解直角三角形在中考数学中的分析
解直角三角形中考考点分析
解直角三角形一个三角形1.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON =30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A .12秒.B .16秒.C .20秒.D .24秒.2.如图,某航天飞船在地球表面P 点的正上方A 处,从A 处观测到地球上的最远点Q ,若∠QAP=α,地球半径为R ,则航天飞船距离地球表面的最近距离AP ,以及P 、Q 两点间的地面距离分别是( )A. sin R α,180R παB. sin R R α-,()90180R απ- C.sin R R α-,()90180R απ+ D. cos RR α-,()90180R απ- 3.图(十六)表示一个时钟的钟面垂直固定于水平桌面上,其中分针上有一点A ,且当钟面显示3点30分时,分针垂直于桌面,A 点距桌面的高度为10公分。
如图(十七),若此钟面显示3点45分时,A 点距桌面的高度为16公分,则钟面显示3点50分时,A 点距桌面的高度为多少公分?A .3322-B .π+16C .18D .194.身高相等的四名同学甲、乙、丙、丁参加风筝比赛,四人放出风筝的线长、线与地面的夹角如下表(假设风筝线是拉直的),则四名同学所放的风筝中最高的是( )同学 甲 乙 丙 丁 放出风筝线长 140m 100m 95m 90m 线与地面夹角30°45°45°60°A.甲B.乙C.丙D.丁5.如图,是一张宽m 的矩形台球桌ABCD ,一球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点. 如果MC n =,CMN α∠=.那么P 点与B 点的距离为 .6.如图,孔明同学背着一桶水,从山脚A 出发,沿与地面成30°角的山坡向上走,送水到山上因今年春季受旱缺水的王奶奶家(B 处),AB=80米,则孔明从A 到B 上升的高度BC 是 米.7.右图是市民广场到解百地下通道的手扶电梯示意图.其中AB 、CD 分别表示地下通道、市民广场电梯口处地面的水平线,∠ABC =135°,BC 的长约是25m ,则乘电梯从点B 到点C 上升的高度h 是 m .8.如图,在高出海平面100米的悬崖顶A 处,观测海平面上一艘小船B ,并测得它的俯角为45°,则船与观测者之间的水平距离BC = 米.135° ABChACD · ·α(第15题)9.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工速度,需要在小山的另一边同时施工.从AC 上的一点B 取∠ABD =140°,BD =1000m ,∠D =50°.为了使开挖点E 在直线AC 上,那么DE = m.(供选用的三角函数值:sin 50°=,cos 50°=,tan 50°=)10.如图,在亚丁湾一海域执行护航任务的我海军某军舰由东向西行驶.在航行到B 处时,发现灯塔A 在我军舰的正北方向500米处;当该军舰从B 处向正西方向行驶至达C 处时,发现灯塔A 在我军舰的北偏东60°的方向.求该军舰行驶的路程.(计算过程和结果均不取近似值)北东600BCA11.生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为6米的梯子AB ,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,,,,cos50°≈0.64)12.生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为6米的梯子AB ,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,,,,)图3140°50°ED CB A两个三角形并排1.五一期间,小红到美丽的世界地质公园光岩参加社会实践活动,在景点P处测得景点B位于南偏东45︒方向,然后沿北偏东60︒方向走100米到达景点A,此时测得景点B正好位于景点A的正南方向,求景点A 与景点B之间的距离.(结果精确到米)2.某过街天桥的设计图是梯形ABCD(如图所示),桥面DC与地面AB平行,DC=62米,AB=88米.左斜面AD与地面AB的夹角为23°,右斜面BC与地面AB的夹角为30°,立柱DE⊥AB于E,立柱CF⊥AB于F,求桥面DC与地面AB之间的距离.(精确到米)(第20题图)3.题23-1图为平地上一幢建筑物与铁塔图,题23-2图为其示意图.建筑物AB与铁塔CD都垂直于底面,BD=30m,在A点测得D点的俯角为45°,测得C点的仰角为60°.求铁塔CD的高度.题23-1图 题23-2图4.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场检测与海水采样,针对核泄漏在极端情况下对海洋的影响及时开展分析评估.如图上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观测到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?(参考数据:sin36.9°≈35,tan36.9°≈34,sin67.5°≈1213,tan67.5°≈125)5.如图,自来水厂A 和村庄B 在小河l 的两侧,现要在A ,B 间铺设一条输水答道.为了搞好工程预算,需测算出A ,B 间的距离.一小船在点P 处测得A 在正北方向,B 位于南偏东方向,前行1200m,到达点Q 处,测得A 位于北偏西49º方向,B 位于南偏西41º方向. (1)线段BQ 与PQ 是否相等?请说明理由; (2)求A ,B 间的距离. (参考数据:)67.5°36.9°ACB P第18题6.如图,放置在水平桌面上的台灯的灯臂AB 长为40cm ,灯罩BC 长为30cm ,底座厚度为2cm ,灯臂与底座构成的∠BAD =60°. 使用发现,光线最佳时灯罩BC 与水平线所成的角为30°,此时灯罩顶端C 到桌面的高度CE 是多少cm ?(结果精确到,参考数据:3)7.如图8,AE 是位于公路边的电线杆,为了使拉线CDE 不影响汽车的正常行驶,电力部门在公路的另一边竖立了一根水泥撑杆BD ,用于撑起拉线.已知公路的宽AB 为8米,电线杆AE 的高为12米,水泥撑杆BD 高为6米,拉线CD 与水平线AC 的夹角为67.4°.求拉线CDE 的总长L (A 、B 、C 三点在同一直线上,电线杆、水泥杆的大小忽略不计). (参考数据:12sin 67.413≈,5cos 67.413≈,12tan67.45=)8.如图是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平面AE 垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD 的长度。
中考总复习解直角三角形
解直角三角形一、目标与策略明确学习目标及主要的学习方法是提高学习效率的首要条件,要做到心中有数!学习目标:●理解三角函数的定义和正弦、余弦、正切的概念,并能运用;●掌握特殊角三角函数值,并能运用特殊角的三角函数值进行计算和化简;●掌握互为余角和同角三角函数间关系;●掌握直角三角形的边角关系和解直角三角形的概念,并能运用直角三角形的两锐角互余、勾股定理和锐角三角函数解直角三角形;●了解实际问题中的概念,并会用解直角三角形的有关知识解决实际问题.复习策略:●复习本专题应从四方面入手:(1)直角三角形在角方面的关系;(2)直角三角形在边方面的关系;(3)直角三角形的边角之间的关系;(4)怎样运用直角三角形的边角关系求直角三角形的未知元素.同时,解答这类题目时,应注重借助图形来解题,它能使已知条件、所求结论直观化,以便启迪思维,快捷解题.二、学习与应用知识点一:锐角三角函数“凡事预则立,不预则废”。
科学地预习才能使我们上课听讲更有目的性和针对性。
我们要在预习的基础上,认真听讲,做到眼睛看、耳朵听、心里想、手上记。
知识考点梳理认真阅读、理解教材,尝试把下列知识要点内容补充完整,若有其它补充可填在右栏空白处。
详细内容请参看网校资源ID:#tbjx4#248924知识框图通过知识框图,先对本单元知识要点有一个总体认识。
(一)锐角三角函数:在Rt△ABC中,∠C是直角,如图(1)正弦:∠A的与的比叫做∠A的正弦,记作sinA,即sinA= ;(2)余弦:∠A的与的比叫做∠A的余弦,记作cosA,即cosA= ;(3)正切:∠A的与的比叫做∠A的正切,记作tanA,即tanA= ;锐角三角函数:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(二)同角三角函数关系:(1)平方关系:sin2A+cos2A= ;(2)商数关系:tanA= .(三)互余两角的三角函数关系sinA=cos(),cosA=sin().(四)特殊角的三角函数值(五)锐角三角函数的增减性(1)角度在0°~90°之间变化时,正弦值(正切值)随角度的增大(或减小)而(或).(2)角度在0°~90°之间变化时,余弦值随角度的增大(或减小)而(或).要点诠释:∠A在0°~90°之间变化时,<sinA<,<cosA<,tanA>知识点二:解直角三角形在直角三角形中,由已知元素求未知元素的过程叫做解直角三角形.(一)三边之间的关系:a2+b2= (勾股定理)(二)锐角之间的关系:∠A+∠B= °(三)边角之间的关系:sinA= ,cosA= ,tanA=要点诠释:解直角三角形时,只要知道其中的个元素(至少有一个),就可以求出其余未知元素.知识点三:解直角三角形的实际应用(一)仰角和俯角:在视线与所成的角中,视线在上方的是仰角;视线在下方的是俯角.(二)坡角和坡度:坡面与的夹角叫做坡角.坡面的和的比叫做坡面的坡度(即坡角的值)常用i表示.(三)株距:相邻两树间的.(四)方位角与方向角:从某点的方向沿时针方向旋转到目标方向所形成的角叫做方位角.从方向或方向到目标方向所形成的小于°的角叫做方向角.经典例题-自主学习认真分析、解答下列例题,尝试总结提升各类型题目的规律和技巧,然后完成举一反三。
2019年全国各地中考数学试题分类汇编(第二期) 专题28 解直角三角形(含解析)
解直角三角形一.选择题1. (2019•广东省广州市•3分)如图,有一斜坡AB,坡顶B离地面的高度BC为30m,斜坡的倾斜角是∠BAC,若tan∠BAC=,则此斜坡的水平距离AC为()A.75m B.50m C.30m D.12m【分析】根据题目中的条件和图形,利用锐角三角函数即可求得AC的长,本题得以解决.【解答】解:∵∠BCA=90°,tan∠BAC=,BC=30m,∴tan∠BAC=,解得,AC=75,故选:A.【点评】本题考查解直角三角形的应用﹣坡度坡角问题,解答本题的关键是明确题意,利用数形结合的思想解答.2. (2019•广西北部湾经济区•3分)小菁同学在数学实践活动课中测量路灯的高度.如图,已知她的目高AB为1.5米,她先站在A处看路灯顶端O的仰角为35°,再往前走3米站在C处,看路灯顶端O的仰角为65°,则路灯顶端O到地面的距离约为(已知sin35°≈0.6,cos35°≈0.8,tan35°≈0.7,sin65°≈0.9,cos65°≈0.4,tan65°≈2.1)()A. 米B. 米C. 米D. 米【答案】C【解析】解:过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,∵tan65°=,∴OF=xtan65°,∴BD=3+x,∵tan35°=,∴OF=(3+x)tan35°,∴2.1x=0.7(3+x),∴x=1.5,∴OF=1.5×2.1=3.15,∴OE=3.15+1.5=4.65,故选:C.过点O作OE⊥AC于点F,延长BD交OE于点F,设DF=x,根据锐角三角函数的定义表示OF的长度,然后列出方程求出x的值即可求出答案.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.二.填空题1. (2019•江苏宿迁•3分)如图,∠MAN=60°,若△ABC的顶点B在射线AM上,且AB=2,点C在射线AN上运动,当△ABC是锐角三角形时,BC的取值范围是<BC <.【分析】当点C在射线AN上运动,△ABC的形状由钝角三角形到直角三角形再到钝角三角形,画出相应的图形,根据运动三角形的变化,构造特殊情况下,即直角三角形时的BC的值.【解答】解:如图,过点B作BC1⊥AN,垂足为C1,BC2⊥AM,交AN于点C2在Rt△ABC1中,AB=2,∠A=60°∴∠ABC1=30°∴AC1=AB=1,由勾股定理得:BC1=,在Rt△ABC2中,AB=2,∠A=60°∴∠AC2B=30°∴AC2=4,由勾股定理得:BC2=2,当△ABC是锐角三角形时,点C在C1C2上移动,此时<BC<2.故答案为:<BC<2.【点评】本题考查解直角三角形,构造直角三角形,利用特殊直角三角形的边角关系或利用勾股定理求解.考察直角三角形中30°的角所对的直角边等于斜边的一半,勾股定理等知识点.2. (2 019·江苏盐城·3分)如图,在△ABC 中,BC =26+,∠C =45°,AB =2AC ,则AC 的长为________.【答案】2【解析】过A 作AD ⊥BC 于D 点,设AC =x 2,则AB =x 2,因为∠C =45°,所以AD =AC =x ,则由勾股定理得BD =x AD AB 322=-,因为AB =26+,所以AB =263+=+x x ,则x =2.则AC =2.3. (2 019·江苏盐城·3分)如图,在平面直角坐标系中,一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,将直线AB 绕点B 按顺时针方向旋转45°,交x 轴于点C ,则直线BC 的函数表达式是__________.【答案】131-=x y 【解析】因为一次函数y =2x -1的图像分别交x 、y 轴于点A 、B ,则A (21,0),B (0,-1),则AB =25. 过A 作AD ⊥BC 于点D ,因为∠ABC =45°,所以由勾股定理得AD =410,设BC =x ,则AC =OC -OA =2112--x ,根据等面积可得:AC ×OB =BC ×AD ,即2112--x =410x ,解得x =10.则AC =3,即C (3,0),所以直线BC 的函数表达式是131-=x y .4. (2019•浙江湖州•4分)有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α.若AO =85cm ,BO =DO =65cm .问:当α=74°时,较长支撑杆的端点A 离地面的高度h 约为 120 cm .(参考数据:sin 37°≈0.6,cos 37°≈0.8,sin 53°≈0.8,cos 53°≈0.6.)【分析】过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF ,利用等腰三角形的三线合一得到OE 为角平分线,进而求出同位角的度数,在直角三角形AFB 中,利用锐角三角函数定义求出h 即可.【解答】解:过O 作OE ⊥BD ,过A 作AF ⊥BD ,可得OE ∥AF , ∵BO =DO , ∴OE 平分∠BOD ,∴∠BOE =∠BOD =×74°=37°, ∴∠F AB =∠BOE =37°,在Rt △ABF 中,AB =85+65=150cm , ∴h =AF =AB •cos ∠F AB =150×0.8=120cm , 故答案为:120【点评】此题考查了解直角三角形的应用,弄清题中的数据是解本题的关键.三.解答题1. (2019•江苏宿迁•10分)宿迁市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中AB、CD都与地面l平行,车轮半径为32cm,∠BCD=64°,BC=60cm,坐垫E与点B的距离BE为15cm.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到CD的距离调整为人体腿长的0.8时,坐骑比较舒适.小明的腿长约为80cm,现将坐垫E调整至坐骑舒适高度位置E',求EE′的长.(结果精确到0.1cm,参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)【分析】(1)作EM⊥CD于点M,由EM=ECsin∠BCM=75sin46°可得答案;(2)作E′H⊥CD于点H,先根据E′C=求得E′C的长度,再根据EE′=CE﹣CE′可得答案【解答】解:(1)如图1,过点E作EM⊥CD于点M,由题意知∠BCM=64°、EC=BC+BE=60+15=75cm,∴EM=ECsin∠BCM=75sin64°≈67.5(cm),则单车车座E到地面的高度为67.5+32≈99.5(cm);(2)如图2所示,过点E′作E′H⊥CD于点H,由题意知E′H=80×0.8=64,则E′C==≈71,1,∴EE′=CE﹣CE′=75﹣71.1=3.9(cm).【点评】本题考查解直角三角形的应用,解题的关键是明确题意,利用锐角三角函数进行解答.2. (2019•江西•8分)图1是一台实物投影仪,图2是它的示意图,折线B-A-O表示固定支架,AO垂直水平桌面OE于点O,点B为旋转点,BC可转动,当BC绕点B顺时针旋转时,投影探头CD始终垂直于水平桌面OE,经测量:AO=6.8cm,CD=8cm,AB=30cm,BC=35cm.(结果精确到0.1)(1)如图2,∠ABC=70°,BC∥OE。
2024年中考数学几何模型归纳(全国通用)22 解直角三角形模型之实际应用模型(教师版)
专题22解直角三角形模型之实际应用模型解直角三角形是中考的重要内容之一,直角三角形边、角关系的知识是解直角三角形的基础。
将实际问题转化为数学问题是关键,通常是通过作高线或垂线转化为解直角三角形问题,在解直角三角形时要注意三角函数的选取,避免计算复杂。
在解题中,若求解的边、角不在直角三角形中,应先添加辅助线,构造直角三角形。
为了提高解题和得分能力,本专题重点讲解解直角三角形的实际应用模型。
模型1、背靠背模型图1图2图3【模型解读】若三角形中有已知角时,则通过在三角形内作高CD,构造出两个直角三角形求解,其中公共边(高)CD是解题的关键.【重要关系】如图1,CD为公共边,AD+BD=AB;如图2,CE=DA,CD=EA,CE+BD=AB;如图3,CD=EF,CE=DF,AD+CE+BF=AB。
【答案】该建筑物BC【分析】由题意可知,【点睛】本题考查的是解直角三角形函数,熟练掌握直角三角形的特征关键.例2.(2023湖南省衡阳市中考数学真题)随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼学楼底部243米的C30 ,CD长为49.6米.已知目高(1)求教学楼AB的高度.(2)若无人机保持现有高度沿平行于行,求经过多少秒时,无人机刚好离开圆圆的视线【答案】(1)教学楼AB的高度为【分析】(1)过点B作BG DC通过证明四边形GCAB为矩形,之间的和差关系可得CG【点睛】本题主要考查了解直角三角形的实际应用,解题的关键是正确画出辅助线,构造直角三角形,熟练掌握解直角三角形的方法和步骤.例3.(2023年湖北中考数学真题)为了防洪需要,某地决定新建一座拦水坝,如图,拦水坝的横断面为梯形ABCD,斜面坡度3:i,求斜坡AB的长.18C【答案】斜坡AB的长约为10米【分析】过点D作DE BC于点E,在Rt△在Rt DEC △中,2018CD C ,,sin 20sin18200.31 6.2DE CD C ∵34AF BF ,∴在Rt ABF 中,2AB AF 【答案】大楼的高度BC 为303m 【分析】如图,过P 作PH AB 于QH BC ,BH CQ ,求解PH 704030CQ BH ,PQ CQ 【详解】解:如图,过P 作PH则四边形CQHB 是矩形,∴由题意可得:80AP ,PAH ∴3sin 60802PH AP ∴704030CQ BH ,∴∴403103BC QH模型2、母子模型图1图2图3图4【模型解读】若三角形中有已知角,通过在三角形外作高BC,构造有公共直角的两个三角形求解,其中公共边BC是解题的关键。
2020年浙江中考数学一轮课件:35第九章 第二节解直角三角形及其应用
【分析】根据方向角的定义即可得到结论. 【自主解答】由图可得,目标A在南偏东75°方向5 km处,故选D.
例5 (2019·宁波)如图,某海防哨所O发现在它的西北方向,距离哨所400 米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方 向的B处,则此时这艘船与哨所的距离OB约为________米.(精确到1米,参 考数据: ≈1.414, ≈1.732)
墙PM是否需要拆除?请说明理由.
解:(1)∵新坡面坡角为α,新坡面的坡度为
(2)该文化墙PM不需要拆除. 理由如下: 如图,作CD⊥AB于点D,则CD=6米.
易错易混点一 构造直角三角形解三角函数问题
例1 如图,方格纸中的每个小方格都是边长为1的正方形,△ABC的顶点都 在格点上,则sin∠ACB的值为( )
解:(1)如图,过点C作CE⊥BD于点E,
则有∠DCE=18°,∠BCE=20°, ∴∠BCD=∠DCE+∠BCE=18°+20°=38°.
(2)由题意得,CE=AB=30(m), 在Rt△CBE中,BE=CE·tan 20°≈10.80(m), 在Rt△CDE中,DE=CE·tan 18°≈9.60(m), ∴教学楼的高BD=BE+DE=10.80+9.60≈20.4(m). 则教学楼的高BD约为20.4 m.
考点二 利用解直角三角形解决测量问题
【要点知识拓展】 已知角度及其三角函数值时,可以构造直角三角形,通过解直角三角形帮 助解决长度计算问题.
例2 (2019·金华)如图,在量角器的圆心O处下挂一铅锤,制作了一个简 易测倾仪.量角器的0刻度线AB对准楼顶时,铅垂线对应的读数是50°, 则此时观察楼顶的仰角度数是________.
解:如果渔船不改变航线继续向东航行,没有触礁的危险. 理由如下:如图,过点A作AD⊥BC,垂足为D, 根据题意可知∠ABC=30°,∠ACD=60°. ∵∠ACD=∠ABC+∠BAC,∴∠BAC=30°=∠ABC, ∴CB=CA=20. 在Rt△ACD中,∠ADC=90°,∠ACD=60°,
初中数学_解直角三角形及其应用中考复习教学设计学情分析教材分析课后反思
解直角三角形及其应用教学设计【导学目标】1、理解锐角三角函数的概念,并准确记忆30°,45°,60°角的三角函数值。
2、运用三角函数解决与直角三角形有关的简单实际问题。
【导学过程】 一、知识梳理1、锐角三角函数的定义:在Rt △ABC 中,若∠A 、∠B 、∠C 的对边分别为a 、b 、c ,且∠C=90°,∠A 的正弦sinA=c a=∠斜边的对边A ;∠A 的余弦cosA==)()(________; ∠A 的正切tanA==)()(________. 2、特殊的三角函数值:α sinα cosα tanα 300 450 600(1)含30°角的直角三角形中三边之比_________________. (2)含45°角的直角三角形中三边之比___________________. 3、解直角三角形应用中的有关概念: ⑴仰角和俯角:如图:在图上标上仰角和俯角铅直水平线视线⑵坡度坡角:如图,斜坡AB 的垂直度h 和水平宽度l 的比叫做坡度,用i 表示,即i=坡面与水平面得夹角为用字母α表示,则i=tanα=hl。
【设计目的】:1.做好知识铺垫,为夯实基础。
2. 抓好关键概念学习。
3. 培养数形结合思想二、典例分析考点一 锐角三角函数的概念典例1、正方形网格中,AOB ∠如图放置,则sin AOB ∠=( ) 对应训练1.如图,P 是∠α的边OA 上一点,点P 的坐标为(12,5),则tanα等于( )A .513B .1213C .512D .1252.如图,将∠AOB 放置在5×5的正方形网格中,则tan ∠AOB 的值是( ) A .23B .32C .21313D .31313【设计目的】:利用坐标、网格渗透数形结合思想,培养添加辅助线的意识。
考点二 特殊角的三角函数值 典例2、 0033sin 602cos 458-+对应训练AB O1.计算6tan45°-2cos60°的结果是( )A .43B .4C .53 D .52.在△ABC 中,若|sinA-12|+(cosB-12)2=0,则∠C 的度数是( )A .30°B.45°C.60°D.90°【设计目的】:抓好三角函数计算,将三角函数值与角度有机结合。
2018中考数学解直角三角形(在实际问题中的运用-含答案)
DABCEF解直角三角形在实际问题中的运用要点一:锐角三角函数的基本概念1。
(·河北中考) 如图是一个半圆形桥洞截面示意图,圆心为O ,直径AB 是河底线,弦CD 是水位线,CD ∥AB ,且CD = 24 m,OE ⊥CD 于点E .已测得sin ∠DOE = 1213. (1)求半径OD ;(2)根据需要,水面要以每小时0。
5 m 的速度下降, 则经过多长时间才能将水排干?2.(綦江中考)如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE .(1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值.3、(宁夏中考)如图,在△ABC 中,∠C =90°,sin A =54,AB =15,求△ABC 的周长和tan A 的值.OECD4、(肇庆中考)在Rt △ABC 中,∠C = 90°,a =3 ,c =5,求sin A 和tan A 的值。
5、(·芜湖中考)如图,在△ABC 中,AD 是BC 上的高,tan cos B DAC =∠,(1) 求证:AC=BD ; (2)若12sin 13C =,BC =12,求AD 的长.要点二、特殊角的三角函数值 一、选择题 1.(·钦州中考)sin30°的值为( )A 3B 2C .12D 3 2.(长春中考).菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,B 的坐标为( )A .(21),B .2),C .211), D .(121),3.(定西中考)某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于60°,否则就有危险,那么梯子的长至少为( ) A .8米 B .3 C 83米 D .433米 4。
宿迁中考)已知α为锐角,且23)10sin(=︒-α,则α等于( ) A.︒50 B.︒60 C.︒70 D.︒80 5。
2020中考数学专项解析:解直角三角形(三角函数应用)
【文库独家】解直角三角形(三角函数应用)1、(绵阳市)如图,在两建筑物之间有一旗杆,高15米,从A 点经过旗杆顶点恰好看到矮建筑物的墙角C 点,且俯角α为60º,又从A 点测得D 点的俯角β为30º,若旗杆底点G 为BC 的中点,则矮建筑物的高CD 为( A )A .20米B .米C .米D .米[解析]GE//AB//CD ,BC=2GC ,GE=15米,AB=2GE=30米,AF=BC=AB•cot ∠ACB=30×cot60º=10 3 米,DF=AF •tan30º=10 3 ×33=10米,CD=AB-DF=30-10=20米。
2、(杭州)在Rt△ABC 中,∠C=90°,若AB=4,sinA=,则斜边上的高等于( )A .B .C .D .考点:解直角三角形.专题:计算题.分析:在直角三角形ABC 中,由AB 与sinA 的值,求出BC 的长,根据勾股定理求出AC 的长,根据面积法求出CD 的长,即为斜边上的高.解答:解:根据题意画出图形,如图所示,在Rt△ABC 中,AB=4,sinA=,∴BC=ABsinA=2.4,根据勾股定理得:AC==3.2,∵S △ABC =AC•BC=AB•CD, ∴CD==. 故选B点评:此题考查了解直角三角形,涉及的知识有:锐角三角函数定义,勾股定理,以及三角形的面积求法,熟练掌握定理及法则是解本题的关键.3、(•绥化)如图,在△ABC 中,AD⊥BC 于点D ,AB=8,∠ABD=30°,∠CAD=45°,求BC 的长.∴AD=AD=4.+44、(•鄂州)著名画家达芬奇不仅画艺超群,同时还是一个数学家、发明家.他曾经设计过一种圆规如图所示,有两个互相垂直的滑槽(滑槽宽度忽略不计),一根没有弹性的木棒的两端A、B能在滑槽内自由滑动,将笔插入位于木棒中点P处的小孔中,随着木棒的滑动就可以画出一个圆来.若AB=20cm,则画出的圆的半径为10 cm.∴OP=5、(安顺)在Rt△ABC中,∠C=90°,,BC=8,则△ABC的面积为.考点:解直角三角形.专题:计算题.分析:根据tanA的值及BC的长度可求出AC的长度,然后利用三角形的面积公式进行计算即可.解答:解:∵tanA==,∴AC=6,∴△ABC的面积为×6×8=24.故答案为:24.点评:本题考查解直角三角形的知识,比较简单,关键是掌握在直角三角形中正切的表示形式,从而得出三角形的两条直角边,进而得出三角形的面积.6、(11-4解直角三角形的实际应用·东营中考)某校研究性学习小组测量学校旗杆AB的高度,如图在教学楼一楼C处测得旗杆顶部的仰角为60︒,在教学楼三楼D处测得旗杆顶部的仰角为30︒,旗杆底部与教学楼一楼在同一水平线上,已知每层楼的高度为3米,则旗杆AB 的高度为米.15. 9.解析:过B 作BE ⊥CD 于点E ,设旗杆AB 的高度为x ,在Rt ABC ∆中,tan AB ACB AC ∠=,所以tan tan 60AB x AC x ACB ====∠︒,在Rt BDE ∆中,BE AC x ==,60BOE ∠=︒,tan BE BDE DE ∠=,所以1tan 3BE DE x BDE===∠,因为CE=AB=x ,所以163DC CE DE x x =-=-=,所以x=9,故旗杆的高度为9米. 7、(•常德)如图,在△ABC 中,AD 是BC 边上的高,AE 是BC 边上的中线,∠C=45°,sinB=,AD=1.(1)求BC 的长;(2)求tan∠DAE 的值.BD=2sinB=,∴AB==3∴BD==2∴BC=BD+DC=2∴CE=BC=+,CD=﹣∴tan∠DAE==﹣8、(13年山东青岛、20)如图,马路的两边CF 、DE 互相平行,线段CD 为人行横道,马路两侧的A 、B 两点分别表示车站和超市。
中考解直角三角形知识点复习
中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半;3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形;考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形;3、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2,那么这个三角形是直角三角形;经典直角三角形:勾三、股四、弦五用它判断三角形是否为直角三角形的一般步骤是:1确定最大边不妨设为c ;2若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形其中c 为最大边; 若a 2+b 2>c 2,则此三角形为锐角三角形其中c 为最大边4. 勾股定理的作用:1已知直角三角形的两边求第三边; 2已知直角三角形的一边,求另两边的关系;3用于证明线段平方关系的问题; 4利用勾股定理,作出长为n 的线段 考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA,即c asin =∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA,即b atan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值三角函数 30°45°60°sinα cos αtan α 1 cot α14、各锐角三角函数之间的关系1互余关系:sinA=cos90°—A,cosA=sin90°—A ; 2平方关系:1cos sin 22=+A A 3倒数关系:tanA •tan90°—A=1 4商弦切关系:tanA=AAcos sin 5、锐角三角函数的增减性 当角度在0°~90°之间变化时,1正弦值随着角度的增大或减小而增大或减小;2余弦值随着角度的增大或减小而减小或增大;3正切值随着角度的增大或减小而增大或减小;4余切值随着角度的增大或减小而减小或增大 考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形; 2、解直角三角形的理论依据在Rt △ABC 中,∠C=90°,∠A,∠B,∠C 所对的边分别为a,b,c 1三边之间的关系:222c b a =+勾股定理 2锐角之间的关系:∠A+∠B=90°3边角之间的关系:正弦sin,余弦cos,正切tan4 面积公式:h c 为c 边上的高考点五、解直角三角形 应用1、将实际问题转化到直角三角形中,用锐角三角函数、代数和几何知识综合求解2、仰角、俯角、坡面 知识点及应用举例:1仰角:视线在水平线上方的角;俯角:视线在水平线下方的角;2坡面的铅直高度h 和水平宽度l 的比叫做坡度坡比;用字母i 表示,即hi l=;坡度一般写成1:m 的形式,如1:5i =等; 把坡面与水平面的夹角记作α叫做坡角,那么tan hi lα==; 3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角;如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°;解直角三角形的基本类型及其解法公式总结2测量底部可以到达的物体的高度h =h 1+h 2=a 1tan α+tan β3测量底部不可到达的物体的高度1数学模型所用工具 应测数据 数量关系根据 理论 皮尺 侧倾器仰角α 俯角β 高度a tan α=x h 1 ,tan β=xah =a +h 1=a +a =a1+矩形的性质和直角三角形的边角关系俯角α 俯角β 高度 tan α=, tan β=xa∴x == ∴h =a -测量底部不可到达的物体的高度2数字模型 所用工具 应测距离 数量关系根据 原理皮尺侧倾器 仰角α, 仰角β 水平距离a 1 侧倾器高a 2tan α=xa h +11tan β=x h 1∴h 1=αββαtan tan tan tan 1-ah =a 2+h 1=a 2+αββαtan tan tan tan 1-a矩形的性质和直角三角形的边角关系仰角α 仰角β 高度atan α=, tan β= h =tan α=, tan β=、h =仰角α 仰角β 高度atan α=, tan β=h =第三部分 真题分类汇编详解2007-2012200719.本小题满分6分一艘轮船自西向东航行,在A 处测得东偏北°方向有一座小岛C,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近参考数据:°≈925,°≈25, °≈910,°≈2200819.本小题满分6分在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5.请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米结果保留两个有效数字参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=200919.本小题满分6分在一次数学活动课上,老师带领同学们去测量一座古塔CD 的高度.他们首先从A 处安置测倾器,测得塔顶C 的仰角21CFE ∠=°,然后往塔的方向前进50米到达B 处,此时测得仰D DC BβC GEFhα β x h xaα βhAa x α βhaxαβ hx α β角37CGE ∠=°,已知测倾器高米,请你根据以上数据计算出古塔CD 的高度. 参考数据:3sin 375°≈,3tan 374°≈,9sin 2125°≈,3tan 218°≈ 201019.本小题满分6分小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.结果保留整数参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,解:201119.6分某商场准备改善原有楼梯的安全性能, 原来的40o 减至35o .已知原楼梯AB 长为5m,调整后的楼梯所占地 面CD 有多长结果精确到0.1m .参考数据:sin40o ≈,cos40o ≈≈,tan35o ≈ 201220.8分附历年真题标准答案:200719.本小题满分6分解:过C 作AB 的垂线,交直线AB 于点D,得到Rt△ACD 与Rt△BCD.设BD =x 海里,在Rt△BCD 中,tan∠CBD=CDBD,∴CD=x ·°.在Rt△ACD 中,AD =AB +BD =60+x 海里,tan∠A=CDAD,∴CD= 60+x ·°. ∴x·°=60+x·°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近. …………………………6′ 200819.本小题满分6分解:设CD 为x ,在Rt△BCD 中, 6.18==∠αBDC ,∵CDBCBDC =∠tan ,∴x BDC CD BC 34.0tan =∠⋅=. ········· 2′ 在Rt△ACD 中, 5.64==∠βADC , ∵CDACADC =∠tan ,∴x ADC CD AC 1.2tan =∠⋅=. ∵BC AC AB -=,∴x x 34.01.22-=. 1.14x ≈. 答:CD 长约为米. 200919.本小题满分6分B CD A CG EDBAF B37° 48°DC A 第19题图40o 35o ADBC解:由题意知CD AD ⊥,EF AD ∥, ∴90CEF ∠=°,设CE x =,在Rt CEF △中,tan CE CFE EF ∠=,则8tan tan 213CE x EF x CFE ===∠°; 在Rt CEG △中,tan CE CGE GE ∠=,则4tan tan 373CE x GE x CGE ===∠°∵EF FG EG =+,∴845033x x =+. 37.5x =,∴37.5 1.539CD CE ED =+=+=米.答:古塔的高度约是39米. ························ 6分 201019.本小题满分6分解:设CD = x .在Rt △ACD 中,tan37ADCD︒=, 则34AD x =,∴34AD x =. 在Rt△BCD 中,tan48° = BD CD,则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB ,∴31180410x x +=.解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分201119.本小题满分6分 201220.8分第19题图。
【万能解题模型】13 解直角三角形的实际应用中的基本模型(课件)中考数学
解:过点 B 作 BE⊥AD 于点 D,BF⊥CD 于点 F. ∵CD⊥AD, ∴四边形 BEDF 是矩形. ∴FD=BE,FB=DE. 在 Rt△ABE 中,BE∶AE=1∶2.4=5∶12, 设 BE=5x,AE=12x, 根据勾股定理,得 AB=13x, ∴13x=52.
解得 x=4. ∴BE=FD=5x=20,AE=12x=48. ∴DE=FB=AD-AE=72-48=24. ∴在 Rt△CBF 中, CF=FB·tan ∠CBF≈24×43=32. ∴CD=FD+CF=20+32=52. 答:大楼的高度 CD 约为 52 米.
图形演变 2:
3.如图所示,某办公大楼正前方有一根高度是 15 米的旗杆 ED,从办公楼顶 端 A 测得旗杆顶端 E 的俯角α是 45°,旗杆底端 D 到大楼前梯坎底边的距离 DC 是 20 米,梯坎坡长 BC 是 12 米,梯坎坡度 i=1∶ 3,则大楼 AB 的高度约为(精确到 0.1 米,参考数据: 2≈1.41, 3≈1.73, 6≈2.45)( D )
又∵BC=221,即 CD+BD=221, ∴0.85x+0.53x=221, 解得 x≈160. 答:AB 的长约为 160 m.
模型 2 母子型(在三角形外部作高)
模型分析: 通过在三角形外作高,构造出两个直角三角形求解,其中公共边 是解题的关键.
等量关系: 在 Rt△ABC 和 Rt△DBC 中,BC 为公共边,AD+DC=AC. 图形演变 1:
2.如图,A,B 两点被池塘隔开,在 AB 外选一点 C,连接 AC, BC.测得 BC=221 m,∠ACB=45°,∠ABC=58°.根据测得的数据, 求 AB 的长.(结果取整数,参考数据:sin 58°≈0.85,cos 58°≈0.53, tan 58°≈1.60)
中考数学专题特训第十九讲:解直角三角形(含详细参考答案)
2013年中考数学专题复习第十九讲解直角三角形【基础知识回顾】一、锐角三角函数定义:在RE△ABC中,∠C=900, ∠A、∠B、∠C的对边分别为a、b、c,则∠A的正弦可表示为:sinA= ,∠A的余弦可表示为CBA= ∠A的正切:tanA= ,它们弦称为∠A的锐角三角函数【赵老师提醒:1、sinA、∠cosA、tanA表示的是一个整体,是两条线段的比,没有,这些比值只与有关,与直角三角形的无关2、取值范围<sinA< cosA< tanA> 】二、特殊角的三角函数值:要在理解的基础上结合表格进行记忆2、当时,正弦和正切值随着角度的增大而余弦值随着角度的增大而3、几个特殊关系:⑴sinA+cos2A= ,tanA=sin A⑵若∠A+∠B=900,则sinA= 】三、解直角三角形:1、定义:由直角三角形中除直角外的个已知元素,求出另外个未知元素的过程叫解直角三角形2、解直角三角形的依据:RT∠ABC中,∠C900 三边分别为a、b、c⑴三边关系:⑵两锐角关系⑶边角之间的关系:sinA cosA tanAsinB cosB tanB【赵老师提醒:解直角三角形中已知的两个元素应至少有一个是当没有直角三角形时应注意构造直角三角形,再利用相应的边角关系解决】3、解直角三角形应用中的有关概念⑴仰角和俯角:如图:在用上标上仰角和俯角⑵坡度坡角:如图:斜坡AB的垂直度H和水平宽度L的比叫做坡度,用i表示,即i=坡面与水平面得夹角为用字母α表示,则i=h l=⑶方位角:是指南北方向线与目标方向所成的小于900的水平角如图:OA表示OB表示OC表示(也可称西南方向)3、利用解直角三角形知识解决实际问题的一般步骤:⑴把实际问题抓化为数字问题(画出平面图形,转化为解直角三角形的问题)⑵根据条件特点选取合适的锐角三角函数去解直角三角形⑶解数学问题答案,从而得到实际问题的答案【赵老师提醒:在解直角三角形实际应用中,先构造符合题意的三角形,解题的关键是弄清在哪个直角三角形中用多少度角的哪种锐角三角函数解决】【重点考点例析】考点一:锐角三角函数的概念对应训练点评:本题考查了正弦的定义:在直角三角形中,一个锐角的正弦等于这个角的对边与斜边的比值.也考查了点的坐标与勾股定理.考点二:特殊角的三角函数值对应训练点评:本题考查了勾股定理,等腰三角形的性质和判定,含30度角的直角三角形性质等知识点的应用,关键是构造直角三角形,题目具有一定的代表性,是一道比较好的题目.对应训练考点四:解直角三角形的应用例 4 (2012•张家界)黄岩岛是我国南海上的一个岛屿,其平面图如图甲所示,小明据此构造出该岛的一个数学模型如图乙所示,其中∠B=∠D=90°,AB=BC=15千米,CD=米,请据此解答如下问题:(1)求该岛的周长和面积;)(2)求∠ACD的余弦值.考点:解直角三角形的应用.分析:(1)连接AC,根据AB=BC=15千米,∠B=90°得到∠BAC=∠ACB=45°千米,再根据∠D=90°利用勾股定理求得AD的长后即可求周长和面积;(2)直接利用余弦的定义求解即可.解:(1)连接AC∵AB=BC=15千米,∠B=90°∴∠BAC=∠ACB=45°又∵∠D=90°∴=∴周长面积=S △ABC+18 6 ≈157(平方千米)(2)cos ∠ACD=CD 1AC 5点评:本题考查了解直角三角形的应用,与时事相结合提高了同学们解题的兴趣,解题的关键是从实际问题中整理出直角三角形并求解. 对应训练 6.(2012•益阳)超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速.如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC=75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:,,60千米/小时米/秒)考点:解直角三角形的应用.专题:计算题. 分析:(1)由于A 到BC 的距离为30米,可见∠C=90°,根据75°角的三角函数值求出BC 的距离;(2)根据速度=路程÷时间即可得到汽车的速度,与60千米/小时进行比较即可. 解答:解:(1)法一:在Rt △ABC 中,∠ACB=90°,∠BAC=75°,AC=30, ∴BC=AC•tan ∠(米).法二:在BC 上取一点D ,连接AD ,使∠DAB=∠B ,则AD=BD , ∵∠BAC=75°,∴∠DAB=∠B=15°,∠CDA=30°, 在Rt △ACD 中,∠ACD=90°,AC=30,∠CDA=30°,∴AD=60,(米)(2)∵此车速度=112÷8=14(米/秒)<(米/秒)=60(千米/小时) ∴此车没有超过限制速度.点评:本题考查了解直角三角形的应用,理解正切函数的意义是解题的关键. 【聚焦山东中考】A.不变B.缩小为原来的1C.扩大为原来的3倍D.不能确定5.(2012•潍坊)校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载.某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于21米,在l上点D 的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(精确到米,参考数据:;(2)已知本路段对校车限速为40千米/小时,若测得某辆校车从A到B用时2秒,这辆校车是否超速?说明理由.5.考点:解直角三角形的应用.分析:(1)分别在Rt△ADC与Rt△BDC中,利用正切函数,即可求得AD与BD的长,继而求得AB的长;(2)由从A到B用时2秒,即可求得这辆校车的速度,比较与40千米/小时的大小,即可确定这辆校车是否超速.解答:解:(1)由題意得,在Rt△ADC中,AD=CD21=tan30,在Rt△BDC中,BD=CD21=tan303,则(米)。
中考数学真题专项汇编解析—解直角三角形
中考数学真题专项汇编解析—解直角三角形一.选择题1.(2022·天津)tan 45︒的值等于( )A .2B .1C D 【答案】B【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∠∠B =90°-45°=45°,∠∠ABC 是等腰三角形,AC =BC , ∠根据正切定义,tan 1BCA AC∠==, ∠∠A =45°,∠tan 451︒=,故选 B .【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键. 2.(2022·四川乐山)如图,在Rt ABC 中,90C ∠=︒,BC =D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A.B .3 C D .2【答案】C【分析】先根据锐角三角函数值求出AC =5,AB =过点D作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC ∠1tan 2BC A AC ∠==∠2AC BC ==由勾股定理得,5AB == 过点D 作DE AB ⊥于点E ,如图,∠1tan 2A ∠=,1tan 3ABD ∠=,∠11,,23DE DE AE BE == ∠11,,23DE AE DE BE == ∠1123AE BE = ∠32BE AE = ∠5,AE BE += ∠352AE AE += ∠2,AE = ∠1DE =, 在Rt ADE ∆中,222AD AE DE =+ ∠AD∠AD CD AC +== ∠CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.3.(2022·浙江杭州)如图,已知∠ABC 内接于半径为1的∠O ,∠BAC =θ(θ是锐角),则∠ABC 的面积的最大值为( )A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+ 【答案】D【分析】要使∠ABC 的面积S =12BC •h 的最大,则h 要最大,当高经过圆心时最大.【详解】解:当∠ABC 的高AD 经过圆的圆心时,此时∠ABC 的面积最大, 如图所示,∠AD ∠BC ,∠BC =2BD ,∠BOD =∠BAC =θ, 在Rt ∠BOD 中,sin θ=1BD BD OB =,cos θ=1OD ODOB =, ∠BD =sin θ,OD =cos θ,∠BC =2BD =2sin θ,AD =AO +OD =1+cos θ, ∠S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ).故选:D .【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.4.(2022·云南)如图,已知AB 是∠O 的直径,CD 是OO 的弦,AB ∠CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .1312【答案】B【分析】先根据垂径定理求出12CE CD =,再根据余弦的定义进行解答即可. 【详解】解:∠AB 是∠O 的直径,AB ∠CD . ∠112,902CE CD OEC ==∠=︒,OC =12AB =13, ∠12cos 13CE OCE OC ∠==.故选:B . 【点睛】此题考查的是垂径定理,锐角三角函数的定义,熟练掌握垂径定理,锐角三角函数的定义是解答此题的关键.5.(2022·陕西)如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )B.C.D.A.【答案】D【分析】先解直角ABC求出AD,再在直角ABD△中应用勾股定理即可求出AB.【详解】解:∠26CD=,BD CD==,∠3∠直角ADC中,tan2∠=,∠tan326C=⋅∠=⨯=,AD CD C∠直角ABD△中,由勾股定理可得,AB D.【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.6.(2022·浙江金华)一配电房示意图如图所示,它是一个轴对称图形,已知∠=,则房顶A离地面EF的高度为()6mBC=,ABCαA .(43sin )m α+B .(43tan )m α+C .34m sin α⎛⎫+ ⎪⎝⎭ D .34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【分析】过点A 作AD ∠BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案. 【详解】解:过点A 作AD ∠BC 于D ,如图所示:∠它是一个轴对称图形,∠132BD DC BC ===m ,tan 3AD ADBD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.7.(2022·浙江丽水)如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F ,FG AD ∥交AE 于点G ,若1cos 4B =,则FG 的长是( )A.3B.83CD.52【答案】B【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∠AGP=∠B可得到cos∠AGP=14,即可得到FG的长;【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB=BC=4,E是BC的中点,∠BE=2,又∠1cos4B=,∠BH=1,即H是BE的中点,∠AB=AE=4,又∠AF是∠DAE的角平分线,AD∠FG,∠∠F AG=∠AFG,即AG=FG,又∠PF∠AD,AP∠DF,∠PF=AD=4,设FG=x,则AG=x,EG=PG=4-x,∠PF∠BC,∠∠AGP=∠AEB=∠B,∠cos∠AGP=12PGAG=22xx-=14,解得x=83;故选B.【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.8.(2022·四川广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为()A B C.2D5【答案】B【分析】把AB向上平移一个单位到DE,连接CE,则DE∠AB,由勾股定理逆定理可以证明∠DCE为直角三角形,所以cos∠APC=cos∠EDC即可得答案.【详解】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∠AB,∠∠APC=∠EDC.在∠DCE中,有DE=,EC=DC==5∠222EC DC DE+=+==,52025∠DCE∠=︒,∆是直角三角形,且90DCE∠cos∠APC =cos∠EDC =DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.9.(2022·湖北随州)如图,已知点B ,D ,C 在同一直线的水平,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,CD a =,则建筑物AB 的高度为( )A .tan tan a αβ- B .tan tan a βα- C .tan tan tan tan a αβαβ- D .tan tan tan tan a αββα-【答案】D【分析】设AB =x ,利用正切值表示出BC 和BD 的长,CD =BC -BD ,从而列出等式,解得x 即可.【详解】设AB =x ,由题意知,∠ACB =α,∠ADB =β,∠tan x BD β=,tan xBC α=, ∠CD =BC -BD ,∠tan tan x x a αβ-=,∠tan tan tan tan a x αββα=-,即AB =tan tan tan tan a αββα-,故选:D . 【点睛】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键. 二.填空题10.(2022·山东泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).【答案】4.4m##4.4米【分析】根据题意可得AD ∠CP ,从而得到∠ADB =30°,利用锐角三角函数可得tan 0.46m AB AD ADB =⨯∠=≈,从而得到BC =AF +CF -AB =2.54m ,即可求解.【详解】解:根据题意得:AD ∠CP , ∠∠DPC =30°,∠∠ADB =30°,∠0.8m AD =,∠tan 0.80.46m AB AD ADB =⨯∠=≈, ∠AF =2m ,CF =1m ,∠BC =AF +CF -AB =2.54m , ∠ 2.544.4m tan tan 30BC CP BPC ︒==≈∠,即CP 的长度为4.4m .故答案为:4.4m.【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.11.(2022·天津)如图,在每个小正方形的边长为1的网格中,圆上的点A ,B ,C 及DPF ∠的一边上的点E ,F 均在格点上.(∠)线段EF 的长等于___________;(∠)若点M ,N 分别在射线,PD PF 上,满足90MBN ∠=︒且BM BN =.请用无刻..度.的直尺,在如图所示的网格中,画出点M ,N ,并简要说明点M ,N 的位置是如何找到的(不要求证明)___________.【答案】 见解析【分析】(∠)根据勾股定理,从图中找出EF 所在直角三角形的直角边的长进行计算;(∠)由图可找到点Q ,EQ BQ EF BF ====EFBQ 是正方形,因为90BM BN MBN =∠=︒,,所以BQM BFN ∆≅∆,点M 在EQ 上,BM 、BN 与圆的交点为直径端点,所以EQ 与PD 交点为M ,通过BM 与圆的交点G 和圆心O 连线与圆相交于H ,所以H 在BN 上,则延长BH 与PF 相交点即为N .【详解】解:(∠)从图中可知:点E 、F 水平方向距离为3,竖直方向距离为1,所以EF ;(∠)连接AC ,与竖网格线相交于点O ,O 即为圆心;取格点Q (E 点向右1格,向上3格),连接EQ 与射线PD 相交于点M ;连接MB 与O 相交于点G ;连接GO 并延长,与O 相交于点H ;连接BH 并延长,与射线PF 相交于点N ,则点M ,N 即为所求,理由如下:连接,BQ BF由勾股定理算出BQ QE EF BF ====由题意得90MQB QEF BFE QBF ∠=∠=∠=∠=︒,∴四边形BQEF 为正方形,在Rt BQM 和Rt BFN 中,BQ BF =,1tan tan 3QBA FBC ∠=∠=,QBA FBC ∴∠=∠, AOG COH ∠=∠,AG CH ∴=,ABG HBC ∴∠=∠,MBQ NBF ∴∠=∠()Rt BQM Rt BFN ASA ∴≌BM BN ∴=,90QBM MBF MBF FBN ∠+∠=∠+∠=︒90MBN ∴∠=,从而确定了点,M N 的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.12.(2022·江苏扬州)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为__________.【详解】解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c ⎛⎫+= ⎪⎝⎭,求出ac =a c =,∴在Rt ABC 中:in s a c A == 【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC 中,sin A A ∠=的对边斜边 ,cos A A ∠=的邻边斜边,tan A A A ∠=∠的对边的邻边. 13.(2022·湖南衡阳)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,10m AE =,30BDG ∠=︒,60BFG ∠=︒.已知测角仪DA 的高度为1.5m ,则大雁雕塑BC 的高度约为_________m .(结果精确到0.1m .参考数据:1.732)【答案】10.2【分析】先根据三角形外角求得30∠=∠=,再根据三角形的等角对等边DBF BDG得出BF=DF=AE=10m,再解直角三角形求得BG即可求解.【详解】解:∠30∠=︒,BFGBDG∠=︒且60∠30∠=∠-∠=︒,DBF BFG BDG∠∠=∠DBF BDG,即10mBF DF AE===.∠=⋅=≈,BG BF︒sin608.66m∠8.66 1.510.2mBC BG GC BG DA=+=+=+≈,故答案为:10.2m.【点睛】本题考查了三角形的外角性质、等腰三角形的判定、解直角三角形的应用,熟练掌握等腰三角形的判定和解直角三角形的解题方法是解答的关键.14.(2022·浙江嘉兴)如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.【分析】先求解33,,3AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC 30,90,A ABC 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.15.(2022·浙江绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或35 4【分析】过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN =3x,由∠ACN∠∠CDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得∠NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在Rt∠CNE中由勾股定理建立方程求得x,进而可得BE;【详解】解:如图,过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN=BN•tan∠CBN=3x,∠∠CAD,∠ECD都是等腰直角三角形,∠CA=CD,EC=ED,∠EDC=45°,∠CAN+∠ACN=90°,∠DCM+∠ACN=90°,则∠CAN=∠DCM,在∠ACN和∠CDM中:∠CAN=∠DCM,∠ANC=∠CMD=90°,AC=CD,∠∠ACN∠∠CDM(AAS),∠AN=CM=10+x,CN=DM=3x,∠∠CMD=∠CED=90°,∠点C、M、D、E四点共圆,∠∠CME=∠CDE=45°,∠∠ENM=90°,∠∠NME 是等腰直角三角形,∠NE =NM =CM -CN =10-2x ,Rt ∠ANC 中,ACRt ∠ECD 中,CD =AC ,CE =2CD , Rt ∠CNE 中,CE 2=CN 2+NE 2,∠()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54,∠BE =BN +NE =x +10-2x =10-x ,∠BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键. 16.(2022·山东泰安)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.+【答案】(20mm,求出x=10,【分析】过D作DF∠BC于F,DH∠AB于H,设DF=x m,CF则BH=DF=,CF=,DH=BF,再求出AH DH,即可求解.【详解】解:过D作DF∠BC于F,DH∠AB于H,∠DH=BF,BH=DF,∠斜坡的斜面坡度i=1∠:DF CF=m,设DF=x m,CF∠CD==,220x∠x=10,∠BH=DF=10m,CF=,∠DH=BF=(m),∠∠ADH =30°,∠AH10=+m ), ∠AB =AH +BH =20103(m ),故答案为:(20m +.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.17.(2022·江苏连云港)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.【答案】45【分析】如图所示,过点C 作CE ∠AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ∠AB 于E ,由题意得43CE AE ==,,∠5AC , ∠4sin =5CE A AC =,故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.18.(2022·四川凉山)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ∠CD 于点C ,BD ∠CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为_______.【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个相似三角形是解题关键.19.(2022·四川凉山)如图,在边长为1的正方形网格中,∠O 是∠ABC 的外接圆,点A ,B ,O 在格点上,则cos∠ACB 的值是________.【分析】取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ∠AB ,则OB==cos∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∠OD ∠AB ,∠∠ODB =90°,∠OB==cos∠DOB =OD OB ==, ∠OA =OB ,∠∠BOD =12∠AOB ,∠∠ACB =12∠AOB ,∠∠ACB =∠DOB ,∠cos∠ACB = cos∠DOB【点睛】本题考查勾股定理,垂径定理,圆周角定理,解直角三角形,取AB 中点D ,得Rt ∠ODB 是解题的关键.20.(2022·山东滨州)在Rt ∠ABC 中,∠C =90°,AC =5,BC =12,则sin A =______. 【答案】1213【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∠∠C =90°,AC =5,BC =12,∠AB ,∠sin A =1213BC AB =. 故答案为:1213. 【点睛】在直角三角形中求正弦函数值是本题的考点,根据勾股定理求出AB 的长是解题的关键.21.(2022·湖北黄冈)如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为________m .(sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,结果保留整数).【答案】16【分析】过D 点作DE AB ⊥于点E ,则6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,设AE x =,则DE x =,BC x =,6AB AE BE x =+=+,在Rt ABC 中,6tan tan 58 1.60AB x ACB BC x+∠=︒==≈,解得10x ≈,进而可得出答案. 【详解】解:如图,过D 点作DE AB ⊥于点E ,设AE x =,根据题意可得:AB BC ⊥,DC BC ⊥,∠90AED BED ABC DCB ∠=∠=∠=∠=︒,∠四边形BCDE 是矩形,∠从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离,乙建筑物的高度CD 为6,∠6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,∠9045EAD ADE ∠=︒-∠=︒,∠EAD ADE ∠=∠,∠DE AE x ==,∠BC DE x ==,∠6AB AE BE x =+=+,在Rt ABC 中,tan ∠=AB ACB BC 即6tan 58 1.60x x+︒=≈, ∠6tan tan 58 1.60AB x ACB BC x +∠=︒==≈ 解得10x ≈,经检验10x ≈是原分式方程的解且符合题意,∠()616AB x m =+≈.故答案为:16.【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题的关键.22.(2022·四川广元)如图,直尺AB 垂直竖立在水平面上,将一个含45°角的直角三角板CDE 的斜边DE 靠在直尺的一边AB 上,使点E 与点A 重合,DE =12cm .当点D 沿DA 方向滑动时,点E 同时从点A 出发沿射线AF 方向滑动.当点D 滑动到点A 时,点C 运动的路径长为 _____cm .【答案】(24-【分析】由题意易得CD CE DE ===,则当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,然后可得D C N E C M ''''≌,进而可知点D 沿DA 方向下滑时,点C ′在射线AC 上运动,最后问题可求解.【详解】解:由题意得:∠DEC =45°,DE =12cm ,∠2CD CE DE ===, 如图,当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,∠∠DAM =90°,∠四边形NAMC ′是矩形,∠90NC M '∠=︒,∠90D C N NC E NC E E C M ''''''''∠+∠=∠+∠=︒,∠D C N E C M ''''∠=∠,∠,90D C E C D NC E MC ''''''''=∠=∠=︒,∠D C N E C M ''''≌,∠C N C M ''=,∠C N AB '⊥,C M AF '⊥,∠AC '平分∠NAM ,即点D 沿DA 方向下滑时,点C ′在射线AC 上运动,∠当C D AB ''⊥时,此时四边形C D AE '''是正方形,CC ′的值最大,最大值为(12cm AD AC -=-,∠当点D 滑动到点A 时,点C 运动的路径长为((21224cm ⨯-=-;故答案为(24-.【点睛】本题主要考查正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理,熟练掌握正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理是解题的关键.23.(2022·湖北宜昌)如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西35︒方向,则ACB∠的大小是_____.【答案】85︒【分析】过C作CF DA∥交AB于F,根据方位角的定义,结合平行线性质即可求解.【详解】解:C岛在A岛的北偏东50︒方向,50∴∠=︒,DACC岛在B岛的北偏西35︒方向,35∴∠=︒,CBE过C作CF DA∥交AB于F,如图所示:∴∥∥,DA CF EB50,35∴∠=∠=︒∠=∠=︒,FCA DAC FCB CBEACB FCA FCB∴∠=∠+∠=︒,85故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.三.解答题24.(2022·江苏宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保冒根号).20)m.【答案】(【分析】过点A作AE∠CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt∠ADE中,求出AE的长,在Rt∠ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.【详解】解:过点A作AE∠CD于点E,由题意可知,∠B=∠BDE=∠AED=90°,∠四边形ABDE是矩形,∠DE=AB=20m,在Rt ∠ADE 中,∠AED =90°,∠DAE =30°,DE =20m ,∠tan∠DAE =DE AE ,∠20tan tan 30DE AE DAE ===∠︒, 在Rt ∠ACE 中,∠AEC =90°,∠CAE =45°,∠∠ACE 是等腰直角三角形, ∠CE AE =m ,∠CD =CE +DE =(20)m , ∠信号塔的高度为(20)m .【点睛】此题考查了解直角三角形的应用仰角俯角问题、矩形的判定和性质、等腰直角三角形的判定和性质、特殊角的锐角三角函数等知识,借助仰角俯角构造直角三角形与矩形是解题的关键.25.(2022·天津)如图,某座山AB 的项部有一座通讯塔BC ,且点A ,B ,C 在同一条直线上,从地面P 处测得塔顶C 的仰角为42︒,测得塔底B 的仰角为35︒.已知通讯塔BC 的高度为32m ,求这座山AB 的高度(结果取整数).参考数据:tan350.70tan 420.90︒≈︒≈,.【答案】这座山AB 的高度约为112m【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解.【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan AC APC PA ∠=, ∠tan AC PA APC =∠. 在Rt PAB 中,tan AB APB PA ∠=, ∠tan AB PA APB =∠. ∠AC AB BC =+, ∠tan tan AB BC AB APC APB+=∠∠. ∠()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m .【点睛】本题考查三角函数测高,解题的关键在运用三角函数的定义表示出未知边,列出方程.26.(2022·浙江湖州)如图,已知在Rt ∠ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.【答案】AC =4,sin A =35【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∠∠C =Rt ∠,AB =5,BC =3,∠4AC =.3sin 5BC A AB ==. 【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.27.(2022·新疆)周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为45︒,看这栋楼底部的俯角为37︒,已知两楼之间的水平距离为30m ,求这栋楼的高度.(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)【答案】这栋楼的高度为:52.5米【分析】如图,过A 作AE ∠BC 于E ,在Rt ∠AEB 和Rt ∠AEC 中,根据正切的概念分别求出BE 、EC ,计算即可.【详解】解:过A 作AE BC ⊥于E ,∠90AEB AEC ∠=∠=︒由依题意得:45,37,30EAB CAE CD AE ∠=︒∠=︒==,Rt AEB 和Rt AEC 中, ∠tan BAE BE AE ∠=,tan CE CAE AE∠= ∠tan 4530130BE AE =⨯︒=⨯=,tan37300.7522.5CE AE =⨯︒≈⨯=∠3022.552.5BC BE CE =+=+=∠这栋楼的高度为:52.5米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟练运用锐角三角函数的定义是解题的关键.28.(2022·湖南邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.1.414 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【分析】如图,过C作CD∠AB于点D,根据方向角的定义及余角的性质求出∠BAC=30°,∠CBD=45°,解Rt∠ACD和Rt∠BCD,求出CD即可.【详解】解:过点C作CD∠AB,垂足为D.如图所示:根据题意可知∠BAC=90°−60°=30°,∠DBC=90°-45°=45°,AB=30×1=30(km),在Rt∠BCD中,∠CDB=90°,∠DBC=45°,tan∠DBC=CDBD ,即CDBD=1∠CD=BD设BD=CD=x km,在Rt∠ACD中,∠CDA=90°,∠DAC=30°,∠tan∠DAC =CD AD ,即30x x =+解得x,∠40.98km>40km∠这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.29.(2022·湖南怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.≈1.41)【答案】不穿过,理由见解析【分析】先作AD ∠BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A 作AD ∠BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x ,在Rt ∠ACD 中,∠ACD=45°,∠∠CAD=45°,∠AD=CD =x .在Rt ∠ABD 中,tan 30AD BD ︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.30.(2022·四川成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)【答案】约为19cm【分析】在Rt ∠ACO 中,根据正弦函数可求OA =20cm ,在Rt ∠A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt ∠ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∠OA =10201sin 302OC,在Rt ∠A DO '中,18072A OC A OB ,20OA OA '==cm , ∠sin72200.9519A D OA cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.31.(2022·四川泸州)如图,海中有两小岛C ,D ,某渔船在海中的A 处测得小岛C 位于东北方向,小岛D 位于南偏东30°方向,且A ,D 相距10 nmile .该渔船自西向东航行一段时间后到达点B ,此时测得小岛C位于西北方向且与点B 相距nmile.求B,D 间的距离(计算过程中的数据不取近似值).【答案】B,D间的距离为14nmile.【分析】如图,过点D作DE∠AB于点E,根据题意可得,∠BAC=∠ABC=45°,nmile.再根据锐角三角函数即可求出B,∠BAD=60°,AD=10 nmile,BCD间的距离.【详解】解:如图,过点D作DE∠AB于点E,nmile.根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BC在Rt∠ABC中,AC=BC=16(nmile),∠AB在Rt∠ADE中,AD=10 nmile,∠EAD=60°,∠DE=AD,AE=1AD=5 (nmile),2∠BE=AB-AE=11(nmile),∠BD=14(nmile),答:B,D间的距离为14nmile.【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.32.(2022·浙江台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m ;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】梯子顶部离地竖直高度BC 约为2.9m .【分析】根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC 的长.【详解】解:在Rt ∠ABC 中,AB =3,∠ACB =90°,∠BAC =75°,∠BC =AB ∠sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC 约为2.9m .【点睛】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.33.(2022·湖南湘潭)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DH AH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,1.732)【答案】72cm【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解.【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒1cos 60102AE AB AB ∴=︒⨯==,BE ==,,AB AC BAD CAD AD AD =∠=∠= ADC ADB ∴≌90BDC ∠=︒45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+ 0.618DHAH ≈0.618DH DH AD∴≈+ 解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈答:最少需要准备72cm 长的伞柄【点睛】本题考查了解直角三角形的应用,掌握直角三角形中边角关系是解题的关键.34.(2022·湖南常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道50AF =米,弧形跳台的跨度7FG =米,顶端E 到BD 的距离为40米,HG BC ∥,40AFH ∠=︒,25EFG ∠=︒,36ECB ∠=︒.求此大跳台最高点A 距地面BD 的距离是多少米(结果保留整数).(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin 250.42︒≈,cos250.91︒≈,tan 250.47︒≈,sin360.59︒≈,cos360.81︒≈,tan360.73︒≈)【答案】70【分析】过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形,可得HB MN =,在Rt AHF △中,求得AH ,根据,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠,7FG =,求得FM ,进而求得MN ,根据AB AH HB AH MN =+=+即可求解.【详解】如图,过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形, HB MN ∴=,50AF =,40AFH ∠=︒,在Rt AHF △中,sin 500.6432AH AF AFH =⋅∠≈⨯=米,HG BC ∥,EGF ECB ∴∠=∠25EFG ∠=︒,36ECB ∠=︒,7FG =,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠ 70.470.73EM EM ∴+=, 解得2EM ≈,顶端E 到BD 的距离为40米,即40EN =米40238MN EN EM ∴=-=-=米.323870AB AH HB AH MN ∴=+=+=+=米.【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.35.(2022·湖北宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒≤≤︒.如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin660.91︒≈,cos660.41︒≈,tan66 2.25︒≈)【答案】(1)梯子顶端A 与地面的距离的最大值3.8米(2)66ABO ∠=︒,人能安全使用这架梯子【分析】(1)AB 的长度固定,当∠ABO 越大,OA 的高度越大,当72α=︒时,AO 取最大值,此时,根据∠ABO 的正弦三角函数计算出OA 长度即可;(2)根据AB=4,OB=1.64,利用∠ABO的余弦函数值,即可求出∠ABO的大小,从而得到答案.(1)∠5372α︒≤≤︒当72α=︒时,AO取最大值,在Rt AOB中,sinAO ABOAB∠=,∠sin4sin7240.95 3.8AO AB ABO=∠=︒≈⨯=,所以梯子顶端A与地面的距离的最大值3.8米.(2)在Rt AOB中,cosBO ABOAB∠=,cos 1.6440.41ABO∠=÷=,cos660.41︒≈,∠66ABO∠=︒,∠5372α︒≤≤︒,∠人能安全使用这架梯子.【点睛】本题考查三角函数的应用,属于中考常见考题,利用图形中的直角三角形,建立三角函数模型是解题的关键.36.(2022·湖南株洲)如图1所示,某登山运动爱好者由山坡∠的山顶点A处沿线段AC至山谷点C处,再从点C处沿线段CB至山坡∠的山顶点B处.如图2所示,将直线l视为水平面,山坡∠的坡角30ACM∠=︒,其高度AM为0.6千米,山坡∠的坡度1:1i=,BN l⊥于N,且CN。
中考数学点对点-解直角三角形问题(解析版)
∴AD=AB×sin30°=20 10(海里),
BD=AB×cos30°=20 10 10×1.73=17.3,
∵BD⊥AC,BF⊥CE,CE⊥AC,
∴∠BDC=∠DCF=∠BFC=90°,
∴四边形BDCF为矩形,
∴DC=BF﹣9.7,FC=BD=17.3,
如图,连接BC.
∵∠ADC和∠ABC所对的弧长都是 ,
∴根据圆周角定理知,∠ADC=∠ABC.
在Rt△ACB中,根据锐角三角函数的定义知,
sin∠ABC ,
∵AC=2,BC=3,
∴AB ,
∴sin∠ABC ,
∴sin∠ADC .
【例题3】(2020•荆门)如图,海岛B在海岛A的北偏东30方向,且与海岛A相距20海里,一艘渔船从海岛B出发,以5海里/时的速度沿北偏东75°方向航行,同时一艘快艇从海岛A出发,向正东方向航行.2小时后,快艇到达C处,此时渔船恰好到达快艇正北方向的E处.
(2)在Rt△BEF中,解直角三角形求出EF,BF,在Rt△ABD中,解直角三角形求出AD,BD,证明四边形BDCF为矩形,得出DC,FC,求出CE的长,则可得出答案.
【解析】(1)过点B作BD⊥AC于点D,作BF⊥CE于点E,
由题意得,∠NAB=30°,∠GBE=75°,
∵AN∥BD,
∴∠ABD=∠NAB=30°,
∠B=90°-∠A,a=c·sinA, b=c·cosA
五、特殊值的三角函数
三角函数
0°
30°
45°
60°
90°
sinα
0
1
cosα
1
0
tanα
0
1
解直角三角形中考题
解直角三角形中考题在平面几何中,解直角三角形是中考必考知识点之一,也是初中数学的重点内容之一。
下面从以下几个方面来探讨解直角三角形在中考中的常见题型和解法。
一、锐角三角函数锐角三角函数是解直角三角形的基础知识,主要考查学生对三角函数的掌握程度。
一般题型为:已知一个锐角,求其它锐角的三角函数值。
例题:在Rt△ABC中,∠C=90°,BC=3,AC=4,则sinA=____,cosA=____,tanA=____。
解析:根据勾股定理可求得AB=5,再根据锐角三角函数的定义可求得答案。
二、解直角三角形解直角三角形是解直角三角形中最重要的题型,主要考查学生对勾股定理、锐角三角函数的掌握以及应用能力。
一般题型为:已知一直角三角形中的两个边长或一个边长和另一个角的三角函数值,求未知边的长度。
例题:在Rt△ABC中,∠C=90°,BC=3,sinA=0.6,求AC的长。
解析:根据已知条件可求得∠B的三角函数值,再利用勾股定理可求得AC的长。
三、应用题应用题是将解直角三角形与实际生活相结合的题型,主要考查学生的综合应用能力。
一般题型为:以实际问题为背景,通过解直角三角形来解决实际问题。
例题:某小区有一个矩形花坛,长为6米,宽为4米。
现在要在这个花坛的基础上修建一个尽可能大的圆形花坛,这个圆形花坛的半径是多少米?解析:根据题意可知,这个圆形花坛是以矩形花坛的对角线为直径的圆,通过勾股定理可求得对角线的长度,从而可求得半径的长度。
总之,解直角三角形是中考数学的重要知识点之一,需要学生掌握勾股定理、锐角三角函数的定义以及应用等基础知识,并能够灵活运用这些知识来解决实际问题。
也需要学生平时多加练习,提高自己的解题能力和思维水平。
中考数学解直角三角形一、定义:在一个直角三角形中,斜边上的高分两个直角三角形,其中一个与原三角形相似,另一个与原三角形轴对称。
二、解直角三角形的步骤:1、判断三角形的形状:在一个三角形中,最大的角是90°,所以只要有一个角是90°的三角形就是直角三角形。
中考数学复习:专题7-12 解直角三角形在实际生活中的应用
专题12 解直角三角形在实际生活中的应用【专题综述】在现实生活中, 有许多和解直角三角形有关的实际问题,如航海航空、建桥修路、测量技术、图案设计等,解决这类问题其关键是把具体问题抽象成“直角三角形”模型,利用直角三角形的边角关系以及勾股定理来解决.【方法解读】一、航空问题例1:抢险队派一架直升飞机去A 、B 两个村庄抢险,飞机在距地面450米上空的P 点,测得A 村的俯角为30︒,B 村的俯角为60︒(如图).求A 、B 两个村庄间的距离.(结果精确到米,参考数据2 1.4143 1.732==,)【举一反三】(2016内蒙古巴彦淖尔市)如图,某日,正在我国南海海域作业的一艘大型渔船突然发生险情,相关部门接到求救信号后,立即调遣一架直升飞机和一艘正在南海巡航的渔政船前往救援,当飞机到达海面3000m 的高空C 处时,测得A 处渔政船的俯角为45°,测得B 处发生险情渔船的俯角为30°,此时渔政船和渔船的距离AB 是( )A .30003mB .3000(31)+mC .3000(31)-mD .15003m二、测量问题例2:如图所示,课外活动中,小明在离旗杆AB 10米的C 处,用测角仪测得旗杆顶部A 的仰角为40︒,已知测角仪器的高CD =1.5米,求旗杆AB 的高(精确到0.1米) .【举一反三】我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住。
若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路。
三、建桥问题例3:如图所示,A、B两地之间有一条河,原来从A地到B地需要经过DC,沿折线A→D→C→B到达,现在新建了桥EF,可直接沿直线AB从A地到达B地.一直BC=11km,∠A=45°,∠B=37°.桥DC和AB平行,2 ,sin37°≈0.60,则现在从A地到达B地可比原来少走多少路程?(结果精确到0.1km.参考数据: 1.41cos37°≈0.80).【举一反三】黄冈市为了改善市区交通状况,计划修建一座新大桥.如图,新大桥的两端位于A、B两点,小张为了测量A、B之间的河宽,在垂直于新大桥AB的直线型道路l上测得如下数据:∠BDA=76.1°,∠BCA=68.2°,CD=82米.求AB的长(精确到0.1米).参考数据:sin76.1°≈0.97,cos76.1°≈0. 24,tan76.1°≈4.0;sin68.2°≈0.93,cos68.2°≈0.37,tan68.2°≈2.5.四、图案设计问题例4. “创意设计”公司员工小王不慎将墨水泼在一张设计图纸上,导致其中部分图形和数据看不清楚(如图所示).已知图纸上的图形是某建筑物横断面的示意图,它是以圆O的半径OC所在的直线为对称轴的轴对称图形,A是OD与圆O的交点.由于图纸中圆O的半径r的值已看不清楚,根据上述信息(图纸中i 是坡面CE的坡度),求r的值.1:0.75【举一反三】如图,为了测量某电线杆(底部可到达)的高度,准备了如下的测量工具:①平面镜;②皮尺;③长为2米的标杆;④高为1.5m的测角仪(测量仰角、俯角的仪器),请根据你所设计的测量方案,回答下列问题:(1)画出你的测量方案示意图,并根据你的测量方案写出你所选用的测量工具;(2)结合你的示意图,写出求电线杆高度的思路.【强化训练】1.如图,一位同学想利用树影测量树高(AB),他在某一时刻测得高为1m的竹竿影长为0.9m,但当他马上测量树影时,因树靠近一幢建筑物,影子不全落在地面上,有一部分影子在墙上(CD),他先测得留在墙上的影高(CD)为1.2m,又测得地面部分的影长(BC)为2.7m,他测得的树高应为多少米?2.如图,某飞机于空中探测某座山的高度,在点A处飞机的飞行高度是AF=3700米,从飞机上观测山顶目标C的俯角是45°,飞机继续以相同的高度飞行300米到B处,此时观测目标C的俯角是50°,求这座山的高度CD. (参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).3.如图,在我市的上空一架飞机由A向B沿水平直线方向飞行,沿航线AB的正下方有两个景点水城明珠大剧院(记为点C),光岳楼(记为点D),飞机在A处时,测得景点C、D在飞机的前方,俯角分别为60°和30°.飞机飞行了3千米到B处时,往后测得景点C的俯角为30°.而景点D恰好在飞机的正下方,求水城明珠大剧院与光岳楼之间的距离(最后结果精确到0.1千米)4.某兴趣小组借助无人飞机航拍校园.如图,无人飞机从A处水平飞行至B处需8秒,在地面C处同一方向上分别测得A处的仰角为75°,B处的仰角为30°.已知无人飞机的飞行速度为4米/秒,求这架无人飞机的飞行高度.(结果保留根号)5.在某飞机场东西方向的地面l上有一长为1km的飞机跑道MN(如图),在跑道MN的正西端14.5千米处有一观察站A.某时刻测得二架匀速直线降落的飞机位于点A的北偏西30°,且与点A相距15千米的B处;经过1分钟,又测得该飞机位于点A的北偏东60°,且与点A相距5万千米的C处.⑴该飞机航行的速度是多少千米/小时?(结果保留根号)⑵如果该飞机不改变航向继续航行,那么飞机能否降落在跑道MN之间?请说明理由。
2024年广东省中考数学总复习专题20:解直角三角形
2024年广东省中考数学总复习专题20
解直角三角形一、锐角三角函数的定义
在Rt△ABC中,∠C=90°,AB=c,BC=a,AC=b
,
正弦:sin A=∠的对边
=
斜边
A a
c;余弦:cos A=
∠的邻边
=
斜边
A b
c;正切:tan A=
∠的对边
=
邻边
A a
b.
根据定义求三角函数值时,一定根据题目图形来理解,严格按照三角函数的定义求解,有时需要通过辅助线来构造直角三角形.
二、特殊角的三角函数值
三、解直角三角形
1.在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形.
2.解直角三角形的常用关系:在Rt△ABC中,∠C=90°,则:1)三边关系:a2+b2=c2;2)两锐角关系:∠
A+∠B=90°;3)边与角关系:sin A=cos B=a
c,cos A=sin B=
b
c,tan A=
a
b;4)sin
2A+cos2A=1.
3.科学选择解直角三角形的方法口诀:
第1页(共12页)。
2020届中考数学专题:解直角三角形及其应用知识点及典型例题(含答案)
解直角三角形及其应用【学习目标】1.了解解直角三角形的含义,会综合运用平面几何中有关直角三角形的知识和锐角三角函数的定义解直角三角形;2.会运用有关解直角三角形的知识解决实际生活中存在的解直角三角形问题.【要点梳理】要点一、解直角三角形在直角三角形中,由已知元素(直角除外)求未知元素的过程,叫做解直角三角形.在直角三角形中,除直角外,一共有5个元素,即三条边和两个锐角.设在Rt△ABC中,∠C=90°,∠A、∠B、∠C所对的边分别为a、b、c,则有:①三边之间的关系:a2+b2=c2(勾股定理).②锐角之间的关系:∠A+∠B=90°.③边角之间的关系:,,,,,.④,h为斜边上的高.要点诠释:(1)直角三角形中有一个元素为定值(直角为90°),是已知值.(2)这里讲的直角三角形的边角关系指的是等式,没有包括其他关系(如不等关系).(3)对这些式子的理解和记忆要结合图形,可以更加清楚、直观地理解.要点二、解直角三角形的常见类型及解法已知条件解法步骤Rt△ABC 两边两直角边(a,b)由求∠A,∠B=90°-∠A,斜边,一直角边(如c,a)由求∠A,∠B=90°-∠A,一边一一直角边和一锐角锐角、邻边(如∠A,b)∠B=90°-∠A,,角锐角、对边(如∠A,a)∠B=90°-∠A,,斜边、锐角(如c,∠A)∠B=90°-∠A,,要点诠释:1.在遇到解直角三角形的实际问题时,最好是先画出一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,然后按先确定锐角、再确定它的对边和邻边的顺序进行计算.2.若题中无特殊说明,“解直角三角形”即要求出所有的未知元素,已知条件中至少有一个条件为边.要点三、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.解这类问题的一般过程是:(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.拓展:在用直角三角形知识解决实际问题时,经常会用到以下概念:(1)坡角:坡面与水平面的夹角叫做坡角,用字母表示.坡度(坡比):坡面的铅直高度h和水平距离的比叫做坡度,用字母表示,则,如图,坡度通常写成=∶的形式.(2)仰角、俯角:视线与水平线所成的角中,视线中水平线上方的叫做仰角,在水平线下方的叫做俯角,如图.(3)方位角:从某点的指北方向线按顺时针转到目标方向的水平角叫做方位角,如图①中,目标方向PA,PB,PC的方位角分别为是40°,135°,245°.(4)方向角:指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角,如图②中的目标方向线OA,OB,OC,OD的方向角分别表示北偏东30°,南偏东45°,南偏西80°,北偏西60°.特别如:东南方向指的是南偏东45°,东北方向指的是北偏东45°,西南方向指的是南偏西45°,西北方向指的是北偏西45°.要点诠释:1.解直角三角形实际是用三角知识,通过数值计算,去求出图形中的某些边的长或角的大小,最好画出它的示意图.2.非直接解直角三角形的问题,要观察图形特点,恰当引辅助线,使其转化为直角三角形或矩形来解.3.解直角三角形的应用题时,首先弄清题意(关键弄清其中名词术语的意义),然后正确画出示意图,进而根据条件选择合适的方法求解.【典型例题】类型一、解直角三角形1.在Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边,根据下列条件,解这个直角三角形.(1)∠B=60°,a=4; (2)a=1,3b=.【答案】(1)∠A=90°-∠B=90°-60°=30°.由tanbBa=知,tan4tan6043b a B==⨯=g°.由cosaBc=知,48cos cos60acB===°.(2)由tan 3bB a==得∠B =60°,∴ ∠A =90°-60°=30°. ∵ 222a b c +=,∴ 2242c a b =+==.2.如图所示,在Rt △ABC 中,∠C =90°,∠B =30°,b =20,解这个直角三角形.【答案】由∠C =90°知,∠A+∠B =90°,而∠B =30°, ∴ ∠A =90°-30°=60°.又 sin 30b c=°,∴ 1202c =.∴ c =40.由勾股定理知222a cb =-.∴ 2224020a =-,203a =.举一反三:(1)已知a=23,b=2 ,求∠A 、∠B 和c ;(2)已知sinA=23, c=6 ,求a 和b ; 【答案】(1)c=4;∠A=60°、∠B=30°; (2)a=4;b=25 类型二、解直角三角形在解决几何图形计算问题中的应用3.如图所示,BC 是半圆⊙O 的直径,D 是»AC 的中点,四边形ABCD 的对角线AC 、BD 交于点E ,(1)求证:△ABE ∽△DBC ; (2)已知BC =52,CD =52,求sin ∠AEB 的值;(3)在(2)的条件下,求弦AB 的长.【答案】(1)∵ »»AD CD =,∴ ∠1=∠2,又BC是⊙O的直径,∴∠BAC=∠BDC=90°.∴△ABE∽△DBC.(2)由△ABE∽△DBC,∴∠AEB=∠DCB.在Rt△BDC中,BC=52,CD=52,∴ BD=225BC CD-=,∴ sin∠AEB=sin∠DCB=525552BDBC==.(3)在Rt△BDC中,BD=5,又∠1=∠2=∠3,∠ADE=∠BDA,∴△AED∽△BAD.∴AD DEDB AD=,∴2AD DE DB=g.又∵52CD AD==,∴ CD2=(BD-BE)·BD,即25(5)52BE⎛⎫=-⎪⎪⎝⎭g,∴354BE=.在Rt△ABE中,AB=BE.sin∠AEB=32355452⨯=.举一反三:如图,在△ABC中,AC=12cm,AB=16cm,sinA=13.(1)求AB边上的高CD;(2)求△ABC的面积S;(3)求tanB.【答案】(1)CD=4cm;(2)S=32 cm2;(3)tanB=+224.类型三、解直角三角形在解决实际生活、生产问题中的应用4.某过街天桥的截面图为梯形,如图所示,其中天桥斜面CD的坡度为1:3i=(i=1:3是指铅直高度DE 与水平宽度CE 的比),CD 的长为10 m ,天桥另一斜面AB 的坡角∠ABC =45°.(1)写出过街天桥斜面AB 的坡度; (2)求DE 的长;(3)若决定对该过街天桥进行改建,使AB 斜面的坡度变缓,将其45°坡角改为30°,方便过路群众,改建后斜面为AF ,试计算此改建需占路面的宽度FB 的长(结果精确到.0.01 m). 【答案】(1)作AG ⊥BC 于G ,DE ⊥BC 于E ,在Rt △AGB 中,∠ABG =45°,AG =BG . ∴ AB 的坡度1AGi BG'==. (2)在Rt △DEC 中,∵ 3tan 3DE C EC ∠==,∴ ∠C =30°. 又∵ CD =10 m .∴ 15m 2DE CD ==. (3)由(1)知AG =BG =5 m ,在Rt △AFG 中,∠AFG =30°,tan AGAFG FG∠=,即3535FB =+,解得535 3.66(m)FB =-=. 答:改建后需占路面的宽度FB 的长约为3.66 m .5.腾飞中学在教学楼前新建了一座“腾飞”雕塑.为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图所示).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3=1.73).【答案】过点C 作CE ⊥AB 于E .∵ ∠D =90°-60°=30°,∠ACD =90°-30°=60°, ∴ ∠CAD =180°-30°-60°=90°.∵ CD =10,∴ AC =12CD =5. 在Rt △ACE 中,AE =AC ·sin ∠ACE =5×sin 30°=52, CE =AC ·cos ∠ACE =5×cos 30°=532,在Rt △BCE 中,∵ ∠BCE =45°, ∴ 5553(31)222AB AE BE =+=+=+≈6.8(米). ∴ 雕塑AB 的高度约为6.8米.【巩固练习】一、选择题1.在△ABC 中,∠C =90°,4sin 5A =,则tan B =( ). A .43 B .34 C .35 D .452.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).A .7sin 35°B .7cos35°C .7cos 35°D .7tan 35°3.河堤、横断面如图所示,堤高BC =5米,迎水坡AB 的坡比是1:3(坡比是坡面的铅直高度BC 与水平宽度AC 之比),则AC 的长是( ).A .53米B .10米C .15米D .103米4.如图所示,正方形ABCD 中,对角线AC 、BD 交于点O ,点M 、N 分别为OB 、OC 的中点, 则cos ∠OMN 的值为( ).A .12B .22C .32D .1第3题 第4题 第5题5.如图所示,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α,那么滑梯长l 为 ( )A .sin h α B .tan h α C .cos h αD .sin h αg6.如图所示,在△ABC 中,∠C =90°,AC =16 cm ,AB 的垂直平分线MN 交AC 于D ,连接BD ,若3cos5BDC∠=,则BD的长是( ).A.4 cm B.6 cm C.8 cm D.10 cm7.如图所示,一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( ).A.30海里 B.40海里 C.50海里 D.60海里第6题第7题第8题8.如图所示,为了测量河的宽度,王芳同学在河岸边相距200 m的M和N两点分别测定对岸一棵树P 的位置,P在M的正北方向,在N的北偏西30°的方向,则河的宽度是( ).A.2003m B.20033m C.1003m D.100m二、填空题9.如图所示,在Rt△ABC中,∠C=90°,AM是BC边上的中线,sin∠CAM=35,则tan∠B的值为______.10.如图所示,等边三角形ABC中,D、E分别为AB、BC边上的点,AD=BE,AE与CD交于点F,AG⊥CD于点G,则AGAF的值为________.第9题第10题第11题11.如图所示,一艘海轮位于灯塔P的东北方向,距离灯塔402海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则海轮行驶的路程AB为________海里(结果保留根号).12.如图所示,直角梯形ABCD中,AB⊥BC,AD∥BC,BC>AD,AD=2,AB=4,点E在AB上,将△CBE 沿CE翻折,使B点与D点重合,则∠BCE的正切值是________.13.如图所示.线段AB、DC分别表示甲、乙两座建筑物的高.AB⊥BC,DC⊥BC,两建筑物间距离BC=30米,若甲建筑物高AB=28米,在A点测得D点的仰角α=45°,则乙建筑物高DC=__ __米.第12题第13题第14题14.在一次夏令营活动中,小明同学从营地A出发,要到A地的北偏东60°方向的C处,他先沿正东方向走了200m到达B地,再沿北偏东30°方向走,恰能到达目的地C(如图所示),那么,由此可知,B、C两地相距________m.三、解答题15.如图所示,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度,他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为1:3(即AB:BC=1:3),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).16. 如图所示,某校数学兴趣小组的同学欲测量一座垂直于地面的古塔BD的高度,他们先在A处测得古塔顶端点D的仰角为45°,再沿着BA的方向后退20m至C处,测得古塔顶端点D的仰角为30°.求该古塔BD的高度(3≈1.732,结果保留一位小数).17.如图所示是某品牌太阳能热水器的实物图和横断面示意图,已知真空集热管AB与支架CD所在直线相交于水箱横断面⊙O的圆心,支架CD与水平面AE垂直,AB=150厘米,∠BAC=30°,另一根辅助支架DE=76厘米,∠CED=60°.(1)求垂直支架CD的长度.(结果保留根号)(2)求水箱半径OD的长度.(结果保留三个有效数字,参考数据:2≈1.41,3≈1.73)【答案与解析】 一、选择题 1.【答案】B ;【解析】如图,sin A =45BC AB =,设BC =4x .则AB =5x .根据勾股定理可得AC =223AC AB BC x =-=,∴ 33tan 44AC x B BC x ===. 2.【答案】C ;【解析】在Rt △ABC 中,cos BCB AB=.∴ BC =ABcosB =7cos 35°. 3.【答案】A ; 【解析】由tan BCi A BC===1:3知,353AC BC ==g (米). 4.【答案】B ;【解析】由题意知MN ∥BC ,∠OMN =∠OBC =45°,∴ 2cos 2OMN ∠=. 5.【答案】A ;【解析】由定义sin h l α=,∴ sin h l α=. 6.【答案】D ;【解析】∵ MN 是AB 的中垂线, ∴ BD =AD .又3cos 5DC BDC BD ∠==, 设DC =3k ,则BD =5k ,∴ AD =5k ,AC =8k .∴ 8k =16,k =2,BD =5×2=10.7.【答案】B ;【解析】 连接AC ,∵ AB =BC =40海里,∠ABC =40°+20°=60°, ∴ △ABC 为等边三角形,∴ AC =AB =40海里. 8.【答案】A【解析】依题意PM ⊥MN ,∠MPN =∠N =30°,tan30°200PM=,2003PM =.二、填空题9.【答案】23;【解析】在Rt△ACM中,sin∠CAM=35,设CM=3k,则AM=5k,AC=4k.又∵ AM是BC边上的中线,∴ BM=3k,∴ tan∠B=4263 AC kBC k==.10.【答案】32;【解析】由已知条件可证△ACE≌△CBD.从而得出∠CAE=∠BCD.∴∠AFG=∠CAE+∠ACD=∠BCD+∠ACD=60°,在Rt△AFG中,3sin602 AGAF==°.11.【答案】40403+;【解析】在Rt△APC中,PC=AC=AP·sin∠APC=2 402402⨯=.在Rt△BPC中,∠BPC=90°-30°=60°,BC=PC·tan∠BPC=403,所以AB=AC+BC=40403+.12.【答案】12;【解析】如图,连接BD,作DF⊥BC于点F,则CE⊥BD,∠BCE=∠BDF,BF=AD=2,DF=AB=4,所以21 tan tan42BFBCE BDFDF∠=∠===.13.【答案】58;【解析】α=45°,∴ DE=AE=BC=30,EC=AB=28,DE=DE+EC=58 14.【答案】200;【解析】由已知∠BAC=∠C=30°,∴ BC=AB=200.三、解答题15.【答案与解析】过点A作AF⊥DE于F,则四边形ABEF为矩形,∴ AF=BE,EF=AB=2.设DE=x,在Rt△CDE中,3tan tan603DE DECE xDCE===∠°.在Rt △ABC 中,∵ 13AB BC =,AB =2,∴ 23BC =. 在Rt △AFD 中,DF =DE-EF =x-2.∴ 23(2)tan tan 30DF x AF x DAF -===-∠°∵ AF =BE =BC+CE . ∴ 33(2)233x x -=+,解得6x =. 答:树DE 的高度为6米.16.【答案与解析】根据题意可知:∠BAD =45°,∠BCD =30°,AC =20m .在Rt △ABD 中,由∠BAD =∠BDA =45°,得AB =BD .在Rt △BDC 中,由tan ∠BCD =BD BC ,得3tan 30BD BC BD ==°. 又∵ BC-AB =AC .∴ 320BD BD -=,∴ BD =2031-≈27.3(m). 答:该古塔的高度约为27.3m .17.【答案与解析】(1)在Rt △DCE 中,∠CED =60°,DE =76,∵ sin ∠CED =DC DE,∴ DC =DE ×sin ∠CED =383(厘米) 答:垂直支架CD 的长度为383厘米.(2)设水箱半径OD =x 厘米,则OC =(383)x +厘米,AO =(150)x +厘米,∵ Rt △OAC 中,∠BAC =30°∴ AO =2×OC ,即:150+x =2(383)x +厘米,AO =(150+x)厘米, 解得:150763x =-≈18.52≈18.5(厘米)答:水箱半径OD 的长度约为18.5厘米.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解直角三角形及其应用在中考数学中的分析
(一)命题分析
2015~2017年安徽中考数学命题分析
2018年安徽中考命题预测
年份 考察点 题型 题号 分
值
考察内容:由近几年的安徽中考可以看出,安徽省的中考每年都有解直角三角形知识的有关题目,都是解答题,而且都是考察解直角三角形的应用,分值为8~10分,难度每年也都差不多,属于“一般”难度。
考察题型:以解答题为主 中考趋势:预测2018年安徽中考也会延续近五年的中考趋势,会考一个“解直角三角形的应用”的解答题。
2013
从实际问题中建立直角三角形模型,利用锐角三角函数解决实际问题。
解答题 19 10 2014
从实际问题中建立直角三角形模型,利用锐角三角函数解决实际问题。
解答题 18 8 2015 解直角三角形的应用 解答题 18 8 2016 解直角三角形的应用 解答题 19 10
2017 解直角三角形的应用 解答题 17 8
(二)考点分析
知识点1:锐角三角函数
在ABC Rt ∆中,C ∠是直角,则
A
AB BC A =sin ,AB AC A =cos ,AC
BC
A =tan
C B
【例1】在ABC Rt ∆中, 90=∠C ,若AB=5,AC=4,则=B sin ________.
【例2】在ABC Rt ∆中, 90=∠C ,AB=13,BC=12,则=B sin _________.
【例3】如图,ABC ∆的顶点都是正方形网格中的格点,则ABC san ∠等于( )
4、坡角:坡面与水平面的夹角叫坡角,记作α,有αtan ==
l
h
i 。
【例6】如图,防洪大堤的横断面是梯形ABCD ,其中AD ∥BC ,坡角α=600,汛期来临前对其进行了加固,改造后的背水面坡角β=45°,若原坡长AB=20m ,求改造后的坡长AE (结果保留根号)
(三)真题分析
(2017安徽中考)17.如图,游客在点A 处出发,沿A-B-D 的路线可至山顶D 处,假设AB 和BD 都是直线段,且AB=BD=600m, 45,75==βα,求DE 的长。
(参考数据:
41.12,26.075cos ,97.075sin ≈≈≈ )
解:如图所示,在BDF Rt ∆中,
45sin =BD
DF
, )(423230045sin m BD DF ≈=⋅=∴ ,
在ABC Rt ∆中,
75cos =AB
BC
, )(15675cos m AB BC ≈⋅=∴
)(156m BC EF ==∴
)(579156423m EF DF DE =+=+=∴
答:DE 长579米。
(2016安徽中考)19.如图,河的两岸1l 与2l 相互平行,A 、B 是1l 上的两点,C 、D 是2l 上的两点。
某人在点A 处测得 90=∠CAB , 30=∠DAB ,再沿AB 方向前进20米到达点E (点E 在线段AB 上),测得 60=∠DEB ,求C 、D 两点间的距离。
2l C D
1l A E F B 解:过D 点作AB DF ⊥交AB 于点F ,
30,60=∠=∠DAB DEB ,
30=∠-∠=∠∴DAB DEB ADE ,
ADE ∆∴是等腰三角形, 20==∴AE DE 米。
在DEF Rt ∆中,102
1
2060cos =⨯
=∙= DE EF (米)。
米。
是矩形。
四边形30//.//,90,=+==∴∴∴=∠∴⊥EF AE AF CD ACDF CD
AF DF AC DFB AF DF
(2015安徽中考)18.如图,平台AB 高12米,在B 处测得楼房CD 的顶部D 点的
仰角为45°,底部C 点的俯角为30°,求楼房CD 的高度。
(参考数据:7.13≈)
解:过B 点作CD BE ⊥交CD 于点E ,
米12,30,45===∠=∠CE AB CBE DBE
米米312,3123
3
12
30tan =====
∴BE DE CE BE
米4.3231212≈+=+=∴DE CE CD
答:楼房CD 高32.4米。
拓展提升训练
1、如图,为了测量河两岸A,B两点的距离,在与AB垂直的方向上取点C,测得AC=a,
∠ACB= ,那么AB等于()
A.a•sinα B.a•cosα C.a•tanα D.a•cotα
2、某人沿着有一定坡度的坡面前进了10米,此时他与水平地面的垂直距离为2米,则这个坡面的坡度比为.
3、如图,AB和CD是同一地面上的两座相距36米的楼房,在楼AB的楼顶A点测得楼CD的楼顶C的仰角为45°,楼底D的俯角为30°,求楼CD的高度(结果保留根号)。