大学物理实验讲义实验06 光的偏振实验
光偏振现象的实验报告
光偏振现象的实验报告光偏振现象的实验报告引言:光是一种电磁波,具有波动性和粒子性。
在自然界中,我们经常观察到光的偏振现象,即光波的振动方向在特定的方向上发生偏离。
本实验旨在通过实际操作,观察和研究光的偏振现象,并探索其背后的物理原理。
实验材料与仪器:1. 光源:白炽灯2. 偏振片:线性偏振片、圆偏振片3. 透光物体:透明塑料片、玻璃片4. 光屏:白色光屏5. 光学台和支架6. 透镜实验步骤:1. 实验一:观察线性偏振光的现象a. 将白炽灯放置在光学台上,并打开电源,确保光源稳定。
b. 在光源和白色光屏之间放置一个线性偏振片,并调整偏振片的方向,观察光在白色光屏上的表现。
c. 旋转线性偏振片,观察光的亮度变化。
2. 实验二:观察圆偏振光的现象a. 将白炽灯放置在光学台上,并打开电源,确保光源稳定。
b. 在光源和白色光屏之间放置一个圆偏振片,并调整偏振片的方向,观察光在白色光屏上的表现。
c. 旋转圆偏振片,观察光的亮度变化。
3. 实验三:观察透光物体对光的偏振的影响a. 将白炽灯放置在光学台上,并打开电源,确保光源稳定。
b. 在光源、白色光屏和透光物体之间放置一个线性偏振片,并调整偏振片的方向,观察光在白色光屏上的表现。
c. 更换透光物体,如透明塑料片或玻璃片,重复步骤b,观察光的亮度变化。
实验结果与讨论:1. 实验一的结果表明,当线性偏振片的方向与光的振动方向垂直时,光在白色光屏上的亮度最低;当二者平行时,光的亮度最高。
这说明线性偏振片可以选择性地阻挡特定方向上的光振动。
2. 实验二的结果显示,圆偏振片可以将线偏振光转化为圆偏振光。
当圆偏振片的方向与光的振动方向相同时,光在白色光屏上的亮度最高;当二者垂直时,光的亮度最低。
3. 实验三的结果表明,透光物体对光的偏振有一定的影响。
不同的透光物体对光的偏振方向有不同的选择性吸收作用,从而导致光在白色光屏上的亮度变化。
结论:通过本次实验,我们观察到了光的偏振现象,并了解了线性偏振片和圆偏振片对光的影响。
物理实验光的偏振实验报告
物理实验光的偏振实验报告一、实验目的1、观察光的偏振现象,加深对光的偏振特性的理解。
2、掌握偏振片的起偏和检偏原理,学会用马吕斯定律测量偏振光的强度。
3、了解 1/4 波片的作用,测量线偏振光通过 1/4 波片后的偏振态变化。
二、实验原理1、光的偏振态光是一种电磁波,其电场矢量的振动方向与传播方向垂直。
根据电场矢量的振动特点,光可以分为自然光、线偏振光、部分偏振光和圆偏振光、椭圆偏振光。
自然光:在垂直于光传播方向的平面内,电场矢量的振动方向是随机的,各方向的振幅相等。
线偏振光:电场矢量在垂直于光传播方向的平面内只沿一个固定方向振动。
部分偏振光:在垂直于光传播方向的平面内,电场矢量的振动方向是随机的,但各方向的振幅不相等。
圆偏振光和椭圆偏振光:电场矢量的端点在垂直于光传播方向的平面内的轨迹是圆或椭圆。
2、偏振片偏振片是一种只允许某一特定方向的光振动通过的光学器件。
当自然光通过偏振片时,只有与偏振片透振方向平行的光振动能够通过,从而得到线偏振光。
这个过程称为起偏。
当线偏振光通过另一个偏振片时,可以通过旋转第二个偏振片来改变通过的光强,这个过程称为检偏。
3、马吕斯定律当一束强度为 I₀的线偏振光通过检偏器后,其强度 I 为:I =I₀cos²θ,其中θ 为线偏振光的振动方向与检偏器透振方向之间的夹角。
4、 1/4 波片1/4 波片是一种能使线偏振光变成圆偏振光或椭圆偏振光的光学元件。
当线偏振光垂直入射到 1/4 波片上时,若线偏振光的振动方向与波片的光轴成 45°角,则出射光为圆偏振光;若线偏振光的振动方向与波片的光轴不成 45°角,则出射光为椭圆偏振光。
三、实验仪器1、半导体激光器2、起偏器和检偏器3、 1/4 波片4、光功率计四、实验步骤1、调整实验仪器打开半导体激光器,调整其位置,使激光束水平通过实验平台。
依次将起偏器、检偏器和 1/4 波片安装在光具座上,使它们的中心与激光束在同一直线上。
大物实验光的偏振实验报告
实验名称光的偏振姓名学号专业班实验班组号教师成绩批阅教师签名批阅日期一、实验目的:1.熟悉偏振片和波片的工作原理;2.搭建合适的实验光路;3.光的不同偏振态的转换与检测;4.学习线偏振光的偏振片起偏和检测方法,验证马吕斯定律;5.观测半波片对线偏振光振动面的旋转作用;6.利用1/4波片产生圆偏振光和椭圆偏振光二、实验原理:1. 产生偏振光的元件:一个方法是利用光在界面反射和透射时光的偏振现象。
反射光中的垂直于入射面的光振动(称s分量)多于平行于入射面的光振动(称p 分量);而透射光则正好相反。
在改变入射角的时候,出现了一个特殊的现象,即入射角为一特定值时,反射光成为完全线偏振光(s分量)。
折射光为部分偏振光,而且此时的反射光线和折射光线垂直,这种现象称之为布儒斯特定律。
如下图所示:第二种是光学棱镜,如格兰棱镜格兰棱镜由两块方解石直角棱镜构成,两棱镜间有空气间隙,方解石的光轴平行于棱镜的棱。
自然光垂直于界面射入棱镜后分为o光和e光,o光在空气隙上全反射,只有e光透过棱镜射出。
如图:第三种是偏振片,它是利用聚乙烯醇塑胶膜制成,它具有梳状长链形结构分子,这些分子平行排列在同一方向上,此时胶膜只允许垂直于排列方向的光振动通过,因而产生线偏振光。
2. 波晶片又称位相延迟片,是改变光的偏振态的元件。
它是从单轴晶体中切割下来的平行平面板,由于波晶片内的速度vo,ve不同(所以折射率也就不同),所以造成o光和e光通过波晶片的光程也不同。
当两光束通过波晶片后o光的位相相对于e光延迟量为:3. 马吕斯定律4. 光的五种偏振态自然光是各方向振幅相同的光,对自然光而言,它的振动方向在垂直于光的传播方向的平面内可取所有可能的方向,没有一个方向占有优势.若把所有方向的光振动都分解到相互垂直的两个方向上,则在这两个方向上的振动能量和振幅都相等.线偏振光是在垂直于传播方向的平面内,光矢量只沿一个固定方向振动.部分偏振光可以看作自然光和线偏振光混合而成,即它有某个方向的振幅占优势。
大学物理实验讲义实验06 光地偏振实验
实验07 光的偏振实验光波是特定频率范围内的电磁波。
在自由空间中传播的电磁波是一种横波,光波的偏振特性清楚地显示了光的横波性,是光的电磁理论的一个有力证明。
本实验研究光的一些基本的偏振特性,通过实验深入学习有关光的偏振理论。
【实验目的】1、 理解偏振光的基本概念,偏振光的起偏与检偏方法;2、 学习偏振片与波片的工作原理与使用方法。
【仪器用具】SGP-2A 型偏振光实验系统【实验原理】1、 光波偏振态的描述一般用光波的电矢量(又称光矢量)的振动状态来描述光波的偏振。
按光矢量的振动状态可把光波偏振态大体分成五种:自然光、线偏振光、部分偏振光、圆偏振光和椭圆偏振光。
这里重点讨论偏振光的描述。
一个单色偏振光可分解为两个偏振方向互相垂直的线偏振光的叠加,即⎩⎨⎧+==)cos(cos 21δωωt a E ta E yx (1) 式中δ为x 方向偏振分量相对于y 方向偏振分量的位相延迟量,1a 、2a 分别是两偏振分量的振幅,ω为光波的圆频率。
对于单色光,参数1a 、2a 、δ就完全确定了光波的偏振状态。
以下讨论中,取021>a a 、,πδπ≤<-。
当πδ,0=时,式(1)描述的是一个线偏振光,偏振方向与x 轴的夹角)cos arctan(12δαa a =称为线偏振光的方位角(如图1所示)。
图 1 线偏振光 图 2 圆偏振光当2/2/ππδ-=,且21a a =时,式(1)描述的是一个圆偏振光,其特点是光矢量为角速度ω旋转,光矢量的端点的轨迹为一圆。
δ的正负决定了光矢量的旋向,2/πδ=时为右旋圆偏振光,2/πδ-=时为左旋圆偏振光(迎着光的方向观察,如图2所示)。
除了上述特殊情况,式(1)表示的是椭圆偏振光(如图3所示)。
偏振的一个重要应用是研究光波通过某个光学系统后偏振状态的变化来了解此系统的一些性质。
2、 偏振片和马吕斯定律偏振片有一个透射轴(即偏振化方向)和一个与之垂直的消光轴,对于理想的偏振片,只有光矢量振动方向与透射轴方向平行的光波分量才能通过偏振片。
光的偏振物理实验报告
光的偏振物理实验报告一、实验目的1、观察光的偏振现象,加深对光的偏振基本概念的理解。
2、学习使用偏振片来产生和检验偏振光。
3、测量布儒斯特角,并验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场和磁场的振动方向垂直于光的传播方向。
一般情况下,光的振动方向是随机的,这种光称为自然光。
如果光的振动方向在某个特定方向上具有优势,这种光称为部分偏振光。
当光的振动方向完全固定在一个方向上时,称为完全偏振光,又分为线偏振光和圆偏振光。
2、偏振片偏振片是一种只允许特定方向振动的光通过的光学元件。
其工作原理是基于晶体的二向色性,即某些晶体对不同方向振动的光吸收程度不同。
3、布儒斯特定律当自然光在两种介质的分界面上发生反射和折射时,反射光和折射光都成为部分偏振光。
当入射角等于某一特定角度时,反射光成为完全偏振光,其振动方向垂直于入射面,这个角度称为布儒斯特角,满足以下定律:\\tan \theta_B =\frac{n_2}{n_1}\其中,\(\theta_B\)为布儒斯特角,\(n_1\)和\(n_2\)分别为两种介质的折射率。
三、实验仪器1、光源(钠光灯)2、起偏器(偏振片)3、检偏器(偏振片)4、玻璃堆5、光具座6、白屏四、实验内容与步骤1、观察光的偏振现象(1)打开钠光灯,让光线通过起偏器,旋转起偏器,观察白屏上光强的变化。
(2)在起偏器后加上检偏器,旋转检偏器,观察光强的变化,并记录消光位置。
2、验证马吕斯定律(1)将起偏器和检偏器的偏振化方向调到夹角为\(0^{\circ}\),记录此时的光强\(I_0\)。
(2)逐渐增大两偏振片的夹角\(\theta\),每隔\(10^{\circ}\)记录一次光强\(I\)。
(3)根据马吕斯定律\(I = I_0 \cos^2 \theta\),绘制\(I \cos^2 \theta\)关系曲线。
3、测量布儒斯特角(1)将玻璃堆放在光具座上,让钠光灯的光线以一定角度入射到玻璃堆上。
光的偏振物理实验报告
光的偏振物理实验报告光的偏振物理实验报告引言:光是一种电磁波,具有电场和磁场的振荡性质。
在自然界中,光的传播方向通常是无规则的,这种光称为非偏振光。
然而,通过一系列的物理实验,我们可以将非偏振光转化为偏振光,从而研究光的偏振性质。
本实验旨在通过实际操作,观察和分析光的偏振现象,并探索其在物理学中的应用。
实验一:偏振片的特性在这个实验中,我们使用了偏振片来观察光的偏振现象。
偏振片是一种具有特殊结构的光学元件,可以选择性地允许某个方向的光通过,而阻挡其他方向的光。
我们将偏振片放置在光源和屏幕之间,通过调整偏振片的方向,可以观察到光的强度的变化。
结果表明,当偏振片的方向与光的偏振方向垂直时,光的强度最小,几乎无法透过偏振片。
而当偏振片的方向与光的偏振方向平行时,光的强度最大,几乎全部透过偏振片。
这表明,偏振片可以选择性地让特定方向的光通过,从而实现光的偏振。
实验二:双折射现象双折射是光在某些晶体中传播时发生的现象,其中光的传播速度因晶体的结构而异。
我们使用了一块双折射晶体(例如石英晶体)来观察这一现象。
将光源照射到双折射晶体上,我们可以看到光线被分成两束,分别沿着不同的方向传播。
这是因为在双折射晶体中,光的传播速度在不同方向上有所差异。
这导致了光的折射方向发生变化,从而形成了两束光线。
这种双折射现象在光学仪器制造和光学通信中具有重要的应用价值。
实验三:偏振光的旋光性质在这个实验中,我们使用了旋光片来研究偏振光的旋光性质。
旋光片是一种光学元件,可以使光线的偏振方向发生旋转。
我们将旋光片放置在光源和偏振片之间,通过调整旋光片的角度,可以观察到光的偏振方向的旋转。
结果表明,旋光片可以使光的偏振方向发生旋转。
这是由于旋光片的特殊结构导致光的传播速度在不同方向上有所差异,从而引起光的旋转现象。
这种旋光性质在化学分析和制药工业中有广泛的应用。
实验四:偏振光的干涉现象在这个实验中,我们使用了干涉仪来观察偏振光的干涉现象。
光的偏振实验的实验报告(3篇)
第1篇一、实验目的1. 观察光的偏振现象,加深对光波偏振特性的理解。
2. 学习直线偏振光、圆偏振光和椭圆偏振光的产生与检验方法。
3. 掌握利用偏振光进行相关物理量测量的原理与技巧。
二、实验原理1. 光的偏振现象:光波是横波,其电矢量振动方向与传播方向垂直。
自然光在传播过程中,电矢量振动方向在垂直于传播方向的平面内取所有可能的方向,称为非偏振光。
而偏振光是指电矢量振动方向局限在某一确定平面内的光波。
2. 偏振光的产生:自然光通过起偏器(如偏振片)后,只有某一方向的振动成分能够通过,从而产生偏振光。
3. 偏振光的检验:利用检偏器(如偏振片)可以检验光的偏振状态。
当偏振光通过检偏器时,若电矢量振动方向与检偏器光轴平行,则光强不变;若电矢量振动方向与检偏器光轴垂直,则光强为零。
4. 偏振光的分解:利用波片可以将偏振光分解为两个正交的偏振光。
其中,1/4波片可以将线偏振光分解为圆偏振光和椭圆偏振光。
三、实验仪器1. 激光器:产生单色光。
2. 偏振片:产生和检验偏振光。
3. 波片:分解偏振光。
4. 光具座:固定实验器材。
5. 照度计:测量光强。
6. 支架:固定实验器材。
四、实验步骤1. 将激光器发出的光通过偏振片,得到线偏振光。
2. 将线偏振光通过1/4波片,得到圆偏振光和椭圆偏振光。
3. 利用偏振片和检偏器检验圆偏振光和椭圆偏振光的偏振状态。
4. 通过改变偏振片和检偏器的相对位置,观察光强变化,验证马吕斯定律。
5. 测量圆偏振光和椭圆偏振光的光强,分析其偏振特性。
五、实验数据及处理1. 观察到线偏振光通过偏振片后,光强减弱;圆偏振光和椭圆偏振光通过检偏器时,光强有规律地变化。
2. 当偏振片和检偏器的光轴平行时,光强最大;当偏振片和检偏器的光轴垂直时,光强为零。
验证了马吕斯定律。
3. 测量得到圆偏振光和椭圆偏振光的光强,分析其偏振特性。
六、实验结果与分析1. 通过实验,观察到光的偏振现象,加深了对光波偏振特性的理解。
偏振光原理实验实验报告(3篇)
第1篇一、实验目的1. 深入理解光的偏振现象,巩固相关理论知识。
2. 掌握直线偏振光、圆偏振光和椭圆偏振光的产生方法。
3. 学会使用偏振片、波片等实验仪器,进行光的偏振状态分析。
二、实验原理1. 偏振光的产生:自然光经过起偏器后,其振动方向变得有规律,成为偏振光。
2. 偏振光的检验:通过观察光的偏振现象,判断光的偏振状态。
3. 偏振光的分解:利用波片可以将偏振光分解为两个相互垂直的偏振光。
三、实验仪器1. 激光器:提供稳定的单色光。
2. 偏振片:用于产生和检验偏振光。
3. 波片:用于分解偏振光。
4. 光具座:用于固定实验仪器。
5. 光屏:用于观察光斑。
6. 秒表:用于测量时间。
四、实验步骤1. 将激光器发出的光束调整至水平传播。
2. 将偏振片固定在光具座上,使光束通过偏振片。
3. 观察光屏上的光斑,记录光斑形状和亮度。
4. 将波片固定在光具座上,使光束通过波片。
5. 调整波片的角度,观察光屏上的光斑变化,记录光斑形状和亮度。
6. 重复步骤4和5,分别使用两个偏振片和两个波片进行实验。
五、实验数据及处理1. 观察到,当光束通过偏振片后,光屏上的光斑形状变为明暗相间的条纹,说明光束被分解为两个相互垂直的偏振光。
2. 调整波片角度,当波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。
3. 通过实验,验证了直线偏振光、圆偏振光和椭圆偏振光的产生方法。
六、实验结果与分析1. 通过实验,我们深入理解了光的偏振现象,掌握了直线偏振光、圆偏振光和椭圆偏振光的产生方法。
2. 实验过程中,我们发现波片的光轴与偏振片的光轴平行时,光屏上的光斑最亮;当波片的光轴与偏振片的光轴垂直时,光屏上的光斑最暗。
这验证了偏振光的分解原理。
3. 实验过程中,我们使用偏振片和波片等实验仪器,成功进行了光的偏振状态分析。
七、实验总结本次实验通过观察光的偏振现象,加深了对光的偏振理论知识的理解。
大学光的偏振实验报告
大学光的偏振实验报告
实验名称:大学光的偏振实验报告
实验目的:通过本次实验掌握光的偏振和偏振光的特性。
实验器材:光路板、偏振片、波片、线偏振光源、测量仪器等。
实验原理:
光的偏振:指在振动方向固定的光波中,只有某一方向的光波
通过出射的现象。
根据偏振轴的不同,光分为线偏振光、圆偏振
光和椭圆偏振光等三种状态。
偏振片:是使光只沿特定偏振轴传播的过滤器,它的作用是能
够减弱或消除非特定偏振方向的光,并使光偏振。
波片:是指在不同介质之间传播时的光波小振幅旋转一个或者
一些特定的角度,将偏振椭圆的主轴转动一定角度,改变波的光
学特性。
实验步骤:
1. 点亮线偏振光源,使光直线偏振,并调整偏振片角度,使通过偏振片的光亮度最小。
2. 在这个基础上再旋转样品台,记录在每个角度下检测器的输出值。
3. 将波片插入样品台,使波片快轴与样品台轴向垂直,旋转波片平台记录输出强度和旋转角度。
实验结果:
通过实验数据,我们可以得出样品中水平方向光的偏振角度为35°,竖直方向光的偏振角度为55°,因此可以得到样品的偏振方向为35°和125°。
结论:
本次实验通过光的偏振和偏振光的特性,对光的偏振进行了深入的探究。
实验结果表明,可以有效地利用偏振片和波片对光的偏振进行控制和调整,从而达到所需的偏振效果。
《光的偏振实验》课件
椭圆偏振是指光在传播过程中,其电矢量在垂直于传播方向的平面上作椭圆运动。
偏振光通过不同介质的现象
偏振光通过透明介质时,其偏振方向会发生改变 偏振光通过反射介质时,其偏振方向也会发生改变 偏振光通过折射介质时,其偏振方向也会发生改变 偏振光通过散射介质时,其偏振方向也会发生改变
观察干涉条纹:记录干涉 条纹的变化,分析光的偏 振特性
实验总结:总结实验结果, 分析光的偏振特性,得出 结论
实验注意事项
确保实验环境 安全,避免光
线直射眼睛
实验过程中, 注意保护实验 器材,避免损
坏
实验过程中, 注意观察实验 现象,及时记
录数据
实验结束后, 及时清理实验 器材,保持实
验室整洁
光的偏振实验结果分析
光的偏振实验原理
光的波动理论
光的波动性:光具有波动性,可以传播和反射
光的偏振:光在传播过程中,其振动方向与传播方向之间存在一定的关系
光的偏振实验:通过实验观察光的偏振现象,验证光的波动性
光的偏振原理:光的偏振是由于光在传播过程中受到介质的影响,导致其振动方向发生变 化
光的偏振态
光的偏振态是指光在传播过程中,其电矢量在垂直于传播方向的平面上的振动状 态。 光的偏振态可以分为线偏振、圆偏振和椭圆偏振三种。
光的偏振的应用
光学仪器中的偏振现象
偏振片:用于改变光的偏振状态,如偏振显微镜、偏振相机等 偏振棱镜:用于分离不同偏振方向的光,如偏振分光镜、偏振棱镜等 偏振光栅:用于分析光的偏振特性,如偏振光栅、偏振光栅相机等 偏振干涉仪:用于测量光的偏振特性,如偏振干涉仪、偏振干涉显微镜等
摄影技术中的偏振应用
光的偏振实验讲义
偏振光学实验教案教学方式及时间安排讲解与实际操作,讲解35-45分钟,操作指导20分钟,学生动手操作120分钟,共200分钟,4个学时。
讲解:光是一种电磁波,其电矢量的振动方向垂直于传播方向,是横波。
由于一般光源发光机制的无序性,其光波的电矢量的分布(方向和大小)对传播方向来说是对称的,称为自然光。
当由于某种原因,使光线的电矢量分布对其传播方向不再对称时,我们称这种光线为偏振光。
对于偏振现象的研究在光学发展史中有很重要的地位,光的偏振使人们对光的传播(反射、折射、吸收和散射)规律有了新的认识,并在光学计量、晶体性质研究和实验应力分析等技术部门有广泛的应用。
实验目的1.观察光的偏振现象,验证马吕斯定律;2.了解1/2波片、1/4波片的作用;3.掌握椭圆偏振光、圆偏振光的产生与检测。
实验仪器半导体激光器、碘钨灯、硅光电池、UT51 数字万用表、偏振片(2 片)、1/2 波片、1/4 波片、反射镜、玻璃堆、平台和光具座等实验原理1.光的偏振性光是一种电磁波,由于电磁波对物质的作用主要是电场,故在光学中把电场强度E 称为光矢量。
在垂直于光波传播方向的平面内,光矢量可能有不同的振动方向,通常把光矢量保持一定振动方向上的状态称为偏振态。
如果光在传播过程中,若光矢量保持在固定平面上振动,这种振动状态称为平面振动态,此平面就称为振动面。
此时光矢量在垂直与传播方向平面上的投影为一条直线,故又称为线偏振态。
若光矢量绕着传播方向旋转,其端点描绘的轨道为一个圆,这种偏振态称为圆偏振态。
如光矢量端点旋转的轨迹为一椭圆,就成为椭圆偏振态。
普通光源发出的光一般是自然光,自然光不能直接显示出偏振想象。
但自然光可以看成是两个振幅相同,振动相互垂直的非相干平面偏振光的叠加。
在自然光与平面偏振光之间有一种部分偏振光,可以看作是一个平面偏振光与一个自然光混合而成的。
其中的平面偏振光的振动方向就是这个部分偏振光的振幅最大方向。
2.偏振片虽然普通光源发出自然光,但在自然界中存在着各种偏振光,目前广泛使用的偏振光的器件是人造偏振片,它利用二向色性获得偏振光(有些各向同性介质,在某种作用下会呈现各向异性,能强烈吸收入射光矢量在某方向上的分量,而通过其垂直分量,从而使入射的自然光变为偏振光,介质的这种性质称为二向色性。
《大学物理》光的偏振现象的研究实验
图2 二向色性起偏《大学物理》光的偏振现象的研究实验姓 名学 号 班 级桌 号 教 室实验日期 20 年 月 日 时段 指导教师一. 实验目的1. 观察光的偏振现象,加深对光偏振基本规律的认识;2. 了解产生和检验偏振光的基本方法;3. 验证马吕斯定律;4.1/2波片,1/4波片的研究; 5.利用旋光现象测定蔗糖溶液浓度. 二. 实验仪器导轨和机座, 带布儒斯特窗的氦氖激光器, 激光器架, 偏振片、波片架, 滑动座(4个), 光传感器(光电探头),光功率测试仪,偏振片(2个),1/2波片(波长632.8nm ),1/4波片(波三. 实验原理1. 偏振光的基本概念光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向。
通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向所构成的平面称为光的振动面。
在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。
振动面的取向和光波电矢量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,评 分教师签字图1 平面偏振光、自然光和部分偏振光图3 双折射起偏原理图人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称为右旋椭圆或右旋圆偏振光,反之为左旋。
通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。
这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。
将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。
实际上,起偏器和检偏器是互为通用的。
下面介绍几种常用的起偏和检偏方法。
2. 二向色性起偏、马呂斯定律、双折射起偏二向色性起偏:物质对不同方向的光振动具有选择吸收的性质,称为二向色性。
大学物理实验偏振光实验报告
大学物理实验偏振光实验报告大学物理实验偏振光实验报告引言:偏振光是一种特殊的光,它的电场振动方向只在一个平面上,与普通光的电场振动方向不同。
在大学物理实验中,我们进行了偏振光实验,通过观察光的偏振现象,深入了解了光的性质和行为。
本报告将详细介绍实验的目的、原理、实验步骤、实验结果和分析。
实验目的:1.了解光的偏振现象和特性;2.学习使用偏振片和偏振片组成的光学器件;3.观察偏振光的现象,验证马吕斯定律。
实验原理:偏振光的产生可以通过偏振片实现,偏振片是一种能够选择性地通过特定方向振动的光的光学器件。
当普通光通过偏振片时,只有与偏振片振动方向平行的光能够通过,垂直于振动方向的光则被阻止通过。
这样,就可以将普通光转换为偏振光。
实验步骤:1.准备实验所需材料:偏振片、光源、光屏、旋转台等;2.将光源放置在旋转台上,使其射出的光通过偏振片;3.调整旋转台,观察光通过偏振片后的变化;4.在光屏上观察光的强度分布;5.旋转偏振片,观察光的强度变化。
实验结果:通过实验观察,我们得到了以下结果:1.当偏振片与光源之间的角度为0°或180°时,光通过偏振片的强度最大;2.当偏振片与光源之间的角度为90°或270°时,光无法通过偏振片;3.在其他角度下,光通过偏振片的强度介于最大值和最小值之间;4.旋转偏振片,光的强度会随之变化。
实验分析:根据实验结果,我们可以得出以下结论:1.偏振片具有选择性地通过特定方向振动的能力,只有与振动方向平行的光能够通过;2.当光通过偏振片时,光的强度会随着偏振片与光源之间的角度变化而变化;3.马吕斯定律指出,通过两个偏振片的光强度与两个偏振片之间的角度有关,光强度最大时,两个偏振片的角度相同或相差180°,光强度最小时,两个偏振片的角度相差90°或270°。
结论:通过本次偏振光实验,我们深入了解了偏振光的性质和行为。
光的偏振 实验报告
光的偏振实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。
2、了解偏振片的特性,掌握产生和检验偏振光的方法。
3、测量布儒斯特角,验证布儒斯特定律。
二、实验原理1、光的偏振态光是一种电磁波,其电场矢量和磁场矢量相互垂直且都垂直于光的传播方向。
一般情况下,光的电场矢量在垂直于光传播方向的平面内的取向是随机的,这种光称为自然光。
如果光的电场矢量在垂直于光传播方向的平面内只沿某一固定方向振动,则称其为线偏振光。
还有部分偏振光和椭圆偏振光等偏振态。
2、偏振片偏振片是一种只允许某一方向的光振动通过的光学元件。
其透振方向就是允许光振动通过的方向。
当自然光通过偏振片时,只有与透振方向平行的光振动分量能够通过,从而得到线偏振光。
3、布儒斯特定律当自然光在两种介质的分界面上反射和折射时,反射光和折射光都将成为部分偏振光。
当入射角满足一定条件时,反射光将成为完全偏振光,其振动方向垂直于入射面,这个入射角称为布儒斯特角,用θB表示。
布儒斯特定律为:tanθB = n2 / n1 ,其中 n1 和 n2 分别为两种介质的折射率。
三、实验仪器光源(钠光灯)、起偏器(偏振片)、检偏器(偏振片)、光具座、玻璃片、刻度盘等。
四、实验步骤1、调节仪器将光源、起偏器、检偏器依次安装在光具座上,使其共轴。
调节起偏器和检偏器的透振方向,使其初始时平行。
2、观察偏振现象打开光源,旋转检偏器,观察透过检偏器的光强变化。
可以发现,当检偏器的透振方向与起偏器的透振方向平行时,光强最强;当两者透振方向垂直时,光强最弱,几乎为零。
这表明通过起偏器得到的线偏振光,其振动方向是固定的。
3、测量布儒斯特角在光具座上放置一块玻璃片,使自然光以一定角度入射到玻璃片表面。
旋转检偏器,使反射光消光(光强最弱),此时入射角即为布儒斯特角。
测量此时的入射角,并记录下来。
4、验证布儒斯特定律已知钠光灯发出的光在空气中的波长λ,以及玻璃片的折射率 n2,根据布儒斯特定律计算理论上的布儒斯特角。
光的偏振现象实验报告
光的偏振现象实验报告光的偏振现象实验报告引言光是一种电磁波,具有振动方向的特性,这种方向称为光的偏振。
光的偏振现象在日常生活中无处不在,例如太阳光的偏振、偏振墨镜以及液晶显示屏等。
本实验旨在通过一系列实验,探究光的偏振现象的产生原理和应用。
实验一:偏振片的特性实验装置:光源、偏振片、透明介质、检测屏实验步骤:1. 将光源放置在实验台上,保持稳定。
2. 在光源前方放置一个偏振片,并将其转动,观察透过偏振片的光强变化。
3. 在偏振片后方放置一个透明介质,如玻璃片,再次观察透过偏振片的光强变化。
4. 最后,将一个检测屏放置在透明介质后方,观察透过偏振片的光强变化。
实验结果:通过旋转偏振片,我们发现透过偏振片的光强度会随着偏振片的角度变化。
当偏振片的方向与光的偏振方向垂直时,透过偏振片的光强最小;当二者方向一致时,透过偏振片的光强最大。
在透明介质后方放置检测屏后,观察到透过偏振片的光强在不同位置上也有所变化。
讨论:偏振片的作用是通过选择性地透过特定方向的光振动,将非偏振光转化为偏振光。
当光通过偏振片时,只有与偏振片方向一致的光能够通过,而垂直于偏振片方向的光则被滤除。
透明介质的存在会改变光的传播路径,进一步影响透过偏振片的光强。
实验二:马吕斯定律的验证实验装置:光源、偏振片、检测屏、旋转台实验步骤:1. 将光源放置在实验台上,保持稳定。
2. 在光源前方放置一个偏振片,并将其转动至特定角度。
3. 在偏振片后方放置一个检测屏。
4. 将一个旋转台放置在检测屏后方,并将其旋转至特定角度。
5. 观察检测屏上的干涉条纹。
实验结果:通过旋转偏振片和旋转台,我们观察到检测屏上出现了明暗相间的干涉条纹。
当偏振片和旋转台的角度满足一定条件时,干涉条纹最为清晰。
讨论:马吕斯定律指出,当两束偏振方向相同的光叠加时,如果它们之间的相位差为奇数倍的π,那么它们将互相抵消,形成暗条纹;如果相位差为偶数倍的π,那么它们将互相增强,形成亮条纹。
光的偏振大物实验报告
光的偏振大物实验报告光的偏振大物实验报告引言:光是我们日常生活中常见的现象,但是它的性质和行为却是极其复杂的。
光的偏振是其中一个令人着迷的现象,通过实验我们可以更深入地了解光的偏振特性以及其在实际应用中的意义。
实验目的:本次实验的目的是通过观察偏振光的行为,探究光的偏振现象并验证光的偏振理论。
实验器材:1. 偏振片:用于产生和分析偏振光的光学器件。
2. 光源:提供光源的稳定和均匀发光。
3. 旋转台:用于调整偏振片的角度。
4. 光屏:用于接收和观察光的偏振现象。
实验步骤:1. 将光源放置在适当位置,确保光线能够均匀地照射到实验区域。
2. 在光源和光屏之间放置一个偏振片,将其角度调整为0度。
3. 观察光屏上的光强分布情况,并记录下来。
4. 将偏振片旋转一定角度,例如45度,再次观察光屏上的光强分布情况。
5. 重复步骤4,将偏振片旋转至90度,观察光屏上的光强分布情况。
实验结果和分析:通过观察光屏上的光强分布情况,我们可以得出以下结论:1. 当偏振片的角度为0度时,光通过偏振片后的光强最大。
2. 当偏振片的角度为45度时,光通过偏振片后的光强减小。
3. 当偏振片的角度为90度时,光完全被偏振片阻挡,光强为零。
这些结果表明光的偏振现象是存在的。
光通过偏振片后,只有与偏振片的偏振方向相同的光能够通过,而与偏振片的偏振方向垂直的光则被完全阻挡。
实验延伸:除了观察光的偏振现象,我们还可以进一步探究光的偏振对实际应用的影响。
例如,在光学仪器中,通过调整偏振片的角度可以控制光的强度和方向,这在激光器、液晶显示器等领域有着广泛的应用。
结论:通过本次实验,我们验证了光的偏振现象的存在,并了解了偏振片对光的影响。
光的偏振不仅是一种有趣的物理现象,还具有实际应用的价值。
在今后的学习和实践中,我们可以进一步探索光的偏振现象,并应用于光学技术的发展和创新中。
光的偏振研究实验报告
光的偏振研究实验报告一、实验目的1、观察光的偏振现象,加深对偏振概念的理解。
2、掌握产生和检验偏振光的方法。
3、了解偏振片的特性以及马吕斯定律。
二、实验原理1、光的偏振态光可以看作是由电场和磁场相互垂直并垂直于光的传播方向的电磁波。
一般情况下,光的振动方向在垂直于传播方向的平面内是随机分布的,这种光称为自然光。
如果光的振动方向始终保持在一个特定的方向上,这种光称为线偏振光。
部分偏振光则是介于自然光和线偏振光之间的一种光,其振动方向在某一方向上占优势。
2、偏振片偏振片是一种只允许某一方向振动的光通过的光学元件。
其原理是利用某些物质的二向色性,即对不同方向振动的光具有不同的吸收程度。
3、马吕斯定律当一束强度为 I₀的线偏振光通过一个偏振化方向与光的振动方向夹角为θ的偏振片时,透过偏振片的光强 I 为:I = I₀cos²θ 。
三、实验仪器1、半导体激光器2、起偏器和检偏器(偏振片)3、光功率计4、旋转台四、实验步骤1、打开半导体激光器,调整其位置和角度,使激光束水平射出。
2、将起偏器安装在旋转台上,旋转起偏器,使通过起偏器的光强达到最大,此时起偏器的偏振化方向与激光的振动方向一致。
3、在起偏器后放置检偏器,旋转检偏器,观察光功率计的读数变化。
4、每隔 10°记录一次光功率计的读数,直至旋转 180°。
5、重复实验多次,以减小误差。
五、实验数据及处理|角度(°)| 0 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 |90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 | 170 | 180 |||||||||||||||||||||||光强(mW)| 20 | 19 | 16 | 12 | 08 | 05 | 02 | 01 |005 | 0 | 005 | 01 | 02 | 05 | 08 | 12 | 16 | 19 | 20 |以角度为横坐标,光强为纵坐标,绘制光强与角度的关系曲线。
大学物理偏振光实验报告
大学物理偏振光实验报告大学物理偏振光实验报告引言:光是一种电磁波,它在空间中传播时具有振动方向。
而偏振光则是指光波中的电场矢量在特定方向上振动的光。
物理学家发现,光的偏振性质对于理解光的本质以及应用于各个领域都具有重要意义。
本实验旨在通过观察偏振光的特性,深入了解光的偏振现象。
实验一:偏振片的特性实验中,我们使用了一块偏振片和一束自然光源。
将偏振片放在光路中,我们观察到光线的亮度明显降低,这是因为偏振片只允许某个特定方向的光通过,其他方向的光被吸收或者散射。
通过旋转偏振片,我们发现光的亮度随着角度的变化而改变,这表明偏振片只允许特定方向的光通过。
实验二:马吕斯定律的验证马吕斯定律是描述偏振光传播的重要定律。
为了验证该定律,我们使用了两块偏振片。
将第一块偏振片称为偏振器,将第二块偏振片称为偏振分析器。
我们发现,当偏振器和偏振分析器的振动方向相同时,透过偏振分析器的光亮度最大。
而当两者的振动方向垂直时,透过偏振分析器的光亮度最小。
这验证了马吕斯定律,即光的偏振方向与偏振分析器的振动方向垂直时,光的强度最小。
实验三:双折射现象双折射是指某些晶体在光传播过程中会发生折射现象,光线被分为两束,并且沿不同方向传播。
为了观察双折射现象,我们使用了一块双折射晶体和一束线偏振光。
当线偏振光通过双折射晶体时,我们观察到光线被分为两束,并且沿不同方向传播,这是由于晶体内部的结构导致光的振动方向发生了变化。
通过旋转双折射晶体,我们发现两束光的强度随着角度的变化而改变,这进一步验证了双折射现象的存在。
实验四:偏振光的应用偏振光在实际生活中有着广泛的应用。
例如,在太阳镜和墨镜中,通过使用偏振片来过滤掉反射光和散射光,减少眩光的影响。
此外,偏振光还在光学仪器、显示器和通信技术等领域中有着重要的应用。
通过研究偏振光的特性,我们可以更好地理解和应用光学原理。
结论:通过本次实验,我们深入了解了偏振光的特性。
我们通过观察偏振片的特性、验证马吕斯定律、观察双折射现象以及了解偏振光的应用,加深了对光的偏振性质的理解。
大学物理实验——光的偏振
基本方法:在检偏器前加一块l/4波片 基本方法:在检偏器前加一块l/ l/4
检偏器
区别自然光和圆偏振光:转动检偏器, 区别自然光和圆偏振光:转动检偏器, 有最大光强和消光的为圆偏振光, 有最大光强和消光的为圆偏振光,没有 变化的则为自然光. 变化的则为自然光.
区别部分偏振光和椭圆偏振光: 区别部分偏振光和椭圆偏振光: 同时转动波片和检偏器, 同时转动波片和检偏器 , 有消光现象的为 椭圆偏振光, 椭圆偏振光 , 没有消光现象的为部分偏振 光.
�
2,验证马吕斯定律: ,验证马吕斯定律:
移回望远镜,旋转检偏器, 移回望远镜,旋转检偏器,用激光功率计 观测检偏器P2转过的角度与光强I的变化 规律. 规律.在0~90间每10测一次. ~90间每10测一次. 间每10
3,观察线偏振光通过波片后的偏振状态 ,
1) 旋转检偏器至消光,然后将1/4波片置于 旋转检偏器至消光,然后将1/4 1/4波片置于 载物台,再旋转波片至消光, 载物台,再旋转波片至消光,
光的偏振
物理实验中心
一,实验原理
(1)什么是偏振光? 什么是偏振光? E
c
H
线偏振光
v E 代表光波振动方向
v v E = E0 sin ωt
Ey
E
Ex
E
椭圆偏振光
圆偏振光
椭圆和圆偏振光可以看作是两个振动方向 椭圆和圆偏振光可以看作是两个振动方向 互相垂直,相位差恒定的线偏振光的合成. 互相垂直,相位差恒定的线偏振光的合成.
椭圆偏振光. (3)其它情况→椭圆偏振光. )
返回
自然光: 自然光:各个方向上的
部分偏振光:某些方向 部分偏振光:
光强相等,相位差随机. 上光强强,相位差随机. 光强相等,相位差随机. 上光强强,相位差随机.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验07 光的偏振实验光波是特定频率范围内的电磁波。
在自由空间中传播的电磁波是一种横波,光波的偏振特性清楚地显示了光的横波性,是光的电磁理论的一个有力证明。
本实验研究光的一些基本的偏振特性,通过实验深入学习有关光的偏振理论。
【实验目的】1、 理解偏振光的基本概念,偏振光的起偏与检偏方法;2、 学习偏振片与波片的工作原理与使用方法。
【仪器用具】SGP-2A 型偏振光实验系统【实验原理】1、 光波偏振态的描述一般用光波的电矢量(又称光矢量)的振动状态来描述光波的偏振。
按光矢量的振动状态可把光波偏振态大体分成五种:自然光、线偏振光、部分偏振光、圆偏振光和椭圆偏振光。
这里重点讨论偏振光的描述。
一个单色偏振光可分解为两个偏振方向互相垂直的线偏振光的叠加,即⎩⎨⎧+==)cos(cos 21δωωt a E ta E yx (1) 式中δ为x 方向偏振分量相对于y 方向偏振分量的位相延迟量,1a 、2a 分别是两偏振分量的振幅,ω为光波的圆频率。
对于单色光,参数1a 、2a 、δ就完全确定了光波的偏振状态。
以下讨论中,取021>a a 、,πδπ≤<-。
当πδ,0=时,式(1)描述的是一个线偏振光,偏振方向与x 轴的夹角)cos arctan(12δαa a =称为线偏振光的方位角(如图1所示)。
图 1 线偏振光 图 2 圆偏振光当2/2/ππδ-=,且21a a =时,式(1)描述的是一个圆偏振光,其特点是光矢量为角速度ω旋转,光矢量的端点的轨迹为一圆。
δ的正负决定了光矢量的旋向,2/πδ=时为右旋圆偏振光,2/πδ-=时为左旋圆偏振光(迎着光的方向观察,如图2所示)。
除了上述特殊情况,式(1)表示的是椭圆偏振光(如图3所示)。
偏振的一个重要应用是研究光波通过某个光学系统后偏振状态的变化来了解此系统的一些性质。
2、 偏振片和马吕斯定律偏振片有一个透射轴(即偏振化方向)和一个与之垂直的消光轴,对于理想的偏振片,只有光矢量振动方向与透射轴方向平行的光波分量才能通过偏振片。
因此光波通过偏振片后,将变成光矢量沿透射轴方向振动的线偏振光,因此利用偏振片可以产生线偏振光。
图 4 线偏振光的产生和检测2将两个偏振片P1和P2平行放置(如图4),它们的偏振化方向分别用它们上面的虚线表示。
当自然光垂直入射P1后产生线偏振光。
又由于自然光中光矢量对称均匀,所以将P1绕光的传播方向慢慢转动时,透过P1的光强不随P1的转动而变化,但它只有入射光强的一半。
再使透过P1形成的线偏振光入射于偏振片P2,这时如果将P2绕光的传播方向慢慢转动,则因为只有平行于P2透射轴方向的光振动才允许通过,透过P2的光强将随P2的转动而变化。
当P2的偏振化方向平行于入射光的光矢量方向,即P1和P2的偏振化方向平行时,透过它的光强最强。
当P2的偏振化方向垂直于入射光的光矢量方向,即P1和P2的偏振化方向垂直时,透过它的光强为零,称为消光。
将P2旋转一周时,透射光光强出现两次最强,两次消光。
这种情况只有在入射到P2上的光是线偏振光时才会发生,因而这也就成为识别入射光是线偏振光的依据。
在这个方案中,我们把产生线偏振光的偏振片P1称为起偏器,用以分析光的偏振片P2称为检偏器。
以1E 表示线偏振光的光矢量的振幅,当入射的线偏振光的光矢量振动方向与检偏器的偏振化方向成θ角时(图5),透过检偏器的光矢量振幅2E 只是1E 在偏振化方向的投影,即θcos 12E E =。
由于光强和光振动振幅的平方成正比,若以1I 表示入射线偏振光的光强,则透过检偏器后的光强2I 为θ212cos I I = (2) 这一公式称为马吕斯定律。
由此式可见,当πθ,0=时,12I I =,光强最大;当2/32/ππθ,=时,02=I ,没有光从检偏器射出,这就是两个消光位置。
但θ为其它角度时,光强2I 介于0和1I 之间。
我们可以根据偏振光透过检偏器后透射光的光强变化情况区分偏振光的偏振状态:旋转检偏器一周,如果出现透射光两次光强最强、两次消光现象的,其入射光为线偏振光;如果出现两次光强最强、两次光强最弱但不消光的,其入射光为椭圆偏振光;如果每个方向光强都不变的,则为圆偏振光。
偏振片的应用很广。
如汽车夜间行车时为了避免对方汽车灯光晃眼以保证安全行车,可以在所有汽车的车窗玻璃和车灯前装上与水平方向成45°角,而且向同一方向倾斜的偏振片。
这样,相向行驶的汽车可以都不必熄灯,各自前方的道路仍然照亮,同时也不会被对方车灯晃眼。
偏振片也可用于制成太阳镜和照相机的滤光镜。
有的太阳镜,特别是观看立体电影的眼镜的左右两个镜片就是用偏振片做的,它们的偏振化方向互相垂直。
3、 波片和双折射当一束自然光穿过各向异性的晶体(如方解石晶体)时分成两束线偏振光的现象称为双折射现象,见图6。
其中的一条折射光服从折射定律,沿各方向的光的传播速度相同,各向折射率o n 相同,且在入射面内传播,这一条光称为寻常光,简称o 光。
另一条折射光不服马吕斯定律从折射定律,沿各方向的光的传播速度不相同,各向折射率e n 不相同,并且不一定在入射面内传播,这一条光称为非常光,简称e 光。
一般情况o 光和e 光的传播方向不一样,光矢量振动方向不互相垂直。
在双折射晶体内存在一个固定的方向,在该方向上o 光、e 光的传播速度相同,折射率相同,两光线重合,这个方向称为晶体的光轴。
利用晶体的双折射现象可以把晶体设计成一种特殊的元件--波片来产生偏振光。
注意的是在设计波片时光轴是平行于波片的表面。
当平行单色光垂直入射波片时,在波片分解的o 光和e 光同方向传播且垂直于波片表面,而且光矢量的振动方向互相垂直,o 光光矢量垂直于光轴,e 光光矢量平行于光轴,但是传播速度不相同,即折射率不相同;如果波片厚度为d ,从波片出射时就会产生相位差d n ne o )(2-=λπδ (3)式中λ为光波在真空中的波长,0n 、e n 代表o 光、e 光在波片的折射率。
在设计波片时,波片厚度不同,相位差就不一样。
常用的波片中,若πδk 2=的波片称为全波片;ππδ+=k 2的称为半波片或1/2波片;2/2ππδ±=k 的称为1/4波片。
图 7 线偏振光经过波片的偏振态变化下面我们考虑线偏振光经过波片后偏振态的变化,见图7。
如图7所示,入射的线偏振光轴波片光e 图 6 双折射现象光振动方向的方位角为θ。
见图8,光轴在x 方向,则e 光光矢量在x 方向,o 光光矢量在y 方向。
入射的线偏振光可沿x 和y 方向分解为e 光和o 光,它们同频同相,可表示为:⎩⎨⎧==ta E ta E o o e e ωωcos cos (4) 经过波片后,两分量变成⎪⎩⎪⎨⎧+'='=)cos(cos //δωωt a E t a E o o e e (5)自然光在两种各向同性的电介质的分界面上反射和折射时,不仅光的传播方向要改变,而且偏振状态也要发生变化。
一般情况下,反射光和折射光都是部分偏振光。
反射光中振动方向垂直入射面得成分比平行于入射面的成分占优势;折射光中振动方向平行于入射面的成分比垂直于入射面的成分占优势,见图9。
图 9 自然光反射和折射后产生部分偏振光 图 10 布儒斯特角理论和实验都证明,反射光的偏振化程度和入射角有关。
当入射角等于某一特定值b i 时,反射光是光振动垂直于入射面的线偏振光(图10)。
这个特定的入射角b i 称为起偏振角,或称为布儒斯特角。
当光线以起偏振角入射时,反射光和折射光的传播方向相互垂直,即2π=+r i b根据折射定律,有b b i n r n i n cos sin sin 221==,即12tan n n i b =(6) 式(6)称为布儒斯特角,是为了纪念在1812年从实验上确定这一定律的布儒斯特而命名的。
【仪器介绍】SGP-2A 型偏振光实验系统图 11偏振光实验系统主要部件:导轨和和机座、氦氖激光器和激光器架、光电探头和光电流放大器、光学测角台(SZ-47)、偏振片波片架(SZ-51,X 轴旋转架)3个、滑动座4套,以上部件见图11。
图上没标的其它部件有小白屏、黑玻璃镜、偏振片2片、半波片、1/4波片。
【实验内容与要求】1、 仪器检查(见表2,请打勾,如缺零件请向指导教师报告情况,实验完成恢复原位)表 2 仪器清单名称 规格 数量 检查情况 导轨和机座 l = 1m 1套 氦氖激光器 约1.5mW 1套 激光器架1个 光学测角台SZ-471套氦氖激光器光电探头光电流放大 器偏振片波片架测角台导轨和机座滑动座2、 偏振片的特性和马吕斯定律的验证(1) 将已装有偏振片的SZ-51型偏振片波片架(P 1置于0°)和光电探头安装在机座导轨的滑动座上,打开氦氖激光器预热10分钟,调等高共轴,然后旋转激光器使光电放大器显示一个较大值(从这我们可以看出所发出的氦氖激光的偏振状态是什么?)。
注意:光电放大器前面板有一个增益调节旋钮,可以酌情调节,但需注意增益过大而溢出。
(2) 将已装有另1片偏振片的SZ-51型偏振片波片架P 2和小白屏安装在机座导轨的滑动座上,顺序见图12,调等高共轴。
旋转检偏器P 2一周,通过小白屏观察透射光的光强变化现象,请试描述该现象。
图 12 起偏与检偏(3) 验证马吕斯定律:拿掉小白屏,通过连接光电流放大器的光电探头测量透射光强。
旋转检偏器P 2,从0°到90°,记录透射光强(注意测量过程中不可调节增益旋钮)于表3,画出光强I 与θ2cos 的曲线,得出结论。
表3 光强与角度的关系3、 波片的特性研究(1) 起偏器P 1置于0°不变,检偏器P 2置于90°,即两片偏振片处于正交状态,在它们中间插入半波片C ,调至等高共轴,见图13,旋转波片一周,通过白屏或光电探头观察消光的次数并解释这现象。
图 13 波片的特性研究(2)将半波片转至一任意角度(不要取0°、90°、180°、270°),然后旋转检偏器P2一周,观察发生的现象并作出解释。
(3)起偏器P1仍置于0°不变,检偏器P2置于90°,转动半波片使消光。
再将其转动15°,破坏其消光;转动检偏器P2至消光位置,并记录检偏器P2所转动的角度。
(4)继续将半波片转15°(即总转动角为30°),记录检偏器达到消光所转总角度。
依次使半波片总转角为45°、60°、75°、90°,记录检偏器消光时所转总角度,见表4。
表 4 半波片的特性研究12波片使消光。
再将1/4波片转动15°,然后将检偏器转动一周,观察现象,并分析这时从1/4波片出来光的偏振状态。