复变函数 留数和留数定理讲解共26页

合集下载

复变函数第五章1留数

复变函数第五章1留数

证明: 若z0是f (z)的m阶零点 即 f (z) (z z0 )m(z)
((z)在 z0 处解析, 泰勒级数:(z) a0 a1(z z0 ) )
f (z)在z0处的泰勒级数为
f (z) a0 (z z0 )m a1 (z z0 )m1 a2 (z z0 )m2
f (z0 ) f (z0 ) f (m1)(z0 ) 0, f (m)(z0 ) a0 0.
则孤立奇点z0称为 f (z)的本性奇点.
例如:f (z) sin 1 以z 1为它的本性奇点
因为sin
1
1 z
在z 1的去心邻域0 z 1 上的罗朗展式为
1
1
z
sin
(1)n ( 1 )2n1
1 z n0 (2n 1)! 1 z
1 ( 1 ) 1 ( 1 )3 (1)n ( 1 )2n1
z 1是f (z)的本性奇点.
或 z沿实轴从点1的右侧趋向于1
z沿实轴从点1 的左侧趋向于1
1
lim e z1极限不存在,且不为 z 1
z 1是f (z)的本性奇点课. 件
1
lim e z1
z1
1
lim e z1 0,
z1
9
综上所述:
定理5.1 若函数f (z)在0 z z0 R内解析,则
z 1是(z2 1)( z 2)3的一级零点
z 2是(z2 1() z 2)3的三级零点,
z 1是f (z)的二级极点,(见例7,m 1 3 n)
z 2是可去奇点, (见例7,m 3 n)
z 0,2,3, 4, 是f (z)的三级极点.
(见例7, m 0 3 n)
k
课件
3
5.1.1 孤立奇点的定义及分类

复变函数-留数

复变函数-留数

三、杂例
z3 的二级极点, 解: z 0是f ( z ) 5 sin z 1 d 2 Re s[ f ( z ) ,0] lim [ z f ( z )] ( 2 1)! z0 dz
d z 5 z 4 sinz z cos z lim ( ) lim5( ) z 0 dz sinz z 0 sinz sin2 z
C
1
.
例1 求 Re s{e :
e
z z 1
z z 1
, 1}. Re s{e
z z 1
1 e , n n 0 n! ( z 1)
, 1} e.
解:
sinz z2 z4 ( 1)n z 2n 1 , z 3! 5! ( 2n 1)!
解:
z sin z z 0是 在 | z | 1的孤立奇点, z 3 (1 e )
z3 z5 z( z ) z sinz 3! 5! f ( z) z2 z3 (1 e z )3 3 ( z ) 2! 3!
z2 z4 (1 ) z2 1 3! 5! 3 (1 1 z 2 z 2 ). z z2 z z 3 (1 ) 2! 3! z2 z4 (1 ) 3! 5! 在z 0解 析. 2 z z (1 )3 2! 3!
1 c 1 , 9!
sinz 1 Re s{ 10 , 0} c1 . z 9!
1 Re , 1}. 例3: 求 : s{ 2 z( z 1) 1 点 . 解: z 1是 z( z 1 2 的 孤 立 奇 点 ( 二 级 极 ) )
1 在0 | z 1 1解 析. 2 z( z 1 ) 0 | z 1 1, 1 1 1 2 2 z( z 1 ) ( z 1 1 ( z 1) )

复变函数第五章留数

复变函数第五章留数
第五章 留数
§1 孤立奇点 §2 留数
1
§5.1 孤立奇点
一、孤立奇点定义
如果函数f z在z0不解析, 但在z0的某个去心邻域
0 z z0 内处处解析, 则称z0为f z的孤 立 奇 点.
例如
1 sin
1
, z0
=
0为奇点,
但不是孤立奇点.
z
z 1 n 1,2,为奇点, n , z 0,
]
sinz
cosz
zzk
sinz sinz
z
zk
1
tgzdz
C
2i 8 1 16i
31
例4 计算 z4 sin 1 dz, C为 z 1 2.
C
z
解 奇点:z 0, 奇点类型不清楚,

z4
sin 1 z
z4
1 z
1 3! z3
1 5! z5
1 7! z7
z3
z 3!
1 5! z
1 7! z3
Re
s
f
z,0
c1
1 120
C
z4
sin
1 z
dz
2i
Re
s
f
z,0
60
i
32
例5 计算
C
z z4 1
dz,C为 z
2,正向.
解 显然 z 1,i 都是 f z 的一级极点,
f z ( z z0 )m z ,
其中 z在z0解析,且 z0 0,m为正整数,

z

0
f
z
的m


点.
例如 对于 f z z(z 1)3,z0 0, z0 1分别是其一级

高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法

高等数学课件-复变函数与积分变换 第五章 留数 §5.1 留数定理及留数的求法
在 z 1的去心邻域
0 z 1 1
内的罗朗展开式,由于
f
z
z
1
12
z
1
1
n0
1n
z
1n
,0
z 1
1
故 z 1只能是二级极点,且 Res f z,1 1 .
留数定理
定理1 设函数 f z在区域D内除有限个
孤立奇点 z1, z2,L ,zn 外处处解析,c为D内 包围诸奇点的一条正向简单闭曲线,那末
的二级极点,于是
Re s
f
z,1
lim z
z1
1
z
z
1 z
12
1 4

Re s
f
z , 1
lim z
z1
12
z
z
1 z
12
lim
z1
z
1
12
1 4
例1.6 求函数 f z tan z 在 z k (k
2
为整数)处的留数。
解因为 tan z sin z
cos z
sin
n
Ñc f zdz 2πiRes f z, zk (1.3) k 1
证 把在c内的孤立奇点 zk k 1,2,L ,n
用互不包含的正向简单闭曲线 ck 围绕起来 (如图5-1)
图5-1
蜒c f zdz
c1
f
z
dz
蜒 f c2
zdz L
cn
f
z dz
以 2 i 除等式两边,得
1
式中负一次幂项 z z0 1 的系数 C1 是在逐
项积分过程中唯一留下的系数。
定义1 设 f (z)在孤立奇点z0的去心邻域 0 z z0 R

复变函数与积分变换5.2留数

复变函数与积分变换5.2留数
m
f ( z )} ( m - 1)! c - 1 a ( z - z 0 )
令两端 zz0, 右端的极限是(m-1)!c-1, 两端除以(m-1)! 就是Res[f (z), z0], 即得规则2, 当 m=1时就是规则1。
规则 3
设 f ( z ) P z Q z , P (z)及 Q (z)在 z 0 都 解 析 ,
Res[ f ( z ), 0 ] lim z
z 0
e
z 2
z ( z - 1)
lim
e
z 2
z 0
( z - 1)
1.
z d e 2 R es[ f ( z ),1] lim ( z - 1) 2 ( 2 - 1)! z 1 d z z ( z - 1)
1 Q (z)

1 z - z0
( z ),
其 中 (z)在 z 0 解 析 , 且 (z 0 ) 0 . 故 z 0 为 f (z )的 一 级 极 点 .
根 据 规 则 1 , R es[ f ( z ), z 0 ] lim ( z - z 0 ) f ( z ) ,而 Q (z 0 )= 0 .
z
-1
d z 2 π i(
e 2
) 2 π i ch 1
2
我们也可以用规则3来求留数:
Res[ f ( z ),1] ze
z
2z
|
z 1

e 2
; e
-1
Res[ f ( z ), - 1]
ze
z
2z
|
z -1
2
.
这比用规则1要简单些.
例 2

复变函数 留数和留数定理讲解

复变函数  留数和留数定理讲解

另解: f1(z) 在点 z0 0 的去心邻域 0 z 内的
Laurent级数为
e
z z5

1

1 z5
1

z
1 z4

1 2! z 3

z2 2! 1
3! z 2

z3 3!
1 4! z
z4 4! 1
5!
z5 5! z
6!
z6
,6!
,

Res[ f1(z), 0] 1 ; Res[ f1(z),1] 0 于是由留数定理得积分值为
I1 2i[1 0] 2i
20
(2)
I2

z 2
esin z dz z 2 (z 2 1)
解: f2 (z) esin z [z 2 (z 2 1)] 在圆 z 2 的内部有一
2 当z0为f(z)=g(z-z0) 的孤立奇点时,若 g 为偶
函数,则f(z)在点z0的留数为零.
3 若z0为f(z) 的一级极点,则有
Re
s
f
(
z),
z0


lim
zz0
(
z

z0
)
f
(
z)
4 若z0为f(z) 的m级极点,则对任意整数 n m有
Re s
f (z), z0
个二级极点 z 0和两个一级极点 z i ,
于是利用留数的计算规则 2 和 1得
Res[
f
2
(
z
),0]

lim
z 0
(
ze2sinz1)

lim

留数的概念及留数的求法课件

留数的概念及留数的求法课件
问题转化为易于处理的形式。
实例三:在物理中的应用
要点一
总结词
留数在物理问题中的应用
要点二
详细描述
在物理问题中,留数也有广泛的应用,如求解某些电磁场 问题、波动问题等。通过计算留数,可以将这些物理问题 转化为数学问题,从而得到更精确的解析解。
THANKS
感谢观看
03
留数的求法
利用Cauchy积分公式求留数
总结词
Cauchy积分公式是计算留数的常用方法之一,通过将积分路径进行变形,使得积分路径包含奇点,从而利用公 式计算留数。
详细描述
Cauchy积分公式指出,对于一个在复平面上有奇点的简单闭曲线上的函数f(z),其沿该曲线的积分等于2πi乘以 该函数在奇点的留数。因此,通过选择适当的积分路径,使得该路径经过函数的奇点,然后利用Cauchy积分公 式即可求得留数。
利用Residue定理求留数
总结词
Residue定理是一种计算复平面上简单闭合曲线上的积分的方法,通过计算奇点的留数,然后利用定 理计算出整个闭合曲线的积分。
详细描述
Residue定理指出,对于复平面上任意简单闭合曲线C,函数f(z)在C上的积分等于2πi乘以函数在C内 部的奇点的留数之和。因此,通过确定函数在内部的奇点,并计算其留数,即可利用Residue定理求 得整个闭合曲线上函数的积分。
利用留定理求留数
总结词
留数定理是复分析中的重要定理之一, 它建立了函数在无穷远点的行为与其在 有限区域内奇点的留数之间的关系。
VS
详细描述
留数定理指出,对于一个在无穷远处有极 点的函数f(z),其无穷远点的留数等于该 函数在有限区域内奇点的留数之和。因此 ,通过计算函数在有限区域内的奇点留数 ,并利用留数定理,可以求得函数在无穷 远点的留数。

复变函数 第五章留数

复变函数 第五章留数

F(t)
c
n
t
n
cnt
n
(2)
n 1
n0
第五章 留数
相应地规定:如果 t = 0 是 F(t) 的可去奇点、m 级极点或本
性奇点,则称z 是 f (z) 的可去奇点、m 级极点或本性奇点。
将式(1)写成
f
(z)
c
n
z
n
c0
cn zn
(3)
n 1
n 1
将式(2)写成
F(t)
cn t n
c0
cnt
( n 0, 1, 2, , m 1)
f
(m) (z0 ) m!
a0
0
故必有 f (z) cm (z z0 )m cm1(z z0 )m1 cm2 (z z0 )m2
(z z0 )m[cm cm1(z z0 ) cm2 (z z0 )2 ]
(z z0)m (z)
根据 0 z z0 内 f (z) 的 Laurent 级数的不同,孤立奇点 分为三种类型。
第五章 留数
1、可去奇点
如果 Laurent 级数中不含 z z0 的负幂项,孤立奇点 z0 称为 f (z) 的可去奇点。

c0 c1(z z0 ) cn (z z0 )n
在 0 z z0 内收敛于 f (z) 。
lim f (z)
zz0

lim f (z)
z z0
第五章 留数
如果 f (z)以 z0为其孤立奇点,则下列四个条件是等价的。 它们中的任何一条都是 m 级极点的特征:
(1) f (z) 在以 z0 点为中心的去心邻域内的 Laurent 级数只 有有限多个 z z0 的负幂项;

复变函数第五章1留数

复变函数第五章1留数

sinz lz i0mz4
lz i0m((szi4)zn)' '
cosz lz im0 3z3
z 1为极点。
2020/6/16
11
5.1.2 零点与极点的关系
定义5.1:设f(z)在z0的邻域内解f析 (z0), 0若 ,
则称 z0为解析函 f(z)数 的零点 m阶零点: 若不恒等于零的解析数函 f (z)能表示成
z a为(z)(z)的 mn阶零 . 点
2)(z)(z)(za)m n 1 1((z z))
当 mn时z, a为 ((zz))的 (mn)阶零点, 当 202m 0/6/1 6 n时 当mz, na时 为 , z((zz))的 a为 (n ((m zz)))阶 的可 极去 点 . 奇 , 点 16
7!
z 0为可去奇点 .

(sizn z) 0,(sizn z)' 0,
z0
z0
(sizn z)' 0,(sizn z)(3) 0
z0
z0
z0是(sinzz)的三级零点。
z 0是z3的三级零点。
z 0为可去奇点 . (见7,例 m3n)
2020/6/16
19
3) f(z) (z2(s1)in(zz)32)3
问 1 ) (z)(z)、 2 )(z)(z)在 z a有何性质?
解 可设 (z) (za)m 1(z)(z) (za)n 1(z)
其 1 ( z ) 中 1 ,( z ) 在 z a 解( 1 析 a )1 ( a ) , 0 . 1 ) ( z )( z ) ( z a ) m n1 ( z )1 ( z ),
类似z, i为f(z)的一阶极点。
问题z: 是 1 的几阶极点?

复变函数留数定理

复变函数留数定理

复变函数留数定理复变函数留数定理(Residue Theorem)是复分析中的重要概念,用于计算对应于奇异点(singular point)的留数(residue)。

留数定理提供了计算复变函数沿闭曲线的积分的一种有效方法,它与复分析中其他重要的定理和方法相辅相成,对于解决实际问题具有重要意义。

一、留数的定义设函数f(z)在点z=a附近解析且具有洛朗展开式f(z)=∑(n=-∞)^∞ a(n)(z-a)^n其中a(n)是复数,令C为以a为圆心的半径为R的圆周,且其方向与实轴正方向一致。

如果函数f(z)在圆盘界上的点(除去a点)上解析,则称a点是函数f(z)的奇异点。

奇异点主要有三种形式:可去奇点、极点和本性奇点。

对于函数f(z)一个奇异点a,定义留数Res[f(z), a]为Res[f(z), a] = a(-1)即留数等于洛朗展开式的一次项系数a(-1)。

二、留数的求解方法1. 求可去奇点的留数当a点是函数f(z)的可去奇点时,即a点是f(z)的解析点,那么留数等于0。

2. 求一阶极点的留数当a点是函数f(z)的一阶极点时,即a点是f(z)的奇异点且它的最低零次是-1次,要求a(-1)≠0。

此时留数可以通过以下方法求解:Res[f(z), a] = lim(z→a) (z-a)f(z)3. 求高阶极点的留数当a点是函数f(z)的高阶极点时,即a点是f(z)的奇异点且它的最低零次大于等于-1次。

此时留数可以通过以下公式计算:Res[f(z), a] = a(-1) = 1/(n-1)! * d^(n-1)/dz^(n-1) [(z-a)^n * f(z)]其中,n为a点的零次。

三、留数定理的表述留数定理的基本表述为:设函数f(z)在闭合曲线C的内部除有限个奇异点外是全纯的,则有积分公式成立:∮[C] f(z)dz = 2πi * ∑ Res[f(z), a]其中,[C]代表C内部的积分,∑代表对所有奇异点求和。

复变函数留数和留数定理

复变函数留数和留数定理

THANKS
感谢观看
理论支撑
复变函数留数和留数定理是数学领域 中非常重要的概念,它们在复分析、 积分方程、特殊函数等领域有着广泛 的应用。留数定理是解决复积分问题 的重要工具,它可以用来计算复平面 上的曲线积分,解决物理和工程领域 中的许多问题。
留数的计算方法包括直接法、参数法 和级数展开法等。其中,直接法是最 常用的方法,通过将函数在奇点附近 进行泰勒展开,然后利用展开式计算 留数。参数法和级数展开法则适用于 某些特殊情况,如函数具有特定的对 称性或周期性等。
2πi f(z0),其中z0是该开域内的点。
应用范围
02 柯西积分公式适用于解析函数,即在其定义域内可微
的函数。
特殊情况
03
当z0是奇点时,柯西积分公式不适用。
积分定理和路径的选取
积分定理
如果f(z)在包含z0的开
域内解析,则对于该开
域内的任何两个点z1和
z2,有∫f(z)dz
=
∫f(z)dz + f(z2)(z1-
留数定理是复分析中的核心定理之一 ,它建立了奇点、积分和留数之间的 联系。通过留数定理,我们可以将复 杂的积分问题转化为相对简单的留数 计算问题,从而简化计算过程。此外 ,留数定理还可以用来研究函数的奇 点性质和函数在无穷远点的行为等。
对未来研究和应用的展望
深入研究留数定理
应用领域的拓展
尽管我们已经对留数定理有了较为深 入的了解,但仍有许多未解决的问题 和需要进一步研究的方向。例如,对 于具有更复杂奇点的函数,如何更准 确地计算留数?如何利用留数定理解 决更广泛的积分问题?这些都是值得 探讨的问题。
02
复变函数基础知识
复数及其运算
复数

复变函数留数PPT课件

复变函数留数PPT课件

1
1 z2
1 1 2! z4
Res[ f (z),0] 0
I0
工程数学---------复变函数
目录 上页 下页 返回 结束
4. 无穷远点的留数 定义:设 f (z)在H : R z 内解析,C为H内绕原点的 任何一条简单正向闭曲线,则积分
2i
k 1
Res[
f
(z), zk ]
工程数学---------复变函数
目录 上页 下页 返回 结束
以 (z z0 )m 乘上式的两端,得 (z z0 )m f (z) cm cm1(z z0 ) c1(z z0 )m1
c0 (z z0 )m c1(z z0 )m1
两边求 m 1阶导数,并乘以 1 , 得 (m 1)!
{ z
1 }
z2
(1)m1
(m 1)! (z z2)m
1 Res[ f (z), z1] (z2 z1)m
工程数学---------复变函数
目录 上页 下页 返回 结束
z2为f (z)的一级极点,
Res[
f
( z ),
z2 ]
lim ( z
zz2
z2 )
f
(z)
1
lim
zz2
(z
z1 ) m
(z z2 z3 )3
z2 z3
1 z2 z4 ) 3! 5!
(1 z z2 )3
2! 3!
2! 3!
1(z)
z
工程数学---------复变函数
目录 上页 下页 返回 结束
1 z2 z4 )
其中(z)
(1
3! z
5! z2
)3
,
且(0) 1,(z)在z 0

复变函数 第五章 留数

复变函数 第五章 留数
f ( z) 1 ( z z0 )
m
g ( z ) , ) (
其中 g (z) = cm+ cm+1(zz0) + cm+2(zz0)2 +... , 在 |zz0|<d 内是解析的函数, 且 g (z0) 0 . 反过来, 当任何一个函数 f (z) 能表示为(*)的形式, 且 g (z0) 0 时, 则z0是 f (z)的m级极点.
c0=c1=...=cm1=0, cm0, 这等价于
f (n)(z0)=0, (n=0,1,2,...,m1), f (m)(z0)0 。
例如 z=1是f (z)=z31的零点, 由于 f '(1) = 3z2|z=1=3 0,
从而知 z=1是f (z)的一级零点.
由于f (z) = (zz0) m j (z)中的j (z)在z0解析, 且j (z0)0, 因
4.函数的零点与极点的关系
不恒等于零的解析函数 f (z)如果能表示成
f (z) = (zz0) m j (z), 其中j (z)在z0解析且j (z0) 0,
m为某一正整数, 则z0称为f (z)的m级零点.
例如当 f (z)=z(z1)3时, z=0与z=1是它的一级与三级零点.
根据这个定义, 我们可以得到以下结论:
例 3 对 m Z 讨论函数
m 0 : z 0 为解析点;
f (z)
e 1
z
z
m
在 z 0 处的性态。
m 1 : z 0 为可去奇点;
2 m m 1 1 z z z m 1 : f (z) m z 2! m! ( m 1 )! z
C C1 C2 Cn

复变函数留数.ppt

复变函数留数.ppt

ze z
例1
计算积分
C
z
2
1
d
z
,
C
为正向圆周|z|=2.
[解]
由于
f (z)
z ez z2 1 有两个一级极点+1,1,
而这两个极点都在圆周|z|=2 内, 所以
C
ze z z2 1d
z

i{Res[
f
(z),1]
Res[
f
(z),1]}.
由规则1, 得
Res[
f
( z ),1]
lim (z

1 cosmx
I
dx
2 5 4 cosx

I1
cosmx dx
5 4 cosx
I2
sin mx dx
5 4 cos x
I1 iI2
e imx
dx
5 4 cos x
设 z eix ,则
I1
iI2
1 i
z
1
5
z
zm 2(1
z
2
)
dz
i
zm dz
2 z 1 (z 1 )(z 2)
2、留数的求法
求函数在奇点a处的留数即求它在以z0为中 心的圆环域内洛朗级数中c-1(z-a)-1项的系数 即可. 如果a是f(z)的可去奇点, 则Res[f(z),a]=0, 如 果a是本性奇点, 则没有太好的办法, 只好将 其按洛朗级数展开。 如果a是极点, 则有一些对求c-1有用的规则.
留数的计算规则 规则1 如果a为f(z)的一级极点, 则
Res[
f
( z ),1]
Res[ f (z),i] Res[ f (z),i]}

复变函数第五章留数教学课件

复变函数第五章留数教学课件

1 z (z
z5 1)2(z 1)3
s in z z
1 z
g( z ),
所以 z 0 是单极点; z 1 是二级极点;
z 1 是三级极点.
26
例3
证明 z
0

f
(z)
1 z 3 (e z3
的六级极点. 1)

1 f (z)
z 3 (e z3
1)
z31
z3
(z3 )2 2!
1,
n
f (z)dz 2π i Res[ f (z), zk ]
C
k 1
留数定理将沿封闭曲线C积分转化为求被积函数 在C内各孤立奇点处的留数.
11
2)留数的计算方法
(1) 如果 z0 为 f (z) 的可去奇点, 则
Res[ f (z), z0] 0.
(2) 如果 z0 为 f (z)的本性奇点, 则需将 f (z) 展开
解 (1)在 0 z 1 内,
sin z
1
1
z
1
1
1 3!(z
1)3
,
所以 Ressin(1z 1) ,1 C1 1.
28
(2) z2 sin1 z
解 因为sinz z z3 z5 , 3! 5!
所以在0 z 内,
z2
sin1 z
z 2
1 z
1 3! z 3
1 5! z 5
z6 z9 z12 2! 3!
因为 z 0是 1 z3(ez3 1)的六级零点, f (z)
所以
z
0是
f
(z)
1 z 3 (e z3
的六级极点. 1)
27
例4 求下列各函数在有限奇点处的留数.

复变函数-留数定理资料

复变函数-留数定理资料

当 m 1时
z Re s[ f ( z ),1] lim( z 1) f ( z ) lim 1 z 1 z 1 z 2
当m 2时
( m 1) 1 m Re s[ f ( z ),1] lim( z 1) f ( z ) ( m 1)! z 1


z 例 求 dz | z| 3 ( z 1)( z 2)
z 解 :由于 f ( z ) 在圆周 | z | 3内部有一个一级 ( z 1)( z 2) 极点 z 1, 和一个一级极点z 2
ze z 例 求 Re s[ 2 ,1] z 1
解: 显然,z 1是f ( z )的一级极点,
ze z e ze z 所以 Re s[ f ( z ),1] lim ( z 1) 2 lim z 1 z 1 z 1 z 1 2
或者:取P ( z ) ze z , Q( z ) z 2 1
所以 而

C
f ( z )dz 2iRe s[ f ( z ),1] Re s[ f ( z ), 1]
ze z e Re s[ f ( z ),1] lim ( z 1) 2 z 1 z 1 2
ze z e1 Re s[ f ( z ), 1] lim( z 1) 2 z 1 z 1 2 于是得到 e e 1 ze z C z 2 1 dz 2i 2 2 2i ch 1
P (1) e Re s[ f ( z ),1] Q(1) 2
1 例 求 Re s[ 2 , i] 3 ( z 1)
解: 由于 f ( z )
1 ( z i )3 ( z i )3
所以z i是f ( z )的三级极点。

复变函数6.1

复变函数6.1
n
1
n
f (z)
n 1
. (6.3)

Re s f (z)
za
2 i
1
(z)

(z a)
dz

( n 1)
(a )
( n 1) !
.
n 1, 2,
( n 1 )
这里符号(0)(a)=(a)
,且有
( a ) lim
z a
( n 1 )
n
f ( z ).
首页
上页
返回
下页
结束

证 以原点为心作圆周Γ,使a1,a2,…,an皆含于Γ 的内部,则由残数定理得 an a 3 f ( z ) d z 2 i R e s f ( z ), a1 a2 两边除以2i ,并移项即得
n k 1 z ak

n
Re s f ( z )

f ( z )dz
c

k 1
n
k
Байду номын сангаас
f ( z )dz.
首页
上页
返回
下页
结束

由残数定义,有 代入上式,即得:

f ( z )dz
c

k
f ( z ) dz 2 i Re s f ( z ).
z ak

k 1
n
k
f ( z )dz.
2 i R e s f ( z ).
2i


Re 为f(z)在点a的留(残)数(residue),记为: z a s f ( z ). 将f(z)在点a去心邻域内展成洛朗级数,有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档