中考复习二次函数的实际应用含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数的实际应用
基础达标训练
1. (2017芜湖繁昌县模拟)某企业是一家专门生产季节性产品的企业,当产品无利润时,企业会自动停产,经过调研预测,它一年中每月获得的利润y(万元)和月份n之间满足函数关系式y=-n2+14n -24,则企业停产的月份为( )
A. 2月和12月
B. 2月至12月
C. 1月
D. 1月、2月和12月
2. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x 轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4x(单位:米)的一部分,则水喷出的最大高度是( )
A. 1米
B. 2米
C. 3米
D. 4米
第2题图
3 某旅游景点的收入受季节的影响较大,有时候出现赔本的经营状况.因此,公司规定:若无利润时,该景点关闭.经跟踪测算,该景点一年中月利润W(万元)与月份x之间满足二次函数W=-x2+16x -48,则该景点一年中处于关闭状态有( )个月.
A. 5
B. 6
C. 7
D. 8
4. 为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的
形状(如图所示),对应的两条抛物线关于y 轴对称,AE ∥x 轴,AB =4cm ,最低点C 在x 轴上,高CH =1cm ,BD =2cm ,则右轮廓DFE 所在抛物线的解析式为( )
第4题图
A. y =14(x +3)2
B. y =14
(x -3)2 C. y =-14(x +3)2 D. y =-14
(x -3)2 5. 一个足球被从地面向上踢出,它距地面的高度h (m)与足球被踢出后经过的时间t (s)之间具有函数关系h =at 2+19.6t .已知足球被踢出后经过4 s 落地,则足球距地面的最大高度是________.
6. (12分)经市场调查,某种商品在第x 天的售价与销量的相关信息如下表,已知该商品的进价为每件30元,设销售该商品每天的利润为y 元.
(1)求出y 与x 的函数关系式;
(2)问销售该商品第几天时,当天销售利润最大?最大利润是多少?
(3)该商品销售过程中,共有多少天日销售利润不低于4800元?直接写出答案. 时间x (天) 1≤x <40 40≤x ≤80
售价(元/件)x+5090
每天销量(件)180-2x
7. (12分)(2017阜阳颍州区三模)如图,抛物线表示的是某企业年利润y(万元)与新招员工数x(人)的函数关系,当新招员工200人时,企业的年利润到最大值900万元.
(1)求出y与x的函数关系式;
(2)为了响应国家号召,增加更多的就业机会,又要保证企业的年利润为800万元,那么企业应新招员工多少人?
(3)该企业原有员工400人,那么应招新员工多少人(x>0)时才能使人均创造的年利润与原来的相同,此时的总利润是多少万元?
第7题图
8. (12分)如图,在一个矩形空地ABCD上修建一个矩形花坛AMPQ,要求点M在AB上,点Q在AD上,点P在对角线BD上.若AB =6米,AD=4米,设AM的长为x米,矩形AMPQ的面积为S平方米.
(1)求S与x的函数关系式;
(2)当x为何值时,S有最大值?请求出最大值.
第8题图
9. (12分)如图,四边形ABCD是边长为60cm的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A、B、C、D四个点重合于图中的点P,正好形成一个底面是正方形的长方体包装盒.
(1)若折叠后长方体底面正方形的面积为1250 cm2,求长方体包装盒的高;
(2)设剪掉的等腰直角三角形的直角边长为x(cm),长方体的侧面积为S(cm2),求S与x的函数关系式,并求x为何值时,S的值最大.
第9题图
10. (12分)(2017荆门)我市雷雷服饰有限公司生产了一款夏季服装,通过实体商店和网上商店两种途径进行销售,销售一段时间后,该公司对这种商品的销售情况,进行了为期30天的跟踪调查.其中实体商店的日销售量y1(百件)与时间t(t为整数,单位:天)的部分对应值如下表所示;网上商店的日销售量y2(百件)与时间t(t为整数,单位:天)的关系如下图所示.
时间t(天)0510********
日销售量y1
025*********
(百件)
(1)请你在一次函数、二次函数和反比例函数中,选择合适的函数能反映y1与t的变化规律,并求出y1与t的函数关系式及自变量t 的取值范围;
(2)求y2与t的函数关系式,并写出自变量t的取值范围;
(3)在跟踪调查的30天中,设实体商店和网上商店的日销售总量为y(百件),求y与t的函数关系式;当t为何值时,日销售总量y 达到最大,并求出此时的最大值.
第10题图
11. (12分)(2017亳州利辛县一模)某电子科技公司开发一种新产品,公司对经营的盈亏情况每月最后一天结算1次.在1~12月份中,公司前x个月累计获得的总利润y(万元)与销售时间x(月)之间满足二次函数关系式y=a(x-h)2+k,二次函数y=a(x-h)2+k的一部分图象如图所示,点A为抛物线的顶点,且点A、B、C的横坐标分别为4、10、12,点A、B的纵坐标分别为-16、20.
(1)试确定函数关系式y=a(x-h)2+k;
(2)分别求出前9个月公司累计获得的利润以及10月份一个月内
所获得的利润;
(3)在前12个月中,哪个月该公司一个月内所获得的利润最多?最多利润是多少万元?
第11题图
12. (12分)(2017宿州埇桥区二模)某大学生利用业余时间参与了一家网店经营,销售一种成本为30元/件的文化衫,根据以往的销售经验,他整理出这种文化衫的售价y1(元/件),销量y2(件)与第x(1≤x<90)天的函数图象如图所示[销售利润=(售价-成本)×销量] .
(1)求y1与y2的函数表达式;
(2)求每天的销售利润w与x的函数关系表达式;
(3)销售这种文化衫的第多少天,每天销售利润最大,最大利润是多少?
第12题图
教材改编题