2018年南充市中考数学真题及答案(Word版)
2018年四川省南充市中考数学试卷及答案解析(精析版)
南充市二O一二年高中阶段学校招生统一考试数学试卷(解析版)(满分100分,时间90分钟)一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答案选项,其中只有一个是正确的,请把正确选项的代号填在相应的括号内.填写正确记3分,不填、填错或填出的代号超过一个记0分.1.计算2-(-3)的结果是().(A)5 (B)1 (C)-1 (D)-5考点:有理数的计算专题:计算题。
分析:本题需先做有理数的减法把括号去掉,即可得出正确答案.解答:解:2-(-3)=2+3,=5.故选A.点评:本题主要考查了有理数的加减法,在解题时去括号要变号,是解题的关键.2.下列计算正确的是()(A)x3+ x3=x6(B)m2·m3=m6(C)3-2=3 (D)14×7=72考点:整式的加减、整式的基本性质、实数的运算。
专题:计算题。
分析:本题需先对每一项分别进行解答,得出正确的结果,最后选出本题的答案即可.解答:解:A、∵x3+ x3=2x3,故本答案错误;(B)m2·m3=m5本答案错误(C)3-2再不能合并了7 ×7=72答案正确(D)14×7=2点评:本题主要考查学生整式的加减、整式的基本性质、实数的运算等基本的运算能力。
3.下列几何体中,俯视图相同的是( ).考点:三视图的基本知识 专题:几何题。
分析:① 俯视图是一个没圆心的圆 ②③俯视图是一个带圆心的圆 ④俯视图是两个不带圆心的同心圆 解答:① 俯视图是一个没圆心的圆 ②③俯视图是一个带圆心的圆 ④俯视图是两个不带圆心的同心圆 答案选C点评:主要考查学生对三视图基础知识的理解和掌握 4.下列函数中是正比例函数的是 ( )( A )y =-8x (B )y =x8-( C )y =5x 2+6 (D )y = -0.5x -1考点:正比例函数、反比例函数、一次比例函数 二次比例函数 专题:常规题型。
2018四川南充中考数学试题及答案
遭遇强烈地震灾害,我市某校师生共同为地震灾区捐款
135000 元用于灾后重建,把
135000 用科学记数法表示为
(
)
A . 1. 35× 10 6
B. 13. 5× 10 5
C. 1. 35× 10 5
D. 13. 5× 10 4
3 x 1>x 1
5. ( 2018 四川南充, 5, 3 分)不等式组 2
()
A. 0. 7
B. -0. 7
C. 0.7
D. 0
3. ( 2018 四川南充, 3,3 分) 如图,△ ABC 中,AB =AC , ∠ B=70°,则∠ A 的度数是 ( )
B
A . 70°
B . 55°
A
C. 50°
C 第3题 目题目
D. 40°
4. ( 2018 四川南充, 4, 3 分)“一方有难,八方支援。” 2018 年 4 月 20 日四川省芦山县
处,若 AE =2, DE =6,∠ EFB =60°,则矩形 ABCD 的面积是
(
)
A . 12
B. 24
C. 12 3
D. 16 3
列图形:①线段;②正三角形;③平行四边形;④等腰梯形;⑤圆。将卡片背面朝上洗
匀,从中抽取一张, 正面图形一定满足既是轴对称图形, 又是中心对称图形的概率是 (
)
1 A.
5
B. 2 5
C. 3 5
D. 4 5
8. ( 2018 四川南充, 8, 3 分)如图,函数 y 1 = k 1 与 y 2 =k 2 x 的图象相交于点 A ( 1, 2) x
和点 B ,当 y 1 < y 2时,自变量 x 的取值范围是
()
四川省南充市2018年中考数学试卷及答案解析(Word版)
2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。
请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。
1.(3分)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形3.(3分)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6 D.﹣3a2+2a2=﹣a25.(3分)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2 D.y=2x+28.(3分)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)已知=3,则代数式的值是()A.B.C.D.10.(3分)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B 作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。
四川省南充市2018年中考数学试题(word版,含答案)
南充市二〇一八年初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=- B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=- 5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .68 6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+ 8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12 B .1 C .32D 9.已知113x y -=,则代数式232x xy yx xy y+---的值是( ) A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos 5CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为 C . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率. 20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标. 22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线.(2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F A B =.(1)求证:'AE C E =. (2)求'FBB ∠的度数. (3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14.12 15. 2316. ②④ 三、解答题17.解:原式1122=-++=. 18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB ADBAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-.∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在my x =上, ∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=, 解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O 的半径为3,∴3OC OB ==.又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=. ∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元. (2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大.24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=. ∴'30''C AD AC B ∠==∠. ∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=. ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=. (3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=.在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠22=⨯=在Rt AMF ∆中,tan 3AMMF AFM===∠∴BF =.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠.∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC .①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+. 2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==. 过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨-⎪=⎪⎩;223212x y ⎧=⎪⎪⎨-⎪=⎪⎩∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+.∵223y x by x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-.MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。
四川省南充市中考数学试卷(解析版)
·2018·四川省南充市中考数学试卷(解析版)一.选择题(本大题共10个小题,每小题·2018·四川省南充市,共30分)每小题都有代号为A.B.C.D四个答选项,其中只有一个是正确。
请根据正确选项代号填涂答题卡对应位置,填涂正确记·2018·四川省南充市,不涂.错涂或多涂记0分。
1.下列实数中,最小数是()A. B.0 C.1 D.【考点】2A:实数大小比较.【分析】将各项数字按照从小到大顺序排列,找出最小数即可.【解答】解:根据题意得:﹣<0<1<,则最小数是﹣.故选:A.【点评】此题考查了实数大小比较,正确排列出数字是解本题关键.2.下列图形中,既是轴对称图形又是中心对称图形是()A.扇形B.正五边形C.菱形D.平行四边形【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形概念求解.【解答】解:A.扇形,是轴对称图形,不是中心对称图形,故此选项错误;B.正五边形是轴对称图形,不是中心对称图形,故此选项错误;C.菱形既是轴对称图形又是中心对称图形,故此选项正确;D.平行四边形不是轴对称图形,是中心对称图形,故此选项错误.故选:C.【点评】本题考查了中心对称图形与轴对称图形知识,轴对称图形关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形关键是要寻找对称中心,旋转180度后两部分重合.3.下列说法正确是()A.调查某班学生身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上概率是1[【考点】X3:概率意义;V2:全面调查与抽样调查;X1:随机事件.【分析】利用概率意义以及实际生活常识分析得出即可.【解答】解:A.调查某班学生身高情况,适宜采用全面调查,此选项正确;B.篮球队员在罚球线上投篮两次都未投中,这是随机事件,此选项错误;C.天气预报说明天降水概率为95%,意味着明天下雨可能性较大,此选项错误;D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上概率是1,此选项错误;故选:A.【点评】此题主要考查了随机事件定义和概率意义,正确把握相关定义是解题关键.4.下列计算正确是()A.﹣a4b÷a2b=﹣a2bB.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a2【考点】4I:整式混合运算.【分析】根据各个选项中式子可以计算出正确结果,从而可以解答本题.【解答】解:﹣a4b÷a2b=﹣a2,故选项A错误,(a﹣b)2=a2﹣2ab+b2,故选项B错误,a2•a3=a5,故选项C错误,﹣3a2+2a2=﹣a2,故选项D正确,故选:D.【点评】本题考查整式混合运算,解答本题关键是明确整式混合运算计算方法.5.如图,BC是⊙O直径,A是⊙O上一点,∠OAC=32°,则∠B度数是()A.58°B.60°C.64°D.68°【考点】M5:圆周角定理.【分析】根据半径相等,得出OC=OA,进而得出∠C=32°,利用直径和圆周角定理解答即可. 【解答】解:∵OA=OC,∴∠C=∠OAC=32°,∵BC是直径,∴∠B=90°﹣32°=58°,故选:A.【点评】此题考查了圆周角性质与等腰三角形性质.此题比较简单,解题关键是注意数形结合思想应用.6.不等式x+1≥2x﹣1解集在数轴上表示为()A.B.C.D.【考点】C6:解一元一次不等式;C4:在数轴上表示不等式解集.【分析】根据不等式解集表示方法,可得答案.【解答】解:移项,得:x﹣2x≥﹣1﹣1,合并同类项,得:﹣x≥﹣2,系数化为1,得:x≤2,将不等式解集表示在数轴上如下:,故选:B.【点评】本题考查了在数轴上表示不等式解集,不等式解集在数轴上表示出来(>,≥向右画;<,≤向左画),注意在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.7.直线y=2x向下平移2个单位长度得到直线是()A.y=2(x+2)B.y=2(x﹣2)C.y=2x﹣2D.y=2x+2【考点】F9:一次函数图象与几何变换.【分析】据一次函数图象与几何变换得到直线y=2x向下平移2个单位得到函数解析式为y=2x ﹣2.【解答】解:直线y=2x向下平移2个单位得到函数解析式为y=2x﹣2.故选:C.【点评】本题考查了一次函数图象与几何变换:一次函数y=kx(k≠0)图象为直线,当直线平移时k不变,当向上平移m个单位,则平移后直线解析式为y=kx+m.8.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD中点,若BC=2,则EF长度为()A. B.1 C. D.【考点】KX:三角形中位线定理;KO:含30度角直角三角形;KP:直角三角形斜边上中线. 【分析】根据直角三角形性质得到CD=BD=AD,得到△CBD为等边三角形,根据三角形中位线定理计算即可.【解答】解:∵∠ACB=90°,D为AB中点,∴CD=BD=AD,∵∠ACB=90°,∠A=30°,∴∠B=60°,∴△CBD为等边三角形,∴CD=BC=2,∵E,F分别为AC,AD中点,∴EF=CD=1,故选:B.【点评】本题考查是三角形中位线定理.勾股定理.直角三角形性质,掌握三角形中位线平行于第三边,并且等于第三边一半是解题关键.9.已知=3,则代数式值是()A. B. C. D.【考点】6B:分式加减法;64:分式值.【分析】由=3得出=3,即x﹣y=﹣3xy,整体代入原式=,计算可得. 【解答】解:∵=3,∴=3,∴x﹣y=﹣3xy,则原式====,故选:D.【点评】本题主要考查分式加减法,解题关键是掌握分式加减运算法则和整体代入思想运用.10.如图,正方形ABCD边长为2,P为CD中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF【考点】S9:相似三角形判定与性质;KD:全等三角形判定与性质;LE:正方形性质;T7:解直角三角形.【分析】首先证明BH=AH,推出EG=BG,推出CE=CB,再证明△ABC≌△CEH,Rt△HFE≌Rt △HFA,利用全等三角形性质即可一一判断.【解答】解:连接EH.∵四边形ABCD是正方形,∴CD=AB═BC=AD=2,CD∥AB,∵BE⊥AP,CH⊥BE,∴CH∥PA,∴四边形CPAH是平行四边形,∴CP=AH,∵CP=PD=1,∴AH=PC=1,∴AH=BH,在Rt△ABE中,∵AH=HB,∴EH=HB,∵HC⊥BE,∴BG=EG,∴CB=CE=2,故选项A错误,∵CH=CH,CB=CE,HB=HE,∴△ABC≌△CEH,∴∠CBH=∠CEH=90°,∵HF=HF,HE=HA,∴Rt△HFE≌Rt△HFA,∴AF=EF,设EF=AF=x,在Rt△CDF中,有22+(2﹣x)2=(2+x)2,∴x=,∴EF=,故B错误,∵PA∥CH,∴∠CEP=∠ECH=∠BCH,∴cos∠CEP=cos∠BCH==,故C错误.∵HF=,EF=,FC=∴HF2=EF•FC,故D正确,故选:D.【点评】本题考查正方形性质.全等三角形判定和性质.勾股定理.锐角三角函数等知识,解题关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考选择题中压轴题.二.填空题(本大题共6个小题,每小题·2018·四川省南充市,共1·2018·四川省南充市)请将答案填在答题卡对应横线上。
2018年四川省南充市中考真题数学
由树状图可知,共有 12 种等可能结果,其中恰好抽到八年级两名领操员的有 2 种结果, 所以恰好抽到八年级两名领操员的概率为
2 12 1 6
.
20.已知关于 x 的一元二次方程 x -(2m-2)x+(m -2m)=0. (1)求证:方程有两个不相等的实数根. 2 2 (2)如果方程的两实数根为 x1,x2,且 x1 +x2 =10,求 m 的值. 解析:根据根与系数的关系即可求出答案. 2 2 答案:(1)由题意可知:△=(2m-2) -4(m -2m)=4>0,∴方程有两个不相等的实数根. 2 2 2 2 (2)∵x1+x2=2m-2,x1x2=m -2m,∴x1 +x2 =(x1+x2) -2x1x2=10, 2 2 2 ∴(2m-2) -2(m -2m)=10,∴m -2m-3=0,∴m=-1 或 m=3.
4 ac b 4a
2
2
1 2
,∴b -4ac=4,∴x=
2
b 2 2a
,∴|x1-x2|=
2 a
,∴AB=2PH,
∵BH=AH,∴PH=BH=AH,∴△PAB 是直角三角形,∵PA=PB,∴△PAB 是等腰直角三角形. 答案:②③④ 三、解答题(本大题共 9 个小题,共 72 分)解答应写出必要的文字说明,证明过程或演算步 骤。
2
1 , y 2 ), ( , y 3 ) 在抛物线上,则 y1>y2>y3; 2 2
③关于 x 的方程 ax +bx+k=0 有实数解,则 k>c-n; ④当 n=1 a
时,△ABP 为等腰直角三角形. (填写序号).
1 2
其中正确结论是 解析:∵
b 2a <
四川省南充市2018年中考数学试卷及答案解析
三、解答题(本大题共 9 个小题,共 72 分)解答应写出必要的文字说明,证明过程或演算步骤。 17. (6 分)计算: ﹣(1﹣ )0+sin45°+( )﹣1
[ 来源:中 @教 ^网*&%]
18. (6 分)如图,已知 AB=AD,AC=AE,∠BAE=∠DAC. 求证:∠C=∠E.
2018 年四川省南充市中考数学试卷
[ 来& 源:中国 ^% 教@ 育出 版~网]
[ 来源 :中#国教 育~出版 &*网 ^]
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分)每小题都有代号为 A、B、C、D 四个答 选项,其中只有一个是正确的。请根据正确选项的代号填涂答题卡对应位置,填涂正确记 3 分, 不涂、错涂或多涂记 0 分。 1. (3 分)下列实数中,最小的数是( A. B.0 C.1 D. ) )
A.CE=
B.EF=
C.cos∠CEP=
D.HF2=EF•CF
二、填空题(本大题共 6 个小题,每小题 3 分,共 18 分)请将答案填在答题卡对应的横线上。 11. (3 分)某地某天的最高气温是 6℃,最低气温是﹣4℃,则该地当天的温差为 12. (3 分)甲、乙两名同学的 5 次射击训练成绩(单位:环)如下表. 甲 乙 7 6 8 10 9 9 8 7 8 8 S 乙 2. (选填“>”“=”或“<“) ℃.
7. (3 分)直线 y=2x 向下平移 2 个单位长度得到的直线是( A.y=2(x+2) B.y=2(x﹣2) C.y=2x﹣2 D.y=ABC 中,∠ACB=90°,∠A=30°,D,E,F 分别为 AB,AC,AD 的中点,若 BC=2,则 EF 的长度为( )
四川省南充市2018年中考数学试题(含答案)
南充市二〇一八年初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=- B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=- 5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .68 6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+ 8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12 B .1 C .32D 9.已知113x y -=,则代数式232x xy yx xy y+---的值是( ) A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos 5CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为 C . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=,19FAE ∠=,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎫⎛⎫-++ ⎪ ⎪ ⎪⎝⎭⎝⎭. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率. 20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标. 22.如图,C 是O 上一点,点P 在直径AB 的延长线上,O 的半径为3,2PB =,4PC =.(1)求证:PC 是O 的切线.(2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F A B =.(1)求证:'AE C E =. (2)求'FBB ∠的度数. (3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14.12 15. 2316. ②④ 三、解答题17.解:原式1122=-++=. 18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB ADBAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-.∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在my x =上, ∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=, 解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O 的半径为3,∴3OC OB ==.又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=. ∴OC PC ⊥,故PC 为O 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元. (2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大.24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=.∴30ACB DAC ∠=∠=,∴''60B AC ∠=. ∴'30''C AD AC B ∠==∠. ∴'AE C E =.(2)∵60BAC ∠=,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=,又∵'90AB F ∠=,∴'150BB F ∠=. ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=. (3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=,∴30AFM ∠=,45ABF ∠=.在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠22=⨯=在Rt AMF ∆中,tan 3AMMF AFM===∠∴BF =.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠.∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC .①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+. 2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==. 过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得113212x y ⎧+=⎪⎪⎨-⎪=⎪⎩;223212x y ⎧=⎪⎪⎨-⎪=⎪⎩∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,2Q ⎝⎭,3Q ⎝⎭. (3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+.∵223y x by x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-.MNF ∆等腰Rt ∆,∴222428MN NF b ==-.又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。
2018年南充市中考数学试题、答案
382018年南充市中考数学试题、答案、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是()A _、2B . 0C . 1 D2. 下列图形中,既是轴对称图形又是中心对称图形的是( ) A.扇形 B .正五边形 C .菱形 D3. 下列说法正确的是( ) A. 调查某班学生的身高情况,适宜采用全面调查 B. 篮球队员在罚球线上投篮两次都未投中,这是不可能事件 C. 天气预报说明天的降水概率为 95%,意味着明天一定下雨 D. 小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是 平行四边形4.下列计算正确的是( ) A. -a 4b a 2b - -a 2b B(a _b)2 二 a 2 _b 2C. a 2 a 3 =a 6 c2c22-3a 2a 二一a5.如图,BC 是L O 的直径,A 是 L O 上的一点,• OAC =32,则.B 的度数是()A .B . C7.直线y =2x 向下平移2个单位长度得到的直线是()..31 19.已知3,则代数式x y11 C2点E ,延长CE 交AD 于点F ,过点C 作CH _ BE 于点G ,交AB 于点H ,连接HF . 下列结论正确的是()A. 58; B. 60 C . 64 D . 68A. y =2(x 2) B .八2&-2)y = 2x 「28.如图,在Rt ABC 中, E ,F分别为AB ,AC ,ADEF 的长度为(的中点,若BC =2,则 li10.如图,正方形 ABCD 的边长为2, P 为CD 的中点,连结 AP ,过点B 作BE _ AP 于1 0 1234 r10 12^4* 10 1 2 3 J r2x”勿的值是(x _ xy _ yA. -726.不等式X • 1 _2x -1的解集在数轴上表示为(12.甲、乙两名同学的 5次射击训练成绩(单位:环)如下表甲78 9 8 8 乙610978比较甲、乙这5次射击成绩的方差s 甲,S 乙,结果为:S 甲 ___________________ $乙(选填“ >”、“=”或 “:::”)•13.如图,在 ABC 中,AF 平分.BAC , AC 的垂直平分线交 BC 于点E , B =70” , FAE =19,则• C =____________________________________________ 度.C. cos.CEP 二5.HF 2 二 EF CF、填空题(本大题共 6个小题, 每小题3分,共18 分)11.某地某天的最高气温是6C ,最低气温是-4c ,则该地当天的温差为i*l9 .15.如图,在. ABC 中,DE//BC , BF 平分.ABC ,交DE 的延长线于点F ,若AD = 1 ,BD =2, BC =4,贝U EF 二 __________________ .216.如图,抛物线y =ax bx c ( a , b , c 是常数,a = 0)与x 轴交于A , B 两点,顶点P (m, n ) •给出下列结论:①2a+cv0 ;②若—3 y 1 , —1 y 2 , - y 3在抛物 12’丿12’丿12'丿 线上,则y 1 . y 2 . y 3 ;③关于x 的方程ax 2 bx0有实数解,则k • c - n ;④当1n 时, ABP 为等腰直角三角形,其中正确结论是 _____________________________ (填写序号).a0的根,贝U m - n 的值为(第16、解答题(本大题共9个小题,共72分)17.计算:&-旋)2-卜¥j+sin"+g,i.18.如图,已知AB=AD , AC=AE , . BAE=/DAC.19. “每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:成绩/分7 8 9 10人数/人 2 5 4 4(1) ________________________ 这组数据的众数是,中位数是(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率20.已知关于x的一元二次方程x2 - (2m - 2)x • (m2 - 2m) = 0 .(1)求证:方程有两个不相等的实数根(2)如果方程的两实数根为X1,x2,且x12 X22=10,求m的值.m 121.如图,直线y=kx b(k=0)与双曲线y (m = 0)交于点A( ,2),B(n,-1).x 2(1)求直线与双曲线的解析式;(2)点P在x轴上,如果S.ABP =3,求点P的坐标•22.如图,C是L O上一点,点P在直径AB的延长线上,L O的半径为3,PB=2,PC =4.(i)求证:PC是L O的切线.(2 )求taCAB的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A型丝绸的件数与用8000 元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n 元/件.如果50乞n乞150,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本)24.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB'C'D', 使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C'上取点F,使B'F =AB .B--------------------- r(1)求证:AE =C'E.(2)求.FBB '的度数•(3)已知AB =2,求BF的长•25.如图,抛物线顶点P(1,4),与y轴交于点C(0,3),与x轴交于点A,B .(1)求抛物线的解析式•(2)Q是物线上除点P外一点,BCQ与BCP的面积相等,求点Q的坐标.(3)若M , N为抛物线上两个动点,分别过点M , N作直线BC的垂线段,垂足分别为D,E •是否存在点M,N使四边形MNED为正方形?如果存在,求正方形MNED的边长;如果不存在,请说明理由.南充市二◦一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题1 211. 10 12. ::: 13. 24 14. 15. 16.②④2 3三、解答题17.解:原式八2-1-1 2,2=3&.2 218.证明:••• BAE=/DAC,二BAE— CAE=/DAC—CAE.••• BAC=/DAE .在ABC与ADE中,AB 二ADI.BAC 二.DAE ,「• :ABC 二:ADE(SAS).AC = AE••• . C "E.19.解:(1) 8; 9.(2)设获得10分的四名选手分别为七、八,、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九•所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种•1所以,恰好抽到八年级两名领操员的概率为P二丄.620.解:(1)根据题意,得厶二[-(2m-2)]2-4(m2-2m) =4 0,•方程有两个不相等的实数根•(2)由一元二次方程根与系数的关系,得2X1 X2 =2m -2 , X1 X2 = m -2m .T x-|2 x22 =10 ,•(X] x2)2—2x^2 =10.2 2•(2m -2) -2(m -2m) =10.2化简,得m - 2m - 3 = 0 ,解得叶=3, m2 - -1 .•m的值为3或-1.1m 21.解:(1)T A(-丄,2)在y 上,2x••• 2=jm• y「丄1 x又••• y =kx • b 过两点A , B ,1k b =22k b = -1Ik = -2解得• • y - -2x • 1.b=11 (2) y=—2x+1 与x 轴交点C(— 0),2S 'ABP - S ACP S BCP 二12 CP 11 CP =3,2 2解得CP =2.5 3•- P(;,0)或(-;,0).2 222.解:(1)证明:连接OC . ••• L O 的半径为3,.・. OC =OB = 3. 又••• BP =2 , • OP =5.在OCP中,2 2 2 2 2 2OC PC =3 4=5=OP ,•OCP为直角三角形,• OCP =90:.•OC _ PC,故PC为L O的切线.(2)过C 作CD _ OP 于点D , ODC 二OCP 二90••: COD =/POC ,「• QCD OPC •CD 1•••在 Rt CAD 中,tan. CAB =——=—AD 223.解:(—)设A 型进价为x 元,则B 型进价为(x-100)元,根据题意得: 10000 8000x x-100解得x = 500.经检验,x =500是原方程的解• B 型进价为400元.答:A 、B 两型的进价分别为 500元、400元.(2)©••• m _16 ,解得 16 乞 m 乞 25._m 兰 50 — m② w = (800-500-2n)m (600 -400 -n)(50 -m)= (100 -n)m (10000 -50n).当50 _n : 100时,100 - n , w 随m 的增大而增大 OC OPOD OC PC OC 2 ,••• OC 2 =OD OP ,••• OD = CD OP4 DC • CD 125 又••• AD =OA OD 245故m = 25时,w最大=12500「75n.当n =100 时,w最大=5000 .当100 ::: n _150时,100 - n:::0, w随m的增大而减小.故m=16 时,w最大=11600 -66n.12500-75n,50 乞n :: 100 综上所述:w最大二5000, n=100 .11600-66n,100 ::n <15024.解:(1)v四边形ABCD为矩形,••• ABC为RL:.AB 1又T AC = 2 AB , cosBAC =-AC 2•. CAB =60:.•. ACB 二.DAC =30 . B'AC' =60:.•• C'AD =30:= • AC'B'.•AE 二C'E.(2 BAC =60:,又AB 二AB',•ABB'为等边三角形.•BB^AB , AB'B =60“,又T AB'F =90’,• BB' F =150〃.•/ B'F =AB 二BB' . B'BF 二/BFB ' =15.(3)连接AF,过A作AM _ BF于M .由(2)可知.;AB' F是等腰直角三角形,:ABB'是等边三角形••• . AFB'=45:,••• . AFM =30:, ABF =45;.在Rt ABM中,AM 二BM 二AB cos/ABM =2 —2 = 2 .2在Rt AMF 中,MF AM 2—、6.tan ZAFM ^33• BF 、6 .•••过(0,3) a 4 =3, • a - -1 .y = a(x T)24(a = 0).2 2…y = _(x -1) 4 = -x 2x 3.(2) B(3,0) , C(0,3).直线 BC 为 y = -x 3.①过P 作PQ //BC 交抛物线于 Q ,又••• P(1,4),•直线 PQ 为 y = -x 5.y = _x +5卜 一x2+2x+3解得; X ^2.5,3). y i - 4 y 2 = 3②设抛物线的对称轴交 BC 于点G ,交x 轴于点H . G(1,2) PG = GH = 2. 过点H 作Q 2Q 3 / / BC 交抛物线于Q 2, Q 3.y = -x 1 y y = _x 2 2x 3S.PBC - S.QBC ,••• PQ//BC .解得 3-1 _ J 17 y 1 厂3_V 17 x2丄 I -1+717 y 2厂2 2 2•- NF =论一x 2 =(x ] +x 2) —4x^2 =21—4b •■ MNF 等腰 Rt : ,• MN 2 =2NF 2 =42 — 8b .2 2 2 1 2又••• NH =(b -3) ,• NE 2 (b -3)2.2如果四边形MNED 为正方形,2 2 1 2• NE =MN ,• 42 -8b (b -6b 9).22•- b 10b -75 =0, • D =T 5 , d =5.正方形边长为 MN = 42-8b ,• MN =9.2或、2.•- Q 2 3 —...17 _12, 2满足条件的点为Q‘2,3) , Q 2 3 17 172 2(3)存在满足条件的点 M , N •3- A7 -1 17 厂 2 2 如图,过M 作MF //y 轴,过N 作NF //x 轴交MF 于F ,过N 作NH //y 轴交BC 于H •则.MNF 与 NEH 都是等腰直角三角形•设M (为,yj , “化小),直线MN 为y = -x b.y = -x by = -x 2 2x 3 •- x 2 _3x (b_3) =0.。
年四川省南充市中考数学试卷(含答案解析版)
81、2018年四川省南充市中考数学试卷一、选择题(本大题共10个小题,每小题3分,共30分)每小题都有代号为A、B、C、D四个答选项,其中只有一个是正确的。
请根据正确选项的代号填涂答题卡对应位置,填涂正确记3分,不涂、错涂或多涂记0分。
1.(3分)(2018•南充)下列实数中,最小的数是()A.B.0 C.1 D.2.(3分)(2018•南充)下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形 C.菱形D.平行四边形3.(3分)(2018•南充)下列说法正确的是()A.调查某班学生的身高情况,适宜采用全面调查B.篮球队员在罚球线上投篮两次都未投中,这是不可能事件C.天气预报说明天的降水概率为95%,意味着明天一定下雨D.小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.(3分)(2018•南充)下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a25.(3分)(2018•南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58°B.60°C.64°D.68°6.(3分)(2018•南充)不等式x+1≥2x﹣1的解集在数轴上表示为()A.B.C.D.7.(3分)(2018•南充)直线y=2x向下平移2个单位长度得到的直线是()A.y=2(x+2)B.y=2(x﹣2) C.y=2x﹣2 D.y=2x+28.(3分)(2018•南充)如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别为AB,AC,AD的中点,若BC=2,则EF的长度为()A.B.1 C.D.9.(3分)(2018•南充)已知=3,则代数式的值是()A.B.C.D.10.(3分)(2018•南充)如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF= C.cos∠CEP= D.HF2=EF•CF二、填空题(本大题共6个小题,每小题3分,共18分)请将答案填在答题卡对应的横线上。
四川省南充市2018年中考数学真题及答案
南充市二〇一八年初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是14.下列计算正确的是( )A .422a b a b a b -÷=-B .222()a b a b -=-C .236a a a ⋅=D .22232a a a -+=- 5.如图,BC 是O 的直径,A 是O 上的一点,32OAC ∠=,则B ∠的度数是( )A .58B .60C .64D .686.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D .7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+8.如图,在Rt ABC ∆中,90ACB ∠=,30A ∠=,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12B .1C .32D 9.已知113x y -=,则代数式232x xy y x xy y+---的值是( ) A .72- B .112- C .92 D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.EF =C .cos CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C ,最低气温是4C -,则该地当天的温差为 C .12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).。
2018年南充市中考数学试题
2018年四川省南充市中考数学试卷(满分120分,时间120分钟)一、选择题(本大题共10个小题,每小题3分,共30分)1.(2018四川南充,1,3分)31 的值是( )A .3B .-3C .13D .-13【答案】C2.(2018四川南充,2,3分)下列运算正确的是( )A .a 3a 2=a 5B .(a 2) 3=a 5C .a 3+a 3=a 6D .(a +b )2=a 2+b 2【答案】A3.(2018四川南充,3,3分)下列几何体的主视图既是中心对称图形又是轴对称图形的是( )A B CD【答案】D4.(2018四川南充,4,3分)如图,已知AB∥CD,65C∠=︒,30E∠=︒,则A∠的度数为()DA(第2题图)A.30°B.32.5°C.35°D.37.5°【答案】C5.(2018四川南充,5,3分)如图,将正方形OABC放在平面直角坐标系中,O是原点,A的坐标为(1,则点C的坐标为()(第5题图)A.,1)B.(-1C.1)D.-1)【答案】A6.(2018四川南充,6,3分)不等式组1(1)22331xx x⎧+⎪⎨⎪-<+⎩…的解集在数轴上表示正确的是( )【答案】D7.(2018四川南充,7,3分)为积极响应南充市创建“全国卫生城市”的号召,某校1 500名学生参加了卫生知识竞赛,成绩记为A 、B 、C 、D 四等。
从中随机抽取了部分学生成绩进行统计,绘制成如下两幅不完整的统计图表,根据图表信息,以下说法不正确...的是( )DBA .样本容量是200B .D 等所在扇形的圆心角为15°C .样本中C 等所占百分比是10%D .估计全校学生成绩为A 等大约有900人 【答案】B8.(2018四川南充,8,3分)如图,在△ABC 中,AB =AC ,且D 为BC 上一点,CD =AD ,AB =BD ,则∠B 的度数为( )A .30°B .36°C .40°D .45-23AB C D°(第8题图)【答案】B9.(2018四川南充,9,3分)如图,矩形ABCD 中,AB =5,AD =12,将矩形ABCD 按如图所示的方式在直线l 上进行两次旋转,则点B 在两次旋转过程中经过的路径的长是( )(第9题图)A .25π2B .13πC .25π D.【答案】B10.(2018四川南充,10,3分)二次函数y =2ax bx c ++(a ≠0)图象如图所示,下列结论:①abc >0;②2a b +=0;③当m ≠1时,a b +>2am bm +;④a b c -+>0;⑤若211ax bx +=222ax bx +,且1x ≠2x ,则12x x +=2.其中正确的有( )A .①②③B .②④C .②⑤D .②③⑤AB CDl(第10题图)【答案】D二、填空题(本大题共6个小题,每小题3分,共18分)11.(2018四川南充,11,3分)分式方程212011x x +=--的解是__________. 【答案】x= -312.(2018四川南充,12,3分)因式分解3269x x x -+=__________.【答案】2-x x 3()13.(2018四川南充,13,3分)一组数据按从小到大的顺序排列为1,2,3,x ,4,5,若这组数据的中位数为3,则这组数据的方差是__________. 【答案】5314.(2018四川南充,14,3分)如图,两圆圆心相同,大圆的弦AB与小圆相切,AB =8,则图中阴影部分的面积是__________.(结果保留π)【答案】16π15. (2018四川南充,15,3分)一列数123,,,a a a ……n a ,其中1231211111,,,,111nn a a a a a a a -=-===---L L ,则12a a a a++++=L L__________. 【答案】2011216.(2018四川南充,16,3分)如图,有一矩形纸片ABCD ,AB =8,AD =17,将此矩形纸片折叠,使顶点A 落在BC 边的A ′处,折痕所在直线同时经过边AB 、AD (包括端点),设BA ′=x ,则x 的取值范围是.【答案】28x ≤≤三、解答题(本大题共9个小题,共72分)17.(2018四川南充,17,6分)计算:13130tan 3)23()12014(-⎪⎭⎫⎝⎛++---【答案】解:103130tan 3)23()12014(-⎪⎭⎫⎝⎛++---(第14题图)2+33⨯+1132++3=618. (2018四川南充,18,8分)如图,AD 、BC 相交于O ,OA=OC ,∠OBD=∠ODB . 求证:AB=CD.【答案】证明:∵∠OBD=∠ODB . ∴OB=OD在△AOB 与△COD 中,OA OC AOB OD OB OD =⎧⎪∠=∠⎨⎪=⎩∴△AOB ≌△COD (SAS ) ∴AB=CD.ABOCD(18题图)19.(2018四川南充,19,8分)(8分)在学习“二元一次方程组的解”时,数学张老师设计了一个数学活动. 有A、B两组卡片,每组各3张,A组卡片上分别写有0,2,3;B组卡片上分别写有-5,-1,1.每张卡片除正面写有不同数字外,其余均相同.甲从A组中随机抽取一张记为x,乙从B组中随机抽取一张记为y. (1)若甲抽出的数字是2,乙抽出的数是-1,它们恰好是ax-y=5的解,求a的值;(2)求甲、乙随机抽取一次的数恰好是方程ax-y=5的解的概率.(请用树形图或列表法求解)【答案】解:20.(2018四川南充,20,8分)(8分)已知关于x的一元二次方程x2-22x+m=0,有两个不相等的实数根.⑴求实数m的最大整数值;⑵在⑴的条下,方程的实数根是x1,x2,求代数式x12+x22-x1x2的值.【答案】解:⑴由题意,得:△>0,即:(24m-->0,m<2,∴m的最大整数值为m=1(2)把m=1代入关于x的一元二次方程x2-22x+m=0得x2-22 x+1=0,根据根与系数的关系:x1+x2 = 22,x1x2=1,∴x12+x22-x1x2= (x1+x2)2-3x1x2=(22)2-3×1=521.(2018四川南充,21,8分)(8分)如图,一次函数y 1=kx +b 的图象与反比例函数y 2=mx 的图象相交于点A (2,5)和点B ,与y 轴相交于点C (0,7).(1)求这两个函数的解析式; (2)当x 取何值时,1y <2y .(第21题图)【答案】解:∵反比例函数y 2=mx的图象过点A (2,5)∴5=2m ,m=10即反比例函数的解析式为y =10x。
四川省南充市2018年中考数学真题试题(含解析)
B、正五边形是轴对称图形,不是中心对称图形,故此选项错误;
C、菱形既是轴对称图形又是中心对称图形,故此选项正确;
D、平行四边形不是轴对称图形,是中心对称图形,故此选项错误.
故选: C.
【点评】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,
图形两部分折叠后可重合, 中心对称图形的关键是要寻找对称中心, 旋转 180 度后两部分重
1,此选项错误;
故选: A.
【点评】此题主要考查了随机事件的定义和概率的意义,正确把握相关定义是解题关键.
4.( 2018 年四川省南充市)下列计算正确的是(
)
A.﹣ a4b÷ a2b=﹣ a2b B.( a﹣ b) 2=a2﹣ b2
C. a2?a3=a6 D.﹣ 3a2+2a2=﹣ a2
【考点】 4I :整式的混合运算.
1.( 2018 年四川省南充市)下列实数中,最小的数是(
)
A.
B. 0 C. 1 D.
【考点】 2A:实数大小比较. 【分析】将各项数字按照从小到大顺序排列,找出最小的数即可.
【解答】解:根据题意得:﹣
< 0< 1< ,
则最小数是﹣ . 故选: A. 【点评】此题考查了实数大小比较,正确排列出数字是解本题的关键.
【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题. 【解答】解:﹣ a4b÷ a2 b=﹣ a2,故选项 A 错误, (a﹣ b) 2=a2﹣2ab+b2,故选项 B 错误, a2?a3 =a5,故选项 C 错误, ﹣3a2+2a2=﹣ a2,故选项 D正确,
故选: D.
【点评】本题考查整式的混合运算,解答本题的关键是明确整式混合运算的计算方法.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
南充市二〇一八年初中学业水平考试数学试题一、选择题(本大题共10个小题,每小题3分,共30分)1.下列实数中,最小的数是( )A .B .0C .1D 2.下列图形中,既是轴对称图形又是中心对称图形的是( )A .扇形B .正五边形C .菱形D .平行四边形 3.下列说法正确的是( )A .调查某班学生的身高情况,适宜采用全面调查B .篮球队员在罚球线上投篮两次都未投中,这是不可能事件C .天气预报说明天的降水概率为95%,意味着明天一定下雨D .小南抛掷两次硬币都是正面向上,说明抛掷硬币正面向上的概率是1 4.下列计算正确的是( )A .422a b a b a b -÷=-B .222()a b a b -=- C .236a a a ⋅= D .22232a a a -+=-5.如图,BC 是O e 的直径,A 是O e 上的一点,32OAC ∠=o ,则B ∠的度数是( )A .58oB .60oC .64oD .68o6.不等式121x x +≥-的解集在数轴上表示为( )A .B .C .D . 7.直线2y x =向下平移2个单位长度得到的直线是( )A .2(2)y x =+B .2(2)y x =-C .22y x =-D .22y x =+ 8.如图,在Rt ABC ∆中,90ACB ∠=o ,30A ∠=o ,D ,E ,F 分别为AB ,AC ,AD 的中点,若2BC =,则EF 的长度为( )A .12 B .1 C .32D 9.已知113x y -=,则代数式232x xy yx xy y+---的值是( ) A .72-B .112-C .92D .3410.如图,正方形ABCD 的边长为2,P 为CD 的中点,连结AP ,过点B 作BE AP ⊥于点E ,延长CE 交AD 于点F ,过点C 作CH BE ⊥于点G ,交AB 于点H ,连接HF .下列结论正确的是( )A .CE =.2EF =C .cos CEP ∠=D .2HF EF CF =⋅ 二、填空题(本大题共6个小题,每小题3分,共18分)11.某地某天的最高气温是6C o ,最低气温是4C -o ,则该地当天的温差为 C o . 12.甲、乙两名同学的5次射击训练成绩(单位:环)如下表.比较甲、乙这5次射击成绩的方差2s 甲,2s 乙,结果为:2s 甲 2s 乙(选填“>”、“=”或“<”).13.如图,在ABC ∆中,AF 平分BAC ∠,AC 的垂直平分线交BC 于点E ,70B ∠=o ,19FAE ∠=o ,则C ∠= 度.14.若2(0)n n ≠是关于x 的方程2220x mx n -+=的根,则m n -的值为 . 15.如图,在ABC ∆中,//DE BC ,BF 平分ABC ∠,交DE 的延长线于点F ,若1AD =,2BD =,4BC =,则EF = .16.如图,抛物线2y ax bx c =++(a ,b ,c 是常数,0a ≠)与x 轴交于A ,B 两点,顶点(,)P m n .给出下列结论:①20a c +<;②若13,2y ⎛⎫-⎪⎝⎭,21,2y ⎛⎫- ⎪⎝⎭,31,2y ⎛⎫⎪⎝⎭在抛物线上,则123y y y >>;③关于x 的方程20ax bx k ++=有实数解,则k c n >-;④当1n a=-时,ABP ∆为等腰直角三角形,其中正确结论是 (填写序号).三、解答题(本大题共9个小题,共72分)17.0111sin 4522-⎛⎛⎫-++ ⎪ ⎝⎭⎝⎭o. 18.如图,已知AB AD =,AC AE =,BAE DAC ∠=∠. 求证:C E ∠=∠.19.“每天锻炼一小时,健康生活一辈子”.为了选拔“阳光大课间”领操员,学校组织初中三个年级推选出来的15名领操员进行比赛,成绩如下表:(1)这组数据的众数是 ,中位数是 .(2)已知获得10分的选手中,七、八、九年级分别有1人、2人、1人,学校准备从中随机抽取两人领操,求恰好抽到八年级两名领操员的概率. 20.已知关于x 的一元二次方程22(22)(2)0x m x m m --+-=. (1)求证:方程有两个不相等的实数根.(2)如果方程的两实数根为1x ,2x ,且221210x x +=,求m 的值.21.如图,直线(0)y kx b k =+≠与双曲线(0)m y m x =≠交于点1(,2)2A -,(,1)B n -.(1)求直线与双曲线的解析式;(2)点P 在x 轴上,如果3ABP S ∆=,求点P 的坐标.22.如图,C 是O e 上一点,点P 在直径AB 的延长线上,O e 的半径为3,2PB =,4PC =.(1)求证:PC 是O e 的切线. (2)求tan CAB ∠的值.23.某销售商准备在南充采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B 型丝绸的件数相等,一件A 型丝绸进价比一件B 型丝绸进价多100元. (1)求一件A 型、B 型丝绸的进价分别为多少元?(2)若销售商购进A 型、B 型丝绸共50件,其中A 型的件数不大于B 型的件数,且不少于16件,设购进A 型丝绸m 件. ①求m 的取值范围.②已知A 型的售价是800元/件,销售成本为2n 元/件;B 型的售价为600元/件,销售成本为n 元/件.如果50150n ≤≤,求销售这批丝绸的最大利润w (元)与n (元)的函数关系式(每件销售利润=售价-进价-销售成本).24.如图,矩形ABCD 中,2AC AB =,将矩形ABCD 绕点A 旋转得到矩形'''AB C D ,使点B 的对应点'B 落在AC 上,''B C 交AD 于点E ,在''B C 上取点F ,使'B F AB =.(1)求证:'AE C E =. (2)求'FBB ∠的度数. (3)已知2AB =,求BF 的长.25.如图,抛物线顶点(1,4)P ,与y 轴交于点(0,3)C ,与x 轴交于点A ,B .(1)求抛物线的解析式.(2)Q 是物线上除点P 外一点,BCQ ∆与BCP ∆的面积相等,求点Q 的坐标. (3)若M ,N 为抛物线上两个动点,分别过点M ,N 作直线BC 的垂线段,垂足分别为D ,E .是否存在点M ,N 使四边形MNED 为正方形?如果存在,求正方形MNED 的边长;如果不存在,请说明理由.南充市二〇一八年初中学业水平考试数学参考答案一、选择题1-5: ACADA 6-10: BCBDD二、填空题11. 10 12. < 13. 24 14.12 15. 2316. ②④ 三、解答题17.解:原式1122=-++=18.证明:∵BAE DAC ∠=∠,∴BAE CAE DAC CAE ∠-∠=∠-∠. ∴BAC DAE ∠=∠. 在ABC ∆与ADE ∆中,AB ADBAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩,∴()ABC ADE SAS ∆≅∆. ∴C E ∠=∠. 19.解:(1)8;9.(2)设获得10分的四名选手分别为七、八1、八2、九,列举抽取两名领操员所能产生的全部结果,它们是:七八1,七八2,七九,八1八2,八1九,八2九.所有可能出现的结果有6种,它们出现的可能性相等,其中恰好抽到八年级两名领操员的结果有1种.所以,恰好抽到八年级两名领操员的概率为16P =. 20.解:(1)根据题意,得22[(22)]4(2)40m m m ∆=----=>, ∴方程有两个不相等的实数根.(2)由一元二次方程根与系数的关系,得1222x x m +=-,2122x x m m ⋅=-.∵221210x x +=,∴21212()210x x x x +-=.∴22(22)2(2)10m m m ---=.化简,得2230m m --=,解得13m =,21m =-. ∴m 的值为3或-1.21.解:(1)∵1(,2)2A -在my x =上, ∴212m=-,∴1m =-.∴1y x =-.∴(1,1)B -.又∵y kx b =+过两点A ,B ,∴1221k b k b ⎧-+=⎪⎨⎪+=-⎩, 解得21k b =-⎧⎨=⎩.∴21y x =-+.(2)21y x =-+与x 轴交点1(,0)2C ,ABP ACP BCP S S S ∆∆∆=+1121322CP CP =⋅⋅+⋅⋅=, 解得2CP =.∴5(,0)2P 或3(,0)2-.22.解:(1)证明:连接OC . ∵O e 的半径为3,∴3OC OB ==. 又∵2BP =,∴5OP =.在OCP ∆中,222222345OC PC OP +=+==, ∴OCP ∆为直角三角形,90OCP ∠=o. ∴OC PC ⊥,故PC 为O e 的切线.(2)过C 作CD OP ⊥于点D ,90ODC OCP ∠=∠=o. ∵COD POC ∠=∠,∴OCD OPC ∆=∆.∴OC OP PC OD OC CD ==,∴2OC OD OP =⋅,∴295OC OD OP ==,453DC =,∴125CD =. 又∵245AD OA OD =+=, ∴在Rt CAD ∆中,1tan 2CD CAB AD ∠==.23.解:(1)设A 型进价为x 元,则B 型进价为(100)x -元,根据题意得:100008000100x x =-. 解得500x =.经检验,500x =是原方程的解. ∴B 型进价为400元.答:A 、B 两型的进价分别为500元、400元. (2)①∵1650m m m ≥⎧⎨≤-⎩,解得1625m ≤≤.②(8005002)w n m =--(600400)(50)n m +---(100)(1000050)n m n =-+-.当50100n ≤<时,1000n ->,w 随m 的增大而增大. 故25m =时,1250075w n =-最大. 当100n =时,5000w =最大.当100150n <≤时,1000n -<,w 随m 的增大而减小. 故16m =时,1160066w n =-最大.综上所述:1250075,501005000,1001160066,100150n n w n n n -≤<⎧⎪==⎨⎪-<≤⎩最大.24.解:(1)∵四边形ABCD 为矩形,∴ABC ∆为Rt ∆. 又∵2AC AB =,1cos 2AB BAC AC ∠==, ∴60CAB ∠=o .∴30ACB DAC ∠=∠=o ,∴''60B AC ∠=o . ∴'30''C AD AC B ∠==∠o . ∴'AE C E =.(2)∵60BAC ∠=o ,又'AB AB =, ∴'ABB ∆为等边三角形.∴'BB AB =,'60AB B ∠=o ,又∵'90AB F ∠=o ,∴'150BB F ∠=o . ∵''B F AB BB ==,∴''15B BF BFB ∠=∠=o . (3)连接AF ,过A 作AM BF ⊥于M .由(2)可知'AB F ∆是等腰直角三角形,'ABB ∆是等边三角形. ∴'45AFB ∠=o ,∴30AFM ∠=o ,45ABF ∠=o .在Rt ABM ∆中,cos AM BM AB ABM ==⋅∠2==在Rt AMF ∆中,tan AMMF AFM===∠∴BF =+.25.解:(1)设抛物线解析式为:2(1)4(0)y a x a =-+≠.∵过(0,3),∴43a +=,∴1a =-.∴22(1)423y x x x =--+=-++.(2)(3,0)B ,(0,3)C .直线BC 为3y x =-+.∵PBC QBC S S ∆∆=,∴//PQ BC .①过P 作//PQ BC 交抛物线于Q ,又∵(1,4)P ,∴直线PQ 为5y x =-+. 2523y x y x x =-+⎧⎨=-++⎩. 解得1114x y =⎧⎨=⎩;2223x y =⎧⎨=⎩.∴1(2,3)Q . ②设抛物线的对称轴交BC 于点G ,交x 轴于点H .(1,2)G ,∴2PG GH ==. 过点H 作23//Q Q BC 交抛物线于2Q ,3Q .直线23Q Q 为1y x =-+.∴2123y x y x x =-+⎧⎨=-++⎩.解得1112x y ⎧=⎪⎪⎨-⎪=⎪⎩;2212x y ⎧=⎪⎪⎨-⎪=⎪⎩∴2Q ⎝⎭,3Q ⎝⎭. 满足条件的点为1(2,3)Q,23122Q ⎛⎫- ⎪ ⎪⎝⎭,331,22Q ⎛- ⎝⎭. (3)存在满足条件的点M ,N .如图,过M 作//MF y 轴,过N 作//NF x 轴交MF 于F ,过N 作//NH y 轴交BC 于H . 则MNF ∆与NEH ∆都是等腰直角三角形.设11(,)M x y ,22(,)N x y ,直线MN 为y x b =-+.∵223y x by x x =-+⎧⎨=-++⎩,∴23(3)0x x b -+-=. ∴2221212()NF x x x x =-=+124214x x b -=-.MNF ∆等腰Rt ∆,∴222428MN NF b ==-. 又∵22(3)NH b =-,∴221(3)2NE b =-. 如果四边形MNED 为正方形,∴22NE MN =,∴21428(69)2b b b -=-+. ∴210750b b +-=,∴115b =-,25b =.正方形边长为MN =MN =.。