高中数学任意角的三角函数-
高中数学-三角函数公式汇总
高中数学-三角函数公式汇总以下是高中数学三角函数公式的汇总:一、任意角的三角函数:在角α的终边上任取一点P(x,y),记:r=x²+y²正弦:sinα=y/r余弦:cosα=x/r正切:tanα=y/x余切:cotα=x/y正割:secα=r/x余割:cscα=r/y注:我们还可以用单位圆中的有向线段表示任意角的三角函数,如图,与单位圆有关的有向线段MP、OM、AT分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式:倒数关系:sinα·cscα=1,cosα·secα=1,tanα·cotα=1.商数关系:tanα=sinα/cosα,cotα=cosα/sinα。
平方关系:sin²α+cos²α=1,1+tan²α=sec²α,1+cot²α=csc²α。
三、诱导公式:⑴ α+2kπ(k∈Z)、-α、π+α、π-α、2π-α的三角函数值,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵π/3+α、π/3-α、π-α、π+α的三角函数值,等于α的异名函数值,前面加上一个把α看成锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式:sin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβcos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)五、二倍角公式:sin2α=2sinα·cosαcos2α=cos²α-sin²α=2cos²α-1=1-2sin²α…(∗)tan2α=2tanα/(1-tan²α)二倍角的余弦公式(∗)有以下常用变形:(规律:降幂扩角,升幂缩角)1+cos2α=2cos²α1-cos2α=2sin²α1+sin2α=(sinα+cosα)²1-sin2α=(sinα-cosα)²cos2α=(1+cos2α)/(1-cos2α)sin2α=(1-cos2α)/(1+cos2α)tanα=sin2α/(1+cos2α)1.根据公式,cos2α=sin2α=tan2α=1/(1+tan2α),tanα可以用半角的正切表示。
第7章-7.2.1-任意角的三角函数高中数学必修第一册苏教版
sin
sin
A.−3
+
cos
cos
+
tan
tan
的值可以为(
B.3
BD
)
C.1
D.−1
【解析】当为第一象限角时,sin ,cos ,tan 均为正值,
∴
sin
sin
+
cos
cos
+
tan
tan
= 3.
当为第二象限角时,sin 为正值,cos ,tan 为负值,
【解析】 为第三象限角,则2π + π < < 2π +
∈ ,
∈
,所以 是第二或第四象限角,
2
当 是第二象限角时,sin
2
> 0,cos < 0,当 是第四象限角时,sin
2
cos
2
<
2
D.cos 2 > 0
3π
,
4
π
π
+
2
3π
,
2
)
< π +
2
2
2
< 0,
> 0,故A,B错误;4π + 2π < 2 < 4π + 3π , ∈ ,所以2 是第一或第
1
的垂线1 1 ,2 2 ,易知这两条正弦线的值都等于 ,在
2
[0,2π)内,sin
π
6
= sin
5π
6
=
1
,由图可知,满足条件的角的
2
终边在图中阴影部分(包括边界)内,故所求的的取值范围为
高中数学- 三角函数公式总结
高中数学-三角函数公式总结一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:ry =αsin 余弦:rx =αcos 正切:xy=αtan 二、同角三角函数的基本关系式商数关系:αααcos sin tan =,平方关系:1cos sin 22=+αα三、诱导公式(奇变偶不变,符号看象限)⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin (2k π+α)=sin α(k ∈Z )cos (2k π+α)=cos α(k ∈Z )tan (2k π+α)=tan α(k ∈Z )公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin (π+α)=-sin αcos (π+α)=-cos αtan (π+α)=tan α公式三:任意角α与-α的三角函数值之间的关系:sin (-α)=-sin αcos (-α)=cos αtan (-α)=-tan α公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin (π-α)=sin αcos (π-α)=-cos αtan (π-α)=-tan α公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin (2π-α)=-sin αcos (2π-α)=cos αtan (2π-α)=-tan α微生筑梦公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin (π/2+α)=cos αsin (π/2-α)=cos αcos (π/2+α)=-sin αcos (π/2-α)=sin αtan (π/2+α)=-cot αtan (π/2-α)=cot αsin (3π/2+α)=-cos αsin (3π/2-α)=-cos αcos (3π/2+α)=sin αcos (3π/2-α)=-sin αtan (3π/2+α)=-cot αtan (3π/2-α)=cot α四、和角公式和差角公式βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=ααα2tan 1tan 22tan -=六、辅助角公式)sin(cos sin 22ϕ++=+x b a x b x a 其中:角ϕ的终边所在的象限与点),(b a 所在的象限相同,22sin b a b +=ϕ,22cos b a a +=ϕ,ab=ϕtan 。
高中数学第7章三角函数7.2任意角的三角函数7.2.4第1课时诱导公式①②③④课件新人教B版必修第三
南京眼的桥身的完美对称 辽宁生命之环的完美对称
问题 你能否利用这种对称性,借助单位圆,讨论任意角 α 的终 边与 π±α,-α 有什么样的对称关系?
提示 π+α 的终边与 α 的终边关于原点对称;π-α 的终边与 α 的终边关于 y 轴对称;-α 的终边与 α 的终边关于 x 轴对称.
1.诱导公式① sin(α+k·2π)= sin α (k∈Z), cos(α+k·2π)= cos α (k∈Z), tan(α+k·2π)= tan α (k∈Z).
[解] (1)cos 210°=cos(180°+30°)
=-cos
30°=-
3 2.
(2)sin 114π=sin2π+34π
=sin 34π=sinπ-π4
=sin
π4=
2 2.
(3)sin-436π=-sin6π+76π =-sin 76π=-sinπ+π6=sin π6=12. (4)cos(-1 920°)=cos 1 920° =cos(5×360°+120°) =cos 120°=cos(180°-60°)=-cos 60° =-12.
3 .
解决给值求值问题的策略 1解决给值求值问题,首先要仔细观察条件式与所求式之间的 角、函数名称及有关运算之间的差异及联系. 2可以将已知式进行变形向所求式转化,或将所求式进行变形 向已知式转化.
[跟进训练]
2.已知 sin β=13,cos(α+β)=-1,则 sin(α+2β)的值为( )
=cosπ+π6=-cos π6=- 23.
法二:cos-316π=cos-6π+56π =cosπ-π6=-cos π6=- 23. (3)tan(-945°)=-tan 945°=-tan(225°+2×360°) =-tan 225°=-tan(180°+45°)=-tan 45°=-1.
高中数学《任意角三角函数的定义》课件
二 用有向线段表示三角函数
例3求出的各三角函数在各象限内的符号可用图5.2-6来直观表示:
(1)
(2)
图5.2-6
(3)
请用三角函数的定 义说明正弦、余弦、正 切在各个象限内的符号.
二 用有向线段表示三角函数
例 4 设sin θ <0且tan θ >0,确定θ是第几象限的角. 解 因为sin θ<0,
过点P作x轴的垂线,垂足为D,则在
Rt△OPD中,三边OP,OD,DP之长分别
为r,x,y.
由锐角三角函数的定义有:
sin y ,cos x ,tan y .
r
r
x
图5.2-1
一
用比值定义三角函数
若在角α的终边OM上另取一点P′(x′,y′),按照同样的方法构造直角三角形, 由相似三角形的知识可以知道:对于确定的角α,上述三个比值不会随点P在α的 终边上的位置的变化而变化.因此,把锐角放在直角坐标系中,锐角的三角函数 (正弦、余弦、正切)可以用终边上不同于原点的任意一点的坐标来表示.
将DP看作有方向的线段,D为起点,P为终点:当它指向y轴的正方向时,取
正实数值y;当它指向y轴的负方向时,取负实数值y;当它的长度为0时,取零
值.在所有的情况下都有
DP=y=sin α.
由于直角坐标系内点的 坐标与坐标轴的方向有关, 以坐标轴的方向来规定有向 线段的方向,使得它们的取 值与点P的坐标一致.
解 x=4,y=-3,则r= 42 32 =5,
所以 sin y 3 3 ,
r5 5
cos x 4 ,
r5
tan y 3 3 .
x4 4
图5.2-3
一
用比值定义三角函数
1.2.1任意角的三角函数课件高中数学人教A版必修4第一章
反思与感悟
利用诱导公式一可把负角的三角函数
化为0到2π间的三角函数,也可把大于2π的角的三
角函数化为0到2π间的三角函数,即实现了“负化
正,大化小”.同时要熟记特殊角的三角函数值.
明目标、知重点
跟踪训练3
求下列各式的值:
23π
(1)cos- 3 +tan
解
17π
4 ;
π
π
原式=cos3+-4×2π+tan4+2×2π
角为自变量,以比值为函数值的函数, 角的概念推广
后,这样的三角函数的定义明显不再适用,如何对三角
函数重新定义,这一节我们就来一起研究这个问题.
明目标、知重点
探究点一 锐角三角函数的定义
思考1 如图, Rt△ABC中,∠C=90°,若已知
a=3,b=4,c=5,试求sin A,cos B,sin B,
反思与感悟
准确确定三角函数值中角所在象限是基
础,准确记忆三角函数在各象限的符号是解决这类问
题的关键.可以利用口诀“一全正、二正弦、三正切、
四余弦”来记忆.
明目标、知重点
跟踪训练2
已知cos θ·tan θ<0,那角θ是( C )
A.第一或第二象限角
B.第二或第三象限角
C.第三或第四象限角
D.第一或第四象限角
明目标、知重点
; 叫做α的正切,记作
②终边定义法:
设角α终边上任意一点的坐标为(x,y),它与原点的距离为r,则
2
2
x
+y
有sin α=
,cos α=
,tan α=
高中数学-三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限) 四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=-βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
高中数学 三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=, 正弦:r y =αsin 余弦:r x=αcos 正切:xy=αtan 余切:y x =αcot正割:xr=αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=- βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(*ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=- 2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
人教A版高中数学必修四课件1.2.1任意角的三角函数.ppt
cos
2
3 2
6, 4
tan
3
15 3
.
(3) 当 y 5 时,P( 3 , 5),r 2 2 ,
cos 6 ,tan 15 .
4
3
综上所述:
(1) 当 y 0 时,cP(os 3,1, 0)ta,nr 03.
(2) 当 y 5 时 ,coP(s 3 ,6 ,5 )tan,r2 125,.
sin 5 3 ,
3
2
cos 5 1 ,
32
tan 5 3.
3
例1.求下列角的正弦、余弦和正切值:
(1) 5 ; (2) ; (3) 3 .
3
2
解:(2)∵ 当 时,在直角坐标系中, y 角 的终边与单位圆的交点坐标为 P(1, 0).
sin 0, cos 1, tan 0.
y
(1)正弦:sinα=y ;
P(x,y)
α
(2)余弦:cosα=x ;
0
A(1,0) x (3)正切:tanα= (yx≠0).
x
三角函数 sinα cosα tanα
定义域
正弦、余弦、正切都是以角(弧度)为自变量,以单位圆 上的点的坐标或坐标的比值为函数值的函数,我们将它们 统称为三角函数。
三角函数的定义域、值域
|
OP0
|5
P0(-3,-4)
x cos 3
三角函数的坐标定义 :(见教材13页)
一般地,设角α终边上任意一点(异于原点)P(x,y),它到原
点(顶点)的距离为r>0,则
sinα=y ;cosα= x ;tanα= .y
r
r
x
例2.已知角α终边上经过点P0(-3,-4), 求角的正弦、余弦和正切值.
高中数学精品课件:任意角三角函数
答案
思考辨析
判断下面结论是否正确(请在括号中打“√”或“×”) (1)锐角是第一象限的角,第一象限的角也都是锐角.( × ) (2)角α的三角函数值与其终边上点P的位置无关.( √ ) (3)角 α 终边上点 P 的坐标为(-12, 23),那么 sin α= 23,cos α=-12; 同理角 α 终边上点 Q 的坐标为(x0,y0),那么 sin α=y0,cos α=x0.( × ) (4)α∈(0,π2),则 tan α>α>sin α.( √ ) (5)α 为第一象限角,则 sin α+cos α>1.( √ )
B.k·360°+94π(k∈Z)
C.k·360°-315°(k∈Z) D.kπ+54π(k∈Z) 解析 与94π的终边相同的角可以写成 2kπ+94π(k∈Z) ,
但是角度制与弧度制不能混用,所以只有答案C正确.
1 2 3 4 5 解析答案
3. 已知2弧度的圆心角所对的弦长为2,那么这个圆心角所对的弧长
解析答案
(2)已知扇形的周长为10 cm,面积是4 cm2,求扇形的圆心角:
解
2R+Rα=10 由题意得12α·R2=4
⇒Rα==81,
R=4, (舍去),α=12.
故扇形圆心角为12.
解析答案
(3)若扇形周长为20 cm,当扇形的圆心角α为多少弧度时,这个 扇形的面积最大? 解 由已知得,l+2R=20. 所以 S=12lR=12(20-2R)R=10R-R2=-(R-5)2+25, 所以当R=5时,S取得最大值25, 此时l=10,α=2.
返回
练出高分
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
人教版高中数学必修四第一章三角函数1.2任意角的三角函数(教师版)【个性化辅导含答案】
任意角的三角函数__________________________________________________________________________________ __________________________________________________________________________________ 1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系; 2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。
3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题. (一)任意角的三角函数: 任意点到原点的距离公式:22y x r +=1.三角函数定义:在直角坐标系中,设α是一个任意角,α终边上任意一点P (除了原点)的坐标为(,)x y ,它与原点的距离为(0)r r ==>,那么(1)比值y r 叫做α的正弦,记作sin α,即sin y r α=; (2)比值x r 叫做α的余弦,记作cos α,即cos xr α=;(3)比值y x 叫做α的正切,记作tan α,即tan yxα=;(4)比值x y 叫做α的余切,记作cot α,即cot x yα=; 2.说明:(1)α的始边与x 轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;(2)根据相似三角形的知识,对于确定的角α,四个比值不以点(,)P x y 在α的终边上的位置的改变而改变大小; (3)当()2k k Z παπ=+∈时,α的终边在y 轴上,终边上任意一点的横坐标x 都等于0,所以tan yxα=无意义;同理当()k k Z απ=∈时,y x =αcot 无意义;(4)除以上两种情况外,对于确定的值α,比值y r 、x r 、yx、x y 分别是一个确定的实数。
正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。
高一数学任意角的三角函数
sin y
cos x
y tan ( x 0) x
思考3:综上分析,各三角函数在各个象限 的取值符号如下表:
三角函数 第一象限 第二象限 第三象限 第四象限
cos
sin
cos sin
+
+
+
-
-
-
cos
tan
- +
+ -
+
-
你有什么办法记住这些信息?
思考4:如果角α 与β 的终边相同,那么 sinα 与sinβ 有什么关系?cosα 与cosβ 有 什么关系?tanα 与tanβ 有什么关系?
x
cos x , 思考7:对应关系 sin y , y tan ( x 0) 都是以角为自变量,以单位圆
x
上的点的坐标或坐标的比值为函数值的函数, 分别称为正弦函数、余弦函数和正切函数, 并统称为三角函数,在弧度制中,这三个三 角函数的定义域分别是什么? 正、余弦函数的定义域为R,
作业:
P15 练习:1,2,5,7.
3,4,6 做在书上
1.2
任意角的三角函数
1.2.1
任意角的三角函数
第二课时
问题提出
cos x
1.设α 是一个任意角,它的终边与单位 圆交于点P(x,y),角α 的三角函数 是怎样定义的? y sin y cos x tan ( x 0)
x
思考5:设角α 的终边与单位圆的交点 为P,过点P作x轴的垂线,垂足为M,称 有向线段MP,OM分别为角α 的正弦线和 余弦线.当角α 的终边在坐标轴上时, 角α 的正弦线和余弦线的含义如何? y y
高中数学_三角函数公式大全
三角公式汇总一、任意角的三角函数在角α的终边上任取..一点),(y x P ,记:22y x r +=,正弦:r y =αsin 余弦:r x=αcos 正切:x y =αtan 余切:y x =αcot 正割:xr =αsec 余割:yr =αcsc 注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向..线段MP 、OM 、AT 分别叫做角α的正弦线、余弦线、正切线。
二、同角三角函数的基本关系式倒数关系:1csc sin =⋅αα,1sec cos =⋅αα,1cot tan =⋅αα。
商数关系:αααcos sin tan =,αααsin cos cot =。
平方关系:1cos sin 22=+αα,αα22sec tan 1=+,αα22csc cot 1=+。
三、诱导公式⑴παk 2+)(Z k ∈、α-、απ+、απ-、απ-2的三角函数值,等于α的同名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名不变,符号看象限)⑵απ+2、απ-2、απ+23、απ-23的三角函数值,等于α的异名函数值,前面加上一个把α看成..锐角时原函数值的符号。
(口诀:函数名改变,符号看象限)四、和角公式和差角公式βαβαβαsin cos cos sin )sin(⋅+⋅=+ βαβαβαsin cos cos sin )sin(⋅-⋅=- βαβαβαsin sin cos cos )cos(⋅-⋅=+ βαβαβαsin sin cos cos )cos(⋅+⋅=-βαβαβαtan tan 1tan tan )tan(⋅-+=+βαβαβαtan tan 1tan tan )tan(⋅+-=-五、二倍角公式αααcos sin 22sin =ααααα2222sin 211cos 2sin cos 2cos -=-=-=…)(* ααα2tan 1tan 22tan -=二倍角的余弦公式)(*有以下常用变形:(规律:降幂扩角,升幂缩角)αα2cos 22cos 1=+ αα2sin 22cos 1=-2)cos (sin 2sin 1ααα+=+ 2)cos (sin 2sin 1ααα-=-六、万能公式(可以理解为二倍角公式的另一种形式)ααα2tan 1tan 22sin +=,ααα22tan 1tan 12cos +-=,ααα2tan 1tan 22tan -=。
高中数学三角函数公式大全(三角函数的公式)
高中数学三角函数公式大全(三角函数的公式)高中数学三角函数公式大全公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)= sinαcos(2kπ+α)= cosαtan(2kπ+α)= tanαcot(2kπ+α)= cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)= -sinαcos(π+α)= -cosαtan(π+α)= tanαcot(π+α)= cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)= -sinαcos(-α)= cosαtan(-α)= -tanαcot(-α)= -cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)= sinαcos(π-α)= -cosαtan(π-α)= -tanαcot(π-α)= -cotα公式五:利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)= -sinαcos(2π-α)= cosαtan(2π-α)= -tanαcot(2π-α)= -cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)= cosαcos(π/2+α)= -sinαtan(π/2+α)= -cotαcot(π/2+α)= -tanαsin(π/2-α)= cosαcos(π/2-α)= sinαtan(π/2-α)= cotαcot(π/2-α)= tanαsin(3π/2+α)= -cosαcos(3π/2+α)= sinαtan(3π/2+α)= -cotαcot(3π/2+α)= -tanαsin(3π/2-α)= -cosαcos(3π/2-α)= -sinαtan(3π/2-α)= cotαcot(3π/2-α)= tanα三角函数诱导公式知识点公式一:终边相同的角的同一三角函数的值相等设α为任意锐角,弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)公式二:π+α的三角函数值与α的三角函数值之间的关系设α为任意角,弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系(1)π/2+α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanα(2)π/2-α与α的三角函数值之间的关系sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα(3)3π/2+α的三角函数值之间的关系sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/α+α)=-tanα(4)3π/2-α的三角函数值之间的关系sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα三角函数8个基本关系式是什么sin^2(A)+cos^2(A)=11+tan^2(A)=sec^2(A)1+cot^2(A)=csc^2(A)sin(A/2)=(1±cos(A))/2tan(A/2)=(±cos(A)-1)/(1+cos(A))cot(A/2)=(±cos(A)+1)/(1-cos(A))tan(A)+cot(A)=(2sin(A))/(cos(A)-sin(A)) tan(A)-cot(A)=(2cos(A))/(cos(A)+sin(A)) 三角函数的定义是什么?三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。
高中数学必修四 第一章三角函数 1.2.1.1 三角函数的定义
解析:角
α
的终边在
y
轴的非负半轴上,则
α=2kπ+
π 2
(������∈Z),所以
tan α 无意义.
答案:A
【做一做 1-2】 若角 α 的终边与单位圆相交于点
2 2
,-
2 2
,
则 sin ������的值为( )
A.
2 2
B.
−
2 2
C.
1 2
D.
−1
解析:x=
2 2
,
������
=
−
2 2
,
则sin
题型一 题型二 题型三 题型四
解:(1)∵-670°=-2×360°+50°,
∴-670°是第一象限角,
∴sin(-670°)>0.
又1 230°=3×360°+150°,
∴1 230°是第二象限角,
∴cos 1 230°<0,
∴sin(-670°)cos 1 230°<0.
(2)∵
5π 2
<
8
<
(2)∵
5π 4
是第三象限角,
4π 5
是第二象限角,
11π 6
是第四象限角,∴
sin
5π 4
<
0,
cos
4π 5
<
0,
tan
11π 6
<
0,
∴sin
54π·cos
45π·tan
11π 6
<
0,
式子符号为负.
(3)∵191°角为第三象限角,∴tan 191°>0,cos 191°<0,
高中数学(新课标人教A版)必修4 第一章三角函数精品课件 1.2任意角的三角函数(3课时)
tan 3
例5.求下列三角函数值
sin1480 10
'
9 s 4
11 tan( ) 6
小结:
1.任意角的三角函数是由角的终边与单 位圆交点的坐标来定义的. 2.三角函数值的符号是利用三角函数的 定义来推导的.要正确记忆三个三角函数 在各个象限内的符号; 3.诱导公式一的作用可以把大角的三角 函数化为小角的三角函数.
应用 1.利用同角三角函数的基 本关系求某个角的三角函数 值 例1.已知sinα=-3/5,且 α在第三象限,求cosα和 tanα的值.
例2.已知 cos m (m 0, m 1), 求的其他三角函数值
4 sin 2 cos 例3.已知 tanα=3,求值(1) 5 cos 3 sin
y
a的终边 P(x,y)
1
P(x,y)
a
O
M
A(1,.0)
x
(1)y叫做 的正弦,记作sin ,即 sin y (2)x叫做 的余弦,记作cos,即 cos x y y (3) 叫做 的正切,记作tan ,即 tan x x
阅读课本P12:三角函数的定义
例题:
5 1 求 的正弦、余弦和正切值. 3
作业:
课本P20习题1.2A组
1,2,6,7,9
1.2.1任意角的三角函数(2)
复习回顾
1、三角函数的定义; 2、三角函数在各象限角的符号; 3、三角函数在轴上角的值; 4、诱导公式(一):终边相同的角的 同一三角函数的值相等; 5、三角函数的定义域.
角是一个图形概念,也是一个数量概 念(弧度数). 作为角的函数——三角函数是一个 数量概念(比值),但它是否也是一个 图形概念呢?
高中数学任意角的三角函数(一)
答:在 Rt△ABC 中,∠B=90° , BC AB BC 则 sinA=AC,cosA=AC,tanA=AB.
问题二:sin30° ,sin45° ,sin60° ,cos30° ,cos45° ,cos60° 的 值分别是多少?
1 2 3 3 答: sin30° =2, sin45° =2, sin60° =2, cos30° =2, cos45° 2 1 = 2 ,cos60° =2.
(3) 三角函数值是比值,是一个实数,这个实数的大小和点 P(x,y)在终边上的位置无关,只由角 α 的终边位置确定.即三角 函数值的大小只与角有关.
2.三角函数值的符号规律 由任意角三角函数的定义以及各象限内的点的坐标的符号可 以确定三角函数值的符号,其规律可简记为“一全正,二正弦, 三正切,四余弦”.
1 点的坐标为 2,
3 . 2
【答案】
1 2,
3 2
【名师点拨】 (1)由于三角函数值的大小与点 P(x,y)在终边上的位置无关, 所以已知角 α 终边上一点 P(x,y),求三角函数值时,可直接利用 y x y 公式:sinα=r ,cosα=r ,tanα=x,其中 r= x2+y2. (2)当角的终边在直线上时,或终边上的点带参数,必要时, 要对参数进行讨论.
第一章
三角函数
1.2 任意角的三角函数
1.2.1 任意角的三角函数 第一课时 任意角的三角函数(一)
自主学习导航
梳理知识 夯实基础
1.掌握任意角的三角函数(正弦、余弦、正切)的定义. 2.能判断任意角的三角函数值的符号. 3.掌握公式一.
问题一:在初中我们已经学过锐角的三角函数,锐角的三角 函数是如何定义的?
课堂互动探究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《任意角的三角函数》教案一、教材分析“任意角的三角函数”是人民教育出版社(A 版)普通高中标准实验教科书数学必修4第一章第二节的内容,是第一章“任意角和弧度制”的后继内容。
1、主要教学内容:⎪⎪⎪⎩⎪⎪⎪⎨⎧=•+=•+=•+符号;域和函数值在各象限的、三种三角函数的定义、公式一义弦、余弦、正切)的定、任意角三角函数(正知识结构图:利用单位圆理解任意角的三角函数3tan )2tan(cos )2cos(sin )2sin(:2;1)(απααπααπαk k k 2、教材的地位与作用:“任意角的三角函数”是高中数学十分重要的内容,本节是三角函数第一章第二节第一课时,主要学习任意三角函数的定义,它是这一章也是整个三角函数部分的重要基础知识,在教材内容结构上起到一个承上启下的作用,对三角函数的整体学习也至关重要。
同时它又为平面向量、解析几何等内容的学习作必要的准备。
最后对任意角的三角函数的探究过程中,使学生经历了观察、归纳、推理、交流、反思等理性思维过程,培养了学生的思维方式,提高了他们探究问题、分析问题、解决问题的能力,帮助学生更加深入理解函数这一基本概念,为以后的学习奠定了扎实的基础。
所以这个内容要认真探讨教材,精心设计过程。
二、学情分析1、知识基础:在初中时,学生已经学了“锐角三角函数”为本节理解三角函数的几何意义有帮助,以及在本章第一节“任意角与弧度制”的内容中学生用坐标不仅找出来任意角与象限角,而且还了解了它们的含义与性质,对角的范围和表示方法有所了解,学习了弧度制,学生能够把以前所学过的角度都在弧度制下表示出来。
2、能力基础:高一学生已初步具有抽象逻辑思维能力,相对于初中学生来说已经相对成熟,能在教师的引导下独立的解决问题。
3、习惯情况:班级学生基础知识较扎实、思维较活跃,能较好的应用数形结合解决问题,但处理抽象问题的能力还有待进一步提高。
三、教学重难点1、重点:①任意角三角函数的定义及分别在各个象限的符号判断法;②终边相同角的诱导公式(一);2、难点:从函数角度理解以实数为自变量的任意角的三角函数,以及单位圆、有向线段的应用。
四、教学目标1、知识与技能目标:借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义:①能用直角坐标系中角的终边与单位圆交点的坐标来表示锐角三角函数;②能用直角坐标系中角的终边与单位圆交点的坐标来表示任意角的三角函数;③知道三角函数是研究一个实数集(角的弧度数构成的集合)到另一个实数集(角的终边与单位圆交点的坐标或其比值构成的集合)的对应关系,正弦、余弦和正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数.2、渗透数学的思想方法:①学生的积极参与,亲身经历,通过观察,利用几何画板让同同学们进一步理解任意角在坐标系中的几何样貌,体验坐标的优越性,数形结合思想的运用;②老师引导学生回忆初中锐角三角函数的知识内容,提出猜想,运用几何画板,验证任意角的几何性质,提出单位圆的思想,感受计算机科技工具的快捷方便性,培养学生利用多媒体解决问题的方法;③推导任意角的三角函数的过程类似于数学建模的过程,它贯穿了解析几何的始终,通过适当的建立坐标系与构造单位圆的方法,回忆以往三角函数的性质带入坐标系中,让学生有一种回忆旧知的习惯。
总结规律,掌握方法,为后面三角函数的诱导公式等学习提供示范。
3、情感态度与价值观:①通过培养学生主动探究、合作交流的过程,加强了学生团队协作意识,感受探索的乐趣和成功的喜悦;②养成实事求是的科学态度和锲而不舍的精神;③激发学生的学习兴趣、增强数学应用和创新意识,体会数学的美感,认识数学的科学价值、应用价值和文化价值;④应用多媒体、几何画板等教学,提高学生的活跃性,让知识具有科学依据。
五、教学教法1、教法:数学是集抽象与实践为一体的重要学科,因此在教学过程中,不仅要使学生“知其然”还要使学生“知其所以然”。
考虑到学生的现状,主要采取“温故知新,逐步拓展”的形式让学生真正参与到教学,在学习中,得到体验。
通过复习锐角三角函数的定义结合前面角的概念的推广提出问题:如何修正三角函数的定义?进一步扩展所学内容,发展新知识,从而激起学生探求新知的欲望,调动学生参与学习的积极性。
教学中运用多媒体工具提高直观性增强趣味性,并注意用新课程理念处理传统教材,使学生在学习活动自主探索、动手实践、合作交流,教师发挥引导者、合作者的作用,引导学生主动参与、揭示本质、经历过程、收获成果。
主要以“教师主导、学生主体”的原则,采用“启发、引导发现式”教学方法组织教学。
2、学法:在教学过程中,要充分调动学生的积极性和主动性,让学生从机械的“学答”向“学问”转变,从“学会”向“会学”转变,成为真正的学习的主人。
这节课在指导学生的学习方法和培养学生的学习能力方面主要采取以下方法:分析归纳法、自主探究法、总结反思法。
同时学生具备一定的自学能力,教学中通过学生对已掌握的知识进行拓展,既培养学生从现有知识探索新知识的能力,又提高了学生解决问题的数学思想与数学意识。
六、教学准备1、常规媒体(黑板);3、“几何画板”、ppt 课件制作。
(为了加强学生对三角函数定义的理解,帮助学生克服在理解定义过程中可能遇到的障碍,本节课准备在计算机的支持下,利用几何画板动态地研究任意角与其终边和单位圆交点坐标的关系,构建有利于学生建立概念的“多元联系表示”的教学情境,使学生能够更好地数形结合地进行思维。
)七、教学程序1、设立情景、引入课题A 、提问形式:上节课已经学习了角的推广,我们推广到了任意角,那么任意角给你留下印象最深的是什么?(预测答案:1、一个角可以表示出无数个角[补充:这些角就是在直角坐标系中与它终边相同的角,也就是相差360度整数倍是吧];2、角度可以是正角、负角、零角;3、能够用角度表示它对应的弧长[补充:那么这个就是用弧度制来度量是吧,这样一个角就可以弧度数来表示它]4、如果把角放在直角坐标系中,当它终边一圈一圈转时,可以看见一种周而复始的现象[演示几何画板:以原点为顶点,x 轴非负半轴为始点,绕着顶点转动,角周而复始的现象,补充:其实最关键的是这个角是由旋转生成的])任意角的三角函数多媒体展示图片让学生举出实例函数?圆周运动引入:任意角转动⇒⎭⎬⎫↵−→−−−→−)()( (圆周运动时生活一个非常重要的运动,函数是数学当中用来刻画客观世界变化规律的一个数学模型,那就产生了这样一个问题:任意角的这种圆周运动应该用什么样的函数来刻画它呢?)2、启发诱导,探索新知A 、 【启发诱导】:在初中我们已经学过锐角三角函数,知道它们都是以锐角为自变量,以比值为函数值的函数。
上节课老师给大家布置了一个课后作业就是去复习锐角三角函数的定义,初中学的三角函数是在什么图形中定义的?(直角三角形),那么现在我们的角放在直角坐标系里面,我们要定义三角函数是不是同样需要一个直角三角形?B 、 【学生探索】:现在同学们结合所学的知识在纸上用直角坐标系来表示出锐角三角函数,老师等一下要抽同学来展示自己的成果。
(抽同学将成果贴在黑板上,并讲解自己的思路。
)(总结补充:设锐角α的顶点与原点O 重合,始边以x 轴的非负半轴重合,那么它的终边在第一象限,在α的终边上任取一点P(x,y),它与原点的距离022>+==y x r OP ,根据初中学过的三角函数我们有:xy r x r y ===αααtan ,cos ,sin 。
) (1)锐角三角函数定义:A 、【老师启发】: 【问题1】这个就是锐角三角函数,它反映的是直角三角形中边角的关系,那么锐角三角函数它是不是真的函数呢?从高中函数定义这个角度你能不能解释一下呢?(预测回答1:ry =αsin 是函数,因为每一个y 都有唯一的x 与之对应(那这就涉及到一个问题了:这里自变量是(α)谁是函数值呢(y ))(预测学生纠正:函数值应该是ry ) 【问题2】那么按照高中函数的定义你怎么来解释它就是函数?(预测答案2:y 取一个值时都有唯一的α与之对应)(预测学生纠正:应该是取定一个α值,有唯一的ry 与它对应的) B 、【老师总结】:唯一确定的定任取ry −→−α(那么只要满足这样一个关系就是一个函数是吧,于是x y r x ==ααtan ,cos 同理) 22y x r +=(2)、单位圆思想:A 、【老师启发】:(任取α,ry 这个比值是唯一确定,那这个比值是不是和P 点的位置有关呢(是的)这个比值是随着P 点的变化而变化吗?那我角给定的情况下会不会改变它的比值呢?(不会),为什么(因为角给定了,sin(α)是定的所有比值是不变的))(几何画板播放)当角α给定时,P 在终边上运动,坐标变化,但是比值不变,这是为什么呢?依据是什么(相似),所以有了相似的比可以保证我们的ry 这个比值并不是随着终边上点的位置变化而变化的,只要角给定了这个比值也是给定了的。
既然 r y 这个比值与点在终边上的位置无关,那这个点可以在终边上位置随意取吧(可以),那么一般我们取什么地方比较好呢(r=1),那r=1时有什么好处?是不是直接可以写出:⎪⎪⎩⎪⎪⎨⎧===−→−⎪⎪⎪⎭⎪⎪⎪⎬⎫====x y x y x y r x r y r ααααααtan cos sin tan cos sin 1 那么此时x 、y 对应的几何含义是什么?如果把x 、y 看成一个点P(x,y)这个点是一个怎样的点?B 、【老师总结】:P(x,y)是单位圆与角α终边的交点。
当角α是锐角时,就可以得到一个结论 xy x y ===αααtan ,cos ,sin ,找到了这个边和角的关系。
(3)、利用单位圆与锐角三角函数的定义,定义任意角的三角函数:A 、【老师引导】:而且我们发现当α是锐角的时候,ry =αsin 就是一个函数,是以角为自变量,y 为函数值得一个函数,那我们能不能用它来刻画整个圆周运动呢?刚才呢角是锐角的时候,我们找到了这些量之间的关系,那如果这个角是钝角呢?这个关系还有没有呢?(几何画板)我把它变为钝角,大家发现钝角现在不好放在直角三角形中了,但是给你一个角是不是依然有一个x 、y 与它对应啊?(是),那如果我把它变成第三象限角,是不是仍然有个x 、y 与它对应啊?(是),也就是无论角怎么改变,那么就有一个结论,任给一个角都有一唯一的x 、y 与它对应是吧(是),利用之前锐角三角函数的定义,那同样我们也可以说明,就把这个y 叫做α的正弦,x 就叫它的余弦:;tan tan )3(;cos ,cos )2(;sin ,sin )1(),,(xy x y x x y y y x P ===αααααααααα,即的正切,记做叫做即的余弦,记做叫做即的正弦,记做叫做那么:边与单位圆交于点是一个任意角,它的终设任意角三角函数定义:那么这三个以角为自变量,以坐标或者坐标的比值为函数值的函数,我们就把它称作是任意角的三角函数。