓄电池电压:2V13、对于人体的安全电压:≤36V(不高于36V)14、动力电路的电压:380V15、家庭电路电压:220V16、单位换算:(2)、1g/cm3 =103kg/m3(3)、1kw?h=3.6×106J初中物理公式汇编【力学部分】1、速度:V=S/t2、重力:G=mg3、密度:ρ=m/V4、压强:p=F/S5、液体压强:p=ρgh6、浮力:(1)、F浮=F’-F (压力差)(2)、F浮=G-F (视重力)(3)、F浮=G (漂浮、悬浮)(4)、阿基米德原理:F浮=G排=ρ液gV排7、杠杆平衡条件:F1 L1=F2 L28、理想斜面:F/G=h/L9、理想滑轮:F=G/n10、实际滑轮:F=(G+G动)/ n (竖直方向)11、功:W=FS=Gh (把物体举高)12、功率:P=W/t=FV13、功的原理:W手=W机14、实际机械:W总=W有+W额外15、机械效率:η=W有/W总16、滑轮组效率:(1)、η=G/ nF(竖直方向)(2)、η=G/(G+G动) (竖直方向不计摩擦) (3)、η=f / nF (水平方向)【热学部分】1、吸热:Q吸=Cm(t-t0)=CmΔt2、放热:Q放=Cm(t0-t)=CmΔt3、热值:q=Q/m4、炉子和热机的效率:η=Q有效利用/Q燃料5、热平衡方程:Q放=Q吸6、热力学温度:T=t+273K【电学部分】1、电流强度:I=Q电量/t2、电阻:R=ρL/S3、欧姆定律:I=U/R4、焦耳定律:(1)、Q=I2Rt普适公式)(2)、Q=UIt=Pt=UQ电量=U2t/R (纯电阻公式) 5、串联电路:(1)、I=I1=I2(2)、U=U1+U2(3)、R=R1+R2(4)、U1/U2=R1/R2 (分压公式)(5)、P1/P2=R1/R26、并联电路:(1)、I=I1+I2(2)、U=U1=U2(3)、1/R=1/R1+1/R2 [ R=R1R2/(R1+R2)] (4)、I1/I2=R2/R1(分流公式)(5)、P1/P2=R2/R17定值电阻:(1)、I1/I2=U1/U2(2)、P1/P2=I12/I22(3)、P1/P2=U12/U228电功:(1)、W=UIt=Pt=UQ (普适公式)(2)、W=I2Rt=U2t/R (纯电阻公式)9电功率:(1)、P=W/t=UI (普适公式)(2)、P=I2R=U2/R (纯电阻公式)【常用物理量】1、光速:C=3×108m/s (真空中)2、声速:V=340m/s (15℃)3、人耳区分回声:≥0.1s4、重力加速度:g=9.8N/kg≈10N/kg5、标准大气压值:760毫米水银柱高=1.01×105Pa6、水的密度:ρ=1.0×103kg/m37、水的凝固点:0℃8、水的沸点:100℃9、水的比热容:C=4.2×103J/(kg?℃)10、元电荷:e=1.6×10-19C11、一节干电池电压:1.5V12、一节铅蓄电池电压:2V13、对于人体的安全电压:≤36V(不高于36V)14、动力电路的电压:380V15、家庭电路电压:220V16、单位换算:(1)、1m/s=3.6km/h(2)、1g/cm3 =103k数学符号大全:(1)数量符号:如:i,2+i,a,x,自然对数底e,圆周率π。
认识和使用数学符号和公式
三角函数公式
1 2 3
定义与意义
三角函数公式包括正弦、余弦和正切等函数,它 们描述了三角形中角度和边长之间的关系。
应用举例
三角函数公式可用于解决各种问题,如计算角度 、边长等。在物理学中,三角函数用于描述简谐 振动和波动。
注意事项
在使用三角函数公式时,要注意角度的单位(度 或弧度)以及选择合适的三角函数解决问题。
普遍适用:许多数学公式具有普遍性, 可以应用于各种领域和问题中。
推导与计算:数学公式是数学推导和计 算的基础,通过公式可以推导出新的结 论,解决各种问题。
重要性
精确表达:数学公式能够精确地表达数 学概念、定理和规律,避免使用自然语 言时的歧义和模糊。
数学符号与公式的规范书写
准确使用符号
在使用数学符号时,要确保符 号的准确性和一致性,避免混
Hale Waihona Puke 掌握公式的编辑技巧学习如何编辑复杂的数学公式,如矩阵、微分方程等,并熟悉如何 调整公式的布局和格式。
数学符号与公式在科研论文中的规范表达
准确清晰
论文中的数学符号和公式必须准确无误,符号的使用要符合数学规 范,公式的表述要清晰明了。
积,并注意单位的一致性。对于复杂形状,可能需要采用数值方法或近
似方法来求解。
04
数学符号与公式的应用实践
解题过程中的符号与公式运用
理解与问题相关的符号
01
在解题前,首先要理解题目中出现的数学符号的含义,这是理
解和解决问题的基础。
选择适当的公式
02
根据题目的需求,选择与问题相关的数学公式,例如代数公式
算术运算符及其应用
加法运算符(+):用于表示两个数相加,如2+3=5。
数学公式符号大全
数学公式符号大全
数学公式符号大全包括以下内容:
1.几何符号:⊥(垂直于)、∥(平行于)、∠(角)、⌒(圆弧)、⊙(圆心)、≌(全等)、△(三角形)等。
2.代数符号:∝(成正比)、∧(和)、∨(或)、~(近似于)、∫(积分)、∑(求和)、∪(并集)、∩(交集)等。
3.运算符号:+(加号)、-(减号)、×(乘号或·)、÷(除号)、∪(并集)、∩(交集)、√(根号)、|a|(绝对值)等。
4.关系符号:=(等于号)、≈(近似符号)、≠(不等于号)、>(大于号)、<(小于号)、≥(大于或等于号)、≮(不大于号)、≯
(不小于号)等。
5.推理符号:∵(因为)、∴(所以)、←(向左箭头)、↑(向上箭头)、→(向右箭头)、↓(向下箭头)等。
6.特殊符号:∑、π、⊙、∆、√、√ ̄、∣、∠、≌、∑、≈等。
7.运算符号:∪、∩、∈、∉、⊆、⊄、⊅、∍等。
8.特殊符号:∑、π、∣、√ ̄、△等。
9.运算符号:∪、∩、∈等。
10.推理符号:∵、∴等。
以上是数学公式符号大全的一部分,具体使用时需要根据不同的情况选择合适的符号。
常用公式数学符号
常用公式数学符号数学是一门基础学科,它使用大量的数学符号和公式。
这些符号和公式在数学中扮演着重要的角色,是理解数学概念、证明数学定理和解决数学问题的基础。
在本文中,我们将介绍一些常用的数学符号和公式,帮助读者更好地掌握数学基础知识。
1. 加法符号(+):表示两个或多个数相加。
例如:a + b = c,表示a与b的和为c。
2. 减法符号(-):表示从某个数中减去另一个数。
例如:a - b = c,表示从a中减去b得到c。
3. 乘法符号(× / *):表示两个或多个数相乘。
例如:a × b = c,表示a与b的积为c。
4. 除法符号(÷ / /):表示将某个数除以另一个数。
例如:a ÷ b = c,表示将a除以b得到c。
5. 幂符号(↑ / ^):表示一个数的乘方。
例如:a↑n表示a的n次方。
6. 开方符号(√):表示开方运算,即求一个数的平方根。
例如:√a表示求a的平方根。
7. 绝对值符号│ │:表示一个数的绝对值。
例如:│a│表示a 的绝对值。
8. 平方符号(□):表示一个数的平方。
例如:□a表示a的平方。
9. 括号()[]):用于分组、隔离和约束运算对象。
10. 逗号(,):用于分隔数学表达式中的不同部分。
11. 指数符号₊:表示将一个小写字母或数字置于另一个符号或数字的右上角,表示该数字或字母的指数。
例如:a₊表示a的指数为正数。
12. 对数符号lg / ln / log:表示对数运算,即求一个数的自然对数或以某个数为底数的对数。
例如:lg x表示求x的自然对数,ln x表示求x的对数,log a x表示求以a为底x的对数。
13. 集合符号{}:用于表示一组数的集合。
14. 角符号< / >/ σ:用于表示角度或弧度。
15. 比例符号:用于表示两个量之间的比例关系。
16. 微分符号δ / △:表示一个函数在某一点上的微小变化量。
17. 导数符号:用于表示函数的斜率或变化率。
数学公式及符号大全
数学公式及符号大全一、基础符号1.数字0-9:0,1,2,3,4,5,6,7,8,92.加法:+3.减法:-4.乘法:×或*5.除法:÷或/6.等于:=7.不等于:≠8.大于:>9.小于:<10.大于等于:≥11.小于等于:≤12.正无穷大:∞13.正无穷小:ο14.±:±15.百分号:%16.小数点:.二、代数符号1.变量:a,b,c,...,x,y,z2.常数:A,B,C,...,X,Y,Z3.集合:\(∅\)(空集),ℕ(自然数集),ℤ(整数集),ℚ(有理数集),ℝ(实数集),ℂ(复数集)4.符号:^(乘方),√(平方根),\(∑\)(求和),∏(求积),\(,\)(取绝对值),\(!\)(阶乘),\(∘\)(复合函数)三、三角函数及特殊函数符号1. 三角函数:sin (正弦), cos (余弦), tan (正切), cot (余切), sec (正割), csc (余割)2. 反三角函数:arcsin (反正弦), arccos (反余弦), arctan (反正切), arccot (反余切), arcsec (反正割), arccsc (反余割)3. 双曲函数:sinh (双曲正弦), cosh (双曲余弦), tanh (双曲正切), coth (双曲余切), sech (双曲正割), csch (双曲余割)4. 反双曲函数:arcsinh (反双曲正弦), arccosh (反双曲余弦), arctanh (反双曲正切), arccoth (反双曲余切), arcsech (反双曲正割), arccsch (反双曲余割)5. 对数函数:log (常用对数), ln (自然对数), lg (以10为底的对数)6. 特殊函数:exp (指数函数), erfc (实际互补误差函数), gamma (伽玛函数), erf (误差函数), Sinc (正弦积分函数), DiracDelta (狄拉克函数),Heaviside (海维赛德函数)四、微积分符号1. 极限:lim (极限)2. 微分:d(微分符号),dx(表示自变量x的微小增量)3.积分:∫(积分符号),+C(积分常数)4.偏导数:∂(偏导符号)5.梯度:∇(梯度符号)6.整除:,(整除符号)五、矩阵及线性代数符号1. 矩阵: \(A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}\)2.转置:\(A^T\)(矩阵A的转置)3.矩阵乘法:A×B(矩阵A与矩阵B的乘积)4. 行列式:det(A) (矩阵A的行列式)5.逆矩阵:\(A^{-1}\)(矩阵A的逆矩阵)6. 向量:\(\vec{a}, \vec{b}, \vec{c}\)六、集合论符号1.空集:∅2.包含:⊆(子集),⊂(真子集),∈(属于),∉(不属于)3.交集:∩(交),∪(并)4. 补集:\(\bar{A}\) (集合A的补集), A' (亦表示集合A的补集)七、概率统计符号1.概率:P(A)(事件A的概率)2.期望:E(X)(随机变量X的期望)3. 方差:Var(X) (随机变量X的方差)4.标准差:σ(标准差符号)5. 协方差:Cov(X, Y) (随机变量X和Y的协方差)6.相关系数:ρ(相关系数符号)7.分布:N(μ,σ^2)(正态分布,均值为μ,方差为σ^2)八、几何符号1.平行:,(平行符号)2.垂直:⊥(垂直符号)3.同位角:≌(同位角符号)4.三角形:△(三角形符号)5.直角:∠(直角符号)6.弧:∡(弧符号)。
常用公式数学符号希腊字母
常用公式数学符号希腊字母
在数学中,常用的公式和符号有很多,其中也包括希腊字母。
下面是一些常见的公式和希腊字母的用法:
1. 常用公式:
二次方程,ax^2 + bx + c = 0,其中 a、b、c 为常数,x 为未知数。
三角函数,sin(x)、cos(x)、tan(x) 分别表示正弦、余弦和正切函数。
对数函数,log(x) 表示以 10 为底的对数函数,ln(x) 表示以自然对数 e 为底的对数函数。
指数函数,e^x 表示以 e 为底的指数函数。
级数,Σ 表示求和符号,表示将一系列数相加。
极限,lim 表示极限,表示函数在某点或无穷远处的趋势。
积分,∫ 表示积分,表示函数的面积或曲线下的总体积。
2. 希腊字母:
α(Alpha): 在数学中常用于表示角度、系数等。
β(Beta): 通常用于表示角度、系数等。
γ(Gamma): 常用于表示角度、系数等。
δ(Delta): 常用于表示差异、变化量等。
ε(Epsilon): 通常用于表示一个很小的正数。
θ(Theta): 常用于表示角度。
λ(Lambda): 常用于表示特征值、波长等。
μ(Mu): 通常用于表示平均值、系数等。
π(Pi): 常用于表示圆周率。
ρ(Rho): 常用于表示密度、相关系数等。
σ(Sigma): 常用于表示标准差、总和等。
ω(Omega): 通常用于表示角速度、角频率等。
这只是一小部分常见的公式和希腊字母,数学中还有很多其他的公式和符号。
希望这些信息对你有所帮助。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学符号及公式➢ 元素与集合的关系:属于(∈)、不属于( ∉ ) ➢ 集合分类:有限集、无限集、空集(Ø) ➢ 集合种类:自然数集(N )、整数集(Z )、有理数集(Q )、无理数、实数集(R ) ➢ 集合种类的关系:自然数集(N )⊆整数集(Z )⊆有理数集(Q )、无理数集⊆实数集(R ) (即实数集(R )⊇有理数集(Q )、无理数集⊇整数集(Z )⊇自然数集(N ) ➢ 集合与集合的关系:子集与真子集的关系、包含于(⊆)或包含(⊇)的关系 ➢ 子集与真集子的区别:真子集比子集少一个,真子集不包括它本身。
➢ 集合的运算:交集(∩)、并集(∪)、补集(C )➢ 函数类型:整式函数1232+-=x x y 、分式函数112≠-=x x x y 分母不能为0、根式函数5-=x y x -5≥0,被开方数一定要≥0 ➢ 函数的概念:y =ƒ(x )↑ ↑ ↑ 自变量对应法则应变量➢ 函数的奇偶性:分别代一个正数和负数到自变量进行算,结果同号为偶函数,异号为奇函数 ➢ 奇偶性的图像特征:关于原点对称为偶函数,关于y 轴对称为奇函数补充:关于原点对称,x 变-x ,y 变-y 曲线对称性:-x 代替x ,结果不变,则关于y 轴对称 关于x 轴对称,x 不变,y 变-y -y 代替y ,结果不变,则关于x 轴对称关于y 轴对称,y 不变,x 变-x -x,-y 分别代替x,y ,结果不变,则关于原点对称 关于y =x 轴对称,x 与y 交换位置 谁平方就关于谁对称,如果都平方,那么以上3种情况都对称 补充:数学知识点归纳:异号相加大减小,大数决定和符号,减负等于加正 ➢ 正比例函数:)0(≠⋅=k x k y 它是经过原点的一条直线➢ 反比例函数:)0(≠=k xky 它是双曲线➢ 一般式二次函数:c bx ax y ++=2 如果a>0,那么抛物线开口朝上,如果a<0,那么抛物线开口朝下对称轴:x =-a b 2 最值:a b ac 442- 顶点坐标:(-a b 2,a b ac 442-)➢ 顶点式二次函数:n m x a y ++=2)( 如果a>0,那么抛物线开口朝上,如果a<0,那么抛物线开口朝下对称轴:x =-m 最值:n 顶点坐标:(-m ,n )➢ 指数函数:○1正整数指数:a n (n ∈N *,且n>1) ○2零指数:a 0=1(a ≠0) ○3负指数:n naa 1=- ○4分数指数:m n m na a = ➢ 幂的运算性质:○1),0(Q y ,x a a a a y x y x ∈>=⋅+ ○2),0()(Q y ,x a a a y x y x ∈>=⋅ ○3)00()(Q ,x ,b a b a b a x x x ∈>>⋅=⋅ ➢ 对数函数:a b =N (a >0,a ≠1),b 叫做以a 为底N 的对数,记作㏒a N =b (a >0,a ≠1,N >0)↑↑ ↑ 真数 ↑↑ ↑ 对数 对数 真数 底数 底数➢ 对数的性质:○10与负数没有对数 ○2底的对数等于1,即㏒a a =1 ○31的对数等于0,即㏒a 1=0 ○4㏒a N =N (N>0) ○5当a>1时,N>1,则㏒a N>0,0<N<1则㏒a N<0;当0<a<1时,N>1,则㏒a N<0,0<N<1则㏒a N>0➢ 常用对数:以10为底的对数,底数和O 都可以省略不写,即㏒10 N =lgN ➢ 对数的运算法则:○1㏒a (M ·N )=㏒a M +㏒a N ○2㏒a N M =㏒a M -㏒a N (M>0,N>0) ○3㏒a M N =n ㏒a M (M>0) ➢ 换底公式:aNN b b a log log log =可以以任何数为底,但为了计算方便,最好以10为底 指数式 对数式➢ 不等式性质:如果a >b 那么b <a (反射性)如果a >b ,b >c 那么a >c (传递性) 如果a >b 那么a +c >b +c (加法法则)如果a >b ,c >0那么a c >b cc <0那么a c <b c 即不等式两边同时乘以或除以一个负数,不等式改变方向 ➢ 同向不等式只能相加不能相减,相减就是加负 ➢ 不等式的解:大于取两边,小于取中间 ➢ 一次不等式组的解:设a <bx >a x <a x >a x <ax >b x <b x <b x >b同大取大 同小取小 大小小大取中间 大大小小取空集➢ 回顾二次方程02=++c bx ax ac b 42-=∆ △>0有两个相异实根 △=0有两个相等实根 △<0无实根➢ 一元二次方程求根公式法:○1aacb b x 2422.1-±-=(万能公式) ○2十字相乘法:二次相竖着写,常数相竖着写,交叉相乘,合为一次相,横着写 ➢ 绝对值不等式:y x y x y x -<>⇒>或(大于取两边) y x y y x <<-⇒<(小于取中间) ➢ 数列的通项公式:a n =ƒ(n )n ∈N + 说明:不是所有数列都有通项公式 ➢ 特殊数列:-1,1,-1,1,-1,1 所有偶次项为正公式a n =(-1)n 1,-1,1,-1,1,-1所有偶次项为负公式a n =(-1)n+1➢ 等差数列通项公式:d n a a n )1(1-+=➢ 等差数列前n 项和公式:2)(1n n a a n s +=或2)1(1-+=n n na s n d 求公差:n n a a d -=+1 ➢ 等差数列中项公式:2a bA +=➢ a n 与s n 之间的关系:)2(1≥-=-n s s a n n n / )1(1==n s s n➢ 等比数列通项公式:a n =a 1q n-1 求公比:nn a a q 1+=➢ 等比数列前n 项和公式:q-1)1(a 1n n q s -=或)1(11≠--=q q q a a s n n➢ 等比数列中项公式:G =±b a ⋅或G 2=a ・b➢ 判定终边相同的角公式:β=360º・κ+α(κ∈Z )⇔ β-α=360º・κ➢ 角度制:3601角度单位(º) 弧度制:ππ2r 2= 弧度单位(rad) 由r l =α 可得弧长公式:r l ⋅=α ➢ 角度与弧度之间的换算关系:360º=2π 180º=π 1º=180π≈0.017 1弧度=π180≈57.30º=57.18'➢ 任意角的三角函数:22y x +==r OP➢ 由r y x 、、之间的比值,可定义角α的: 三角函数值的符号:正弦函数sin α=ry 余割函数csc α=yr (sin α、csc α)一、二像限为正正弦函数cos α=r x 余割函数sec α=xr(cos α、sec α)一、四像限为正 正弦函数tan α=x y余割函数cot α=yx (tan α、cot α)一、三像限为正(乘法法则) ⇒x >b ⇒x <a ⇒a <x <b ⇒Ø确定符号平方关系:sin 2α+cos 2α=1 倒数关系:sin α・csc α=1 商数关系:tan α=ααcos sin 1+tan 2α=sec 2α cos α・sec α=1 cot α=ααsin cos1+cot 2α=csc 2α tan α・cot α=1 除数=商数×被除数➢ 倍角公式:S 2α:sin2α=2sin α・cos α C 2α:cos 2α2α:ααα2tan 1tan 22tan -= ➢ 两角和与差的三角函数:S (α±β) sin(α+β)=sin α∙cos β+cos α・sin β sin(α-β)=sin α・cos β-cos α・sin β C (α±β) cos (α+β)=cos α・cos β-sin α・sin β cos (α-β)=cos α・cos β+sin α・sin β T (α±β) tan(α+β)=βαβαtan tan 1tan tan ⋅-+tan(α-β)=βαβαtan tan 1tan tan ⋅+-特殊角对应的值:42675cos 15sin -=︒=︒ 42675sin 15cos +=︒=︒ 3215tan -=︒ 3275tan +=︒ ➢ 360ºκ+α(κ∈Z )、360º-α、-α➢ 正弦函数图像:y=sinx(x ∈R); 值域:-1≤y ≤1; 周期:T=2π; 单调性:x ∈[-2π,2π],y 为增函数,x ∈[2π,23π],y 为减函数; 奇偶性:奇函数; 对称性:关于原点对称(0,0) ➢ 余弦函数图像:y=cosx(x ∈R);值域:-1≤y ≤1;周期:T=2π;单调性:x ∈[0,π],y 为减函数,x ∈[π,2π],y 为增函数;奇偶性:偶函数; 对称性:关于y 轴对称(0,1)➢ 正/余弦型函数:)sin(ϕω+⋅⋅=x A y /)cos(ϕω+⋅⋅=x A y 其中ϕω、、A 为常数,且A ≠0,ω≠0,x ∈R ;A y =最大值 A y -=最小值 周期:ωπ2=T➢ 化单一函数公式:)sin(cos sin 22ϕ+⋅+=⇒⋅+⋅=x b a y x b x a ysin(α±β)=sin α・cos β±cos α・sincos(α±β)=cos α・cos β∓sin α・sintan (α±β)=βαβαtan tan 1tan tan ⋅±cos (α±β)=扩扩∓赛赛,符号相反sin (α±β)=赛扩±扩赛,符号相同tan (α±β)=函数名及分子符号相同,分母前面有个1,符号相反,后面相乘22b a A y +==最大值 22b a A y +-=-=最小值 周期:ωπ2=T➢ 正弦定理:CcB b A a sin sin sin == ➢ 余弦定理:A c b C b a cos 2222⋅⋅⋅-+= cosA=cb ac b ⋅⋅-+2222B c a c a b cos 2222⋅⋅⋅-+= cosB=c a b c a ⋅⋅-+2222 C b a b a c cos 2222⋅⋅⋅-+= cosC=ba cb a ⋅⋅-+2222➢ 三角形面积公式:S=21・a ・b ・sinC S=21・b ・c ・sinA S=21・a ・c ・sinB (已知两边及其对角求面积) ➢ 直线的倾斜角:0º≤α<180º➢ 直线的斜率:κ=tan α(α≠90º) 过两点的直线的斜率公式:)(211212x x x x y y k ≠--= ➢ 一般式求斜率及截距的方法:κ=-B b =-B a =-A➢ 两条直线的位置关系:平行、重合、相交、垂直 1、平行条件L 1∥L 2:κ1=κ2且b 1≠b 2 2、重合条件L 1重合L 2:κ1=κ2且b 1=b 2212121C C B B A A ≠= 212121C CB B A A == 2、相交条件L 1交L 2:21k k ≠ 4、重直条件L 1⊥L 2:κ1・κ2=-1A 1・A 2+B 1・B 2=0 ➢ 两条直线的交点求法:用联立方程组:A 1x+B 1y+C 1=0 A 2x+B 2y+C 2=0 ➢ 点到直线的距离:d =2200BA C By Ax +++ 平行线间的距离:d =2212BA C C +-➢ 两点的距离公式:21221221)()(y y x x P P -+-= 两点的中点公式:M (221x x x +=,221yy y +=) ➢ 圆的标准方程:222)()(r b y a x =-+- ➢ 圆的一般方程:022=++++F Ey Dx y x ➢ 圆心在原点上的圆方程:222r y x =+➢ 一般方程求圆心坐标C (2E2--,D ) 一般方程求半径:F E D r 42122-+= 已知两边及其夹角,求第三边已知三边,求三角可以互转,标准式到一般式用展开法,一般式到标准式用配方法 补:完全平方公式口诀:首平方,尾平方,2倍乘积放中央➢ 圆和直线的关系:相离(d >r )、相切(d =r )、相交(d <r )➢ 求切线方程:①求导数:)('='a x y ②求斜率:0x x y K ='= ③求点斜式:)(00x x k y y -=-➢ 概率:可能发生实际发生⇔=n m A P )( ➢ 排列:n m N m n m n n n A mn ≤∈+--=且其中,,)1()1( ,例如:23434⨯⨯=A 简记:)!(!m n n A mn -=,n!表示自然数1到n 的连积;规定:0!=1 例:)34(432134-⨯⨯⨯=A➢ 组合:!)1()1(m m n n n A A C m m mn m n+--== 例如:20123456333636=⨯⨯⨯⨯==A A C ➢ 方差:nx x x x x x S n 222212)()()(++-+-= ,x 表示x 的平均数➢ 向量平行(共线)重条件:a ∥⇒b 2211b a b a = 向量垂直条件:2211b a b a b a ⋅+⋅⇒⊥根号表:1=1.00000 2=1.41421 3=1.73205 4=2.00000 5=2.236076=2.44949 7=2.64575 8=2.82842 9=3.00000 10=3.16228乘法口决表:1×1=11×2=2 2×2=41×3=3 2×3=6 3×3=91×4=4 2×4=8 3×4=12 4×4=161×5=5 2×5=10 3×5=15 4×5=20 5×5=251×6=6 2×6=12 3×6=18 4×6=24 5×6=30 6×6=361×7=7 2×7=14 3×7=21 4×7=28 5×7=35 6×7=42 7×7=491×8=8 2×8=16 3×8=24 4×8=32 5×8=40 6×8=48 7×8=56 8×8=641×9=9 2×9=18 3×9=27 4×9=36 5×9=45 6×9=54 7×9=63 8×9=72 9×9=81➢∴∵≠∞≌{}∈・±∓⊃⊂⇔⇒θЛ≤≥<>≈λβαωΩπκλμιa b c d lγχ√γу∑∠∈∥⊥。