人教版八年级数学等腰三角形ppt课件

合集下载

等腰三角形课件人教版八年级数学上册

等腰三角形课件人教版八年级数学上册

已知:如图,DB=DC,∠ABD=∠ACD,
求证:AB=AC.
A
分析:
由条件得到等腰△BDC,
从结论上看,要证明 △ABC是等腰三角形.
D
B
C
初中数学
初中数学
例题讲解
证明:如图,连接BC,
∵ DB=DC,
A
∴ ∠DBC=∠DCB.
又∵ ∠ABD=∠ACD,
∴ ∠DBC+∠ABD=∠DCB+
D
∠ACD,即∠ABC=∠ACB. B
即△ABC为等腰三角形. ∴∠HAC=∠BCA. 定义:有两边相等的三角形叫等腰三角形. (2)在直线EF上找一点B使得AB=4 cm(以A为圆心,4 cm为半径画弧交EF于点B). (3)作AB的垂直平分线交直线EF于点C.
等腰三角形(第三课时) 如图,AB=AC,E为CA延长线上一点,作ED⊥BC于D,交AB于点F,求证:△AEF为等腰三角形.
B. 8 D. 6
初中数学
课后作业
2. 如图,AB=AC,E为CA延长线 上一点,作ED⊥BC于D,交AB 于点F,求证:△AEF为等腰三 角形.
初中数学
课后作业
3.已知等腰三角形的腰长a=4 cm,腰上 的高h=3 cm,请画出符合条件的等腰三 角形.
初中数学
同学们,再见!
例题讲解
解:(1)∵EF∥BC,
∴∠AEF=∠B,∠AFE=∠C.
∵AB=AC,
∴∠B=∠C.
E
∴∠AEF=∠AFE.
∴AE=AF.
B
∴△AEF是等腰三角形.
A
GF C
D
初中数学
人生志气立,所贵功业昌。 母鸡的理想不过是一把糠。

人教版八年级数学上册13.3《等腰三角形》说课课件

人教版八年级数学上册13.3《等腰三角形》说课课件

综合小测
1.(中考•盐城)若等腰三角形的顶角为40°,则它的 底角度数为( )
A.40° B.50° C.60° D.70°
2.等腰三角形底边中点到两腰的距离相等吗?如 A
图,DE⊥AB,DF⊥AC,垂足分别为E、F.将等腰三角形 ABC沿对称轴AD翻折,观察DE与DF的关系.
设计意图:考查学生对等腰三角形的性质的 E
(2)把剪出的等腰三角形ABC沿折痕AD对折, 找出其中相等的线段和角,填入下表?
重合的线段
重合的角
B
C
D
等腰三角形除了两腰相等以外, 你还能发现它的其他特征吗?
设计意图:通过动手剪,折,直观发现规律, 从而培养学生的概括总结能力。
活动2: 探索等腰三角形的性质 A
等腰三角形的性质:(板书)
(1)等腰三角形的两个底角相等 B D C (2)等腰三角形的顶角平分线、底
4.变式训练:若已知∠BAC=100 º, 你能否求出顶架上∠B、
∠C、∠BAD、∠CAD的度数.
A
设计意图
B
D
C
让学生进一步理解等腰三角形的性质的意义—它既是全等
知识的运用和延续,又是证明两个角相等、两条线段相等、线
段垂直关系的更为简捷的途径和方法。
5.课堂小结
(1)本节课学习了哪些主要内容? (2)我们是怎么探究等腰三角形的性质的? (3)“三线合一”的含义是什么? (4)本节课你学到了哪些证明线段相等或角相等的
.
(4)如图3, AB=AC ,AD⊥BC交BC于点D,BD=5cm,那么BC的长度为

)A
A
A
图1
图2
图3
B
CB
C B DC

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

人教版八年级数学上册课件 第十三章 轴对称 等腰三角形 等边三角形 第1课时 等边三角形的性质与判定

27 2
(cm)
17.(14分)(原创题)已知△ABC是等边三角形,点D是直线BC上一点, 以AD为一边在AD的右侧作等边三角形ADE.
(1)如图①,点D在线段BC上移动时,求证:CE+CD=AB; (2)如图②,点D在线段BC的延长线上移动时,那么: ①线段CE,CD,AB之间有怎样的数量关系?请加以证明; ②∠DCE的度数为___6_0_°___; (3)如图③,点D在线段BC的反向延长线上移动时,∠DCE的大小是否 发生变化?线段CE,CD,AB之间又有怎样的数量关系?请直接写出结 论.
2.(3分)如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,
则∠ADB的度数为( ) D
A.25°
B.60°
C.85°
D.95°
3.(3分)如图,已知△ABC是等边三角形,点B,C,D,E在同一直线 上,且CG=CD,DF=DE,则∠E=___1_5_°___.
4 . (3 分 ) 如 图 , 在 等 边 三 角 形 ABC 中 , CD⊥AB 于 点 D , 过 点 D 作 DE∥BC交AC于点E,若△ABC的边长为2,则△ADE的周长是__3__.
∠E,∴DB=DE
6.(3分)下列四个说法中,正确的有( D ) ①三个角都相等的三角形是等边三角形;②有两个角等于60°的三角形 是等边三角形;③有一个角是60°的等腰三角形是等边三角形;④有两个 角相等的等腰三角形是等边三角形. A.0个 B.1个 C.2个 D.3个
7.(3分)等腰三角形补充下列条件后,仍不一定成为等边三角形的是 ( C)
14.(台州中考)如图,等边三角形纸片ABC的边长为6,E,F是边BC 上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪 下的△DEF的周长是___6_.

最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件

最新人教部编版八年级数学上册《第十一章 三角形【全章】》精品PPT优质课件
2.完成练习册本课时内容。
学习体会 1、本节课你学到了哪些基本知识? 2、本节课你学到了哪些解题方法? 3、还有哪些知识和方法上的问题?
Thank you!
Good Bye!
11.1 与三角形有关的线段
即三角形两边的和大于第三边. B
C
由不等式②③移项可得 BC >AB -AC, BC >AC -AB.由此你能得出什么结论?
A
三角形两边的差小于第三边.
B
C
问题:下列长度的三条线段能否组成三角形?为 什么?(1)3,4,5;(2)5,6,11;(3)5,6,10. 解:(1)能.因为3 + 4>5,3 + 5>4,4 + 5>3,
解:①如果 4 cm 长的边为底边,设腰长为 x cm,则
4 + 2x = 18. 解得 x = 7. ②如果 4 cm 长的边为腰,设底边长为 x cm,则
4×2 + x = 18. 解得 x = 10.
因为4 + 4<10,不符合三角形两边的和大于第 三边,所以不能围成腰长为 4 的等腰三角形.
基础巩固
随堂演练
1.下列说法:①等边三角形是等腰三角形;②
三角形按边分类可分为等腰三角形、等边三角形、
不等边三角形;③三角形的两边之差大于第三边;
④三角形按角分类应分为锐角三角形、直角三角
形、钝角三角形. 其中正确的有( B )
A.1个
B.2个
C.3个
D.4个
2.已知三角形的一边长为 5 cm,另一 边长为 3 cm .则第三边的长 x 的取值范围是 __2_c_m__<__x_<__8_c_m___.
拓展延伸 3.等腰三角形的周长为 20 厘米. (1)若已知腰长是底长的 2 倍,求各边的长; (2)若已知一边长为 6 厘米,求其他两边的长.

人教版《等腰三角形》ppt课件初中数学1

人教版《等腰三角形》ppt课件初中数学1

一般地,判断三角形形状的关键在于要先求出三角形的 三个内角度数或三条边长,或找到角(边)所满足的重要数 量关系,然后再利用等腰(等边)三角形的判定方法,进行 三角形形状的判断.
初中数学
知识运用
二、运用等腰三角形的判定和性质进行边角等有关计算
初中数学
例 如图,在△ABC中,AB=AC,∠A=40°,DE垂直平分AB
2、特殊的等腰三角形:等边三角形
本课小结
AE=ED=DB=BC
A
D
C
等腰三角形:△AED,△EDB,△BCD.
初中数学
初中数学
变式: 如图,在△ABC中,∠ABC=120°,点D,E分别在AC和
AB上,且AE=ED=DB=BC,若∠A的度数为x°,则用x的代数
式表示∠C为__3_x_°_,并求∠A=_1_5__°.
初中数学
例 已知三角形△ABC的三边长为a,b,c.
(4)当满足(a-b)²+(b-c)²+(c-a)²=0时,则三角形的形状为 等边三角形 .
分析: ∵(a-b)²+(b-c)²+(c-a)²=0; (a-b)²,(b-c)²,(c-a)²均具有非负性, ∴(a-b)²=0,且(b-c)²=0,且(c-a)²=0. ∴a=b 且 b=c 且 c=a. 根据等边三角形定义,得△ABC是等边三角形.
初中数学
初中数学
例 如图,△ABC是等边三角形,AD⊥BC,DE⊥AB,垂足分别
为D,E.若AB=8,则BD=____4_,BE=____2_.
分析:
等边三角形△ABC
AB=AC=BC=8 ∠BAC=∠B=∠C=60°
A
AD⊥BC AD: 三线合一
DE⊥AB ∠BED=∠AED=90°

等腰三角形的性质-八年级数学上册教学课件(人教版)

等腰三角形的性质-八年级数学上册教学课件(人教版)

C.70° D.50°
3.(1)等腰三角形一个底角为75°,它的另外两个角为_7_5_°__,_3_0_°_;
(2)等腰三角形一个角为36°,它的另外两个角为_7_2_°__,_7_2_°__或__3_6_°__,1_0_8_°_;
(3)等腰三角形一个角为120°,它的另外两个角为__3_0_°__,__3_0_°.
A B DC
性质1:等腰三角形的两个底角相等(等边对等角).
如图,在△ABC中, ∵AB=AC(已知), ∴∠B=∠C(等边对等角).
A
B
C
性质2:等腰三角形顶角的平分线、底边上的中线及底边上的高线互相重合 (三线合一).
综上可得:如图,在△ABC中,
∵AB=AC, ∠1=∠2(已知), ∴BD=CD,AD⊥BC(等腰三角形三线合一). ∵AB=AC, BD=CD (已知), ∴∠1=∠2,AD⊥BC(等腰三角形三线合一).
∴ ∠B= ∠C (全等三角形的对应角相等).
思考:由△BAD≌ △CAD,除了可以得到∠B= ∠C之外,你还可以得到那 些相等的线段和相等的角?和你的同伴交流一下,看看你有什么新的发现?
解:∵△BAD≌ △CAD,由全等三角形的性质易得 BD=CD,∠ADB=∠ADC,∠BAD=∠CAD. 又∵ ∠ADB+∠ADC=180°, ∴ ∠ADB=∠ADC= 90° , 即AD是等腰△ABC底边BC上的中线、顶角∠BAC的 角平分线、底边BC上的高线 .
C.65°或80°
D.50°或80°
【解析】当50°的角是底角时,三角形的底角就是50°;当50°的角是顶
角时,两底角相等,根据三角形的内角和定理易得底角是65°.故选A.
【点睛】等腰三角形的两个底角相等,已知一个内角,则这个角可能是底 角也可能是顶角,要分两种情况讨论.

初中数学课件等腰三角形的性质(几何)ppt课件

初中数学课件等腰三角形的性质(几何)ppt课件
接求出等腰三角形的面积。
利用三角函数
通过已知角度和边长,利用三角函 数求出高或底,再代入公式计算面 积。
利用向量
在平面直角坐标系中,可以利用向 量表示三角形的顶点,通过向量的 运算求出三角形的面积。
案例分析:不同类型题目解法
01
02
03
04
已知等腰三角形的底和高,直 接代入公式求解。
已知等腰三角形三边长度,利 用海伦公式求解。
勾股定理在等腰三角形中的推广
对于非直角的等腰三角形,可以通过作高将其分为两个直角三角形,再利用勾股定理求解 相关问题。
相似三角形与等腰三角形关系探讨
相似三角形定义
两个三角形如果它们的对应角相等,则称这两个三角形相 似。
等腰三角形的相似性质
对于两个等腰三角形,如果它们的顶角相等,则这两个三 角形相似。此外,如果两个等腰三角形的底边和腰成比例 ,则这两个三角形也相似。
实际应用:测量、作图等问题
01
测量
在实际生活中,等腰三角形的性质可以应用于测量问题。例如,在无法
直接测量某一边长时,可以通过测量等腰三角形的底角和腰长来间接计
算。
02
作图
在几何作图中,等腰三角形的性质也有广泛应用。例如,可以通过作等
腰三角形的高来平分底边,或者通过作等腰三角形的角平分线来得到对
称的图形。
初中数学课件等腰三角形的性质(几 何)ppt课件
目录
• 等腰三角形基本概念与性质 • 等腰三角形判定方法 • 等腰三角形面积计算 • 等腰三角形在生活中的应用 • 等腰三角形相关定理和推论 • 练习题与课堂互动环节
01
等腰三角形基本概念与性质
等腰三角形定义及特点
定义
有两边相等的三角形叫做等腰三 角形。

人教版八年级数学上册教学等腰三角形PPT精品课件

人教版八年级数学上册教学等腰三角形PPT精品课件

附:相关性质(性质1、2略)
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。 4.等腰三角形底边上的垂直平分线到两条腰的距离相等。 5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。 6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证 明)。 7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是 它的对称轴。但等边三角形(特殊的等腰三角形)有条对称轴。每个角的角平分线 所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。 8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。 9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半 的平方。
等腰三角形的性质
目录
1
教材分析
2
学情分析
3
教学目标
4
教学重难点
内容:本节课是义务教育教科书数学八年级上册第十三章 第三节 13.31 等腰三角形。
编写意图:等腰三角形是特殊的三角形,也是多边形中最简单 的轴对称图形,利用它的轴对称性研究等腰三角形,进而通过推理 论证得到等腰三角形的性质和判定方法,同时从中找到证明这些性 质的思路,由此体会图形变化在几何研究中的作用。借助图形的变 化研究图形的性质是几何中常用的方法。学习等腰三角形的性质不 仅可以进一步认识三角形,而且还可以了解一些几何中研究问题的 基本思路和方法。
讲授新课
(应用新知)
你可以用学过的知识证明性质1吗?有哪些证明方法?
已知:如图,△ABC 中,AB=AC。
A
求证:∠B=∠C
可以运用全等三角
形的性质“对应角
相等”来证明。
B

_人教版八年级上数学13.第2课时等腰三角形的判定课件

_人教版八年级上数学13.第2课时等腰三角形的判定课件
第2课时 等腰三角形的判定
葫芦岛第六初级中学
判定
位于海上B、C两处的两艘救生船接到A处遇险 船只的报警,当时测得∠B=∠C.如果这两艘救 生船以同样的速度同时出发,能不能同时赶到 出事地点?
A
B
C
已知:如图,在△ABC中, ∠B=∠C,那么它们 所对的边AB和AC有什么数量关系?
A
做一做:画一个△ABC,其中
这也是判定一个三角形是等 腰三角形的根据之一.
如果一个三角形有两个角相等,那么这两个角所对的边也
相等(简写成“等角对等边”).
▼应用格式: A
在△ABC中,
∵∠B=∠C, ( 已知 )
∴ AC=AB. ( 等角对等边 )
B
C
即△ABC为等腰三角形.
辨一辨:如图,下列推理正确吗?
A
C
12
D
1
A2
B
B
B
C
∠B=∠C=30°,请你量一量AB与
AB=AC
AC的长度,它们之间有什么数量 关系,你能得出什么结论?
你能验证你的结论吗?
证明: 过A作AD平分∠BAC交BC于点D.
在△ABD与△ACD,
A
∠1=∠2,
12
∠B=∠C,
B
C
D
AD=AD,
∴ △ABD ≌ △ACD.
∴AB=AC.
★等腰三角形的判定方法
B
C
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD.
总结:平分角+平行=等腰三角形
【变式】 如图,把一张长方形的纸沿着对角线折叠, 重合部分是一个等腰三角形吗?为什么?
解:重合部分是一个等腰三角形.

人教版数学八年级上册13.3.1等腰三角形(一)-课件

人教版数学八年级上册13.3.1等腰三角形(一)-课件
AB=AC ( 已知 ) ∠1=∠2 ( 已作 )
B DC
AD=AD (公共边)
∴ △BAD ≌ △CAD (SAS).
∴ ∠ B= ∠C (全等三角形的对应角相等).
方法三:作底边的高线
等腰三角形的两个底角相等。
已知: 如图,在△ABC中,AB=AC.
求证: ∠B= ∠C.
证明:作底边的高线AD,则
(3) ∵AD是角平分线,∴_A__D_ ⊥__B_C_ ,__B_D__ =__C_D__.
知一线得二线
A
“三线合一”可以帮助我
们解决线段的垂直、相等
以及角的相等问题。
B
DC
2、等腰三角形一个底角为70°,它的顶角为4_0__°___.
3、等腰三角形一个角为70°,它的另外两个角为 7_0_°__,_4_0_°__或____5_5_°__,5_5.°
A
B
D
C
性质3 等腰三角形是轴对称图形,其顶角的平分
线(底边上的中线、底边上的高)所在的直线就是
等腰三角形的对称轴。
1. 根据等腰三角形性质2填空, 在△ABC中, AB=AC,
(1) ∵AD⊥BC,∴∠_B_A__D_ = ∠__C_A__D,_B_D__=C__D__.
(2) ∵AD是中线,∴_A_D__⊥_B__C_ ,∠__B_A_D_ =∠__C_A__D.
DF⊥AC于F
E
F 求证:DE=DF
BD C
(2)如果DE、DF分别是AB,AC上的中线或∠ADB,
∠ADC的平分线,它们还相等吗?由等腰三角形是轴对
称图形,利用类似的方法,还可以得到等腰三角形中哪
些相等的线段?
活动5:反馈练习
练习1:小试牛刀

人教版八年级上册13.等腰三角形说课课件

人教版八年级上册13.等腰三角形说课课件

六、说教学过程

作业布置

必做题:
与 作
书P77,1 书P81,1
性质1的反馈

书P77,2
六、说教学过程
活动:剪纸
活 拿出提前准备好的A4纸,按下图方 动 式折叠与裁剪。 引 裁剪后,你能得到一个什么图形? 入
设计意图:剪纸活动既能活跃课堂气氛, 又能让学生亲身体验到数学来源于生活。
六、说教学过程
认 概念: 识 有两条边相等的三角形为等腰三角形。

A
A

顶角


B 底边 C
底角 B
C 底角
六、说教学过程

1.直接写出下列等腰三角形顶角或底角度 数。


60°
75°
知 2.填空
(1)等腰三角形一个底角为70°,它的另外两个为 。
(2)等腰三角形一个顶角为80°,它的另外两个角为 。
(3)等腰三角形一个角为50°,它的另外两个角为 。 (4)等腰三角形一个角为110°,它的另外两个角为___。
六、说教学过程
本节课重点——性质1
探 等腰三角形两个底角相等。
A
究 简称:等边对等角。
性 质
几何语言: ∵AB=AC
B
C
∴∠B=∠C
设计意图:规范几何语言,根据学生学习的情 况,给予一定的补充与解释说明,例如对等角 是指哪两个角,如何找这两个角等等,
六、说教学过程
本节课重点——性质2
探 等腰三角形的顶角平分线、底边上 A 究 的中线、底边上的高相互重合。
性 几 在△ABC中,AB=AC
质 何 ∵ ①BD=CD(底边中线)
语 ∴ ②AD⊥BC(底边的高) B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12
∵AB=AC, BD=CD (已知),
B
∴∠1=∠2,AD⊥BC(等腰三角形三线合一).
C D
∵AB=AC, AD⊥BC(已知), ∴BD=CD, ∠1=∠2(等腰三角形三线合一).
1.等腰三角形的顶角一定是锐角.(X)
2.等腰三角形的底角可能是锐角或者直角、
钝角都可以.
(X)
3.钝角三角形不可能是等腰三角形(. X)
4.等腰三角形的顶角平分线一定垂直底边(. √)
5.等腰三角形的角平分线、中线和高互相重合(. X)
6.等腰三角形底边上的中线一定平分顶角(. √)
典例精析
例1 如图,在△ABC中 ,AB=AC,点D在AC上, 且BD=BC=AD,求△ABC各角的度数.
A 分析:(1)找出图中所有相等的角;
∠A=∠ABD, ∠C=∠BDC=∠ABC;
B DC
∠BAD=∠CAD ( 已作 ),
AD=AD (公共边),
∴ △BAD ≌ △CAD (SAS).
∴ ∠B= ∠C (全等三角形的对应角相等).
想一想:由△BAD≌ △CAD,除了可以得到∠B= ∠C之外,你 还可以得到那些相等的线段和相等的角?和你的同伴交流一下, 看看你有什么新的发现?
∴ ∠B= ∠ADB,∠C= ∠DAC 设 ∠C=x,则 ∠DAC=x, ∠B= ∠ADB= ∠C+ ∠DAC=2x, 在△ABC中, 根据三角形内角和定理,得
2x+x+26°+x=180°, 解得x=38.5°.
∴ ∠C= x=38.5°, ∠B=2x=77°.
例2 等腰三角形的一个内角是50°,则这个三角
讲授新课
等腰三角形的性质
互动探究
剪一剪:把一张长方形的纸按图中的红线对折,并
剪去阴影部分(一个直角三角形),再把得到的直
角三角形展开,得到的三角形ABC有什么特点?
B
A
AB=AC
等腰三角形
C
折一折:△ABC 是轴对称图形吗?它的对称轴 是什么?
B
A
D
C
等腰三角形是轴对称图形. 折痕所在的直线是它的对称轴.
2x
∠A+∠ABC+∠C=x+2x+2x=180 ° , 2x
解得x=36 ° ,在△ABC中,
Bபைடு நூலகம்
C
∠A=36°,∠ABC=∠C=72°.
归纳 在含多个等腰三角形的图形中求角时,常常利用方程
思想,通过内角、外角之间的关系进行转化求解.
针对训练: 如图,在△ABC中,AB=AD=DC,∠BAD=26°, 求∠B和∠C的度数. 解:∵AB=AD=DC
如图,在△ABC中, ∵AB=AC(已知), ∴∠B=∠C(等边对等角).
A
B
C
性质2:等腰三角形顶角的平分线、底边上的中线及 底边上的高线互相重合(三线合一).
证明后的结论,以后可以直接运用.
综上可得:如图,在△ABC中,
A
∵AB=AC, ∠1=∠2(已知),
∴BD=CD,AD⊥BC(等腰三角形三线合一).
(2)指出图中有几个等腰三角形?
D
△ABC, △ABD, △BCD.
B
C
(3)观察∠BDC与∠A、∠ABD的关
系,∠ABC、∠C呢?
A

∠BDC= ∠A+ ∠ABD=2 ∠A=2 ∠ABD,
x
∠ABC= ∠BDC=2 ∠A,
D
∠C= ∠BDC=2 ∠A.
2x
(4)设∠A=x°,请把△ ABC的内
2x
A
解:∵△BAD≌ △CAD,由全等三角形的
性质易得BD=CD,∠ADB=∠ADC,
∠BAD=∠CAD.
又∵ ∠ADB+∠ADC=180°,
∴ ∠ADB=∠ADC= 90° ,
B
D
C 即AD是等腰△ABC底边BC上的中线、顶
角∠BAC的角平分线、底边BC上的高线 .
总结归纳 性质1:等腰三角形的两个底角相等(等边对等角).
求证:∠B=C.
B
C
可以运用全等三 角形的性质“对
如何证明两个 角相等呢?
应角相等”来证
思考:如何构造两个全等的三角形?
方法一:作底边上的中线
已知: 如图,在△ABC中,AB=AC.
A
求证: ∠B= ∠C.
证明: 作底边的中线AD,
则BD=CD.
在△BAD和△CAD中
AB=AC ( 已知 ), BD=CD ( 已作 ), AD=AD (公共边),
第十三章 轴对称
13.3等腰三角形 第1课时
学习目标
1.理解并掌握等腰三角形的性质.(重点) 2.经历等腰三角形的性质的探究过程,能初步运用
等腰三角形的性质解决有关问题.(难点)
导入新课 情境引入
定义及相关概念
有两条边相等的三角形叫做等腰三角形.
A




底角
B
底角
C
底边
等腰三角形中,相等的两边叫做腰,另一边叫做底边, 两腰的夹角叫做顶角,腰和底边的夹角叫做底角.
B DC
还有其他的 证法吗?
∴ △BAD≌ △CAD (SSS). ∴ ∠B= ∠C (全等三角形的对应角相等).
方法二:作顶角的平分线
已知: 如图,在△ABC中,AB=AC.
A
求证: ∠B= ∠C.
证明:作顶角的平分线AD, 则∠BAD=∠CAD.
在△BAD和△CAD中 AB=AC ( 已知 ),
典例精析
例3 已知点D、E在△ABC的边BC上,AB=AC. (1)如图①,若AD=AE,求证:BD=CE; (2)如图②,若BD=CE,F为DE的中点,求证: AF⊥BC.
角和用含x的式子表示出来.
B
C
∵ ∠A+ ∠ABC+ ∠C=180 °,∴ x+2x+2x=180 °,
解:∵AB=AC,BD=BC=AD,
A
∴∠ABC=∠C=∠BDC, ∠A=∠ABD.

设∠A=x,则∠BDC= ∠A+ ∠ABD=2x,
x
从而∠ABC= ∠C= ∠BDC=2x,
D
于是在△ABC中,有
找一找:把剪出的等腰三角形ABC沿折痕对折, 找出其中重合的线段和角.
重合的线段
重合的角
A
AB与AC
∠B 与∠C
BD与CD ∠BAD 与∠CAD
AD与AD ∠ADB 与∠ADC B
D
C
猜一猜: 由这些重合的角,你能发现等腰三角形的性质吗? 说一说你的猜想.
猜想:等腰三角形的两个底角相等 A 已知:△ABC中,AB=AC,
形的底角的大小是( A )
A.65°或50°
B.80°或40°
C.65°或80°
D.50°或80°
解析:当50°的角是底角时,三角形的底角就是 50°;当50°的角是顶角时,两底角相等,根据 三角形的内角和定理易得底角是65°.故选A.
方法总结:等腰三角形的两个底角相等,已知 一个内角,则这个角可能是底角也可能是顶角, 要分两种情况讨论.
相关文档
最新文档