压缩传感资料整理——Compressive Sensing

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压缩传感
●中国压缩传感资源(China Compressive Sensing Resources) (1)
一、引论与综述 (1)
二、理论分析与观测矩阵 (1)
三、恢复算法 (2)
四、信号与图像处理 (2)
五、物理与化学 (3)
六、博客分享 (3)
七、程序与软件包 (3)
●压缩感知 compressive sensing 的一点背景 (3)
●Compressed sensing (4)
●中国压缩传感资源(China Compressive Sensing Resources)
/viewthread.php?tid=861902
为了进一步促进中国压缩传感理论的研究和资源共享,为了进一步方便研究者查找相关文献,也为了激发广大科研工作者对该领域的研究热情,我们将列出所有中国学者(包括香港、澳门和台湾)在该领域的贡献,其形式包括:期刊论文,会议论文,研究报告,笔记,程序,软件包,个人博客等等。

所有资源的尽量以时间为先后顺序,贡献不分大小。

如发现连接错误,或者想提供建议和新的资源连接,请与我们联系。

我们将持续更新此页面,直到该领域在中国的发展已全面展开。

请大家不要回复该帖子。

我们的联系方式:wsha@eee.hku.hk。

目前列出论文约30篇,到150篇时,此贴将不再更新(因为国内研究工作已经全面展开)。

一、引论与综述
1 石光明,刘丹华,高大化,刘哲,林杰,王良君,压缩感知理论及其研究进展,/grid2008/de ... 027&dbname=CJFQTEMP
2 李树涛,魏丹,压缩传感综述,/qikan/manage/wenzhang/2008-0751.pdf
3 喻玲娟,谢晓春,压缩感知理论简介,/Periodical_dsjs200812005.aspx
4 沙威,压缩传感引论,http://www.eee.hku.hk/~wsha/Free code/Files/Compressive_Sensing.pdf
5 Dai Qi and Wei E.I. Sha, The Physics of Compressive Sensing and the Gradient-Based Recovery Algorithms, /abs/0906.1487
二、理论分析与观测矩阵
1 方红,章权兵,韦穗,基于非常稀疏随机投影的图像重建方法,/Periodical_jsjgcyyy200722008.aspx
2 方红,章权兵,韦穗,基于亚高斯随机投影的图像重建方法,/Periodical_jsjyjyfz200808016.aspx
3 Lianlin Li, Yin Xiang, and Fang Li, Theoretical Analysis of Compressive Sensing via Random Filter, /abs/0811.0152
4 Xiao Z. Wang and Wei E.I. Sha, Random Sampling Using Shannon Interpolation and Poisson Summation Formulae, /abs/0909.2292
三、恢复算法
1 方红,章权兵,韦穗,改进的后退型最优正交匹配追踪图像重建方法,/Periodical_hnlgdxxb200808005.aspx
2 傅迎华,可压缩传感重构算法与近似QR分解,/grid2008/detail.aspx?filename=JSJY200809033&dbname=CJFQ2008
3 Lianlin Li and Fang Li, Novel Algorithm for Sparse Solutions to Linear Inverse Problems with Multiple Measurements, /abs/0905.3245
4 Lianlin Li and Fang Li, A Novel Algorithm for Compressive Sensing: Iteratively Reweighed Operator Algorithm (IROA) , /abs/0903.4939
5 Yin Xiang, Lianlin Li, Fang Li, Compressive sensing by white random convolution, /abs/0909.2737v1
6 范晓维,刘哲,刘灿,分块可压缩传感的图像重构模型,/kns50/detail.aspx?QueryID=17&CurRec=1
四、信号与图像处理
1 李波,谢杰镇,王博亮,基于压缩传感理论的数据重建,/grid2008/detail.aspx?filename=WJFZ200905006&dbname=CJFQTEMP
2 宋琳,曹吉海,基于随机滤波的雷达信号采样和目标重建方法,/Periodical_kjdb200813014.aspx
3 Jianwei Ma, Compressed sensing by inverse scale space and curvelet thresholding, /files/cs/Iss_Curvelet.pdf
4 Wen Tang, Jianwei Ma, and Felix J. Herrmann, Optimized compressed sensing for curvelet-based seismic data reconstruction, /files/cs/OPCRSI3.pdf
5 Jianwei Ma, Improved iterative curvelet thresholding for compressed sensing, /files/cs/ISTcs2.pdf
6 Gerlind Plonka and Jianwei Ma, Curvelet-wavelet regularized split bregman iteration for compressed sensing, http://www.uni-due.de/~hm0029/pdfs/SPB_IST7.pdf
7 练秋生,郝鹏鹏,基于压缩传感和代数重建法的CT图像重建,/grid2008/detail.aspx?filename=GXJS200903029&dbname=CJFQ2009
8 方红,王年,章权兵,韦穗,基于稀疏贝叶斯学习的图像重建方法,/Periodical_zgtxtxxb-a200906009.aspx
9 刘丹华,石光明,周佳社,高大化,吴家骥,基于Compressed Sensing框架的图像多描述编码方法,/grid2008/detail.aspx?filename=HWYH200904013&dbname=CJFDTEMP
10 刘长红,杨扬,陈勇,基于压缩传感的手写字符识别方法,/grid2008/detail.aspx?filename=JSJY200908017&dbname=CJFDTEMP
11 练秋生,高彦彦,陈书贞,基于两步迭代收缩法和复数小波的压缩传感图像重构,/Periodical_yqyb200907017.aspx
12 刘兆霆,何劲,刘中,基于压缩感知的高分辨频率估计,/kns50/detail.aspx?QueryID=90&CurRec=1
13 侯颖妮,李道京,洪文,基于稀疏阵列和压缩感知理论的艇载雷达运动目标成像研
究,/kns50/detail.aspx?QueryID=90&CurRec=2
五、物理与化学
1 Lianlin Li, Wenji Zhang, and Fang Li, Compressive Diffraction Tomography for Weakly Scattering, /abs/0904.2695
2 Lianlin Li, Wenji Zhang, Yin Xiang, and Fang Li, The Design of Compressive Sensing Filter, /abs/0811.2637
3 Lianlin Li, Wenji Zhang, and Yin Xiang, The Design of Sparse Antenna Array, /abs/0811.0705
4 Jianwei Ma and Francois-Xavier Le Dimet, Deblurring from highly incomplete measurements for remote sensing, /files/cs/CS_Deblurring.pdf
5 Jianwei Ma, Single-pixel remote sensing, /files/cs/GRSL.pdf
六、博客分享
1 李廉林,/
2 马坚伟,/dynctr/faculty/teacher.asp?id=36
3 桂冠,/
4 刘翼鹏,/yipengliu/blog
5 沙威,/waveletlegend
七、程序与软件包
1 正交匹配算法为信号重建,沙威,http://www.eee.hku.hk/~wsha/Freecode/Files/CS_OMP.rar
2 图像压缩传感通过正交匹配追踪和正交小波变换,沙威,http://www.eee.hku.hk/~wsha/Freecode/Files/Wavelet_OMP.zip
压缩感知 compressive sensing 的一点背景
采样定理(又称取样定理、抽样定理)是采样带限信号过程所遵循的规律,1928年由美国电信工程师H.奈奎斯特首先提出来的,因此称为奈奎斯特采样定理。

1948年信息论的创始人C.E.香农对这一定理加以明确说明并正式作为定理引用,因此在许多文献中又称为香农采样定理。

该理论支配着几乎所有的信号/图像等的获取、处理、存储、传输等,即:采样率不小于最高频率的两倍(该采样率称作Nyquist采样率)。

该理论指导下的信息获取、存储、融合、处理及传输等成为目前信息领域进一步发展的主要瓶颈之一,主要表现在两个方面:
(1)数据获取和处理方面。

对于单个(幅)信号/图像,在许多实际应用中(例如,超宽带通信,超宽带信号处理,THz成像,核磁共振,空间探测,等等),Nyquist采样硬件成本昂贵、获取效率低下,在某些情况甚至无法实现。

为突破Nyquist采样定理的限制,已发展了一些理论,其中典型的例子为Landau理论,Papoulis等的非均匀采样理论,M. V etterli等的finite rate of innovation信号采样理论,等。

对于多道(或多模式)数据(例如,传感器网络,波束合成,无线通信,空间探测,等),硬件成本昂贵、信息冗余及有效信息提取的效率低下,等等。

(2)数据存储和传输方面。

通常的做法是先按照Nyquist方式获取数据,然后将获得的数据进行压缩,最后将压缩后的数据进行存储或传输,显然,这样的方式造成很大程度的资源浪费。

另外,为保证信息的安全传输,通常的加密技术是用某种方式对信号进行编码,这给
信息的安全传输和接受带来一定程度的麻烦。

综上所述:Nyquist-Shannon理论并不是唯一、最优的采样理论,研究如何突破以Nyquist-Shannon采样理论为支撑的信息获取、处理、融合、存储及传输等的方式是推动信息领域进一步往前发展的关键。

众所周知:(1)Nyquist采样率是信号精确复原的充分条件,但绝不是必要条件。

(2)除带宽可作为先验信息外,实际应用中的大多数信号/图像中拥有大量的structure。

由贝叶斯理论可知:利用该structure信息可大大降低数据采集量。

(3) Johnson-Lindenstrauss理论表明:以overwhelming性概率,K+1次测量足以精确复原N维空间的K-稀疏信号。

近年来,由D. Donoho(美国科学院院士)、E. Candes(Ridgelet, Curvelet创始人)及华裔科学家T. Tao(2006年菲尔兹奖获得者,2008年被评为世界上最聪明的科学家)等人提出了一种新的信息获取指导理论,即,压缩感知(Compressive Sensing(CS),或称Compressed Sensing、Compressed Sampling)。

该理论指出:对可压缩的信号可通过远低于Nyquist标准的方式进行采样数据,仍能够精确地恢复出原始信号。

该理论一经提出,就在信息论、信号/图像处理、医疗成像、模式识别、地质勘探、光学/雷达成像、无线通信等领域受到高度关注,并被美国科技评论评为2007年度十大科技进展。

目前CS理论的研究尚属于起步阶段,但已表现出了强大的生命力,并已发展了分布CS理论(Baron等提出),1-BIT CS理论(Baraniuk 等提出),Bayesian CS理论(Carin等提出),无限维CS理论(Elad等提出),变形CS理论(Meyer 等提出),等等,已成为数学领域和工程应用领域的一大研究热点。

在美国、英国、德国、法国、瑞士、以色列等许多国家的知名大学(例如,麻省理工学院,斯坦福大学,普林斯顿大学,莱斯大学,杜克大学,慕尼黑工业大学,爱丁堡大学,等等)成立专门课题组对CS进行研究;2008年西雅图Intel,贝尔实验室,Google等知名公司也开始组织研究CS;近来美国空军实验室和杜克大学联合召开CS研讨会,与会报告的有小波专家R. Coifman教授,信号处理专家James McClellan教授,微波遥感专家Jian Li教授,理论数学专家R.DeV ore教授,美国国防先期研究计划署(DARPA)和美国国家地理空间情报局(NGA)等政府部门成员,等等。

如同信号带宽对于Nyquist,信号的稀疏性是CS的必备条件;如同Nyquist采样规则对于Nyquist-Shannon采样定理,CS的关键是非相关测量(为书写方便,称该测量为测量矩阵);如同Fourier变换对于Nyquist,非线性优化是CS重建信号的手段。

CS的三个要素是信号的稀疏变换(目前的稀疏变换有DCT, wavelet, curvelet, overcomplete atom decomposition,等),稀疏信号的非相关测量(目前的测量方式为线性测量)及稀疏信号的重建算法;因此构建硬件容易实现的测量矩阵和快速稳定的重建算法是将CS推向实用化的关键,也是CS的主要研究内容。

Compressed sensing
Compressed sensing, also known as compressive sensing, compressive sampling and sparse sampling, is a technique for acquiring and reconstructing asignal utilizing the prior knowledge that it is sparse or compressible. The field has existed for at least four decades, but recently the field has exploded, in part due to several important results by David Donoho, Emmanuel Candes, Justin Romberg and Terence Tao.
The ideas behind compressive sensing came together in 2004 when Emmanuel J. Candès, a mathematician at Caltech, was working on a problem in magnetic resonance imaging. He discovered that a test image could be reconstructed exactly even with data deemed insufficient by the Nyquist-Shannon criterion. Also, a precursor of compressed sensing was seen in the 1970s, when seismologists constructed images of reflective layers within the earth based on data that did
not seem to satisfy the Nyquist-Shannon criterion.[1]
The main idea behind compressed sensing is to exploit that there is some structure and redundancy in most interesting signals—they are not pure noise. In particular, most signals are sparse, that is, they contain many coefficients close to or equal to zero, when represented in some domain[2]. (This is the same insight used in many forms of lossy compression.) Compressed sensing typically starts with taking a limited (possibly randomized) number of samples in a basis different from the basis in which the signal is known to be sparse. Since the number of samples are limited, the task of converting the image back into the intended domain would involve solving an underdetermined matrix equation—that is, there are a huge number of different candidate images that could all result in the given samples, since the number of samples taken is smaller than the number of coefficients in the full image. Thus, one must introduce some additional constraint to select the “best” candidate.
The classical solution to such problems would be minimizing the L2 norm—that is, minimizing the amount of energy in the system. This is usually simple mathematically (involving only a matrix multiplication by the pseudo-inverse of the basis sampled in). However, this leads to poor results for most practical applications, as the unknown (not sampled) coefficients seldom have zero energy.
A more attractive solution would be minimizing the L0 norm, or equivalently maximize the number of zero coefficients in the new basis. However, this is NP-hard (it contains the subset-sum problem), and so is computationally infeasible for all but the tiniest data sets. Thus, following Tao et al., the L1 norm, or the sum of the absolute values, is usually what is minimized. Finding the candidate with the smallest L1 norm can be expressed relatively easily as alinear program, for which efficient solution methods already exist. This leads to comparable results as using the L0 norm, often yielding results with many coefficients being zero.
References
^ Hayes, Brian, The Best Bits, American Scientist, July 2009 [1]
^ Candès, E.J., & Wakin, M.B., An Introduction To Compressive Sampling, IEEE Signal Processing Magazine, V.21, March 2008 [2]
[edit] Further reading
Compressive Sensing Resources at Rice University.
Compressed Sensing: The Big Picture
Compressed Sensing 2.0
Compressed Sensing Makes Every Pixel Count - article in the AMS What's Happening in the Mathematical Sciences series。

相关文档
最新文档