正弦定理和余弦定理详细讲解
正余弦定理公式大全
正余弦定理公式大全正弦定理和余弦定理是解三角形的两个重要定理,它们在三角形的边和角之间建立了重要的关系,对于解决三角形的边和角问题有着重要的作用。
下面将详细介绍正弦定理和余弦定理的公式以及它们的应用。
1. 正弦定理公式。
在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则正弦定理公式可以表示为:a/sinA = b/sinB = c/sinC = 2R。
其中,R为三角形外接圆半径。
正弦定理的应用非常广泛,可以用来求解三角形的边长或者角度。
通过正弦定理,我们可以很容易地求解出三角形的各个边长或者角度大小,是解决三角形问题的重要工具之一。
2. 余弦定理公式。
在△ABC中,a、b、c分别为三角形的边长,A、B、C分别为三角形的内角,则余弦定理公式可以表示为:a² = b² + c² 2bccosA。
b² = a² + c² 2accosB。
c² = a² + b² 2abcosC。
余弦定理的应用也非常广泛,可以用来求解三角形的边长或者角度。
与正弦定理相比,余弦定理在某些情况下更加方便和实用,尤其是当我们已知三角形的三边长时,可以直接使用余弦定理来求解三角形的各个角度大小。
3. 正余弦定理的综合应用。
正弦定理和余弦定理是解决三角形问题的重要工具,它们可以相互结合,应用于各种不同的三角形问题中。
通过灵活运用正弦定理和余弦定理,我们可以解决各种不同类型的三角形问题,包括求解三角形的边长、角度大小,以及判断三角形的形状等。
在实际问题中,正弦定理和余弦定理常常需要结合其他几何知识和技巧来解决问题,因此在运用正弦定理和余弦定理时,需要灵活运用,结合具体问题来选择合适的方法和步骤,以便更加高效地解决问题。
总结。
正弦定理和余弦定理是解决三角形问题的重要工具,它们建立了三角形的边和角之间的重要关系,可以帮助我们求解各种不同类型的三角形问题。
高中数学知识点总结正弦定理与余弦定理
高中数学知识点总结正弦定理与余弦定理正弦定理与余弦定理是高中数学中的重要知识点,用于求解不规则三角形的边长和角度。
本文将对这两个定理进行详细总结与讲解。
一、正弦定理1.1 定义正弦定理是指在任意三角形中,三条边与其对应的角的正弦值之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC1.2 推导我们通过利用三角形的面积公式S=1/2 * a * b * sinC,并将其转换为对角线的形式,可以得到正弦定理的推导过程。
1.3 应用正弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用正弦定理求解未知的边长或者角度。
二、余弦定理2.1 定义余弦定理是指在任意三角形中,三条边和它们对应的角之间的关系。
设三角形的三边分别为a、b、c,对应的角度为A、B、C,则余弦定理的表达式为:c^2 = a^2 + b^2 - 2ab * cosC2.2 推导我们可以通过利用向量的几何关系,将余弦定理的表达式推导出来。
这个过程较为繁琐,这里就不做详细讲解。
2.3 应用余弦定理可以用于求解不规则三角形的边长和角度。
当我们已知三条边或者两条边和夹角时,可以利用余弦定理求解未知的边长或者角度。
三、正弦定理与余弦定理的比较3.1 适用范围正弦定理适用于任意三角形,而余弦定理只适用于任意三角形,不能用于直角三角形。
3.2 计算难度正弦定理的计算相对简单,只需要记住一个公式,而余弦定理的计算稍复杂,需要使用开方和乘法等运算。
3.3 精度误差由于余弦定理中涉及到平方运算,可能会带来一定的误差,而正弦定理中没有涉及到平方运算,计算结果更加准确。
3.4 应用场景正弦定理在计算不规则三角形的边长和角度时较为常用,尤其适用于已知两边和夹角的情况。
而余弦定理在计算不规则三角形的边长和角度时同样常用,特别适用于已知三边的情况。
余弦定理与正弦定理
余弦定理与正弦定理余弦定理和正弦定理是三角函数中重要的定理,它们在解决三角形相关问题时有着广泛的应用。
本文将介绍余弦定理和正弦定理的数学表达、推导方法以及在实际问题中的应用。
一、余弦定理余弦定理是解决三角形边长和内角之间关系的定理。
它的数学表达式如下:c² = a² + b² - 2abcosC其中,a、b和c分别表示三角形的三条边的长度,C表示夹角C的度数,cosC表示夹角C的余弦值。
为了更好地理解余弦定理,我们可以通过一个实例来说明。
假设有一个三角形,其两边分别为a=4,b=6,夹角C=60°,我们可以利用余弦定理计算第三边c的长度。
根据余弦定理,代入a、b和C的值:c² = 4² + 6² - 2×4×6×cos60°= 16 + 36 - 48×0.5= 16 + 36 - 24= 28通过开方运算我们可以得知c的长度为√28≈5.29。
二、正弦定理正弦定理也是解决三角形边长和内角之间关系的定理。
它的数学表达式如下:a / sinA =b / sinB =c / sinC其中,a、b、c分别表示三角形的三条边的长度,A、B、C分别表示三角形的三个内角的度数,sinA、sinB、sinC分别表示三个内角的正弦值。
同样以一个实例来说明正弦定理的应用。
假设有一个三角形,两边分别为a=4,b=6,夹角C=60°,我们可以利用正弦定理计算第三边c的长度。
根据正弦定理,代入a、b、C的值:4 / sinA = 6 / sinB = c / sin60°通过推导我们可以得到:c = 4 × sin60° / sinA= 6 × sin60° / sinB接下来,我们需要使用正弦函数的性质求出sinA和sinB的值。
假设A为夹角A的度数,则夹角B的度数为180° - A - C = 180° - A - 60°,根据三角函数关系得到:sinA / sin(180° - A - 60°) = a / b通过求解以上方程可以得到sinA和sinB的值。
三角形中的正弦定理与余弦定理
三角形中的正弦定理与余弦定理正文:三角形中的正弦定理与余弦定理三角形是几何学中最基本的图形之一,它包含了很多重要的定理和公式。
在三角形的研究中,正弦定理和余弦定理是两个非常重要且常用的公式。
它们可以帮助我们计算三角形的各种属性,如边长、角度等。
本文将详细介绍这两个定理的含义、推导过程,并给出实际应用的一些例子。
一、正弦定理正弦定理是指在一个三角形中,三条边与三个对应的正弦值之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB、sinC分别为三个角的正弦值。
这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的比例关系。
如果我们已知了三角形的一个角度和两个对应的边长,就可以利用正弦定理来计算第三个边的长度。
例如,已知三角形ABC中,角A的度数为30°,边AB的长度为3,边AC的长度为4,我们可以利用正弦定理求解边BC的长度。
根据正弦定理,我们有:BC/sinA = AC/sinC代入已知条件,得到:BC/sin30° = 4/sinC进一步计算可得:BC = 4*sin30°/sinC ≈ 4*0.5/sinC = 2/sinC通过这个简单的计算过程,我们可以求解出BC的长度。
正弦定理在实际应用中非常有用,可以帮助我们解决各种与三角形边长相关的问题。
二、余弦定理余弦定理是指在一个三角形中,三条边与一个对应的角度之间存在一定的关系。
设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cosC这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的关系。
利用余弦定理,我们可以计算三角形的一个边长,当已知该边的两个对应角度和另一边的长度时。
例如,已知三角形ABC中,边AB的长度为3,边AC的长度为4,角C的度数为60°,我们可以利用余弦定理来计算边BC的长度。
数学正弦定理余弦定理公式
数学正弦定理余弦定理公式正弦定理和余弦定理是数学中用于解决三角形相关问题的重要定理。
它们可以帮助我们求解不完全信息的三角形,包括边长和角度等。
本文将分别介绍正弦定理和余弦定理的公式及应用。
一、正弦定理:正弦定理是指在任意三角形ABC中,三角形的三条边与其对应的角度之间存在一个关系。
假设三角形的边长分别为a、b、c,对应的角度分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC正弦定理的应用非常广泛,可以用于求解未知角度或边长。
例如,已知一个三角形的两条边长和它们之间的夹角,可以利用正弦定理求解第三条边长。
另外,如果已知三角形的一个角度和它对应的边长,也可以利用正弦定理求解其他未知边长或角度。
二、余弦定理:余弦定理是指在任意三角形ABC中,三角形的三条边与其对应的角度之间存在一个关系。
假设三角形的边长分别为a、b、c,对应的角度分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2ab * cosC余弦定理的应用也非常广泛,可以用于求解未知角度或边长。
例如,已知一个三角形的三条边长,可以利用余弦定理求解任意一个角度。
另外,如果已知三角形的两条边长和它们夹角的余弦值,也可以利用余弦定理求解第三条边长或其他未知角度。
三、正弦定理和余弦定理的应用举例:1. 已知一个三角形的两条边长分别为a和b,夹角为C,求第三条边长c。
根据正弦定理可得:c/sinC = a/sinA = b/sinB根据已知条件代入公式即可求解出c的值。
2. 已知一个三角形的两条边长分别为a和b,夹角为C,求角度A 和角度B。
根据正弦定理可得:a/sinA = b/sinB = c/sinC根据已知条件代入公式即可求解出角度A和角度B的值。
3. 已知一个三角形的三个角度A、B、C,求边长a、b、c。
根据正弦定理可得:a/sinA = b/sinB = c/sinC根据已知条件代入公式即可求解出边长a、b、c的值。
三角函数的正弦定理与余弦定理
三角函数的正弦定理与余弦定理三角函数是数学中一门重要的分支,在几何学、物理学等领域有广泛的应用。
其中,正弦定理与余弦定理是三角函数的重要定理之一,可以用于求解各种三角形的边长和角度。
本文将分别介绍正弦定理与余弦定理的概念与应用。
一、正弦定理正弦定理是用来求解三角形的边长与角度之间的关系的定理。
对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。
正弦定理可以表示为:a/sinA = b/sinB = c/sinC = 2R其中,R为该三角形外接圆的半径。
利用正弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。
这在实际问题求解中非常有用。
例如,已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用正弦定理来求解第三条边的长度。
根据正弦定理可知:a/sinA = b/sinB = c/sinC那么代入已知条件,我们可以得到:3/sin60° = c/sinC进而可以得到:c = (3 * sinC) / sin60°通过计算,我们可以求得c的值。
二、余弦定理余弦定理是用来求解三角形的边长和角度之间的关系的定理。
对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。
余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC利用余弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。
例如,我们已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用余弦定理来求解第三条边的长度。
根据余弦定理可知:c^2 = a^2 + b^2 - 2abcosC代入已知条件,我们可以得到:c^2 = 3^2 + 4^2 - 2 * 3 * 4 * cos60°通过计算,我们可以求得c的值。
三角形正余弦公式
三角形正余弦公式三角形是几何学中的基本图形之一,它有着丰富的性质和定理。
在研究三角形的性质时,正弦定理和余弦定理是两个非常重要且常用的公式。
本文将详细介绍正弦定理和余弦定理的含义、应用以及推导过程。
一、正弦定理正弦定理是描述三角形边与角之间关系的定理。
对于任意三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。
根据正弦定理,我们可以得到以下公式:a/sinA = b/sinB = c/sinC这个公式告诉我们,一个三角形的任意一边的长度与该边对应的角的正弦值成比例。
换句话说,正弦定理可以用来计算三角形的边长或角度。
例如,已知三角形两边的长度分别为5和8,它们夹角的正弦值为0.6,我们可以利用正弦定理求解第三边的长度。
正弦定理的推导过程基于三角形的面积公式和正弦函数的定义。
当我们仔细推导正弦定理时,可以发现它是基于三角形的面积与正弦函数之间的关系建立的。
二、余弦定理余弦定理是描述三角形边与角之间关系的另一个定理。
对于任意三角形ABC,其三边分别为a、b、c,对应的内角分别为A、B、C。
根据余弦定理,我们可以得到以下三个公式:a² = b² + c² - 2bc * cosAb² = a² + c² - 2ac * cosBc² = a² + b² - 2ab * cosC这些公式告诉我们,一个三角形的任意一边的平方等于另外两边平方之和减去两倍的两边乘以夹角的余弦值。
余弦定理可以用来计算三角形的边长或角度。
例如,已知三角形两边的长度分别为5和8,它们夹角的余弦值为0.3,我们可以利用余弦定理求解第三边的长度。
余弦定理的推导过程基于向量的内积和余弦函数之间的关系。
通过将三角形的边向量分解为水平和垂直方向的分量,我们可以得到余弦定理的形式。
正弦定理和余弦定理是求解三角形相关问题的重要工具。
它们的应用广泛,不仅可以用于解决实际问题,还可以被用于证明其他定理和推论。
直角三角形的正弦定理和余弦定理
直角三角形的正弦定理和余弦定理直角三角形是指其中一个角为90度的三角形。
在直角三角形中,我们可以利用正弦定理和余弦定理来求解各边长和角度的关系。
本文将详细介绍直角三角形的正弦定理和余弦定理,并给出应用实例。
一、正弦定理在直角三角形中,正弦定理可以用来求解三角形的边长比例关系。
正弦定理的表达式为:sin(θ) = 对边/斜边,其中θ表示一个角的度数。
例如,假设直角三角形的两条直角边分别为a和b,斜边为c,我们可以使用正弦定理来求解边长比例。
正弦定理的表达式为:sin(θ) = a/c 或者sin(θ) = b/c。
应用实例:已知一直角三角形的直角边长a为3,斜边c为5,我们可以利用正弦定理求解另一个直角边长。
根据正弦定理可得:sin(θ) = a/c,代入已知的数值得:sin(θ) = 3/5,通过反正弦函数求解得角度θ的值。
二、余弦定理在直角三角形中,余弦定理可以用来求解三角形的边长平方和角度之间的关系。
余弦定理的表达式为:c² = a² + b² - 2abcos(θ),其中θ表示一个角的度数。
例如,假设直角三角形的两条直角边分别为a和b,斜边为c,我们可以使用余弦定理来求解边长和角度之间的关系。
余弦定理的表达式为:c² = a² + b² - 2abcos(θ)。
应用实例:已知一直角三角形的直角边长a为3,斜边c为5,我们可以利用余弦定理求解另一个直角边长。
根据余弦定理可得:c² = a² + b² -2abcos(θ),代入已知的数值得:5² = 3² + b² - 2(3)(b)cos(θ),将已知数值代入并整理得到一个二次方程。
解这个二次方程可以求解出另一个直角边长b的值。
总结:直角三角形的正弦定理和余弦定理为解决三角形问题提供了便利的工具。
通过应用正弦定理和余弦定理,我们可以求解直角三角形中的各边长和角度之间的关系。
正弦定理余弦定理知识点总结及最全证明
正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。
正弦定理可以用于求解任意三角形的边长或角度。
正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。
正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。
正弦定理的证明:可以使用数学推导来证明正弦定理。
这里给出一种较为详细的证明方法。
证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。
3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。
4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。
5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。
所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。
6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。
余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。
正弦定理余弦定理
03
正弦定理与余弦定理的关 联
正弦定理与余弦定理的相似之处
01
两者都是关于三角形边角关系的定理,是三角学中 的基本定理之一。
02
它们都可以用来解决与三角形相关的问题,如求角 度、边长等。
03
正弦定理和余弦定理在形式上具有一定的对称性, 反映了三角形的内在规律。
正弦定理与余弦定理的不同之处
01
02
03
正弦定理主要应用于求解三角形 的角度,特别是当已知两边及其 夹角时;而余弦定理则更常用于 求解三角形的边长,特别是当已 知两角及一边时。
正弦定理中的角度是通过正弦函 数来表达的,而余弦定理中的角 度则是通过余弦函数来表达的。
正弦定理和余弦定理在应用上有 一定的互补性,可以根据具体问 题选择使用。
总结词
余弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角余弦值之间的关系。
详细描述
余弦定理是三角学的基本定理之一,它指出在任意三角形ABC中,任意一边的平方等于其他两边的平 方和减去两倍的另一边的长度与相邻两边的乘积。数学公式表示为:a^2 = b^2 + c^2 - 2bc cos(A) 。
交流电
交流电的电压和电流是时间的正 弦函数,这使得正弦定理在电力 系统中有着广泛的应用。
声学
声音的传播和反射可以用正弦和 余弦函数来描述,这使得余弦定 理在声学中有重要应用。
三角函数在工程中的应用
1 2
结构设计
在建筑和机械设计中,正弦和余弦定理常被用来 计算角度、长度等参数,以确保结构的稳定性和 安全性。
余弦定理的应用
总结词
余弦定理在解决三角形问题中具有广泛 的应用,包括求解角度、判断三角形的 形状以及解决实际问题等。
直角三角形的正弦定理与余弦定理
直角三角形的正弦定理与余弦定理直角三角形是指其中一个角度为90度的三角形。
在直角三角形中,有两个特殊的角度,一个是直角角度,即90度角;另一个角度则是锐角或钝角。
正弦定理和余弦定理是用于计算三角形中任意一边和角度之间的关系的数学定理。
在直角三角形中,正弦定理和余弦定理可以简化为更常用的形式。
1. 正弦定理:正弦定理表示三角形的边与其对应的角度之间的关系。
对于任意三角形ABC,其中C为直角角度,a、b、c分别为对应的边长。
正弦定理的公式表达为:sin(A) / a = sin(B) / b = sin(C) / c其中sin(A)表示角A的正弦值,同理sin(B)和sin(C)表示角B和角C的正弦值。
根据正弦定理,我们可以计算直角三角形中任意一边的长度。
2. 余弦定理:余弦定理表示三角形的边与其对应的角度之间的关系。
对于任意三角形ABC,其中C为直角角度,a、b、c分别为对应的边长。
余弦定理的公式表达为:c^2 = a^2 + b^2 - 2ab * cos(C)其中cos(C)表示角C的余弦值。
根据余弦定理,我们可以计算直角三角形中任意一边的长度。
通过正弦定理和余弦定理,我们可以解决一些与直角三角形相关的计算问题,比如已知两边长度和一个角度,求解其他角度或边长。
举个例子,如果我们已知一个直角三角形的直角边长为3,斜边长为5,我们可以通过计算求得另一直角边的长度。
首先,我们可以使用正弦定理计算斜边对应的角度sin(C) = c / a = 5 / 3,通过反正弦函数求得角C的值为35.26度。
然后,我们可以使用余弦定理计算另一直角边的长度c^2 = a^2 + b^2 - 2ab * cos(C),代入已知的值计算得到c^2 = 9 + b^2 - 2 * 3b * cos(35.26),进一步简化为b^2 - 6b * cos(35.26) + 4 = 0。
然后解一元二次方程得到b的值,从而求得另一直角边的长度。
正弦定理余弦定理解三角形技巧
正弦定理余弦定理解三角形技巧正弦定理和余弦定理是解三角形问题中常用的两个重要定理。
它们通过三角形的边长和角度之间的关系,帮助我们求解未知的角度和边长。
下面将介绍正弦定理和余弦定理的定义、推导过程和应用技巧。
一、正弦定理的定义和推导:1.定义:对于任意三角形ABC,它的三边长度分别为a、b、c,而对应的角度分别为A、B、C,则正弦定理的表达式为:a/sinA = b/sinB = c/sinC2.推导:设三角形ABC的高为h,其与底边a的夹角为α,边a与边c的夹角为β,则由三角形的定义可知:sinα = h/c, sinβ = h/a根据正弦定理,我们可以得到以下的关系:a/sinA = c/sinC,即a/sinA = c/sinαb/sinB = c/sinC, 即b/sinB = c/sinβ由此推导出正弦定理的表达式。
二、正弦定理的应用技巧:正弦定理可以用来求解三角形的未知边长和角度,常用的技巧有以下几种:1.已知两边和夹角,求第三边:根据正弦定理的表达式,我们可以将已知信息代入其中,解方程求得未知边长。
2.已知两边和一个对角的正弦值,求第三边:将已知信息代入正弦定理的表达式,解方程求得未知边长。
3.已知两角和一边,求第三边:将已知信息代入正弦定理的表达式,解方程求得未知边长。
4. 已知三边,求三角形内部的角度:根据正弦定理,我们可以得到以下关系:sinA = a/c,sinB = b/c,sinC = c/a。
通过反正弦函数,我们可以求得每个角度的值。
三、余弦定理的定义和推导:1.定义:对于任意三角形ABC,它的三边长度分别为a、b、c,而对应的角度分别为A、B、C,则余弦定理的表达式为:a² = b² + c² - 2bc*cosAb² = a² + c² - 2ac*cosBc² = a² + b² - 2ab*cosC2.推导:设三角形ABC的高为h,其与底边a的夹角为α,边a与边c的夹角为β,则由三角形的定义可知:cosα = h/c, cosβ = h/a根据余弦定理,我们可以得到以下关系:a² = b² + c² - 2bc*cosA,即a² = b² + c² - 2bc*cosαb² = a² + c² - 2ac*cosB,即b² = a² + c² - 2ac*cosβ由此推导出余弦定理的表达式。
三角形的正弦定理与余弦定理
三角形的正弦定理与余弦定理三角形是数学中的重要概念之一,它具有广泛的应用。
在三角形的研究中,正弦定理和余弦定理是两个基本的定理,它们能够帮助我们研究三角形的边长与角度之间的关系,解决各种与三角形相关的问题。
本文将重点介绍三角形的正弦定理与余弦定理,并通过具体例子来说明它们的应用。
一、三角形的正弦定理正弦定理是描述三角形边长与角度之间关系的定理。
对于一个任意三角形ABC,设a、b、c分别是三边AC、AB和BC的长度,角A、B、C分别为三个顶点的对应角度,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB和sinC分别表示角A、B和C的正弦值。
通过正弦定理,我们可以推导出三个有用的结论。
1. 第一个结论是三角形内角的正弦定理:对于三角形ABC,有sinA/a = sinB/b = sinC/c。
通过该结论,我们可以根据三角形的边长计算三个内角的正弦值,或者根据三角形的内角计算三个边长的比值。
2. 第二个结论是三角形的外角的正弦定理:对于三角形ABC的外角A'、B'和C',有sinA'/a = sinB'/b = sinC'/c。
这个结论可以帮助我们计算三角形的外角与边长的关系。
3. 第三个结论是三角形的面积公式:对于三角形ABC,它的面积S 可以表示为S = (1/2) * a * b * sinC。
通过这个结论,我们可以根据三角形的两边和它们之间的夹角来计算该三角形的面积。
二、三角形的余弦定理余弦定理与正弦定理类似,也是描述三角形边长与角度之间关系的定理。
对于一个任意三角形ABC,设a、b、c分别是三边AC、AB和BC的长度,角A、B、C分别为三个顶点的对应角度,则余弦定理可以表达为:c^2 = a^2 + b^2 - 2ab * cosC其中,cosC表示角C的余弦值。
通过余弦定理,我们可以推导出三个有用的结论。
正弦定理和余弦定理直角三角形
正弦定理和余弦定理直角三角形正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
一、正弦定理:在任何三角形中,对于一个角度和它对应的边,正弦定理表示边长与正弦值成正比例关系。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则正弦定理可表示为:sin A = a / c其中,sin A 表示角 A 的正弦值,a 表示角 A 对应的直角三角形的对边长,c 表示直角三角形的斜边长。
可以通过正弦定理推导出其他两个角的正弦值,从而求解三角形中的边和角度:sin B = b / csin C = c / c = 1二、余弦定理:余弦定理是另一种在直角三角形中解决边长和角度关系的基本公式。
对于一个直角三角形中的角 A,其对边长设为 a,邻边长设为 b,斜边长为 c,则余弦定理可表示为:cos A = b / c其中,cos A 表示角 A 的余弦值,b 表示角 A 对应的直角三角形的邻边长,c 表示直角三角形的斜边长。
通过余弦定理,可以求出其他两个角的余弦值:cos B = a / ccos C = 0三、比较正弦定理和余弦定理:正弦定理和余弦定理是解决直角三角形中边长和角度关系的两个基本公式。
它们都可以用于求解三角形的边和角度,但是有一些不同点:1. 适用条件不同。
正弦定理适用于任何三角形,而余弦定理无法适用于等边三角形。
2. 求解的变量不同。
正弦定理可以求解角的正弦值,而余弦定理可以求解角的余弦值。
3. 计算方式不同。
正弦定理使用正弦函数,余弦定理使用余弦函数,两者在计算推导过程中存在差异。
总之,正弦定理和余弦定理是直角三角形中解决边长和角度关系的基本公式,掌握并灵活应用这两个公式可以帮助我们更好地理解和求解三角形中的各种问题。
三角形的余弦定理与正弦定理
三角形的余弦定理与正弦定理三角形是几何学中最基本的形状之一。
在研究三角形的性质和特征时,余弦定理和正弦定理起到了重要的作用。
它们是利用三角形的边长和角度之间的关系来解决各种三角形问题的工具。
本文将详细介绍三角形的余弦定理与正弦定理的定义、公式推导和应用。
一、余弦定理余弦定理是描述三角形边长与角度关系的定理。
对于任意三角形ABC,假设a、b、c分别表示BC、AC和AB的边长,而∠A、∠B和∠C分别表示三角形的内角A、B和C,则余弦定理可以表示为以下公式:c² = a² + b² - 2ab·cosCb² = a² + c² - 2ac·cosBa² = b² + c² - 2bc·cosA其中,cosA、cosB和cosC分别表示角A、B和C的余弦值。
推导过程:我们可以通过向三角形ABC引入高,再利用勾股定理和直角三角形的性质推导余弦定理。
设三角形ABC的高为h,起点为顶点A,终点为D,连接BD和CD,如图所示。
[图示]由于三角形ADC为直角三角形,根据勾股定理,我们可以得到:AC² = AD² + CD² ------ (1)在三角形ABD中,我们可以应用勾股定理得到:AB² = AD² + BD² ------ (2)注意到BD = BC - CD,将其代入式(2),我们可以得到:AB² = AD² + (BC - CD)²= AD² + BC² + CD² - 2BC·CD ------ (3)由于三角形ABC为平面图形,AD ⊥ BC,所以∠ADC = ∠C。
根据余弦定理,我们可以得到:CD² = AC² + AD² - 2AC·AD·cosC ------ (4)将式(1)代入式(4),我们可以得到:CD² = (AD² + CD²) + AD² - 2√(AD² + CD²)√AD·cosC= 2AD² + CD² - 2AD·CD·cosC将式(4)代入式(3),我们可以得到:AB² = 2AD² + BC² - 2BC·CD + 2AD² - 2√(AD² + CD²)√AD·cosC= 4AD² + BC² - 2BC·CD - 2√(AD² + CD²)√AD·cosC= 4AD² + BC² - 2BC·CD - 2AC·AD·cosC由于三角形为平面图形,所以CD = BC·cosA,代入上式得:AB² = 4AD² + BC² - 2BC²·cosA - 2AC·AD·cosC= 4AD² + BC² - 2BC²·cosA - 2AC²·cosC= 4AD² + BC² - 2AC²·cosC - 2BC²·cosA由几何性质可知,4AD² = c²,所以:c² = a² + b² - 2ab·cosC ------ (5)同理,可以推导出余弦定理的其他两个公式。
《正弦定理余弦定理》课件
THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。
三角形的正弦定理与余弦定理
三角形的正弦定理与余弦定理三角形是数学中常见的几何形状之一,通过研究三角形的性质和定理,我们可以深入了解它的内在关系。
本文将对三角形的正弦定理与余弦定理进行详细介绍和分析。
一、正弦定理正弦定理是研究三角形边与角之间关系的一个重要定理。
在任意三角形ABC中,记三个内角分别为∠A、∠B、∠C,对应的边长分别为a、b、c。
根据正弦定理,我们可以得到以下等式:a/sin∠A = b/sin∠B = c/sin∠C其中,sin∠A、sin∠B、sin∠C分别表示∠A、∠B、∠C的正弦值。
正弦定理的推导可以通过利用三角形内角和为180°的性质,以及利用正弦函数和对边、斜边的关系进行推导。
根据正弦定理,我们可以在已知三个角度或任意两边与一个角度的情况下,求解第三边的长度或其他相关的角度。
举例说明:假设有一个三角形ABC,已知∠A=30°,边b=4,边c=6,我们可以通过正弦定理计算边a的长度。
根据正弦定理的等式a/sin∠A = b/sin∠B = c/sin∠C,代入已知条件,得到a/sin30°=4/sin∠B=6/sin∠C。
然后,根据三角函数的性质,我们可以求得sin∠B=b/sin∠A=sin60°/2=1/2,sin∠C=c/sin∠A=sin90°/2=1,进而得到∠B=30°,∠C=90°。
最后代入已知条件,我们可以得出a/sin30°=4/0.5,即a=2。
因此,当∠A=30°,边b=4,边c=6时,根据正弦定理计算得出边a的长度为2。
二、余弦定理余弦定理也是研究三角形边与角之间关系的重要定理。
在任意三角形ABC中,记三个内角分别为∠A、∠B、∠C,对应的边长分别为a、b、c。
根据余弦定理,我们可以得到以下等式:a² = b² + c² - 2bc*cos∠Ab² = a² + c² - 2ac*cos∠Bc² = a² + b² - 2ab*cos∠C其中,cos∠A、cos∠B、cos∠C分别表示∠A、∠B、∠C的余弦值。
余弦定理与正弦定理
余弦定理与正弦定理余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
它们在三角学中有着广泛的应用,能够帮助我们计算未知边长或角度。
本文将介绍余弦定理和正弦定理的定义、公式以及应用,并探讨它们的区别和联系。
一、余弦定理的定义和公式余弦定理是在三角形中,通过已知边长和夹角计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则余弦定理的公式为:c² = a² + b² - 2abcosC其中,c为三角形对应于角C的边长,a和b为与角C相邻的两条边长,cosC为角C的余弦值。
二、正弦定理的定义和公式正弦定理是在三角形中,通过已知两个角度和一个边长计算其他边长的定理。
它的定义如下:在三角形ABC中,设三条边分别为a、b、c,对应的夹角分别为A、B、C,则正弦定理的公式为:a/sinA = b/sinB = c/sinC其中,a、b、c为三角形的边长,A、B、C为对应的角度。
三、余弦定理和正弦定理的应用1. 通过余弦定理计算未知边长或角度:- 已知两边长和夹角:可以使用余弦定理计算第三条边长,或者计算其他两个角度。
- 已知三边长:可以使用余弦定理计算其中一个角度。
2. 通过正弦定理计算未知边长或角度:- 已知两角度和一个边长:可以使用正弦定理计算其他两条边长。
- 已知一个角度和两边长:可以使用正弦定理计算另外两个角度。
四、余弦定理与正弦定理的区别和联系余弦定理和正弦定理在解决三角形问题时具有不同的应用场景。
余弦定理适用于已知边长和夹角的情况,可以求解缺失的边长或角度。
而正弦定理适用于已知两个角度和一个边长的情况,同样可以求解其他边长或角度。
此外,两个定理之间也存在一定的联系。
通过余弦定理可以推导出正弦定理,而正弦定理也可以推导出余弦定理。
在解决问题时,可以根据具体情况选择使用其中一个定理进行计算。
总结:余弦定理和正弦定理是解决三角形中边长和角度之间关系的重要定理。
三角函数的正弦定理与余弦定理
三角函数的正弦定理与余弦定理三角函数是数学中一个重要的概念,在解决三角形相关问题时得以广泛应用。
其中,正弦定理与余弦定理是求解三角形边长和角度的重要工具。
本文将详细介绍三角函数的正弦定理和余弦定理,并举例说明它们在实际问题中的应用。
一、正弦定理正弦定理是指在任意三角形中,三条边的长度与其对应的正弦值之间存在着一定的关系。
设三角形的边长分别为a、b、c,对应的内角为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,等式两边分别为三个边长与对应内角的正弦值的比值,且比值相等。
正弦定理常用于解决无法直接通过角度计算的三角形问题。
例如,在一个三角形中已知两个边长和它们之间的夹角,可以利用正弦定理求解第三边的长度。
二、余弦定理余弦定理是指在任意三角形中,三条边的长度与其对应的余弦值之间存在着一定的关系。
设三角形的边长分别为a、b、c,对应的内角为A、B、C,则余弦定理可以表达为:c^2 = a^2 + b^2 - 2abcosC其中,等式右侧的式子表示两条边长的平方和与它们对应夹角的余弦值的乘积,等于第三边长的平方。
余弦定理常用于求解三角形的边长和角度。
例如,已知一个三角形的三个边长,可以利用余弦定理计算出其中一个内角的大小。
应用实例:例1:已知三角形ABC中,边长a=5cm,边长b=7cm,夹角C=30°,求第三边c的长度。
解:根据正弦定理可得:c/sinC = a/sinAc/sin30° = 5cm/sinAsinA = (5cm/sin30°) * sinAsinA = 2.5cm此时可以利用反正弦函数求解A的大小:A = arcsin(2.5cm) = 39.24°同理可得,B = 180° - A - C = 110.76°因此,三角形ABC中,边长c的长度约为4.33cm,角A约为39.24°,角B约为110.76°。
正弦定理和余弦定理(含解析)
第七节正弦定理和余弦定理[知识能否忆起]1.正弦定理 分类 内容定理a sin A =b sin B =csin C=2R (R 是△ABC 外接圆的半径)变形 公式①a =2R sin_A ,b =2R sin_B ,c =2R sin_C ,②sin A ∶sin B ∶sin C =a ∶b ∶c , ③sin A =a 2R ,sin B =b 2R ,sin C =c2R解决的 问题 ①已知两角和任一边,求其他两边和另一角, ②已知两边和其中一边的对角,求另一边的对角2.余弦定理 分类内容定理在△ABC 中,有a 2=b 2+c 2-2bc cos_A ;b 2=a 2+c 2-2ac cos_B ;c 2=a 2+b 2-2ab cos_C 变形 公式 cos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab解决的 问题 ①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两个角3.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).[小题能否全取]1.(2012·广东高考)在△ABC 中,若∠A =60°,∠B =45°,BC =32,则AC =( ) A .4 3 B .2 3 C. 3D.32解析:选B 由正弦定理得:BC sin A =AC sin B ,即32sin 60°=AC sin 45°,所以AC =3232×22=2 3.2.在△ABC 中,a =3,b =1,c =2,则A 等于( ) A .30° B .45° C .60°D .75°解析:选C ∵cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,又∵0°<A <180°,∴A =60°.3.(教材习题改编)在△ABC 中,若a =18,b =24,A =45°,则此三角形有( ) A .无解B .两解C .一解D .解的个数不确定解析:选B ∵a sin A =bsin B,∴sin B =b a sin A =2418sin 45°,∴sin B =223.又∵a <b ,∴B 有两个.4.(2012·陕西高考)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若a =2,B =π6,c =23,则b =________. 解析:由余弦定理得b 2=a 2+c 2-2ac cos B =4+12-2×2×23×32=4,所以b =2. 答案:25.△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:设BC =x ,由余弦定理得49=25+x 2-10x cos 120°, 整理得x 2+5x -24=0,即x =3.因此S △ABC =12AB ×BC ×sin B =12×3×5×32=1534.答案:1534(1)在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .(2)在△ABC 中,已知a 、b 和A 时,解的情况如下:A 为锐角A 为钝角或直角图形关系式 a =b sinAb sin A <a <ba ≥ba >b解的个数一解两解 一解 一解利用正弦、余弦定理解三角形典题导入[例1] (2012·浙江高考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且b sin A =3a cos B .(1)求角B 的大小;(2)若b =3,sin C =2sin A ,求a ,c 的值. [自主解答] (1)由b sin A =3a cos B 及正弦定理 a sin A =bsin B,得sin B =3cos B , 所以tan B =3,所以B =π3.(2)由sin C =2sin A 及a sin A =csin C ,得c =2a .由b =3及余弦定理b 2=a 2+c 2-2ac cos B , 得9=a 2+c 2-ac . 所以a =3,c =2 3.在本例(2)的条件下,试求角A 的大小. 解:∵a sin A =bsin B, ∴sin A =a sin Bb =3·sinπ33=12.∴A =π6.由题悟法1.应熟练掌握正、余弦定理及其变形.解三角形时,有时可用正弦定理,有时也可用余弦定理,应注意用哪一个定理更方便、简捷.2.已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.以题试法1.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +b cos 2A =2a . (1)求b a;(2)若c 2=b 2+3a 2,求B . 解:(1)由正弦定理得,sin 2A sin B +sin B cos 2A = 2sin A ,即 sinB (sin 2A +cos 2A )=2sin A . 故sinB = 2sin A ,所以b a= 2.(2)由余弦定理和c 2=b 2+3a 2,得cos B =(1+3)a 2c .由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.利用正弦、余弦定理判定三角形的形状典题导入[例2] 在△ABC 中a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.[自主解答] (1)由已知,根据正弦定理得2a 2=(2b +c )·b +(2c +b )c ,即a 2=b 2+c 2+bc .由余弦定理得a 2=b 2+c 2-2bc cos A , 故cos A =-12,∵0<A <180°,∴A =120°.(2)由(1)得sin 2A =sin 2B +sin 2C +sin B sin C =34.又sin B +sin C =1, 解得sin B =sin C =12.∵0°<B <60°,0°<C <60°,故B =C , ∴△ABC 是等腰的钝角三角形.由题悟法依据已知条件中的边角关系判断三角形的形状时,主要有如下两种方法:(1)利用正、余弦定理把已知条件转化为边边关系,通过因式分解、配方等得出边的相应关系,从而判断三角形的形状;(2)利用正、余弦定理把已知条件转化为内角的三角函数间的关系,通过三角函数恒等变形,得出内角的关系,从而判断出三角形的形状,此时要注意应用A +B +C =π这个结论.[注意] 在上述两种方法的等式变形中,一般两边不要约去公因式,应移项提取公因式,以免漏解.以题试法2.(2012·安徽名校模拟)已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A 2,cos 2A ,且m ·n =72.(1)求角A 的大小;(2)若b +c =2a =23,试判断△ABC 的形状.解:(1)∵m =(4,-1),n =⎝ ⎛⎭⎪⎫cos 2A2,cos 2A ,∴m ·n =4cos 2A 2-cos 2A =4·1+cos A 2-(2cos 2A -1)=-2cos 2A +2cos A +3.又∵m ·n =72,∴-2cos 2A +2cos A +3=72,解得cos A =12.∵0<A <π,∴A =π3.(2)在△ABC 中,a 2=b 2+c 2-2bc cos A ,且a =3, ∴(3)2=b 2+c 2-2bc ·12=b 2+c 2-bc .①又∵b +c =23,∴b =23-c ,代入①式整理得c 2-23c +3=0,解得c =3,∴b = 3,于是a =b =c = 3,即△ABC 为等边三角形.与三角形面积有关的问题典题导入[例3] (2012·新课标全国卷)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cosC +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .[自主解答] (1)由a cos C +3a sin C -b -c =0及正弦定理得sin A cos C +3sinA sin C -sinB -sinC =0.因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 由于sin C ≠0,所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,故A =π3.(2)△ABC 的面积S =12bc sin A =3,故bc =4.而a 2=b 2+c 2-2bc cos A ,故b 2+c 2=8. 解得b =c =2.由题悟法1.正弦定理和余弦定理并不是孤立的.解题时要根据具体题目合理选用,有时还需要交替使用.2.在解决三角形问题中,面积公式S =12ab sin C =12bc sin A =12ac sin B 最常用,因为公式中既有边也有角,容易和正弦定理、余弦定理结合应用.以题试法3.(2012·江西重点中学联考)在△ABC 中,12cos 2A =cos 2A -cos A .(1)求角A 的大小;(2)若a =3,sin B =2sin C ,求S △ABC .解:(1)由已知得12(2cos 2A -1)=cos 2A -cos A ,则cos A =12.因为0<A <π,所以A =π3.(2)由b sin B =c sin C ,可得sin B sin C =bc=2,即b =2c .所以cos A =b 2+c 2-a 22bc =4c 2+c 2-94c 2=12, 解得c =3,b =23,所以S △ABC =12bc sin A =12×23×3×32=332.1.在△ABC 中,a 、b 分别是角A 、B 所对的边,条件“a <b ”是使“cos A >cos B ”成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C a <b ⇔A <B ⇔cos A >cos B .2.(2012·泉州模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边.若A =π3,b =1,△ABC 的面积为32,则a 的值为( ) A .1 B .2 C.32D. 3解析:选D 由已知得12bc sin A =12×1×c ×sin π3=32,解得c =2,则由余弦定理可得a 2=4+1-2×2×1×cos π3=3⇒a = 3.3.(2013·“江南十校”联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a =23,c =22,1+tan A tan B =2cb,则C =( ) A .30°B .45°C .45°或135°D .60°解析:选B 由1+tan A tan B =2cb 和正弦定理得cos A sin B +sin A cos B =2sin C cos A , 即sin C =2sin C cos A , 所以cos A =12,则A =60°.由正弦定理得23sin A =22sin C ,则sin C =22, 又c <a ,则C <60°,故C =45°.4.(2012·陕西高考)在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22C.12D .-12解析:选C 由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.5.(2012·上海高考)在△ABC 中,若sin 2 A +sin 2B <sin 2C ,则△ABC 的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定解析:选C 由正弦定理得a 2+b 2<c 2,所以cos C =a 2+b 2-c 22ab <0,所以C 是钝角,故△ABC 是钝角三角形.6.在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c .若b =2a sin B ,则角A 的大小为________.解析:由正弦定理得sin B =2sin A sin B ,∵sin B ≠0, ∴sin A =12,∴A =30°或A =150°.答案:30°或150°7.在△ABC 中,若a =3,b =3,A =π3,则C 的大小为________.解析:由正弦定理可知sin B =b sin A a =3sinπ33=12,所以B =π6或5π6(舍去),所以C=π-A -B =π-π3-π6=π2.答案:π28.(2012·北京西城期末)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c .若b =25,B =π4,sin C =55,则c =________;a =________.解析:根据正弦定理得b sin B =c sin C ,则c =b sin C sin B =22,再由余弦定理得b 2=a 2+c 2-2ac cos B ,即a 2-4a -12=0,(a +2)(a -6)=0,解得a =6或a =-2(舍去).答案:2 2 69.(2012·北京高考)在△ABC 中,若a =2,b +c =7,cos B =-14,则b =________.解析:根据余弦定理代入b 2=4+(7-b )2-2×2×(7-b )×⎝ ⎛⎭⎪⎫-14,解得b =4.答案:410.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a sin A +c sin C -2a sin C =b sinB .(1)求B ;(2)若A =75°,b =2,求a ,c .解:(1)由正弦定理得a 2+c 2-2ac =b 2.由余弦定理得b 2=a 2+c 2-2ac cos B . 故cos B =22,因此B =45°. (2)sin A =sin(30°+45°)=sin 30°cos 45°+cos 30°sin 45°=2+64. 故a =b ×sin A sin B =2+62=1+3,c =b ×sin C sin B =2×sin 60°sin 45°= 6. 11.(2013·北京朝阳统考)在锐角三角形ABC 中,a ,b ,c 分别为内角A ,B ,C 所对的边,且满足3a -2b sin A =0.(1)求角B 的大小;(2)若a +c =5,且a >c ,b =7,求AB u u u r ·AC u u ur 的值.解:(1)因为3a -2b sin A =0, 所以 3sin A -2sin B sin A =0, 因为sin A ≠0,所以sin B =32. 又B 为锐角,所以B =π3.(2)由(1)可知,B =π3.因为b = 7.根据余弦定理,得7=a 2+c 2-2ac cos π3,整理,得(a +c )2-3ac =7. 由已知a +c =5,得ac =6. 又a >c ,故a =3,c =2.于是cos A =b 2+c 2-a 22bc =7+4-947=714,所以AB u u u r ·AC u u u r =|AB u u u r|·|AC u u u r |cos A =cb cos A=2×7×714=1. 12.(2012·山东高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知sin B (tanA +tan C )=tan A tan C .(1)求证:a ,b ,c 成等比数列; (2)若a =1,c =2,求△ABC 的面积S .解:(1)证明:在△ABC 中,由于sin B (tan A +tan C )=tan A tan C , 所以sin B ⎝⎛⎭⎪⎫sin A cos A +sin C cos C =sin A cos A ·sin C cos C, 因此sin B (sin A cos C +cos A sin C )=sin A sin C , 所以sin B sin(A +C )=sin A sin C . 又A +B +C =π, 所以sin(A +C )=sin B , 因此sin 2B =sin A sinC . 由正弦定理得b 2=ac , 即a ,b ,c 成等比数列.(2)因为a =1,c =2,所以b =2,由余弦定理得cos B =a 2+c 2-b 22ac =12+22-22×1×2=34,因为0<B <π,所以sin B =1-cos 2B =74, 故△ABC 的面积S =12ac sin B =12×1×2×74=74.1.(2012·湖北高考)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C ,3b =20a cos A ,则sin A ∶sin B ∶sin C 为( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4解析:选D 由题意可得a >b >c ,且为连续正整数,设c =n ,b =n +1,a =n +2(n >1,且n ∈N *),则由余弦定理可得3(n +1)=20(n +2)·(n +1)2+n 2-(n +2)22n (n +1),化简得7n 2-13n -60=0,n ∈N *,解得n =4,由正弦定理可得sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4.2.(2012·长春调研)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知4sin 2A +B2-cos 2C =72,且a +b =5,c =7,则△ABC 的面积为________.解析:因为4sin2A +B2-cos 2C =72, 所以2[1-cos(A +B )]-2cos 2C +1=72,2+2cos C -2cos 2C +1=72,cos 2C -cos C +14=0,解得cos C =12.根据余弦定理有cos C =12=a 2+b 2-72ab,ab =a 2+b 2-7,3ab =a 2+b 2+2ab -7=(a +b )2-7=25-7=18,ab =6,所以△ABC 的面积S △ABC =12ab sin C =12×6×32=332.答案:3323.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且满足(2b -c )cos A -a cos C =0. (1)求角A 的大小;(2)若a =3,S △ABC =334,试判断△ABC 的形状,并说明理由.解:(1)法一:由(2b -c )cos A -a cos C =0及正弦定理,得 (2sin B -sin C )cos A -sin A cos C =0, ∴2sin B cos A -sin(A +C )=0, sin B (2cos A -1)=0. ∵0<B <π,∴sin B ≠0, ∴cos A =12.∵0<A <π,∴A =π3.法二:由(2b -c )cos A -a cos C =0,及余弦定理,得(2b -c )·b 2+c 2-a 22bc -a ·a 2+b 2-c 22ab =0,整理,得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∵0<A <π,∴A =π3.(2)∵S △ABC =12bc sin A =334,即12bc sin π3=334, ∴bc =3,①∵a 2=b 2+c 2-2bc cos A ,a =3,A =π3,∴b 2+c 2=6,② 由①②得b =c =3, ∴△ABC 为等边三角形.1.已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边.若a =1,b =3,A +C =2B ,则sin C =________.解析:在△ABC 中,A +C =2B ,∴B =60°.又∵sin A =a sin B b =12,∴A =30°或150°(舍),∴C =90°,∴sin C =1.答案:12.在△ABC 中,a =2b cos C ,则这个三角形一定是( ) A .等腰三角形 B .直角三角形 C .等腰直角三角形D .等腰或直角三角形解析:选A 法一:(化边为角)由正弦定理知: sin A =2sin B cos C ,又A =π-(B +C ), ∴sin A =sin(B +C )=2sin B cos C . ∴sin B cos C +cos B sin C =2sin B cos C , ∴sin B cos C -cos B sin C =0, ∴sin(B -C )=0.又∵B 、C 为三角形内角,∴B =C .法二:(化角为边)由余弦定理知cos C =a 2+b 2-c 22ab ,∴a =2b ·a 2+b 2-c 22ab =a 2+b 2-c 2a,∴a 2=a 2+b 2-c 2,∴b 2=c 2,∴b =c .3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知 cos 2C =-14.(1)求sin C 的值;(2)当a =2,2sin A =sin C 时,求b 及c 的长. 解:(1)因为cos 2C =1-2sin 2C =-14,且0<C <π,所以sin C =104. (2)当a =2,2sin A =sin C 时,由正弦定理a sin A =csin C ,得c =4.由cos 2C =2cos 2C-1=-14,及0<C <π得cos C =±64.由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2±6b -12=0,解得b =6或26, 所以⎩⎨⎧b =6,c =4或⎩⎨⎧b =26,c =4.4.设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c , 且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解:(1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B , 得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦定理.余弦定理农其应用【高考风向】1.考查正弦定理、余弦定理的推导;2.利用正、余弦定理判断三角形的形状和解三角形;3.在解答题中对正弦定理、余弦定理、面积公式以及三角函数中恒等变换、诱导公式等知识点进行综合考 查.【学习要领】1.理解正弦定理、余弦定理的意义和作用;2.通过正弦、余弦定理实现三角形中的边角转 换,和三角函数性质相结合.基础知识梳理sin A sin B 启=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形:(1)a : b : c = sin_A : sin_B : sin_C ; (2)a = 2Rsin_A , b = 2Rsin_B , c = 2Rsin_C ;[难点正本疑点清源]1. 在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ ABC 中,A>B? a>b? sin A>sin B ; tanA+tanB+tanC=tanA tanB t a nC ;在锐角三角 形中,cosA<sinB,cosA<sinC-2. 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.例1.已知在 ABC 中,c 10, A 45o , C 30o ,解三角形 1. 正弦定理:3.4. (3)sin A = 2:,sin B = ?;, sin C =等形式,解决不同的三角形问题.余弦定理:a 2= b 2 + c 2 — 2bccos_A , b 2= a 2 + c 2 — 2accos_B , c 2=旦2 + b 2 — 2abcos_C •余亠宀 、 b 2 + c 2— a 2 a 2+ c 2— b 2弦疋理可以变形: cos A = ---------- , cos B = ----- u --- , cos C = a 2 + b 2- c 2 2ab 2bc G ABC = gabsin C = ^bcsin A = *acsin B =繁=*(a + b + c) r(r 是三角形内切圆的半径 ),并 可由此计算R 、r.在厶ABC 中,已知a 、b 和A 时,解的情况如下: A 为锐角A 为钝角或直角图形 关系式a = bsin A bsin A<a<b a>b 解的个数一解两解一解一解思路点拨:先将已知条件表示在示意图形上(如图) ,可以确定先用正弦定理求出边然后用三角形内角和求出角B ,最后用正弦定理求出边 b .解析:sin Acsin Ccsin A 10 sin 45° sinCsin 30o10 2 ,B 180° (A C) 105°,总结升华:1.正弦定理可以用于解决已知两角和一边求另两边和一角的问题;2.数形结合将已知条件表示在示意图形上,可以清楚地看出已知与求之间的关系,从 而恰当地选择解答方式.举一反三:【变式1】在 ABC 中,已知A 32.00,B 81.8°,a 42.9cm ,解三角形。
C 180° (A B) 180° (32.0° 81.8°) 66.2° ;【答案】根据正弦定理a—— ―—,得a:b:c sin A:sinB:sinC 1: 2:3 .sin A sin B sin C例2.在 ABC 中,b 3,B 60°, c 1,求:a 和 A , C .思路点拨:先将已知条件表示在示意图形上 (如图),可以确定先用正弦定理求出角 C ,然后用三角形内角和求出角 A ,最后用正弦定理求出边 a .解析:由正弦定理得:bc,sin B sin CA.小csin B 1°sin 601.sinCb迨2(方法一)••• 0°C180°, .C 30° 或 C 150°,当 C 150° 时,B C 210°180°,(舍去);sin Bcsin C, csin B b ----------- sin C10 sin 105° o sin 3020sin 75°206'2 45.6 5 ;2 •【答案】根据三角形内角和定理,根据正弦定理, 根据正弦定理, ,asinB 42.9sin81.8° “,、 b °--------------------- 80.1(cm); si nA si n32.0°asi nC 42.9si n66.2° csi nAsin 32.0°74.1(cm).【变式2】在 ABC 中, 已知 B 75°,C 60°, c 5,求 a 、A .【答案】A 180°(B C) 180°(75° 60°)45°,根据正弦定理a sin 45°【变式3】在 ABC 中, 已知 sin A:sin B:sin C 1: 2:3,求 a: b: c当 C 30° 时,A 90°,.・.a , b 2 c 2 2.(方法二)••• be , B 60°,••• C B ,••• C 60°即 C 为锐角, •- C 30°, A 90°• a <D C 2 2 . 总结升华:1. 正弦定理也可用于解决已知两边及一边的对角,求其他边和角的问题。
2. 在利用正弦定理求角 C 时,因为sinC sin(180° C),所以要依据题意准确确定 角C 的范围,再求出角 C .3. 一般依据大边对大角或三角形内角和进行角的取舍类型二:余弦定理的应用:例3.已知 ABC 中,AB 3、BC 「37、AC 4,求 ABC 中的最大角。
思路点拨:首先依据大边对大角确定要求的角,然后用余弦定理求解 解析:•••三边中BC 37最大,• BC 其所对角A 最大,2 2 2 2 2 2AB AC BC 3 4 (、37)1根据余弦疋理: cos A --------------------------- --- ---- - --- - ---- -- -,ABgAC 2 3 4•/ 0° A 180°,• A 120°故 ABC 中的最大角是 A 120°. 总结升华: 1.ABC 中,若知道三边的长度或三边的关系式,求角的大小,一般用余弦定理;2. 用余弦定理时,要注意公式中的边角位置关系 举一反三:【变式1】已知 ABC 中a 3, b 5, c 7,求角C .2 b22 _2 32 72【答案】根据余弦定理:c°sCa b C 532ab235•/ 0° C 180°, • C 120°【变式2】在 ABC 中,角 代B,C 所对的三边长分别为 a,b,c ,若a: b:c 6:2:( 3 1),求 ABC 的各角的大小.• C 180°A B 75°类型三:正、余弦定理的综合应用例 4.在 ABC 中,已知 a 2、3 , c ;6、2 , B 450, 思路点拨:画出示意图,由其中的边角位置关系可以先用余弦定理求边⑴由余弦定理得:2accosB(.6 2)2 2 2 3 C 6 . 2)c°s450=12 ( '一 6 2)2 4 3( -3 1)=8 • b 2 2.⑵求A 可以利用余弦定理,也可以利用正弦定理: (法一:余弦定理),2 2 2b c a ••• c°sAbc2 2 2 ( 6 2)• A 60°. (法二:正弦定理)【答案】设a ,6k , b2k , c .'3 1根据余弦定理得:c°s B2、3 1 .645°;同理可得A 60°; 【变式3】在ABC 中,若 a 2 b 22c bc ,求角A .【答案】•- b 2 c 2 a 2bc , • cosAb 2c 2a 22bc•/ 0° A 180°,• A 120°余弦定理或正弦定理求角 解析:A .求b 及A .b ,然后继续用=(2 3)2 (2 • 2)2 C6、2 )2 (2 - 3)2••• a v c ,即 00 v A v 90°, ••• A 60°.总结升华:画出示意图,数形结合,正确选用正弦、余弦定理,可以使解答更快、 更好.举一反三:【变式1】在 ABC 中,已知b 3 , c 4, A 135°.求B 和C . 【答案】由余弦定理得:a 2 32 42 2 3 4cos135o 25 1^2 ,• a , 25 12 2 6.48• C 1800 (A B) 25053/.【变式2】在 ABC 中,已知角A, B,C 所对的三边长分别为 a,b,c ,若a 2 ,b 2 2 ,c . 6 、2,求角 A 和 sin C其他应用题详解-、选择题(本大题共6小题,每小题5分,共30分)T si nA aS "B窮 E 0又••• 6 2 2.4 1.4 3.8, 2 3 2 1.8 3.6由正弦定理得:sinB 竺必3sin135°0.327 ,因为A 1350为钝角,则B 为锐角,• B 1907/.【答案】 根据余弦定理可得:cosA2bc8 8 4 3 42 2.2.6 x2•/ 0o A 180o , •••由正弦定理得:si nCA 30o ; csin A 6' 2sin 30a2B. 3a km D . 2a kmAB 2 = AC 2 + BC 2-2AC BCcos120 =2a 2-2a 2X —1 = 3a 2,•°AB = , 3a. 答案 B2•张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶, 在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电 视塔在电动车的北偏东A.2 2 kmC .3 3 km灯塔B 的距离为()A . a km C.返a km解析 利用余弦定理解厶ABC.易知Z ACB = 120°,在△ACB 中,由余弦定理得BS ABZABS= 180 - 75 = 105 ,所以/ASB= 45 °•由正弦定理知石^45,所以75°方向上,则电动车在点B时与电视塔S的距离是()解析如图,由条件知/BAS= 30°, AB = 6,有 CE = 25X 2= 50, CF = 15X 2= 30,且Z ECF = 120 ;EF = CE 2 + CF 2- 2CE CFcos120= 502+ 302- 2X 50X 30cos120 =70.答案 D4. (2014济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m 的楼 的楼顶处测得塔顶A 的仰角为30°测得塔基B 的俯角为45°那么塔AB 的高 度是(B.20 1+ 23 m解析 如图所示,由已知可知,四边形 CBMD 为正方形,CB = 20 m ,所以 BM = 20 m .又在Rt 小MD 中,DM = 20 m ,Z ADM = 30° ••AM = DMtan30 . ••AB = AM + MB = 20 3 + 20 =20 1+弘).AB 0 , BS = sin45s "30 = 3 2答案 B3.轮船A 和轮船B 在中午12时离开海港 120°轮船A 的航行速度是25海里/小时,轮船 下午2时两船之间的距离是()A . 35海里 C ,两艘轮船航行方向的夹角为B 的航行速度是15海里/小时, B . 35 :2海里 C . 35.'3海里D .解析设轮船A 、B 航行到下午2时时所在的位置分别是 E , F ,则依题意)20 1+ 3 m 20(1 + 3) mC .答案 A5. (2013 天津卷)在厶ABC 中,/ ABC = $ AB^2,BC = 3,贝U sin /BAC 二()A 迈A.10C3.10 C.10解析 由余弦定理 AC 2= AB 2 + BC 2— 2AB BCcosZABC = ( :2)2+ 32 — 2X 〔;2迈 厂sinZABC 3X 2x 3X 2 = 5,所以 AC = *;5,再由正弦定理:sin/BAC =—AC BC =— 5—=10 . 答案 C6. (2014滁州调研)线段AB 外有一点C ,/ ABC = 60° AB = 200 km ,汽车 以80 km/h 的速度由A 向B 行驶,同时摩托车以 则运动开始多少h 后,两车的距离最小()A 69A.43C 70C.43解析 如图所示,设t h 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则 AD = 80t ,BE = 50t.因为AB = 200,所以BD = 200— 80t ,问题就是求 DE 最小时 t 的值.由余弦定理,得2 2 2 DE 2= BD 2+ BE 2— 2BD BEcos602 2 =(200— 80t)2+ 2 500t 2— (200— 80t) 50tB 姮B.5n 5D.550 km/h 的速度由B 向C 行驶,B . D.=12 900t2—42 000t+ 40 000.当t =70时,DE 最小.答案 C二、填空题(本大题共3小题,每小题5分,共15分)7. 已知A , B 两地的距离为10 km , B , C 两地的距离为20 km ,现测得/ ABC = 120°贝U A 、C 两地的距离为 _________ km.100+ 400-2X 10X 20X cos120 =700,••AC = 10 7(km).答案 10 78. _______________________________________________ 如下图,一艘船上午9: 30在A 处测得灯塔S 在它的北偏东30°处,之 后它继续沿正北方向匀速航行,上午 10: 00到达B 处,此时又测得灯塔S 在它 的北偏东75°处,且与它相距8(2n mile.此船的航速是 _____________________________________ n mile/h.北解析 设航速为v n mile/h•'v= 32(n mile/h). 答案 32AC 2= 在△KBS 中,AB = ;v , BS = 8 '2,ZBSA = 45 °由正弦定理得:s 830 1 _2v J sin45解析如右图所示,BC _ CDsi n45sin30 °_ 2^/3.的正东方向上,测得点A 的仰角为60°再由点C 沿北偏东15°方向走10米到位 置D ,测得/ BDC = 45°则塔AB 的高是 ___________ .解析 在ABCD 中,CD = 10,/BDC = 45° /BCD = 15°+ 90°= 105° /—CDsin45 ° 厂“ BC _気厂_1^/2(米)._ 10 ;6(米).答案 10.6三、解答题(本大题共3小题,每小题10分,共30分)10. (2014台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处于坡度 15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰 角分别为60。