南昌大学EDA实验要求及报告要求
eda设计实验报告 南理工
![eda设计实验报告 南理工](https://img.taocdn.com/s3/m/224ab2eb5ef7ba0d4a733bd8.png)
实验一单级放大电路的设计与仿真一.实验目的1.掌握放大电路静态工作点的调整和测试方法2.掌握放大电路的动态参数的测试方法3.观察静态工作点的选择对输出波形及电压放大倍数的影响。
二.实验内容1.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(峰值1mV) ,负载电阻5.1kΩ,电压增益大于50。
2.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
3.加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测定此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益。
4.测电路的频率响应曲线和f L ,f H值。
三.实验步骤1.单级放大电路原理图:图一单级放大电路原理图满足实验要求,电压增益大于50。
2.电路失真情况分析:由于1mV下失真情况不明显,在观察时将电压源调整为20mV输入。
(1)电路饱和失真输出电压的波形图图二电路饱和失真输出电压的波形图图三电路饱和失真直流工作点分析此时静态工作点Vce=91.26844mV ,Vbe=658.01776mV,Ic=3.00218mA,Ib=129.26906uA此时发射极正偏,集电极正偏,则电路产生饱和失真。
(2)电路截止失真输出电压的波形图图四电路截止失真输出电压的波形图图五电路截止失真直流工作点分析此时静态工作点Vce=11.99643V ,Vbe=443.03357mV,Ic=902.24957nA,Ib=5.14668nA 因为Vbe<0.7V,所以发射极反偏,又集电极反偏,所以电路产生截止失真。
3.在电路输出信号最大不失真下测量输入、输出电阻和电压增益:(1)电路最大不失真波形图图六电路最大不失真波形图图七电路最大不失真直流工作点分析电路静态工作点值Vce=4.26569V ,Vbe=644.58273mV,Ic=1.99222mA,Ib=9.33965uA (2)测量输入、输出电阻和增益:三极管:β=Ic/Ib=1992.22/9.33965=213r be=r bb’+r b’e=r bb’+(1+β)26mV/I E =200+(1+213)26mV/1.99222mA=2992.86Ω①求输入电阻图八求输入电阻的电路图测量值Ri=U/I=1000/0.481=2079Ω.理论值Ri=(Rp+R4)//R3//Rbe=2282.73Ω.误差E=0.089%②求输出电阻图九求输出电阻的电路图测量值Ro=U/I=1000/0.434=2304Ω.理论值Ro=R1//Rce=24000Ω.误差E=0.04%③求电压增益图十求电压增益的电路图测量值Av=Uo/Ui=115理论值Av=— (R1//R5//Rce)/Rbe=121误差E=0.05%4.频率响应图十一幅频特性曲线和相频特性曲线图十二求f L,f H的数据中频幅度为119.2121dB,所以99*0.707=84.2956dB所以f L =1.2055kHz f H =23.9924MHz。
南昌大学EDA实验报告实验六信号发生器
![南昌大学EDA实验报告实验六信号发生器](https://img.taocdn.com/s3/m/b993d6658f9951e79b89680203d8ce2f006665a5.png)
南昌⼤学EDA实验报告实验六信号发⽣器
南昌⼤学实验报告
学⽣姓名:xx 学号:xx 专业班级:xx
实验类型:□验证□综合□设计□创新实验⽇期:2016.11.04 实验成绩:
实验六LPM信号发⽣器
(⼀)实验要求
1、LPM定制⽅法实现。
2、信号数字值存储在ROM中,可以是64个或128个,位长8位。
3、产⽣的信号可以是正弦波或⽅波、三⾓波、锯齿波等,⾃选。
4、⽤SignalTap逻辑分析/或输出到DAC⽰波器观察
(⼆)实验原理
定制LPM-ROM模块,并利⽤其设计⼀个信号发⽣器,该信号发⽣器由以下三部分组成:
(1)计数器或地址信号发⽣器;
(2)信号数据存储器ROM(6位地址线,8位数据线)(3)VHDL顶层程序设计
本实验中待测信号ar和q。
时钟选择clk;使能信号为en,⾼电平触发。
(三)实验步骤
1、定制初始化波形数据⽂件:建⽴.mif格式⽂件。
2、定制LPM_ROM元件:利⽤定制信号数据ROM宏功能块,并将以上波形加载与ROM中。
3、⽤VHDL语⾔完成信号发⽣器的顶层设计。
(四)实验仿真波形
(五)管脚分配
(六)下载测试。
将FPGA板接⽰波器,可实现⽅波,正弦波,三⾓波的波形输出。
控制按键s1,s2,s3,s4可改变波形的频率幅度⼤⼩。
(七)实验⼩结
本次实验我⽤到了创建mif⽂件rom存储,以及嵌⼊式逻辑分析仪的使⽤。
EDA实验报告(12份).pdf
![EDA实验报告(12份).pdf](https://img.taocdn.com/s3/m/6b4b2b806137ee06eff9188f.png)
实验一组合电路的设计1. 实验目的:熟悉MAX + plus II 的VHDL 文本设计流程全过程,学习简单组合电路的设计、多层次电路设计、仿真和硬件测试。
2. 实验内容:设计一个2选1多路选择器,并进行仿真测试,给出仿真波形。
3. 实验程序如下:library ieee;use ieee.std_logic_1164.all; entity mux21a isport(a,b,s:in std_logic;y:out std_logic); end entity mux21a; architecture one of mux21a is beginy<=a when s='0' else b ; end architecture one ;4. 仿真波形(如图1-1所示)图1-1 2选1多路选择器仿真波形5. 试验总结:从仿真波形可以看出此2选1多路选择器是当s为低电平时,y输出为b, 当s为高电平时,y输出为a(y<=a when s='0' else b ;),完成2路选择输出。
实验二时序电路的设计1. 实验目的:熟悉MAX + plus II VHDL文本设计过程,学习简单的时序电路设计、仿真和测试。
2. 实验验内容:设计一个锁存器,并进行仿真测试,给出仿真波形。
3. 实验程序如下:library ieee;use ieee.std_logic_1164.all;entity suocun7 isport(clk: in std_logic;en: in std_logic;D: in std_logic_vector(7 downto 0);B:out std_logic_vector(7 downto 0)); end suocun7;architecture one of suocun7 issignal K: std_logic_vector(7 downto 0); beginprocess(clk,en,D)beginif clk'event and clk='1' thenif en ='0'thenK<=D;end if;end if;end process;B<=K;end one;4.仿真波形(如图2-1所示)图2-1 8位锁存器仿真波形此程序完成的是一个8位锁存器,当时钟上升沿到来(clk'event and clk='1')、使能端为低电平(en ='0')时,输出为时钟上升沿时的前一个数,从仿真波形看,实现了此功能。
EDA实验报告
![EDA实验报告](https://img.taocdn.com/s3/m/1f998cf077232f60dccca194.png)
实验一:QUARTUS II 软件使用及组合电路设计仿真页脚内容1实验目的:学习QUARTUS II 软件的使用,掌握软件工程的建立,VHDL源文件的设计和波形仿真等基本内容。
实验内容:1.四选一多路选择器的设计基本功能及原理:选择器常用于信号的切换,四选一选择器常用于信号的切换,四选一选择器可以用于4路信号的切换。
四选一选择器有四个输入端a,b,c,d,两个信号选择端s(0)和s(1)及一个信号输出端y。
当s输入不同的选择信号时,就可以使a,b,c,d中某一个相应的输入信号与输出y端接通。
逻辑符号如下:页脚内容2程序设计:软件编译:在编辑器中输入并保存了以上四选一选择器的VHDL源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。
仿真分析:仿真结果如下图所示页脚内容3分析:由仿真图可以得到以下结论:当s=0(00)时y=a;当s=1(01)时y=b;当s=2(10)时y=c;当s=3(11)时y=d。
符合我们最开始设想的功能设计,这说明源程序正确。
2.七段译码器程序设计基本功能及原理:七段译码器是用来显示数字的,7段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用VHDL译码程序在FPGA或CPLD 中实现。
本项实验很容易实现这一目的。
输出信号的7位分别接到数码管的7个段,本实验中用的数码管为共阳极的,接有低电平的段发亮。
数码管的图形如下页脚内容4七段译码器的逻辑符号:程序设计:页脚内容5软件编译:在编辑器中输入并保存了以上七段译码器的VHDL源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。
仿真分析:仿真结果如下图所示:页脚内容6分析:由仿真的结果可以得到以下结论:当a=0(0000)时led7=1000000 此时数码管显示0;当a=1(0001)时led7=1111001 此时数码管显示1;当a=2(0010)时led7=0100100 此时数码管显示2;当a=3(0011)时led7=0110000 此时数码管显示3;当a=4(0100)时led7=0011001 此时数码管显示4;当a=5(0101)时led7=0010010 此时数码管显示5;当a=6(0110)时led7=0000010 此时数码管显示6;当a=7(0111)时led7=1111000 此时数码管显示7;当a=8(1000)时led7=0000000 此时数码管显示8;页脚内容7当a=9(1001)时led7=0010000 此时数码管显示9;当a=10(1010)时led7=0001000 此时数码管显示A;当a=11(1011)时led7=0000011 此时数码管显示B;当a=12(1100)时led7=1000110 此时数码管显示C;当a=13(1101)时led7=0100001 此时数码管显示D;当a=14(1110)时led7=0000110 此时数码管显示E;当a=15(1111)时led7=0001110 此时数码管显示F;这完全符合我们最开始的功能设计,所以可以说明源VHDL程序是正确的。
EDA实验报告
![EDA实验报告](https://img.taocdn.com/s3/m/43f38e1fb7360b4c2e3f6403.png)
姓名:郭灵芝学号:0704240115班级:通信一班07042200实验一0704240115 郭灵芝通信一班一.实验内容1.调节电路静态工作点(调节电位计),观察电路出现饱和失真和截止失真的输出信号波形,并测试对应的静态工作点值。
2.加入信号源频率5kHz(幅度1mV) ,调节电路使输出不失真,测试此时的静态工作点值。
测电路的输入电阻、输出电阻和电压增益;3.设计一个分压偏置的单管电压放大电路,要求信号源频率5kHz(幅度1mV) ,负载电阻5.1kΩ,电压增益大于50。
4.测电路的频率响应曲线和f L、f H值。
二.放大电路的原理图(1-1)放大电路的原理图R为滑动变阻器,该电路用的是三极管来实现放大,采用的是电压偏置,接法是共射极,1R的大小从而改变三极管的静态工作点,使三极管处于正常放通过它改变接入电路中的1大状态。
为了确定好的静态工作点,进行如下静态分析:上面图1-1的静态电路如下(1-2)放大电路所对应的静态电路可以用两个交流电压表分别测量输入电压和输出电压,输出电压除以输入电压即为放大倍数。
为了保证放大电路工作在放大区(可用示波器监测,保证波形不失真),将交流输入电压调为1mv,2mv,3mv 。
电压表均用交流模式。
当交流信号源取下表所示不同值时,读出电压表的读数,即i V 和0V ,并计算电压的放大倍数。
(表一)结论:当三极管工作在放大区时,其电压放大倍数近似为常数。
即输入电压随输入电压线性变化。
且放大倍数符合大于50的要求。
(表二)结论1R 调到10%到80%之间时三极管都正常放大,这可以通过C I 与B I 的比值即β来确定,在这个区间里β基本保持不变,当然1R 处于0%到10%之间的确定不了,这个还要通过实际测量的β来确定。
三.失真研究1. 电位器调到0%,交流信号保持20mv ,5 KHz ,输出信号如下(1-3)饱和失真的波形图此时负半周出现了失真,即削底,对于NPN 管说明出现了饱和失真。
eda课程设计报告
![eda课程设计报告](https://img.taocdn.com/s3/m/27cd6233ae1ffc4ffe4733687e21af45b207fe1f.png)
eda课程设计报告一、课程目标知识目标:1. 学生能理解EDA(电子设计自动化)的基本概念,掌握EDA工具的使用方法。
2. 学生能运用EDA软件进行电路设计与仿真,理解并掌握数字电路的设计原理。
3. 学生了解并掌握基础的硬件描述语言(如VHDL/Verilog),能完成简单的数字系统设计。
技能目标:1. 学生通过EDA软件的操作,培养电子电路设计、仿真与验证的实际操作能力。
2. 学生通过小组合作完成设计项目,提高团队协作与沟通技巧。
3. 学生能够运用所学知识解决实际问题,具备一定的创新意识和动手能力。
情感态度价值观目标:1. 学生在EDA课程学习中,培养对电子科学技术的兴趣和探究精神。
2. 学生通过课程实践,增强自信心和成就感,激发进一步学习的动力。
3. 学生在学习过程中,树立正确的工程伦理观念,认识到技术发展对社会的责任和影响。
课程性质:本课程为电子信息工程及相关专业高年级学生的专业核心课程,旨在通过理论与实践相结合的教学,提高学生的电子设计能力。
学生特点:学生已具备一定的电子技术基础,具有较强的学习能力和实践欲望,对新技术和新工具充满好奇心。
教学要求:结合学生特点,注重培养实际操作能力,鼓励学生创新思维,提高解决实际问题的能力。
通过课程目标分解,确保学生在知识、技能和情感态度价值观方面的全面成长。
后续教学设计和评估将以此为基础,关注学生的学习成果。
二、教学内容根据课程目标,教学内容分为以下三个模块:1. EDA基本概念与工具使用- 教材章节:第一章 EDA技术概述,第二章 EDA工具简介- 内容列举:EDA发展历程,常用EDA软件介绍,软件安装与配置,基本操作流程。
2. 数字电路设计与仿真- 教材章节:第三章 数字电路设计基础,第四章 仿真技术- 内容列举:数字电路设计原理,EDA软件电路设计流程,仿真参数设置,波形分析与验证。
3. 硬件描述语言与数字系统设计- 教材章节:第五章 硬件描述语言,第六章 数字系统设计实例- 内容列举:硬件描述语言基础,VHDL/Verilog语法要点,简单数字系统设计方法,设计实例分析与实操。
EDA实验报告 (2)
![EDA实验报告 (2)](https://img.taocdn.com/s3/m/260b8cd2dc88d0d233d4b14e852458fb760b3876.png)
实验一QUARTUS II软件安装、基本界面及设计入门一、实验目的:QUARTUSII是Altera公司提供的EDA工具,是当今业界最优秀的EDA设计工具之一。
提供了一种与结构无关的设计环境,使得电子设计人员能够方便地进行设计输入、快速处理和器件编程。
通过本次实验使学生熟悉QUARTUSII软件的安装,基本界面及基本操作,并练习使用QUARTUS的图形编辑器绘制电路图。
二、实验内容:1、安装QUARTUSII软件;2、熟悉QUARTUSII基本界面及操作;3通过一个4位加法器的设计实例来熟悉采用图形输入方式进行简单逻辑设计的步骤。
三、实验仪器:1、PC机一台;2、QUARTUSII软件;3、EDA实验箱。
四、实验原理:4位加法器是一种可实现两个4位二进制数的加法操作的器件。
输入两个4位二进制的被加数A和B,以及输入进位Ci,输出为一个4位二进制和数D和输出进位数Co。
半加操作就是求两个加数A、B的和,输出本位和数S及进位数C。
全加器有3位输入,分别是加数A、B和一个进位Ci。
将这3个数相加,得出本位和数(全加和数)D和进位数Co。
全加器由两个半加器和一个或门组成。
五、实验步骤:安装QUARTUSII软件;因为实验时我的机器了已经有QUARTUSII软件,所以我并没有进行安装软件的操作。
设计半加器:在进行半加器模块逻辑设计时,采用由上至下的设计方法,在进行设计输入时,需要由下至上分级输入,使用QuartusIIGraphic Editor进行设计输入的步骤如下。
(1)、打开QUARTUSII软件,选择File-new project wizard…新建一个设计实体名为has的项目文件;(2)、新建文件,在block.bdf窗口下添加元件符号,并连接。
如下图:半加器原理图(3)、将此文件另存为has.gdf的文件。
(4)、在主菜单中选择Processing→Start Compilation命令,系统对设计进行编译,同时打开Compilation Report Flow Summary窗体,Status视图显示编译进程。
EDA技术实验报告(1)
![EDA技术实验报告(1)](https://img.taocdn.com/s3/m/69000f777fd5360cba1adbad.png)
实验一利用原理图输入法设计4位全加器一、实验目的:掌握利用原理图输入法设计简单组合电路的方法,掌握MAX+plusII的层次化设计方法。
通过一个4位全加器的设计,熟悉用EDA软件进行电路设计的详细流程。
二、实验原理:一个4位全加器可以由4个一位全加器构成,全加器的进位以串行方式实现,即将低位加法器的进位输出cout与相邻的高位加法器的低位进位输入信号cin相接。
1位全加器f-adder由2个半加器h-adder和一个或门按照下列电路来实现。
半加器h-adder由与门、同或门和非门构成。
四位加法器由4个全加器构成1234三、实验内容:1. 熟悉QuartusII软件界面,掌握利用原理图进行电路模块设计的方法。
QuartusII设计流程见教材第五章:QuartusII应用向导。
2.设计1位全加器原理图(1)生成一个新的图形文件(file->new->graphic editor)(2)按照给定的原理图输入逻辑门(symbol->enter symbol)(3)根据原理图连接所有逻辑门的端口,并添加输入/输出端口(4)为管脚和节点命名:在管脚上的PIN_NAME处双击鼠标左键,然后输入名字;选中需命名的线,然后输入名字。
(5)创建缺省(Default)符号:在File菜单中选择Create Symbol Files for Current File项,即可创建一个设计的符号,该符号可被高层设计调用。
3.利用层次化原理图方法设计4位全加器(1)生成新的空白原理图,作为4位全加器设计输入(2)利用已经生成的1位全加器的缺省符号作为电路单元,设计4位全加器的原理图.4.新建波形文件(file->new->Other Files->Vector Waveform File),保存后进行仿真(Processing ->Start Simulation),对4位全加器进行时序仿真。
eda仿真实验报告
![eda仿真实验报告](https://img.taocdn.com/s3/m/ef695aca85868762caaedd3383c4bb4cf7ecb702.png)
eda仿真实验报告EDA仿真实验报告一、引言EDA(Electronic Design Automation)是电子设计自动化的缩写,是指利用计算机技术对电子设计进行辅助、自动化的过程。
在现代电子设计中,EDA仿真是不可或缺的一环,它可以帮助工程师验证电路设计的正确性、性能和可靠性。
本篇报告将介绍我在EDA仿真实验中的经验和收获。
二、实验背景本次实验的目标是对一个数字电路进行仿真,该电路是一个4位加法器,用于将两个4位二进制数相加。
通过仿真,我们可以验证电路设计的正确性,并观察其在不同输入情况下的输出结果。
三、实验步骤1. 电路设计:首先,我们根据给定的要求和电路原理图进行电路设计。
在设计过程中,我们需要考虑电路的逻辑关系、时序要求以及输入输出端口的定义等。
2. 仿真环境搭建:接下来,我们需要选择合适的EDA仿真工具,并搭建仿真环境。
在本次实验中,我选择了Xilinx ISE Design Suite作为仿真工具,并创建了一个仿真项目。
3. 仿真测试向量生成:为了对电路进行全面的测试,我们需要生成一组合适的仿真测试向量。
这些测试向量应该覆盖了电路的所有可能输入情况,以验证电路的正确性。
4. 仿真运行:在仿真环境搭建完成后,我们可以开始进行仿真运行了。
通过加载测试向量,并观察仿真结果,我们可以判断电路在不同输入情况下的输出是否符合预期。
5. 仿真结果分析:仿真运行结束后,我们需要对仿真结果进行分析。
通过对比仿真输出和预期结果,可以判断电路设计的正确性。
如果有不符合预期的情况,我们还可以通过仿真波形分析,找出问题所在。
四、实验结果与讨论在本次实验中,我成功完成了4位加法器的仿真。
通过对比仿真输出和预期结果,我发现电路设计的正确性得到了验证。
无论是正常情况下的加法运算,还是特殊情况下的进位和溢出,电路都能够正确地输出结果。
在实验过程中,我还发现了一些有趣的现象。
例如,在输入两个相同的4位二进制数时,电路的输出结果与输入完全一致。
EDA实验报告全加器
![EDA实验报告全加器](https://img.taocdn.com/s3/m/a03bb24bfe4733687e21aa2d.png)
南昌大学实验报告
学生姓名:刘光林学号: 6100209064 专业班级:卓越通信(3+1)实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验一熟悉QuartusⅡ软件及实验装置设计全加器
(一)实验目的
以一位二进制全加器为例熟悉利用QuartusII的原理图输入方法和文本输入法设计简单组合电路;学习多层次工程的设计方法。
(二)实验要求
⑴用文本方法实现半加器,再采用层次设计法用原理图输入完成全加器的设计;
⑵给出此项设计的仿真波形;
⑶用发光管指示显示结果。
(三)实验步骤:
1.建立工作库文件夹,输入半加器VHDL代码并存盘。
ENTITY h_adder IS
PORT (a ,b:IN STD_LOGIC;
co, so:OUT STD_LOGIC);
END ENTITY h_adder;
ARCHITECTURE fh1 OF adder is
BEGIN
So<=NOT(a XOR(NOT b)); co<=A and b;
END ARCHITECTURE fh1:
2.选目标器件并编译。
3.建立仿真波形文件,进行波形仿真。
半加器的仿真波形
4.引脚锁定,包装元件。
5.建立顶层电路实验原理图
全加器的原理图
6.对全加器进行波形仿真
(四)实验结果:
实验波形结果基本正确,但是稍微有一点延时,这里不是非常准确。
eda实验报告完整版
![eda实验报告完整版](https://img.taocdn.com/s3/m/a979b0eefab069dc5022012e.png)
EDA实验报告焦中毅201300121069实验1 4选1数据选择器的设计一、实验目的1.学习EDA软件的基本操作。
2.学习使用原理图进行设计输入。
3.初步掌握器件设计输入、编译、仿真和编程的过程。
4.学习实验开发系统的使用方法。
二、实验仪器与器材1.EDA开发软件一套2.微机一台3.实验开发系统一台4.打印机一台三、实验说明本实验通过使用基本门电路完成4选1数据选择器的设计,初步掌握EDA设计方法中的设计输入、编译、综合、仿真和编程的过程。
实验结果可通过实验开发系统验证,在实验开发系统上选择高、低电平开关作为输入,选择发光二极管显示输出电平值。
本实验使用Quartus II 软件作为设计工具,要求熟悉Quartus II 软件的使用环境和基本操作,如设计输入、编译和适配的过程等。
实验中的设计文件要求用原理图方法输入,实验时,注意原理图编辑器的使用方法。
例如,元件、连线、网络名的放置方法和放大、缩小、存盘、退出等命令的使用。
学会管脚锁定以及编程下载的方法等。
四、实验要求1.完成4选1数据选择器的原理图输入并进行编译;2.对设计的电路进行仿真验证;3.编程下载并在实验开发系统上验证设计结果。
五、实验结果4选1数据选择器的原理图:仿真波形图:管脚分配:实验2 四位比较器一、实验目的1.设计四位二进制码比较器,并在实验开发系统上验证。
2.学习层次化设计方法。
二、实验仪器与器材1.EDA 开发软件 一套 2.微机 一台 3.实验开发系统 一台 4.打印机 一台 5.其它器件与材料 若干 三、实验说明本实验实现两个4位二进制码的比较器,输入为两个4位二进制码0123A A A A 和0123B B B B ,输出为M (A=B ),G (A>B )和L (A<B )(如图所示)。
用高低电平开关作为输入,发光二极管作为输出,具体管脚安排可根据试验系统的实际情况自行定义。
四、实验要求1.用硬件描述语言编写四位二进制码 比较器的源文件; 2.对设计进行仿真验证; 3.编程下载并在实验开发系统上进行 硬件验证。
EDA数字电路设计实验报告范文
![EDA数字电路设计实验报告范文](https://img.taocdn.com/s3/m/0dee5a75ad02de80d4d840cc.png)
一、实验目的通过本实验的学习,使学生掌握VHDL 中文件IO、配置、同步和异步设计等知识,训练VHDL 的编程能力,培养数字电路设计的基本技能,为今后继续学习大规模数字系统设计奠定基础。
二、实验内容1、分析示例代码,掌握VDHL 文件IO 的编写方法。
2、分析示例代码,掌握VDHL 配置的使用以及编写方法。
3、按照要求修改文件IO 和配置的示例代码。
4、根据同步和异步设计的不同,按照要求编写代码。
三、实验原理、方法和手段复杂设计,例如CPU,需要给它执行的指令。
以验证其正确性。
执行的结果也可以保存在文件中,供以后分析用。
VHDL 提供了文件读写功能,可以将测试激励预先保存在文件中,然后读入进行仿真。
文件读写的功能保存在IEEE 库的std.textio 和 std_logic_textio 包中,在文件头包含这些库,包,就可以调用文件读写函数。
文件I/O 关键语句:1、使用IEEE 文件读写包:USE ieee.std_logic_textio.all;USE std.textio.all;2、定义文件数据类型file results: text open write_mode is “results.txt";file mem_data: text;3、打开文件file_open(mem_data, "mem_data.txt", read_mode);4、定义行变量variable inline: line;5、读入一行数据到行变量readline(mem_data, inline);6、读行变量数据read(inline, ram_mem_temp);7、写数据到行变量write(OneLine,addr,right,10);8、写行变量到文件中writeline(results,OneLine);9、类型转换To_stdlogicvector(ram_mem_temp);--将ram_mem_temp 转换成std_logic_vector 型变量conv_integer(addr);--将addr 转换成interger 型变量1),常用的数据类型,函数,过程,模块,测试激励可以放在一个包中,以方便重用。
《EDA》实验指导书--精讲
![《EDA》实验指导书--精讲](https://img.taocdn.com/s3/m/8f12f7386bd97f192279e93a.png)
辽东学院自编教材《可编程逻辑器件原理及应用实验》指导书李海成编(计算机科学与技术、电子信息工程专业用)姓名:学号:班级:信息技术学院2013年6月目录目录 (1)实验一MAX+PLUS-II设计三八译码器......... 错误!未定义书签。
实验二半加器 . (2)实验三带进位输入的8位加法器 (4)实验四数据比较器 (6)实验五编码器 (9)实验六组合逻辑电路的设计 (12)实验七计数器 (14)实验八触发器功能的模拟实现 (17)(被加数)Ai(被加数)Bi(半加和)Hi(本位进位)Ci实验二 半加器实验类型: 验证性实验课时: 2指导教师: 李海成 时 间:201 年 月 日 课 次:第 节教学周次:第 周实验分室: 实验台号: 实 验 员:一、 实验目的1.设计并实验一个一位半加器2.掌握CPLD/FPGA 组合逻辑设计基本方法。
二、 实验原理计算机中数的操作都是以二进制进位的,最基本的运算就是加法运算。
按照进位是否加入,加法器分为半加器和全加器电路两种。
计算机中的异或指令的功能就是求两个操作数各位的半加和。
一位半加器有两个输入、输出,如图2-1。
图2-1 一位半加器示意图表2-1一个半加大路的真值表如表2-1所示,根据真值表可得到半加器的函数表达式:Bi Ai Bi Ai Hi ∙+∙= Bi Ai Ci ∙=三、 实验连线半加器的两个输入所对应的管脚同两位拨码开关相连,两个输入管脚名为a 、b ;两个输出所对应的管脚同两位发光二极管相连,两个输出管脚名为 c0和s,其中c0表示进位, s 表示相加结果。
四、 实验记录五、实验注意事项1.提前编辑实验程序。
2.根据教师要求正确操作,并检验逻辑的正确性六、思考题1.EDA半加器实现与数字电路设计方法的根本区别。
2.简述EDA设计半加器的不同方法,并比较其优缺点。
3.心得体会及其他。
实验三 带进位输入的8位加法器实验类型: 验证性实验课时: 2 指导教师:时 间:200 年 月 日 课 次:第 节教学周次:第 周实验分室: 实验台号: 实 验 员:一、 实验目的1. 设计并实现一个8位全加器2. 掌握EDA 中模块调用方法 二、 实验原理利用实验二构建的半加器构建一位的全加器,然后设计一个8 位的全加器,其框图如图4-1所示。
EDA大作业要求
![EDA大作业要求](https://img.taocdn.com/s3/m/0425b1f8ba0d4a7302763adf.png)
《EDA技术》课程大作业要求项目一、自选一模拟电路(如功放电路),画出仿真电路图(包含虚拟仪器),并对该电路作仿真分析。
要求:1. 仿真电路图、仿真分析过程和结果以截图的形式表达。
2. 六种仿真分析方法中,选三种(必包含参数扫描分析)对电路分析。
3. 仿真结果中包含利用虚拟仪器检测的结果。
4. 对理论分析结果与仿真分析结果要作比较分析。
项目二、设计一8S循环的交通灯控制器(以74LS160D为核心,能读秒)。
要求:1.有简单的设计思路分析。
2.设计步骤明确并得到电原理图,并作仿真分析及说明。
3.用逻辑分析仪输出波形。
4.进阶任务:设计一60S循环的交通灯控制器(本任务可选择30s或60s)大作业文本打印格式要求:1.打印文稿用A4格式排版。
2.行距、字距以美观大方为宜。
3.一级标题用4号宋体、加粗,二级标题用5号宋体、加粗,正文用5号宋体。
4.图、表要有标注、编号(小5号宋体)。
5.封面格式见附页。
上交材料:1.项目设计报告一份(纸质)2.项目设计报告电子稿3.项目设计成果电子档注:电子文档存于以姓名学号为名的文件夹统一上交。
《EDA技术》课程大作业项目名称:实用电路仿真分析设计专业班级:学号:姓名:连云港职业技术学院信息工程学院年月日内容安排参考项目一:项目名称:xxxxxxxxxxxxxxxxx项目要求:1. xxxxxxxxxxxxx2. xxxxxxxxxxxxx项目设计准备分析:1. 2. 3.-------- 项目设计步骤:1. 2. 3.--------项目仿真结果及分析:xxxxxxxxxxxx------------项目二:(最后)课程学习心得()。
EDA实验报告
![EDA实验报告](https://img.taocdn.com/s3/m/d5d388b5b0717fd5360cdc47.png)
实验一:QUARTUS II 软件使用及组合电路设计仿真实验目的:学习QUARTUS II 软件的使用,掌握软件工程的建立,VHDL 源文件的设计和波形仿真等基本内容。
实验内容:1.四选一多路选择器的设计基本功能及原理:选择器常用于信号的切换,四选一选择器常用于信号的切换,四选一选择器可以用于4路信号的切换。
四选一选择器有四个输入端a,b,c,d,两个信号选择端s(0)和s(1)及一个信号输出端y。
当s输入不同的选择信号时,就可以使a,b,c,d中某一个相应的输入信号与输出y端接通。
逻辑符号如下:程序设计:软件编译:在编辑器中输入并保存了以上四选一选择器的VHDL源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。
仿真分析:仿真结果如下图所示分析:由仿真图可以得到以下结论:当s=0(00)时y=a;当s=1(01)时y=b;当 s=2(10)时y=c;当s=3(11)时y=d。
符合我们最开始设想的功能设计,这说明源程序正确。
2.七段译码器程序设计基本功能及原理:七段译码器是用来显示数字的,7段数码是纯组合电路,通常的小规模专用IC,如74或4000系列的器件只能作十进制BCD码译码,然而数字系统中的数据处理和运算都是2进制的,所以输出表达都是16进制的,为了满足16进制数的译码显示,最方便的方法就是利用VHDL译码程序在FPGA或CPLD中实现。
本项实验很容易实现这一目的。
输出信号的7位分别接到数码管的7个段,本实验中用的数码管为共阳极的,接有低电平的段发亮。
数码管的图形如下七段译码器的逻辑符号:程序设计:软件编译:在编辑器中输入并保存了以上七段译码器的VHDL源程序后就可以对它进行编译了,编译的最终目的是为了生成可以进行仿真、定时分析及下载到可编程器件的相关文件。
仿真分析:仿真结果如下图所示:分析:由仿真的结果可以得到以下结论:当a=0(0000)时led7=1000000 此时数码管显示0;当a=1(0001)时led7=1111001 此时数码管显示1;当a=2(0010)时led7=0100100 此时数码管显示2;当a=3(0011)时led7=0110000 此时数码管显示3;当a=4(0100)时led7=0011001 此时数码管显示4;当a=5(0101)时led7=0010010 此时数码管显示5;当a=6(0110)时led7=0000010 此时数码管显示6;当a=7(0111)时led7=1111000 此时数码管显示7;当a=8(1000)时led7=0000000 此时数码管显示8;当a=9(1001)时led7=0010000 此时数码管显示9;当a=10(1010)时led7=0001000 此时数码管显示A;当a=11(1011)时led7=0000011 此时数码管显示B;当a=12(1100)时led7=1000110 此时数码管显示C;当a=13(1101)时led7=0100001 此时数码管显示D;当a=14(1110)时led7=0000110 此时数码管显示E;当a=15(1111)时led7=0001110 此时数码管显示F;这完全符合我们最开始的功能设计,所以可以说明源VHDL程序是正确的。
(完整word版)EDA实验报告
![(完整word版)EDA实验报告](https://img.taocdn.com/s3/m/d714c8f102020740bf1e9b22.png)
计算机学院计算机科学与技术专业1班____组、学号姓名协作者______________ 教师评定_________________实验题目_________基于Libero的数字逻辑设计仿真及验证实验_________1、熟悉EDA工具的使用;仿真基本门电路。
2、仿真组合逻辑电路。
3、仿真时序逻辑电路。
4、基本门电路、组合电路和时序电路的程序烧录及验证。
5、数字逻辑综合设计仿真及验证。
实验报告1、基本门电路一、实验目的1、了解基于Verilog的基本门电路的设计及其验证。
2、熟悉利用EDA工具进行设计及仿真的流程。
3、学习针对实际门电路芯片74HC00、74HC02、74HC04、74HC08、74HC32、74HC86进行VerilogHDL设计的方法。
二、实验环境Libero仿真软件。
三、实验内容1、掌握Libero软件的使用方法。
2、进行针对74系列基本门电路的设计,并完成相应的仿真实验。
3、参考教材中相应章节的设计代码、测试平台代码(可自行编程),完成74HC00、74HC02、74HC04、74HC08、74HC32、74HC86相应的设计、综合及仿真。
)4、提交针对74HC00、74HC02、74HC04、74HC08、74HC32、74HC86(任选一个....的综合结果,以及相应的仿真结果。
四、实验结果和数据处理1、所有模块及测试平台代码清单..(完整word版)EDA实验报告//74HC00代码-与非module HC00(A,B,Y);input [4:1]A,B;output [4:1]Y;assign Y=~(A&B);//与非endmodule//74HC00测试平台代码`timescale 1ns/1nsmodule testbench();reg [4:1] a,b;wire [4:1] y;HC00 u1(a,b,y);initialbegina=4'b0000;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;a=4'b1111;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;(完整word版)EDA实验报告endendmodule//74HC02代码-或非module HC02(A,B,Y);input [4:1]A,B;output [4:1]Y;assign Y=~(A|B);//或非endmodule//74HC02测试平台代码`timescale 1ns/1nsmodule testbench();reg [4:1] a,b;wire [4:1] y;HC00 u1(a,b,y);initialbegina=4'b0000;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;a=4'b1111;b=4'b0001;(完整word版)EDA实验报告#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;endendmodule//74HC04代码-非module HC04(A,Y);input [4:1]A;output [4:1]Y;assign Y=~A;endmodule//74HC04测试平台代码`timescale 1ns/1nsmodule testbench();reg [4:1] a,b;wire [4:1] y;HC00 u1(a,b,y);initialbegina=4'b0000;b=4'b0001;#10 b=b<<1;(完整word版)EDA实验报告#10 b=b<<1;#10 b=b<<1;a=4'b1111;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;endendmodule//74HC08代码-与module HC08(A,B,Y);input [4:1]A,B;output [4:1]Y;assign Y=A&B;endmodule//74HC08测试平台代码`timescale 1ns/1nsmodule testbench();reg [4:1] a,b;wire [4:1] y;HC00 u1(a,b,y);initialbegin(完整word版)EDA实验报告a=4'b0000;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;a=4'b1111;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;endendmodule//74HC32代码-或module HC32(A,B,Y);input [4:1]A,B;output [4:1]Y;assign Y=A|B;endmodule//74HC32测试平台代码`timescale 1ns/1nsmodule testbench();reg [4:1] a,b;wire [4:1] y;(完整word版)EDA实验报告HC00 u1(a,b,y);initialbegina=4'b0000;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;a=4'b1111;b=4'b0001;#10 b=b<<1;#10 b=b<<1;#10 b=b<<1;endendmodule//74HC86代码-异或module HC86(A,B,Y);input [4:1]A,B;output [4:1]Y;assign Y=A^B;endmodule//74HC86测试平台代码`timescale 1ns/1ns(完整word 版)EDA 实验报告module testbench(); reg [4:1] a,b; wire [4:1] y;HC00 u1(a,b,y);initial begin a=4'b0000;b=4'b0001; #10 b=b<<1; #10 b=b<<1; #10 b=b<<1;a=4'b1111;b=4'b0001; #10 b=b<<1; #10 b=b<<1;#10 b=b<<1;endendmodule2、第一次仿真结果(任选一个....门,请注明,......插入截图,.....下同..)。
EDA实验报告
![EDA实验报告](https://img.taocdn.com/s3/m/6d83bb9d195f312b3169a5ef.png)
一MAX –plusII及开发系统使用一、实验目的1、熟悉利用MAX-plusⅡ的原理图输入方法设计简单的组合电路2、掌握层次化设计的方法3、熟悉DXT-BⅢ型EDA试验开发系统的使用二、主要实验设备PC 机一台(中档以上配置),DXT-B3 EDA实验系统一台。
三、实验原理数字系统设计系列实验是建立在数字电路基础上的一个更高层次的设计性实验。
它是借助可编程逻辑器件(PLD),采用在系统可编程技术(ISP),利用电子设计自动化软件(EDA),在计算机(PC)平台上进行的。
因为本实验是在计算机平台上进行,因此实验方式,实验手段和实验仪器与传统的实验有很大的区别,主要体现在以下几个方面:1、实验器材集中化,所有实验基本上在一套实验设备上进行。
传统的实验每作完一个实验,实验器材基本上都要变动(个别除外)。
而做本实验时,只要在计算机上把不同的程序输进去,其它步骤所有实验都一致;2、实验耗材极小(基本上没有耗材);3、在计算机上进行,自动化程度高,人机交互性好,修改、验证实验简单;4、下载后,实验结果清晰;5、实验仪器损耗少,维护简单;下面,我们就本套实验设备做一个简单的介绍。
(一)Max+plusⅡ10.0的使用。
1、Max+PlusII软件的安装步骤:第一步:系统要求奔3CPU以上,128M内存以上,4G 以上硬盘,98 操作系统(98或Me操作系统才可以下载,其他操作系统下载必须安装驱动,否则只能仿真,如果大家只进行仿真的话,对系统没要求)第二步:安装点击安装可执行文件进行安装,安装完毕后会弹出一对话框,点击是或否都可以。
第三步:将安装文件夹中的License 文件夹打开,里面有一个License.bat 注册文件,将此文件复制到你的安装目录下(你的安装目录可放在任一个驱动器下,然后建立一个Max10的文件夹,将系统安装在此文件夹中,安装后此文件夹中会有三个文件夹)的任一个文件夹中,要清楚位置。
第四步:注册启动Max+PlusII 软件,可以从开始-->程序-->Altera-->Max+PlusII 打开,也可以建立一个快捷方式在桌面上。
EDA实验报告
![EDA实验报告](https://img.taocdn.com/s3/m/f337233bcbaedd3383c4bb4cf7ec4afe05a1b15a.png)
EDA实验报告一、实验目的本次 EDA 实验的主要目的是熟悉电子设计自动化(EDA)软件的使用,掌握数字电路的设计、仿真和实现流程,提高对数字逻辑电路的理解和设计能力。
二、实验设备与环境1、计算机一台2、 EDA 软件(如 Quartus II 等)三、实验原理1、数字逻辑基础数字电路中的基本逻辑门包括与门、或门、非门、与非门、或非门等。
通过这些基本逻辑门的组合,可以实现各种复杂的数字逻辑功能。
2、组合逻辑电路组合逻辑电路的输出仅取决于当前的输入,不存在存储单元。
常见的组合逻辑电路有加法器、编码器、译码器等。
3、时序逻辑电路时序逻辑电路的输出不仅取决于当前的输入,还与电路的过去状态有关。
常见的时序逻辑电路有计数器、寄存器等。
四、实验内容1、设计一个简单的加法器使用基本逻辑门设计一个两位加法器,输入为两个两位的二进制数A 和 B,输出为它们的和 S 以及进位 C。
2、设计一个 4 位计数器实现一个 4 位的计数器,能够在时钟信号的上升沿进行计数,计数范围为 0 到 15。
3、设计一个数码管显示译码器将输入的 4 位二进制数转换为数码管的 7 段显示编码,实现数字 0 到 9 的显示。
五、实验步骤1、加法器设计(1)打开 EDA 软件,创建一个新的项目。
(2)使用原理图输入方式,绘制出加法器的逻辑电路图,包括两个半加器和一个或门。
(3)对设计进行编译,检查是否存在语法错误。
(4)创建仿真文件,设置输入信号的激励,进行功能仿真,观察输出结果是否符合预期。
2、计数器设计(1)在项目中新建一个模块,使用 Verilog HDL 语言描述计数器的功能。
(2)编写测试代码,对计数器进行仿真验证。
(3)将计数器下载到硬件开发板上,通过观察实际的输出结果验证其功能。
3、数码管显示译码器设计(1)同样使用原理图输入方式,设计数码管显示译码器的逻辑电路。
(2)进行编译和仿真,确保译码器的功能正确。
(3)将译码器与计数器连接起来,实现数码管的动态显示。
eda报告
![eda报告](https://img.taocdn.com/s3/m/93bda0ed185f312b3169a45177232f60ddcce78c.png)
eda报告
根据您的要求,以下是EDA(探索性数据分析)报告的一个
模板:
1. 引言
在引言部分,介绍报告的目的、数据集的来源和背景。
还可
以详细说明数据集的特征和目标变量等。
2. 数据概览
在此部分,可以提供关于数据集的基本信息,比如数据集的
大小、变量的数量、数据类型等。
也可以使用统计描述(例如平均值、中位数、最大值、最小值)来描述每个变量的分布。
3. 缺失值分析
在这一部分,分析数据集中存在的缺失值情况。
可以使用缺
失值的百分比或图表来展示不同变量的缺失情况。
还可以讨论缺失值的可能原因以及如何处理缺失值。
4. 数据可视化
在这个部分,使用图表和可视化工具(如折线图、柱状图、
散点图等)来探索变量之间的关系和分布情况。
通过可视化,可以更直观地发现数据中的模式、异常值和趋势等。
5. 相关性分析
在这一部分,使用统计分析方法(如相关系数、回归分析等)来探索变量之间的关系。
通过相关性分析,可以确定哪些变量之间存在高度相关性,从而提供进一步的洞察。
6. 假设检验
如果需要,可以在此部分进行假设检验以确定是否存在统计显著性。
可以使用适当的统计方法(如t检验、方差分析等)来检验变量之间的差异。
7. 结论
在结论部分,总结整个EDA的结果,概括发现的模式和洞察。
还可以提出进一步的研究问题或建议,以便在后续分析中更深入地研究数据集。
以上是一个EDA报告的基本结构,具体的内容和分析方法可以根据数据集的特点和研究目的进行调整和补充。
希望对您有所帮助!。
EDA实验
![EDA实验](https://img.taocdn.com/s3/m/3239990dbb68a98271fefac8.png)
一、实验部分实验一仪器的熟悉及半加器的设计一、实验内容:(1)熟悉实验台(2)用VHDL设计半加器及或门,并给出程序设计、软件编译、仿真分析、硬件测试及详细实验过程。
(3)根据以上的实验内容写出实验报告,包括程序设计、软件编译、仿真分析和详细实验过程;给出程序分析报告、仿真波形图及其分析报告。
实验二简单组合电路的设计一、实验目的:熟悉Max+plusⅡ的VHDL文本设计流程全过程,学习简单组合电路的设计、多层次电路设计、仿真和硬件测试。
二、实验内容1:利用MAX+plusⅡ完成2选1多路选择器的文本编辑输入(mux21a.vhd)和仿真测试等步骤,给出下图所示的仿真波形。
三、实验内容2:将多路选择器看成是一个元件mux21a,利用元件例化语句并将此文件放在同一目录。
以下是参考程序:LIBRARY IEEE;USE IEEE.STD_LOGIC_1164.ALL;ENTITY MUXK ISPORT (a1,a2,a3,s0,s1 : IN STD_LOGIC;outy : OUT STD_LOGIC );END ENTITY MUXK;ARCHITECTURE BHV OF MUXK ISCOMPONENT MUX21APORT ( a,b,s : IN STD_LOGIC;y : OUT STD_LOGIC);END COMPONENT ;SIGNAL tmp : STD_LOGIC;BEGINu1 : MUX21A PORT MAP(a=>a2,b=>a3,s=>s0,y=>tmp);u2 : MUX21A PORT MAP(a=>a1,b=>tmp,s=>s1,y=>outy);END ARCHITECTURE BHV ;对上例分别进行编译、综合、仿真。
并对其仿真波形作出分析说明,并画出电路结构,说明该电路的功能。
四、实验报告:根据以上的实验内容写出实验报告,包括程序设计、软件编译、仿真分析和详细实验过程;给出程序分析报告、仿真波形图及其分析报告。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验一全加器的设计
(一)实验目的
以四位二进制全加器为例熟悉利用QuartusII的原理图输入方法和文本输入法设计简单组合电路;学习多层次工程的设计方法。
(二)实验要求
⑴用文本方法实现一位全加器,再采用层次设计法用原理图输入完成4位全加器的设计;
⑵给出此项设计的仿真波形;
⑶用发光LED指示显示结果。
(三)实验流程
1、创建1位全加器工程,新建verilog文本文件,编译,转换为.bsf符号文件。
2、同一文件夹下创建4位全加器工程,新建bdf原理图文件并编译。
3、新建vwf波形文件,时序仿真验证加法功能。
4、引脚锁定并再次编译。
5、添加.sof文件下载测试。
(四)实验效果
实验二模可变计数器的设计
(一)实验目的
1、进一步熟悉EDA开发板和QuartusⅡ软件的使用方法;
2、学习静态数码管的使用;
3、学习计数器的设计、仿真和硬件测试;学习7段数码显示译码器设计;
(二)实验要求
设计模可变计数器,可任选模的大小(例模15、模115),实验要求:
(1)设置一位控制位M,要求M=0:模X计数;M=1:模Y计数;
(2)计数结果用3位数码管显示,显示BCD码;
(3)给出此项设计的仿真波形;
(4)选择实验电路验证此计数器的功能。
设置涉及2个开关和一个按键,一个开关控制改变模值,另一开关作为使能控制,按键作为异步清0。
(三)实验程序
(四)实验波形
(五)测试效果
实验三序列信号发生和检测器设计
(一)实验目的:学习一般有限状态机的设计,用状态机实现序列发生和检测器的电路设计。
(二)实验要求:先实现串行序列发生器的设计,产生序列0111010011011010;再设计检测器,若检测到串行序列11010则输出为“1”,否则输出为“0”,并对其进行仿真和硬件测试,选择实验电路验证功能。
下载程序后,可通过led串行输出序列信号,另用五个led灯来观测待检测序列,当11010五个全部出现在led上时,标识位灯M亮起,说明检测到“11010”的信号,即符合设计要求。
产生的序列和检测的序列值可任选。
发生器和检测器最好异步,以确保能检测到,可以将时钟经非门后再接入检测器。
(三)序列检测状态转移图
(四)实验程序
(五)仿真波形
(六)实验效果
实验四交通灯控制
(一)实验目的:学习设计优化和状态机的设计。
学习较复杂数字系统设计;
(二)设计要求
实现一个由一条主干道和一条乡间公路形成的十字路口的交通灯控制器功能:
1、有MR(主红)、MY(主黄)、MG(主绿)、CR(乡红)、CY(乡黄)、CG(乡绿)
六盏交通灯需要控制;
2、交通灯由绿转红前有4秒亮黄灯的间隔时间,由红转绿没有间隔时间;
3、乡间公路右侧各埋有一个串连传感器,当有车辆准备通过乡间公路时,发出请求信
号S=1,其余时间S=0;
4、平时系统停留在主干道通行(MGCR)状态,一旦S信号有效,经主道黄灯4秒
(MYCR)状态后转入乡间公路通行(MRCG)状态,但要保证主干60s后才能转
换;
5、一旦S信号消失,系统脱离MRCG状态,即经乡道黄灯4秒(MRCY)状态进入
MGCR状态,即使S信号一直有效,MRCG状态也不得长于20秒钟;
(三)实验程序
(四)仿真波形
(五)实验效果
1.复位时,起始状态是主绿乡红,数码管从60开始倒计时。
2.当60s减1计数完成后,如果s为1(代表乡干道有车要求通过)时,变为主黄乡绿状态,数码管4s倒计时;如果s为0,则回到起始状态,主绿乡红重新60s倒计时。
3.4s倒计时后,进入主红乡绿状态,如果此时s信号为0,则立即转入主红乡黄状态;如果s信号一直为1,则数码管开始20s倒计时,计数期间一旦出现s信号为0,则立即转入主红乡黄状态,即使s信号一直为1,当20s倒计时完成后也会入主红乡黄状态。
4.主红乡黄,数码管开始4s倒计时,计数完成后进入主绿乡红状态,数码管60s倒计时,重复上述状态。
实验五多功能数字钟设计
(一)实验目的
1、学习综合且较复杂数字系统设计;
2、学习多层次、多模块数字系统设计;
(二)设计要求
1、数码管显示时、分、秒;
2、具有正常计时和调时、调分等校时功能;
3、经设置应具有整点报时功能(在59分56秒后开始报时,并用一串LED管显示);
4、经设置应具有闹钟功能(用LED管点亮表示,时间为一分钟);
(三)实验程序
(四)实验波形
(五)实验效果
当RST为0时,计数值清零,当RST为高电平时,开始计数,当计时到59分56秒后开始三秒的整点报时,用一串LED管显示,当K为高时进行正常计数,K为低时进行正常的闹钟设置切换,当REMIN为低时,进行调分,当REHOUR为低时,进行调时,当到达闹钟所设定的时间时,进行闹铃功能,显示为LED管点亮一分钟。