《独立性检验》教案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《独立性检验》教案
一、教学目标
1、知识与技能:
通过典型案例的探究,了解独立性检验的基本思想,会对两个分类变量进行独立性检验,明确独立性检验的基本步骤,并能利用独立性检验的基本思想来解决实际问题.
2、过程与方法:
通过探究“吸烟是否与患肺癌有关系”引出独立性检验的问题。通过列联表、等高条形图,使学生直观感觉到吸烟和患肺癌可能有关系.这一直觉来自于观测数据,即样本.问题是这种来自于样本的印象能够在多大程度上代表总体?这节课就是为了解决这个问题,让学生亲身体验直观感受的基础上,提高学生的数据分析能力.
3、情感态度价值观:
通过本节课的学习,加强数学与现实生活的联系。以科学的态度评价两个分类变量有关系的可能性。培养学生运用所学知识,解决实际问题的能力。对问题的自主探究,提高学生独立思考问题的能力;让学生对统计方法有更深刻的认识,体会统计方法应用的广泛性,进一步体会科学的严谨性。教学中适当地利用学生合作与交流,使学生在学习的同时,体会与他人合作的重要性。
二、教学重点
理解独立性检验的基本思想及实施步骤.
三、教学难点
1.了解独立性检验的基本思想;
2.了解随机变量K2的含义,K2的观测值很大,就认为两个分类变量是有关系的。
四、教学方法
以“问题串”的形式,层层设疑,诱思探究。用“讲授法”,循序渐进,引导学生,步步为营,螺蜁上升探究本节课的知识内容.
五、教学过程设计
学环节教学内容
师生
互动
设计
意图
创
设情景、引入新课课下预习,搜集有关分类变量有无关系的一些实例。
情境引入、提出问题:1、吸烟与患肺癌有关系吗?
2、你有多大程度把握吸烟与患肺癌有关?
组织引
导学生
课下预
习问题
背景,
初步明
确定要
解决
“吸烟
与患肺
癌”之
间的关
系问题.
好的课
堂情景
引入,
能激发
学生求
知欲,
是新问
题能够
顺利解
决的前
提条件
之一.
初步探索、展示内涵
变量有定量变量、分类变量,定量变量—回归分析;分类变量
—独立性检验,引出课题。
问题1、我们在研究“吸烟与患肺癌的关系”时,需要关注哪一些
量呢?
列联表:分类变量的汇总统计表(频数表). 一般我们只研
究每个分类变量只取两个值,这样的列联表称为2*2列联表. 如
吸烟与患肺癌的列联表:
不患肺癌患肺癌总计
不吸烟7775 42 7817
吸烟2099 49 2148
总计9874 91 9965
问题2:由以上列联表,我们估计吸烟是否对患肺癌有影响?①在
不吸烟者中患肺癌的比例为;②在吸烟者中患肺癌的比例为.
1,教师
通过举
例,引
入分类
变量这
个新概
念.引出
课题2,
组织学
生填表
讨论问
题,初
步得到
问题的
结论.
从实际
问题出
发引入
概念,
提出问
题有利
于学生
明白我
们要学
习这节
课的必
要性。。
教师生设计
初 步 探 索 、 展 示 内 涵
问题3:我们还能够从图形中得到吸烟与患肺癌之间的关系吗?
小结:
根据列联表和等高条形图判断的标准是什么? 思考:
1:差异大到什么程度才能作出“吸烟与患肺癌有关”的判断? 2:能否用数量刻画出“有关”的程度?
教师引导学生观察等高条形图,寻找解决问题的
思路. 通过层层
设疑,把学生推向问题的
中心,让学生不仅仅能够直观感受,
更能培养学生具有科学严谨的思维能力.
前置铺垫:
假设检验的原理与方法
必修(3)中的“阅读”:小概率原理
一批产品厂方声称合格率为99.9%,接受方的检验人员从这批产品中抽出10件,某中有1件次品,你认为厂方的说法可信吗?
问题4:我们能够从多大程度上认为吸烟与患肺癌之间有关系呢? 为了解决上述问题,我们先假设0H :吸烟与患肺癌没有关系。 用A 表示不吸烟,B 表示不患肺癌,则“吸烟与患肺癌没有关系”等价于“吸烟与患肺癌有独立”,即假设0H 等价于
()()()P AB P A P B
在教师的引导下,师生共同探讨处理问
题.
铺垫理解原理,突破
难点,要对吸烟与患肺癌之间有关系
进行量化,而从正面处理此
问题,困难很大,故可类比反证法来解决
教
教 学 内 容
师生 设计 等高条形图
0%
10%20%30%40%50%60%70%80%90%100%不吸烟
吸烟
患肺癌不患肺癌
患肺癌
不患肺癌