药物晶型研究

合集下载

晶型药物的检测方法

晶型药物的检测方法

吸热或放热峰数目、形状、位置、峰面积,能够直接测量样品在发生物理或
晶型药物的检化测方学法 改变时热效应。Document number
第25页25
二、惯用检测方法
3)差热分析法(DTA)
参比物:在测量温度范围 内不发生任何热效应物 质,如-Al2O3、MgO等。
原理:在温度程序控制下,经过同时测量样品与惰性参比物温 度差来判定物质内在改变。 应用:固体晶型 物质特征量值分析伎俩之一。
测定容器
可盛于玻璃瓶,毛细管中测 定
不能用玻璃容器测定
前处理 相同 不一样
晶型药物的检测方法
固体样品不需处理
需研磨后,KBr压片
同属分子振动(转动)光谱
研究同原子非极性振动 -N-N- , -C-C-
研究不一样原子极性键转动 -OH , -C=O , -C-X
Document number
第32页32
• 溶出速度: 粒子表面积、药品结晶状态与粒径大小 • 溶 解 度: 物质自由能相关 • 生物利用度:亚稳定态晶型生物利用度较高 • 稳 定 性: 稳定型、亚稳型、不稳型
晶型药物的检测方法
Document number
第3页 3
二、药品多晶型
3、晶型质量控制
定义:针对晶型药品设定晶型质量标准和用于晶型检测分析方法 目标:确保药品质量一致性、药品稳定性、临床有效性、药品安全性。 药品质量评价关键指标:临床疗效
程序控温下,测量物与参比物 温差与温度关系ΔT=f(T) 正峰:放热 倒峰:吸热
晶型药物的检测方法
Document number
第26页26
二、惯用检测方法 TG,DTA,DSC曲线
晶型药物的检测方法
Document number

药物晶型研究

药物晶型研究

药物晶型研究
药物晶型研究指的是对药物分子在晶体中的排列和结构进行研究。

药物晶型是药物分子在固态下的结晶形态,它的形成受到诸多因素的影响,如温度、溶剂、溶液浓度等。

药物晶型的研究对药物的性质和性能有重要影响。

首先,药物晶型的研究可以帮助确定药物的物理性质。

不同晶型的药物分子之间的排列方式不同,因而对药物的熔点、溶解度、稳定性等物理性质产生影响。

比如,某一晶型的药物熔点较低,溶解度较高,可以更快地在体内发挥药效;而另一种晶型的药物则可能具有较高的稳定性,适合长时间保存。

其次,药物晶型的研究对药物的生物利用度和药效也有直接影响。

药物的晶型能够影响溶解度,而溶解度又是药物被吸收的关键因素之一。

不同晶型的药物溶解度不同,进一步影响了药物在体内的吸收和分布。

同时,在某些情况下,药物的晶型还可以改变其药效。

一些晶型可能会增强药物的生物活性,从而提高药物的疗效。

另外,药物晶型的研究还可以为药物的制备方法提供参考。

药物晶型的选择对制备工艺有重要影响。

不同晶型的药物分子之间的排列方式不同,其在结晶过程中的形态和颗粒度也会有所差异。

因此,在制备药物的过程中,研究药物晶型可以帮助选择合适的溶剂和结晶条件,从而得到所需的晶型。

总结起来,药物晶型的研究对药物的物理性质、生物利用度、药效和制备工艺都有重要影响。

随着科技的发展,人们对药物
晶型的研究也变得越来越深入,为药物的研发和生产提供了更多的选择和可能性。

药物晶型研究及晶型质量控制指导原则解析

药物晶型研究及晶型质量控制指导原则解析

同⼀⼚家开发,最早报道晶型专利和原研化合物/制剂所有权⼈是否⼀致?同⼀⼚家开发,原研晶型专利⽐较容易确认。

如遇到不是同⼚家开发,请对不同不同所有权⼈之间的关系进⾏说明(收购?合作关系?授权使⽤?),以作为对原研晶型专利确认的依据。

晶型专利:专利号,所有权⼈,到期时间,是否有中国同族,是否已经授权?2)晶型⼀致性①此处主要⽐较⾃制与⽂献报道的区别,有条件可以⽐较⾃制⽚与原研⽚,可根据需要加⼊图表进⾏说明。

②晶型稳定性的初步研究:对湿、热、光照稳定性;空⽓中与密封条件下的稳定性数据的对⽐;粉碎前后的晶型变化等(制剂还要增加处⽅制备前后的晶型对⽐)。

3)多晶型根据⽂献调研情况来介绍可能的多晶型。

4)稳定性研究将测试的多批次稳定性数据进⾏⽐较,可根据需要加⼊图表进⾏说明。

4、申报资料中晶型部分的撰写呈现形式1)3.2.S.2:对于多晶型药物,申请⼈应在⽣产⼯艺开发阶段通过精制⼯艺的优化和筛选制备优势稳态晶型,保证原料药批间晶型⼀致性。

注:应包括结晶条件的考察,如:溶剂体系、降温速率、晶种加⼊考察、保温析晶温度及时间、搅拌⽅式等,提供说明⽬标晶型成为优势晶型的依据。

批间晶型的⼀致性:各阶段代表性批次的检测结果,如⼩中试,试⽣产,⼯艺验证批晶型的XRD,DSC,TG等晶型数据及对应图谱。

2)3.2.S.2、3、7:对药物制剂关键质量属性产⽣影响的多晶型药物,需研究证明批间晶型⼀致性(3.2.S.2)和晶型放置过程稳定性(3.2.S.7)。

共晶药物具有特殊的理化性质、确定的组分和化学计量⽐,可以通过X-射线单晶⾏射、X-射线粉末所射、固相核磁共振波谱、红外吸收光谱、差⽰扫描量热法和/成晶体形态等分析⽅法进⾏结构确证(不要求全部都做)。

3)3.2.S.4:如原料药的晶型和/或粒度分布对制剂质量产⽣影响,应被纳⼊原料药内控标准并制定专属的检测项⽬进⾏控制。

质量标准中晶型描述:⼀般仅对XRD的2θ⾓要求明确即可。

对于晶型质量研究的法规,⽬前为⽌,出台的不过以上⼏个,在吃透当前法规的要求,要结合⼯作⽇常的需求,领悟晶型研究换换相扣的逻辑关系,最后尘埃落地,落实到申报资料上,⼒求清晰完整,逻辑科学,交上⼀份满意的答卷。

药物分子的晶型与溶解度研究

药物分子的晶型与溶解度研究

药物分子的晶型与溶解度研究药物分子的晶型与溶解度是药物科学领域中的重要研究内容。

药物的晶型及其溶解度直接影响药物的稳定性、生物利用度和药效等因素,因此对药物分子晶型与溶解度进行深入研究具有重要的意义。

一、药物晶型的研究药物晶型是指药物化合物在固态下的排列形式,不同的晶型具有不同的晶体结构、形态和热力学性质。

药物晶型可以通过多种方法进行研究和确定。

1. X射线衍射研究X射线衍射是一种常用的药物晶型研究手段。

通过将药物晶体样品暴露在X射线束中,根据药物晶体中原子的布局和散射规律来确定晶型结构。

X射线衍射还可以用于药物晶型的定性和定量分析。

2. 热分析技术热分析技术包括差示扫描量热法(DSC)、热重分析法(TGA)等。

通过测量药物晶体在不同温度下的热性质变化,可以确定晶型结构以及药物晶型的变化规律。

3. 晶体学方法晶体学研究是一种在药物晶型研究中常用的手段。

通过晶体学方法,可以确定药物晶体的晶胞参数、晶体对称性以及分子间的相互作用力。

二、药物溶解度的研究药物溶解度是指药物在一定条件下在溶剂中溶解的程度。

药物的溶解度与药效、生物利用度以及制剂研发密切相关。

因此,对药物的溶解度进行研究具有重要的意义。

1. 环境因素的影响药物溶解度除了受到溶剂、温度等因素的影响,还受到pH值、离子强度等因素的影响。

了解这些环境因素对药物溶解度的影响,有助于优化药物的溶解度及其制剂。

2. 溶解度与生物利用度关系的研究药物的溶解度与其在体内的吸收、分布、代谢、排泄等过程密切相关。

通过研究药物溶解度与体内药物动力学参数的关系,可以为药物的生物利用度提供理论依据。

3. 提高药物溶解度的策略对于溶解度较低的药物,可以通过多种方法提高其溶解度。

如物理改性技术(如晶型转化、固体分散体制备)、化学改性技术(如酯化、盐酸化)等手段,可以有效提高药物的溶解度。

三、研究进展与应用前景近年来,随着药物晶型与溶解度研究的深入,对于药物在制剂方面的应用也逐渐展开。

9015药品晶型研究及晶型质量控制指导原则

9015药品晶型研究及晶型质量控制指导原则
(6)聚 合 物 胶 束 ,亦 称 髙 分 子 胶 束 ,系 指 由 两 亲 性 嵌 段 髙分子载体辅料在水中自组装包埋难溶性药物形成的粒 径< 5 0 0 n m 的 胶 束 溶 液 。属 于 热 力 学 稳 定 体 系 。
二 、常用载体辅料 载体辅料通常可分为以下三类。 (1)天 然 材 料 在 体 内 生 物 相 容 和 可 生 物 降 解 的 有 明 胶 、 蛋 白 质 (如 白 蛋 白 )、淀 粉 、壳 聚 糖 、海 藻 酸 盐 、磷 脂 、胆固 醇 、脂 肪 油 、植 物 油 等 。 (2)半 合 成 材 料 分 为 在 体 内 可 生 物 降 解 与 不 可 生 物 降 解两 类 。在 体 内 可 生 物 降 解 的 有 氢 化 大 豆 磷 脂 、聚乙 二醇 二 硬 脂 酰 磷 脂 酰 乙 醇 胺 等 ;不 可 生 物 降 解 的 有 甲 基 纤 维 素 、 乙 基纤维 素 、羧 甲 纤 维 素 盐 、羟 丙 甲 纤 维 素 、邻 苯 二 甲 酸 乙 酸 纤维素 等 。 (3)合 成 材 料 分 为 在 体 内 可 生 物 降 解 与 不 可 生 物 降 解 两 类 。可 生 物 降 解 材 料 应 用 较 广 的 有 聚 乳 酸 、聚 氨 基 酸 、聚 羟 基 丁 酸 酯 、乙 交 酯 -丙 交 酯 共 聚 物 等 ;不 可 生 物 降 解 的 材 料 有 聚 酰 胺 、聚 乙 烯 醇 、丙 烯 酸 树 脂 、硅 橡 胶 等 。 此 外 ,在 制 备 微 粒 制 剂 时 ,可 加 入 适 宜 的 润 湿 剂 、乳化 剂 、抗 氧 剂 或 表 面 活 性 剂 等 。 三 、生产与贮藏期间应检査的项目 (一 )有 害 有 机 溶 剂 的 限 度 检 查 在 生 产 过 程 中 引 入 有 害 有 机 溶 剂 时 ,应 按 残 留 溶 剂 测 定 法(通 则 0861)测 定 ,凡 未 规 定 限 度 者 ,可 参 考 I C H ,否则 应制定有害有机溶剂残留量的测定方法与限度。 (二 )形 态 、粒 径 及 其 分 布 的 检 査 (1)形 态 观 察 微 粒 制 剂 可 采 用 光 学 显 微 镜 、扫 描 或 透 射 电 子 显 微 镜 等 观 察 ,均 应 提 供 照 片 。 (2)粒 径 及 其 分 布 应 提 供 粒 径 的 平 均 值 及 其 分 布 的 数 据 或 图 形 。测 定 粒 径 有 多 种 方 法 ,如 光 学 显 微 镜 法 、电感应 法 、光 感 应 法 或 激 光 衍 射 法 等 。 微 粒 制 剂 粒 径 分 布数 据,常用各粒径范围内的粒子数或 百 分 率表 示 ;有 时 也 可 用 跨 距 表 示 ,跨 距 愈 小 分 布 愈 窄 , 即 粒子大小愈均匀。

药物晶型研究报告分析

药物晶型研究报告分析

晶型药物的生物利用度
由于药物的溶解度会影响口服固体制剂 的溶出度,进而影响生物利用度 。具有多 晶型现象的药物,其表观溶解度的不同是 否会影响制剂的生物利用度,取决于影响 药物吸收速度和程度等多种生理因素,如 胃肠道蠕动、药物的溶出、药物的肠道渗 透性等。
优势晶型药物
1、晶型的稳定性 应具备一定的稳定性:一方面是晶型自身的稳 定性,即在不同的环境条件下能够保持晶型物质 状态的稳定,另一方面要保证其制剂产品中优势 药物晶型和各种药用辅料物质在临床应用过程中 的稳定。 2、不同晶型物质对生物利用度的影响 吸收性质是要用优势药物晶型选择的关键条件。 但是生物利用度的提高并不能作为药用晶型优劣 筛选的单纯条件依据。原因在于生物利用度提高 可能会产生更好的药理作用,也可能会产生更多 的不良反应。
药物晶型的常用制备方法
(一) 溶剂结晶法: 结晶溶剂的选择: (1)不能与结晶物质起化学反应。 (2)在较高温度区域能溶解大量结晶物质, 而在室温或低温区域,只能溶解少量结晶 物质 (3)溶剂对杂质成分的溶解度非常大或非 常小。 (4)溶剂的沸点不宜过高或过低。
具体有: 1、蒸发法:选择溶解度适中的溶剂将样品 溶解,制成过饱和溶液,置于一个合适大 小的干净容器中,再用可透气的滤纸,滤 膜,铝箔等覆盖以防止灰尘落入,将其静 置是溶剂慢慢蒸发。溶剂挥发是溶液过饱 和,晶核开始生长,经过晶体生长过程, 最终获得较大的晶型物质。 2、降温法:有机合成中常用的方法 3、 种晶法:a)纯晶种;b)晶种的晶型
提高无定型药物的稳定性
1、辅料的选择:筛选能够提高无定型药物的辅料。 2、制备工艺:对无定型药物原料进行影响因素实 验,以考察温度、湿度、光照对原料药物的晶型 影响。 总结:并非所有的药物都应该选择自由能最低的 稳定晶型,无定型也有可能成为优势晶型药物。 固体药物的无定型状态往往比稳定的晶态物质局 域更高的溶出速率,更好的生物吸收,更佳的临 床疗效。

原料药晶型研究思路

原料药晶型研究思路

原料药晶型研究思路
原料药晶型研究是药物研发领域中的一个重要环节。

晶型指的是化合物在固态下的结晶形式,不同晶型的形成会对药物的药效、稳定性、生物利用度等方面产生影响。

因此,研究药物的晶型,对于药物的研发、制造、控制质量等方面都具有重要意义。

研究药物的晶型需要从以下几个方面考虑:
1. 晶体学:晶体学是研究晶体结构、晶体形态、晶体缺陷等方面的学科,是研究药物晶型的基础。

通过晶体学手段可以确定药物的晶型、晶体结构等信息。

2. 热力学:热力学是研究热能转化、热力学性质、相变等方面的学科。

药物晶型的形成和相变过程也受到热力学因素的影响。

利用热力学手段可以研究药物晶型的热力学性质、热稳定性等信息。

3. 动力学:药物晶型的形成和相变过程也受到动力学因素的影响。

因此,研究药物晶型的动力学过程可以帮助我们更深入地了解药物晶型的形成机制。

4. 结晶工艺:结晶工艺是药物生产中的一个关键环节,可以直接影响药物晶型的形成和质量。

因此,研究药物晶型的结晶工艺可以帮助我们控制药物晶型的形成和质量。

总之,研究药物的晶型需要综合考虑晶体学、热力学、动力学、结晶工艺等因素。

只有全面掌握药物晶型的形成机制,才能更好地研发、制造、控制药物的质量。

- 1 -。

药物晶型转化与控制的研究进展

药物晶型转化与控制的研究进展

方法优缺点及应用建议
1、物理方法的优点是可以直接检测药物分子的晶体结构和分子构象,缺点 是对于一些非晶体药物难以准确描述。建议在药物研发和生产中,将物理方法与 其他方法结合使用,以更全面地了解药物多晶型的结构和性质。
2、化学方法的优点是可以提供药物多晶型的化学成分和分子质量信息,缺 点是对于一些化学性质相似的药物难以区分。建议在药物研发和生产中,结合使 用多种化学方法,以提高鉴别的准确性。
研究现状分析
当前,药物晶型转化与控制的研究已经取得了重要进展。在分子设计和高分 子合成方面,越来越多的新技术和新方法被用于药物的研发和制备。在药物晶型 转化方面,通过分子设计和高分子合成技术,可以成功地实现药物的定向输送和 控制释放。在药物晶型控制方面,加热、压力、添加剂等制备方法被广泛应用于 控制药物的晶型和性质。
3、结构方法的优点是可以提供药物多晶型的分子结构和分子动力学信息, 缺点是对于一些大分子药物难以准确描述。建议在药物研发和生产中,将结构方 法与其他方法结合使用,以更全面地了解药物多晶型的结构和性质。
结论
药物多晶型鉴别对于药物研发和生产具有重要意义,因为不同的多晶型可能 具有不同的物理、化学和生物特性,从而影响药物的疗效和安全性。本次演示介 绍了物理、化学和结构等多种鉴别方法,每种方法都有其优点和局限性。在实际 操作中,我们需要根据药物的性质和鉴别的需求,选择合适的方法或方法组合, 以获得更准确的结果。
然而,当前研究仍然存在一些问题,如缺乏系统性和完整性、实验方法和评 价指标的不一致等。因此,未来的研究需要进一步探讨药物晶型转化与控制的机 制和方法,加强跨学科合作,提高研究的系统性和完整性。
结论
本次演示总结了近年来药物晶型转化与控制的研究进展。通过对药物晶型转 化与控制的概念、原理、影响因素和应用进行详细阐述,说明了药物晶型转化与 控制在提高药物的疗效和安全性方面的重要作用。本次演示指出了当前研究的不 足之处和未来研究方向,为相关领域的研究提供了参考。

药品晶型研究及晶型质量控制指导原则

药品晶型研究及晶型质量控制指导原则

9015药品晶型研究及晶型药物的质量控制技术与方法指导原则固体药物及其制剂中存在多晶型现象时,应使用 优势药物晶型物质状态 作为药物原料及其制剂晶型,以保证药品临床有效性㊁安全性与质量可控性㊂当固体药品存在多晶型现象且不同晶型物质状态可影响药品的有效性㊁安全性与药品质量时,应对固体制剂㊁半固体㊁悬浮剂等制剂种类中的原料药晶型物质状态进行定性㊁定量控制,在固体药物制剂中的原料药应保持优势药物晶型物质状态,以保证晶型药物产品质量和临床作用的一致性㊂由于固体制剂是由复杂成分体系组成,制剂中含各种辅料成分或制剂工艺可能使原料药晶型发生转变,故需要对固体㊁半固体㊁悬浮剂制剂中原料药晶型进行质量控制,以保证固体制剂中原料药晶型与优势药物晶型一致㊂当固体药品存在多晶型现象,且不同晶型状态对药品的有效性㊁安全性或质量可产生影响时,应对药品固体制剂㊁半固体制剂㊁混悬剂等中的药用晶型物质状态进行定性或定量控制㊂药品的药用晶型应选择优势晶型,并保持制剂中晶型状态为优势晶型,以保证药品的有效性㊁安全性与质量可控㊂优势晶型系指当药物存在有多种晶型状态时,晶型物质状态的临床疗效佳㊁安全㊁稳定性高等,且适合药品开发的晶型㊂1.药物多晶型的基本概念用于描述固体化学药物物质状态,由一组参量(晶胞参数㊁分子对称性㊁分析排列规律㊁分子作用力㊁分子构象㊁结晶水或结晶溶剂等)组成㊂当其中一种或几种参量发生变化而使其存在有两种或两种以上的不同固体物质状态时,称为多晶型现象(p o l y m o r p h i s m)或称同质异晶现象㊂通常,难溶性药物易存在多晶型现象㊂固体物质是由分子堆积而成㊂由于分子堆积方式不同,在固体物质中包含有晶态物质状态(又称晶体)和非晶态物质状态(又称无定型态㊁玻璃体)㊂晶态物质中分子间堆积呈有序性㊁对称性与周期性;非晶态物质中分子间堆积呈无序性㊂晶型物质范畴涵盖了固体物质中的晶态物质状态(分子有序)和无定型态物质状态(分子无序)㊂优势药物晶型物质状态可以是一种或多种,故可选择一种晶型作为药用晶型物质,亦可按一定比例选择两种或多种晶型物质的混合状态作为药用晶型物质使用㊂2.晶型样品的制备采用化学或物理方法,通过改变结晶条件参数可获得不同的固体晶型样品㊂常用化学方法主要包括:重结晶法㊁快速溶剂去除法㊁沉淀法㊁种晶法等;常用物理方法主要包括:熔融结晶法㊁晶格物理破坏法㊁物理转晶法等㊂晶型样品制备方法可以采用直接方法或间接方法㊂各种方法影响晶型物质形成的重要技术参数包括:溶剂(类型㊁组成㊁配比等)㊁浓度㊁成核速率㊁生长速率㊁温度㊁湿度㊁光度㊁压力㊁粒度等㊂鉴于每种药物的化学结构不同,故形成各种晶型物质状态的技术参数条件亦不同,需要根据样品自身性质合理选择晶型样品的制备方法和条件㊂3.晶型物质状态的稳定性自然界中的固体物质可处于稳定态㊁亚稳定态㊁不稳定态三种状态,晶型物质亦如此㊂化合物晶型物质状态会随着环境条件变化(如:温度㊁湿度㊁光照㊁压力等)而从某种晶型物质状态转变为另外一种晶型物质状态,称为转晶现象㊂由于药用晶型物质的稳定性会影响到药品的临床有效性与安全性,故需要对多晶型药物制剂进行晶型物质状态的稳定性研究㊂研究内容包括:原料药成分的晶型物质状态的稳定性,原料药晶型物质与制剂处方中各种辅料的相容性,制剂的制粒㊁成型㊁干燥等工艺对原料药晶型物质状态的影响等㊂通过晶型物质状态的稳定性研究,可为优势药物晶型物质状态选择㊁药物制剂处方㊁制备工艺过程控制㊁药品贮存条件等提供科学依据㊂稳定或亚稳定(有条件的稳定)的晶型物质具有成药性,不稳定晶型物质不具有成药性㊂根据稳定性试验项下的影响因素试验方法和条件,考察晶型物质状态对高温㊁高湿㊁光照条件的稳定性;采用压力方法考察晶型物质状态对压力的稳定性,观察晶型物质状态是否发生转晶现象㊂4.晶型药物的生物学评价需要采用符合晶型物质状态规律的生物学评价的科学方法,溶液状态下的体外细胞评价方法㊁已发生转晶的悬浮液体内给药等评价方法无法反映固体晶型物质真实的生物学特征㊂故应采用动物体内试验并固体给药方式,可获得晶型物质真实的生物学评价数据㊂5.晶型药物的溶解性或溶出度评价本法为体外晶型物质评价方法㊂当原料晶型物质状态不同时,晶型原料或固体制剂的溶解或溶出性质可能存在较大差异,所以需要进行晶型物质与溶解或溶出性质的关系研究㊂以溶解度或溶出度㊁溶解速率或溶出速率作为评价指标㊂原料药采用溶解曲线法,固体制剂采用溶出曲线法,可参照‘口服固体制剂溶出度试验技术指导原则“相关内容进行溶解曲线或溶出曲线比较㊂6.药品晶型质量研究方法不同药物的不同晶型物质状态对定性鉴别方法或成分含量定量分析方法的特异性可以相同或不同,方法包含绝对方法和相对方法,可选择有效的质量控制方法㊂(1)晶型种类鉴别 定性方法绝对鉴别方法:可独立完成晶型物质状态鉴别的方法㊂方法仅适用于晶型原料药㊂单晶X射线衍射法(S X R D):属绝对晶型鉴别方法,㊃833㊃9015药品晶型研究及晶型药物的质量控制技术与方法指导原则可通过供试品的成分组成(化合物,结晶水或溶剂)㊁晶胞参数(a,b,c,α,β,γ,V)㊁分子对称性(晶系,空间群)㊁分子键和方式(氢键,盐键,配位键)㊁分子构象等参量变化实现对固体晶型物质状态鉴别㊂方法适用于晶态晶型物质的鉴别㊂相对鉴别方法:为需要借助已知晶型信息完成晶型鉴别的方法,适用于不同晶型物质的图谱数据间存在差异的晶型种类鉴别㊂利用相对方法确定供试品晶型需要与已知晶型样品的图谱数据进行比对,属相对晶型鉴别方法㊂方法仅适用于晶型原料药㊂方法1粉末X射线衍射法(P X R D)晶态物质呈锐峰,无定型态物质呈弥散峰㊂晶型鉴别时利用供试品衍射峰的数量㊁位置(2θ或d)㊁强度(相对或绝对)㊁各峰强度之比等参量变化实现对晶型物质状态的鉴别㊂方法适用于晶态与晶态㊁晶态与无定型态㊁无定型态与无定型态等各种晶型物质的鉴别㊂若判断两个晶态样品的晶型物质状态一致时,应满足衍射峰数量相同㊁二者2θ值衍射峰位置误差范围在ʃ0.2ʎ内㊁相同位置衍射峰的相对峰强度误差在ʃ5%内,衍射峰的强弱顺序应一致;若判断两个无定型态样品的晶型物质状态一致时,应满足弥散衍射峰几何拓扑形状完全一致㊂方法2红外光谱法(I R)利用供试品不同晶型物质分子振动时特有的偶极矩变化,引起指定波长范围的红外光谱吸收峰的位置㊁强度㊁峰形几何拓扑等参量变化实现对晶型物质状态的鉴别㊂方法适用于分子作用力变化的晶型物质的鉴别,对晶型物质鉴别推荐采用衰减全反射进样法,制样时应注意避免研磨㊁压片可能造成的转晶现象㊂方法3拉曼光谱法(R M)利用供试品不同晶型物质特有的分子极化率变化,引起指定波长范围的拉曼光谱吸收峰的位置㊁强度㊁峰形几何拓扑等参量变化实现对晶型物质状态的鉴别㊂方法4差示扫描量热法(D S C)利用供试品不同晶型物质特有的热力学性质,通过供试品吸热峰或放热峰的数量㊁位置㊁形状㊁吸热量(或吸热焓)等参量变化实现对晶型物质状态的鉴别㊂方法适用于不同晶型物质的熔融吸热峰值存在较大差异或供试品中含有不同数量和种类结晶溶剂(或水)的晶型物质的鉴别㊂方法5热重法(T G)利用供试品不同晶型物质特有的质量 失重百分率与温度关系参量的变化实现对晶型物质状态的鉴别㊂方法适用于供试品中含有不同数量和种类结晶溶剂(或水)的晶型物质的鉴别㊂方法6毛细管熔点法(M P)利用供试品不同晶型物质在加热时产生的相变过程㊁透光率等参量变化实现对晶型物质状态的鉴别㊂方法适用于熔点值差异大的晶型物质的鉴别㊂熔距可反映晶型纯度,熔距小于1ʎC时表明供试品的晶型纯度较高㊂制样时应注意避免研磨可能造成的转晶现象㊂方法7光学显微法(L M)当供试品不同晶型具有不同的固体外形特质时,可通过不同晶型物质特有的固体外形实现对晶型物质状态的鉴别㊂方法8偏光显微法(P M)供试品呈晶态与无定型态时的偏光效应参量变化,进行晶型物质状态的鉴别㊂不同晶型判断当供试品原料药化学物质确定且鉴别方法一致时,鉴别获得的图谱或数据若发生变化,说明样品中的晶型物质种类或成分发生了改变,可能由一种晶型变为另外一种晶型㊁或混晶物质种类或比例发生改变㊂(2)晶型含量分析 定量方法晶型物质含量是表征供试品中所包含的某种特定晶型物质成分量值,用百分数表示晶型含量㊂晶型含量分析方法指进行供试品晶型成分的定量或限量分析㊂晶型药品质量控制应优先选择定量分析方法㊂定量分析方法有单晶X射线衍射法(S X R D)㊁粉末X射线衍射法(P X R D)㊁差示扫描量热法(D S C)㊁红外光谱法(I R)等㊂方法学研究采用的晶型定量或限量分析方法应符合‘药品质量标准分析方法验证指导原则“的准确度㊁重复性㊁专属性㊁定量限㊁线性㊁范围㊁耐用性等内容㊂鉴于不同定量或限量分析技术和方法的基本原理不同,应选择能够表征晶型物质成分与含量呈线性关系的1~3个参数作为定量或限量分析的特征性参量㊂晶型分析方法方法1单晶X射线衍射法(S X R D)定量分析方法,获得原料药100%晶型纯品数据㊂S X R D分析对象仅为一颗单晶体,原理是利用X射线对晶体产生的衍射效应,其分析数据代表了某种晶型纯品的结果㊂S X R D法可以揭示供试品晶型成因,给出晶型物质的晶体学各种定量数据㊂采用S X R D分析数据,通过理论计算获得100%晶型纯品的P X R D图谱和数据,作为晶型物质标准图谱㊂方法2粉末X射线衍射法(P X R D)定量分析方法,获得供试品晶型含量数据㊂P X R D是表征供试品对X射线的衍射效应,即衍射峰位置(d或2θ值)与衍射强度关系的图谱㊂晶型供试品的衍射峰数量与对称性和周期性相关,各个衍射峰位置用d (Å)或2θ(ʎ)表示;衍射峰强度可用峰高度或峰面积表示,其绝对强度值等于每秒的计数点C P S单位,相对强度值等于(其他峰绝对值ː最强峰绝对值)ˑ100%;衍射峰强比例表示了供试品中各衍射峰间的相对强度关系和衍射峰形几何拓扑变化㊂(a)晶型原料药分析:为实现对原料药晶型物质的定量㊃933㊃9015药品晶型研究及晶型药物的质量控制技术与方法指导原则控制目的,需要①选取能够反映原料药晶型物质含量变化的1~3个特征衍射峰,特征衍射峰的强度应与晶型含量(或晶型质量)呈线性关系;②建立混晶原料药样品标准曲线:通过配制两种或多种晶型比例的混晶样品,建立混晶样品中的各种晶型含量与特征峰衍射强度关系的标准曲线,可以实现对原料药的混晶晶型种类和比例的含量测定;③为保证不同时间点的晶型检测,可通过建立随行标准曲线法或标准曲线加外标法进行原料药晶型含量测定,以实现对不同时间点供试品的晶型成分含量测定㊂(b)制剂中晶型原料药分析:为实现对制剂中晶型原料药的定量控制目的,①需要固体制剂㊁晶型原料药㊁空白片;②选取能够反映固体制剂中晶型原料药成分含量变化特征的1~3个衍射峰,特征衍射峰的强度应与晶型含量呈线性关系;③建立制剂中原料药晶型含量标准曲线:利用空白片与晶型原料药配制成不同比例的混合样品,建立固体制剂中晶型原料药含量与特征峰衍射强度关系的标准曲线,利用标准曲线可实现对固体制剂中原料药的晶型含量测定目的;④为保证不同时间点的晶型检测,可通过建立随行标准曲线法或标准曲线加外标法进行原料药晶型含量测定,对不同时间点供试品的晶型成分进行含量测定㊂(c)方法说明①定量方法需要借助S X R D数据通过理论计算获得100%晶型纯品的P X R D图谱和数据作为晶型物质标准或使用晶型标准品获得标准图谱作为晶型物质标准㊂②实验用样品需经前处理步骤,有机供试品应过100目筛,无机供试品过200目筛;定量检测时应精密称定实验用样品量㊂③应注意固体制剂的晶型原料药含量应在标准曲线的线性范围内㊂④应使用外标标准物质A l2O3对仪器及数据进行校正㊂方法3差示扫描量热法(D S C)定量分析方法,获得供试品晶型含量数据㊂采用D S C定量分析的晶型物质一般应具有不同的熔融吸热峰值,且晶型样品质量与吸热量呈正比关系㊂(a)晶型原料药分析:精密称量不同质量晶型样品,建立质量与热量的热焓值的线性关系,绘制标准曲线,定量测定样品晶型纯度㊂(b)混晶原料药分析:当不同晶型含量与热焓呈正比关系,采用精密称量配制不同晶型含量的混晶样品,建立晶型含量与热焓值的线性关系,绘制标准曲线,定量测定混晶样品中的晶型含量㊂(c)方法说明:①仅适用于晶型原料药定量分析㊂②对熔融吸热峰值相差大的混晶原料供试品,建立标准曲线时线性范围较宽;熔融吸热峰值相差小的混晶样品,建立标准曲线时线性范围较窄㊂③有时D S C法仅能作为限量检测方法㊂方法4红外光谱(I R)定量分析方法,获得供试品晶型含量数据㊂采用I R法可以对晶型原料药或固体制剂进行定量分析,常用的方法为相对峰强度法㊂晶型特征峰选取原则:①分别选取2种晶型特有的红外光谱吸收峰作为特征峰㊂②2种晶型的特征峰应独立而不受对方干扰㊂③特征峰强度应与晶型成分含量呈对应线性关系㊂对压力可致晶型状态发生转变的晶型原料供试品,制样时应避免压片法㊂(a)晶型原料药分析:采用相对峰强度法时分别选择2种晶型成分的特征吸收峰位置b1与b2,在同一红外光谱图上读取2种晶型成分的特征吸收峰的吸光度值A1与A2,计算二者特征吸收峰的吸光度比值r㊂通过配制一系列不同晶型比例的混晶样品,建立特征吸收峰的吸光度比值的对数值与晶型含量间的线性关系,绘制标准曲线,实现对混晶样品的晶型含量进行定量分析㊂(b)制剂中晶型原料药成分分析:采用相对峰强度法时分别选择晶型原料药特征吸收峰位置b1与空白辅料的特征吸收峰位置b2,在同一红外光谱图上读取2种晶型成分的特征吸收峰的吸光度值A1与A2,计算二者特征吸收峰的吸光度比值r㊂通过配制一系列含有不同质量晶型原料与空白辅料比例混合样品,建立特征吸收峰的吸光度比值的对数值与晶型原料药含量间的线性关系,绘制标准曲线,实现对固体制剂中晶型原料药含量进行定量分析㊂备注:其他国际公认用于物相分析的方法也可对多晶型进行定性定量分析㊂㊃043㊃9015药品晶型研究及晶型药物的质量控制技术与方法指导原则。

药物研究过程中的晶型研究策略-陈义朗

药物研究过程中的晶型研究策略-陈义朗
原料药的合成
盐的筛选
晶型的筛选
过程优化
规模制备
1、单晶X-衍射(单晶) 2、X-射线粉末衍射(确凿证据) 3、拉曼光谱 4、DSC 5、红外光谱(苯乙阿托品的Ⅰ型 和Ⅱ型,莫西沙星的A型和B型) 6、固体13C-NMR 7、熔点(更是不太灵敏) 8、偏光显微镜法 9、扫描隧道显微镜法 10、溶解度法(Cs-T曲线) 11、药物多晶型计算机辅组预测
2、FDA-ANDA晶型研究指导原则
图(3): 评价是否应该为固 体口服制剂和混悬 液的药物制剂的多 晶型制定质量标准
是否有原因需为药 物制剂的多晶型制 定质量标准*
否 无需为药物制剂的多晶型 制定质量标准
开始
是 如果多晶比例 改变,制剂性 能检测(如溶 出度)是否能 提供足够的控 制? 建立药物制剂性能检测的性能检测 的质量标准(如溶出度),作为控 制药物制剂的多晶型的替代方法
剂工艺过程中的晶型变化
3、详细列出溶剂/条件与晶型的关系
如何开展晶型筛选?
基于风险控制的晶型筛选方法 1、简单的晶型筛选 —浓度远低于饱和浓度的口服溶液药物 —高溶解度的固体药物制剂
2、更充分的晶型筛选
—低溶解度的口服固体制剂 —口服混悬液
—浓度临近饱和浓度的口服溶液药物
—软胶囊 以上基于BCS(生物药剂学分类系统)
部门在药品NDA申请时对于晶型认识的一致
只需有定性控制的标准(检测手段可能红外光谱即可)
如果不是: 则要求有定量控制的标准(检测手段以X-射线粉末衍射 为宜)
是否药品中的原料 药的晶型变化由药 品的性能检测反映 (如溶出度等)
针对相关的检测制定合 适的标准
1、ICH-Q6A
图(3):药品-固
体制剂或含溶出度较差 的原料药的口服液体制 剂

原料药晶型研究思路

原料药晶型研究思路

原料药晶型研究思路
原料药晶型研究是药物研发过程中非常重要的环节,因为不同晶型的药物具有不同的结构、物理和化学性质,对药物的生物利用度、稳定性、溶解度、药效等等都有着重要的影响。

因此,为了开发出更加安全有效的药物,需要对原料药晶型进行深入研究。

在进行原料药晶型研究时,需要遵循以下思路:
1. 确定研究目的:确定研究对象、目的和范围,以及需要获取的药物性质信息。

2. 晶体学分析:通过X射线衍射、热分析、拉曼光谱等手段进行晶体结构分析,确定药物晶体的结构类型、晶体形态、晶体对称性等信息。

3. 热力学性质研究:通过差示扫描量热、热重分析等方法,研究药物晶型的热力学性质,如熔点、热容、热稳定性等。

4. 动力学性质研究:通过溶解度、溶解速度、重结晶等方法,研究药物晶型的动力学性质,如溶解度、溶解速率、晶体转化动力学等。

5. 药物性能研究:通过细胞培养、动物实验等方法,研究药物晶型的药效、药代动力学、毒性、稳定性等性质。

通过以上步骤对原料药晶型进行深入研究,可以为药物开发提供重要的理论依据和实验支持,为制定合理的药物晶型策略提供指导。

同时,也可以提高药物的质量、安全性和疗效,为临床治疗提供有力保障。

晶型药物(完整版)

晶型药物(完整版)

1.晶型药物研究现状1.1固体化学物质的“多晶型现象”是1832年前俄国科学家乌勒(F.Wohler)等人在研究苯甲酰胺化合物时首次发现。

通过对“同质异晶”等无机晶体的研究,科学家发现了一些由分子排列规律变化造成的相同固体化学物质在不同方向上所具有的光学、磁性性质变化,同时也发现了相同物质的不同晶型现象可以引起固体物质在熔点、硬度、密度等物理参数的变化现象,从而全面改变了固体物质本身的各种物理特征。

1.2我国对晶型药物的研究起步较晚,20世纪90年代中期,我国首次进口尼莫地平固体药物的临床疗效是国产仿制固体药品的3倍以上。

通过多种分析方法比较,发现造成进口尼莫地平片剂优势的真正原因是两者采用了不同晶型固体物质。

目前在《中国药典》中存在晶型问题的化学药品达数百个,而这些品种在晶型质量控制上缺少相关控制标准,已经严重影响和制约我国固体化学药物发展和药品质量。

2优势药物晶型2.1药用优势药物晶型是指对于具有多种形式物质状态的晶型药物而言,应具备晶型物质相对稳定、能够最好发挥防治疾病作用、毒副作用较低的晶形物质状态。

药用的优势药物晶型研究主要内容包括:1.晶型稳定性;2.不同晶型物质对药物生物利用度的影响;3.优势药物晶型的选择需要观察药物的有效性和毒副反应。

3晶型药物与机体吸收固体化学药物晶型不同,可造成其溶解度和稳定性不同,从而影响药物的吸收和生物利用度,并因此导致临床药效的差异。

3.1无定型态物质影响药物吸收有些药物的晶态晶型不如无定形态晶型好,这样在制剂过程中需将原料药制备成无定型态。

3.2晶态物质影响药物吸收药物的不同晶型由于溶解度和溶出速率不同,从而影响药物的吸收和生物利用度,进而导致临床药效差异。

4.影响药物晶型产生的因素多晶型是固体药物中非常普遍的存在形式,但由于固体有机药物样品大多是分子晶体,其晶格能差较小,容易发生转型。

而这种转变在很大程度上会影响药物的物理化学性质、药效和毒副作用,影响生物利用度。

药品晶型研究及晶型质量控制指导原则

药品晶型研究及晶型质量控制指导原则

药品晶型研究及晶型质量控制指导原则摘要:药品晶型是指药品分子的结晶形式,晶型研究对于掌握药品的物理化学性质、稳定性以及生物利用度等方面至关重要。

本文主要探讨了药品晶型的研究方法以及晶型质量控制的指导原则,并提出了晶型质量控制的重要性。

关键词:药品晶型;晶型研究;晶型质量控制;指导原则引言药品晶型是药物分子结晶的特定形态,对于药物的物理化学性质、稳定性以及生物利用度等方面有着重要影响。

因此,研究药品晶型并进行晶型质量控制对于药品的研发和生产具有重要的意义。

一、药品晶型研究方法1.1X射线衍射(XRD)XRD是一种常用的晶型分析方法,通过测定药品样品的X射线衍射图谱,可以得到药品晶型的特征峰。

通过比对特征峰的位置和强度,可以确定药品的晶型。

XRD可以在非破坏性的情况下进行晶型分析,对于高温下晶型转变的研究也有一定的优势。

1.2热分析法热分析法包括差示扫描量热法(DSC)和热重分析法(TGA)等。

DSC 可以通过测量样品在不同温度下的热容变化,得到药品晶型的热学性质,如熔点和热分解温度等。

TGA则可以测量药品样品在加热过程中的质量变化,通过分析质量变化曲线可以得到药品的热分解参数。

1.3显微镜观察显微镜观察是一种直观的晶型检测方法。

可以通过光学显微镜或电子显微镜观察样品的形貌和结晶特征,从而确定晶型。

显微镜观察可以直接观察晶型的形态,对于不同晶型的识别有一定的便利性。

2.1合理选择晶型在药物研发的早期阶段,应该进行多晶型筛选和优选实验,选择合适的晶型作为产品的稳定性和生物利用度的指标。

合理的晶型选择可以确保产品的质量和疗效。

2.2控制晶型转变晶型转变是晶型质量控制中一个关键的方面。

不同晶型的转变可能会导致药物的物化性质的改变,甚至导致药物失效。

因此,需要通过合适的技术手段和条件控制晶型的转变,确保产品的一致性和稳定性。

2.3开展晶型稳定性研究晶型的稳定性是晶型质量控制的重要依据。

应该开展晶型的稳定性研究,包括湿热稳定性、光稳定性和氧化稳定性等。

9种最常见的药物晶型检测方法

9种最常见的药物晶型检测方法

9种最常见的药物晶型检测方法药物分子通常有不同的固体形态,包括盐类,多晶,共晶,无定形,水合物和溶剂合物;同一药物分子的不同晶型,在晶体结构,稳定性,可生产性和生物利用度等性质方面可能会有显著差异,从而直接影响药物的疗效以及可开发性。

如果没有很好的评估并选择最佳的药物晶型进行研发,可能会在临床后期发生晶型的变化,从而导致药物延期上市而蒙受经济损失,如果上市后因为晶型变化而导致药物被迫撤市,损失就很严重。

因此,药物晶型研究和药物固态研发在制药业具有举足轻重的意义。

一、X-射线衍射法(X-ray diffraction)X-射线衍射是研究药物晶型的主要手段,该方法可用于区别晶态和非晶态,鉴别晶体的品种,区别混合物和化合物,测定药物晶型结构,测定晶胞参数(如原子间的距离、环平面的距离、双面夹角等),还可用于不同晶型的比较。

X-射线衍射法又分为粉末衍射和单晶衍射两种,前者主要用于结晶物质的鉴别及纯度检查,后者主要用于分子量和晶体结构的测定。

1、单晶衍射单晶衍射是国际上公认的确证多晶型的最可靠方法,利用该方法可获得对晶体的各晶胞参数,进而确定结晶构型和分子排列,达到对晶型的深度认知。

而且该方法还可用于结晶水/溶剂的测定,以及对成盐药物碱基、酸根间成键关系的确认。

然而,由于较难得到足够大小和纯度的单晶,因此该方法在实际操作中存在一定困难。

2、粉末衍射粉末衍射是研究药物多晶型的最常用的方法。

粉末法研究的对象不是单晶体,而是众多取向随机的小晶体的总和。

每一种晶体的粉末X-射线衍射图谱就如同人的指纹,利用该方法所测得的每一种晶体的衍射线强度和分布都有着特殊的规律,以此利用所测得的图谱,可获得出晶型变化、结晶度、晶构状态、是否有混晶等信息。

该方法不必制备单晶,使得实验过程更为简便,但在应用该方法时,应注意粉末的细度,而且在制备样品时需特别注意研磨过筛时不可发生晶型的转变。

二、红外吸收光谱法不同晶型药物分子中的某些化学键键长、键角会有所不同,致使其振动-转动跃迁能级不同,与其相应的红外光谱的某些主要特征如吸收带频率、峰形、峰位、峰强度等也会出现差异,因此红外光谱可用于药物多晶型研究。

药物晶型研究的意义

药物晶型研究的意义

药物晶型研究的意义药物晶型研究的意义1. 引言药物晶型研究已成为当代药物科学中的一个重要研究领域。

药物晶型是指在固态下,由药物分子构成的晶体结构。

在药物研发和制造过程中,研究和了解药物晶型具有重要意义。

本文将探讨药物晶型研究的意义以及其在药物科学中的应用价值。

2. 药物晶型的定义与分类药物晶型是指药物分子在固态下的不同排列形式。

根据晶型的性质和结构,药物晶型可分为多种类型,包括有机晶型、无机晶型、共晶型、溶液制剂型等。

每种晶型都具有自己独特的物理和化学性质,对于药物的性能和药效可能产生重要影响。

3. 药物晶型研究的意义3.1. 药物稳定性和溶解性的改善药物晶型的选择和优化可以改善药物的稳定性和溶解性。

不同晶型的药物在稳定性和溶解性上表现出不同的性质。

通过研究不同晶型的物理和化学性质,可以选取具有较好稳定性和溶解性的晶型,以提高药物的质量和疗效。

3.2. 药物的生物利用度和生物等效性的延展药物晶型的研究还可以拓展药物的生物利用度和生物等效性。

不同晶型的药物在体内的吸收和代谢过程中表现出不同的特性。

通过比较不同晶型的药物在体内的表现,可以选择合适的晶型以提高药物的生物利用度和生物等效性。

3.3. 药物合成和制备过程的优化药物晶型的研究对于药物合成和制备过程的优化也具有重要的意义。

不同晶型的药物在制备过程中可能表现出不同的晶化和结晶行为。

通过研究不同晶型的形成机理和晶化过程,可以对药物的合成和制备过程进行优化,提高药物的产量和质量。

4. 药物晶型研究应用案例4.1. 塞来昔布(Celecoxib)的晶型研究塞来昔布是一种用于治疗疼痛和炎症的非甾体类抗炎药物。

在药物晶型的研究中,发现塞来昔布可以存在多种晶型,包括单水合物、无水物以及多种有机晶型。

不同晶型的塞来昔布在药效和溶解性上存在显著差异。

研究发现,单水合物是最稳定的晶型,具有较好的溶解性和生物利用度。

在药物生产过程中,选用单水合物作为塞来昔布的晶型,可以提高药物的稳定性和疗效。

药物晶型定量分析方法

药物晶型定量分析方法
物 光, 谱红 就外 难以区分,如苯乙阿托品的晶型I和晶型n的红外光谱一致时,或样品纯
度 够不 ,都会造成红外光谱难以区分。
结语
除了上述晶型研究定量方法外,晶型研究中还会用到中红外光谱法、近红外光 谱 法、固态核磁共振法、太赫兹光谱法等,一般对于晶型研究可联合几种方法共 同 以定 弥量 补, 各自的不足。药物多晶型的定量也是药物研发的一个不可或缺的环节之 一。 参考文献:
应用
[J].中国医
药指南, 2012, 000(032):435-436.
⑹郭永辉,吕扬,北京协和医学院,中国医学科学院,药物研究所,北京,
.差示扫描量热法
在晶型药物研究中的应用 [J].第二届中国晶型药物研发技术研讨会 ,2012.
END
X射线衍射法(XRD)、拉曼光谱法 (Raman)、
(DSC)、红外光谱法(IR )等。本文主要就这几
[5] 张新,张启明,李慧义,等.动态水分吸附分析法及其在药物研究中的应用
[J].药物分析杂
志,2008(10):197-200.
⑹袁钻如,张爱明,方江邻.差示扫描量热法(DSC)定量测试阿德福韦酯晶型的
研究 J].分析
测试技术与仪器 ,2008(02):105-108.
[7]张晓楠,郭士岭,陈宜俍,等.差示扫描量热法在药物多晶型定量分析中的
) 该方法可用于区别晶态和非晶态,鉴别
素的影
Varasteh 等的研
通过标准曲线法可以定量分析样品中各晶型的相对
含量。差示扫描量热仪灵敏度高,定量研究方便,所以使用差示扫描量热法可 以 准方 确便 的对熔点相差较大的混合物中的不同晶型组分含量进行定量分析。
由于DSC法对样品的破坏性是无法避免,因此不适合对样品量少及贵重的样品 进 行分析检测,同时供试样品的颗粒大小、重量、升温速率、样品取样和混合的 不 性均 等一 都会对最终的实验结果产生影响。故在研究药物晶型制剂定量时,需考虑 与 分其 析它 技术联用。

9015药品晶型研究及晶型质量控制指导原则pdf

9015药品晶型研究及晶型质量控制指导原则pdf

9015药品晶型研究及晶型质量控制指导原则当固体药物存在多晶型现象,且不同晶型状态对药品的有效性、安全性或质量可产生影响时,应对药品原料药物、固体制剂、半固体制剂、混悬剂等中的药用晶型物质状态进行定性或定量控制。

药品的药用晶型应选择优势晶型,并保持制剂中晶型状态为优势晶型,以保证药品的有效性、安全性与质量可控。

优势晶型系指当药物存在有多种晶型状态时,晶型物质状态的临床疗效佳、安全、稳定性高等,且适合药品开发的晶型。

由两种或两种以上的化学物质共同形成的晶态物质被称为共晶物,共晶物属晶型物质范畴。

1.药物多晶型的基本概念用于描述固体化学药物物质状态,可由一组参量(晶胞参数、分子对称性、分析排列规律、分子作用力、分子构象、结晶水或结晶溶剂等)组成。

当其中这些参量中的一种或几种参量发生变化而使其存在有两种或两种以上的不同固体物质状态时,称为多晶型现象(polymorphism)或称同质异晶现象。

通常,难溶性药物易存在多晶型现象。

固体物质是由分子堆积而成。

由于分子堆积方式不同,在固体物质中包含有晶态物质状态(又称晶体)和非晶态物质状态(又称无定型态、玻璃体)。

晶态物质中分子间堆积呈有序性、对称性与周期性;非晶态物质中分子间堆积呈无序性。

晶型物质范畴涵盖了固体物质中的晶态物质状态(分子有序)和无定型态物质状态(分子无序)。

优势药物晶型物质状态可以是一种或多种,故可选择一种晶型作为药用晶型物质,亦可按一定比例选择两种或多种晶型物质的混合状态作为药用晶型物质使用。

2.晶型样品的制备采用化学或物理方法,通过改变结晶条件参数可获得不同的固体晶型样品。

常用化学方法主要包括有:重结晶法、快速溶剂去除法、沉淀法、种晶法等;常用物理方法主要包括有:熔融结晶法、晶格物理破坏法、物理转晶法等。

晶型样品制备方法可以采用直接方法或间接方法。

各种方法影响晶型物质形成的重要技术参数包括:溶剂(类型、组成、配比等)、浓度、成核速率、生长速率、温度、湿度、光度、压力、粒度等。

药品晶型研究及晶型质量控制指导原则

药品晶型研究及晶型质量控制指导原则

药品晶型研究及晶型质量控制指导原则当固体药品存在多晶型现象,且不同晶型状态对药品的有效性、安全性与药品质量产生影响时,应对药品固体制剂、半固体制剂、悬浮剂等中的药用晶型物质状态进行定性或定量控制, 药品的药用晶型应选择优势晶型,并保持制剂中晶型状态为优势晶型,以保证药品的有效性、安全性与质量可控。

优势晶型系指当药物存在有多种晶型状态时, 晶型物质状态的临床疗效佳、安全、稳定性高等, 且适合药品开发的晶型。

1 . 药物多晶型的基本概念用于描述固体化学药物物质状态, 由一组参量(晶胞参数、分子对称性、分析排列规律、分子作用力、分子构象、结晶水或结晶溶剂等) 组成。

当其中一种或几种参量发生变化而使其存在有两种或两种以上的不同固体物质状态时,称为多晶型现象(polymorphism) 或称同质异晶现象。

通常,难溶性药物易存在多晶型现象。

固体物质是由分子堆积而成。

由于分子堆积方式不同,在固体物质中包含有晶态物质状态(又称晶体) 和非晶态物质状态(又称无定型态、玻璃体)。

晶态物质中分子间堆积呈有序性、对称性与周期性; 非晶态物质中分子间堆积呈无序性。

晶型物质范畴涵盖了固体物质中的晶态物质状态(分子有序) 和无定型态物质状态(分子无序) 。

优势药物晶型物质状态可以是一种或多种, 故可选择一种晶型作为药用晶型物质, 亦可按一定比例选择两种或多种晶型物质的混合状态作为药用晶型物质使用。

2 . 晶型样品的制备采用化学或物理方法, 通过改变结晶条件参数可获得不同的固体晶型样品。

常用化学方法主要包括: 重结晶法、快速溶剂去除法、沉淀法、种晶法等; 常用物理方法主要包括: 熔融结晶法、晶格物理破坏法、物理转晶法等。

晶型样品制备方法可以采用直接方法或者间接方法。

各种方法影响晶型物质形成的重要技术参数包括溶剂(类型、组成、配比等) 、浓度、成核速率、生长速率、温度、湿度、光度、压力、粒度等。

鉴于每种药物的化学结构不同, 故形成各种晶型物质状态的技术参数条件亦不同, 需要根据样品自身性质合理选择晶型样品的制备方法和条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Solvent-thermal heating/cooling experiments
change temperature supersaturation good solubility solubility varies with the temperature freezing point of the solvent
2015-2-27
2015-2-27
多晶型研究对药物开发的重要性
2015-2-27
药物多晶型研究的重要性
2015-2-27
2015-2-27
2015-2-27
如何筛选和选择药物的新晶型
2015-2-27
2015-2-27
晶型的化学和物理分析手段
2015-2-27
2015-2-27
2015-2-27
crystallization from solution—— rational experimental design
• Limited resource • How to find as many new polymorphs and amorphous form as possible API properties different solubility in the solvent
• Polymorphs
Sold phase Same chemical composition Different molecular arrangements
• In practice, we are interested in all the crystalline and amorphous phases for a chemical/pharmaceutical
2015-2-27
Slurry
——solvent selection
• Msion
• solvent/mixed solvents
solubility is poor
2015-2-27
Anti-solvent precipitation —solvent selection
Solvent selection low boiling point
solvent
DMF DMSO NMP
boiling point
152.8 º C 189 º C 202 º C
2015-2-27
Summary—Solvent selection
• key point of the method select appropriate solvent
药物的多晶型研究
2015-2-27
提纲
什么是晶体,多晶型? 多晶型研究对药物开发的重要性 如何筛选和选择药物的新晶型 多晶型的主要分析手段 晶型筛选实验的经验分享----溶剂选择
2015-2-27
什么是晶体?
Crystal
A solid material whose constituent atoms,molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions.
Solvent selection
2015-2-27
Slow/fast precipitation from saturated solutions method
• Evaporate the solvent supersaturation • Slow/fast rate of crystallization
2015-2-27
The method of polymorph screening
crystallization from solution
(slurry, anti-solvent precipitation , Solvent-thermal heating/cooling Slow/fast precipitation from saturated solutions)
2015-2-27
crystallization from solution—— Solvent selection
Solvent MeOH EtOH
Visual solubility (mg/mL)
• Slurry • Anti-solvent precipitation
IPA
1-Butanol ACN MEK MIBK EtOAc iPrOAc MTBE 2-MeTHF
2015-2-27
Experience sharing on polymorph screening ——solvent selection
2015-2-27
The purpose of polymorph screening
For Innovator companies - select the optimal solid-state of API for development -study relevant polymorphs for IP protection For CRO companies based on the customers needs - to identify as many new polymorphs (include solvate / hydrate) and amorphous form as possible - or to find the most stable form
Prepare solvent
Anti-solvent selection polarity miscibility
good solubility
Poor solubility
miscibility Water DMF ACN 1,4-Dioxane MTBE
Heptane
DMSO
2015-2-27
different solubility in the solvent Polarity
solvent properties
miscibility between solvents
boiling point
freezing Toxicity point
2015-2-27

poor solubility or good solubility
Solvent properties
Polarity-different sort of solvents (alcohols, ethers, ester etc.) Boiling point Freezing point Toxicity miscibility
• Solvent-thermal heating/cooling experiments
• Slow/fast precipitation from saturated solutions method
DMF NMP
DMSO
CH2Cl2 Toluene 1,4-Dioxane Heptane THF Acetone Water
crystallization
recrystallization from a neat compound
(thermal heating/cooling, grinding , and high pressure )
2015-2-27
polymorph screening —— crystallization from solution
• degree of supersaturation and Temperature are considered as the driving force of crystallisation • diverse solvents result in the discovery of more polymorphs
Pharmaceutical crystals
Most drugs are developed as crystalline • Stability • Processability • IP protection
2015-2-27
什么是多晶型?
• Polymorphism is the ability of a solid material to exist in more than one form or crystal structure.
相关文档
最新文档