初二数学图形旋转的知识点
数学旋转初二知识点
数学旋转是初二阶段的一项重要的几何学知识。
它是指通过某个固定点将图形或实体旋转一定角度的操作。
本文将以“数学旋转初二知识点”为题,以步骤思维的方式,介绍数学旋转的相关概念和基本方法。
第一步:认识数学旋转数学旋转是指通过旋转中心将图形或实体绕某个轴旋转一定角度。
旋转中心是旋转的固定点,轴是固定中心到任意点的直线。
第二步:旋转角度的正负在数学旋转中,角度可以是正数或负数。
当角度为正数时,表示逆时针旋转;当角度为负数时,表示顺时针旋转。
第三步:旋转的基本操作进行数学旋转时,需要确定旋转中心和旋转角度。
常见的数学旋转操作有以下几种:1.点的旋转:对于给定的点P(x, y),绕旋转中心O旋转θ度后,可以得到新的点P’(x’, y’)。
点的旋转可以通过以下公式计算:x' = (x - a) * cosθ - (y - b) * sinθ + ay' = (x - a) * sinθ + (y - b) * cosθ + b其中,(a, b)为旋转中心的坐标,θ为旋转角度。
2.图形的旋转:对于给定的图形,可以将图形中的每个顶点分别进行点的旋转操作,从而得到整个图形的旋转结果。
3.直线的旋转:对于给定的直线段AB,可以通过将A和B分别进行点的旋转操作,从而得到旋转后的直线段A’B’。
第四步:数学旋转的应用数学旋转在几何学中有着广泛的应用。
以下是数学旋转的一些常见应用场景:1.图像处理:数学旋转可以用于图像的旋转操作,如将图像按照指定角度旋转。
这在计算机图形学中有着重要的应用。
2.刚体运动:数学旋转可以用于描述刚体的旋转运动,如旋转物体、车轮等的运动轨迹。
3.几何变换:数学旋转是几何变换中的一种,它可以用于改变图形的形状、位置和方向,从而实现几何学中的诸多问题的解决。
第五步:数学旋转的注意事项在进行数学旋转时,需要注意以下几点:1.旋转中心的选择:旋转中心的选择会影响旋转结果,通常选择图形或实体的重心作为旋转中心。
第9讲 图形的旋转与中心对称八年级数学下册同步讲义(北师大版)
第9讲图形的旋转与中心对称目标导航1、掌握旋转的概念,探索它的基本性质,能够按要求作出简单平面图形旋转后的图形;2、掌握旋转对称图形、中心对称图形和中心对称的概念,理解他们的区别和联系,并会判别给出的图形是旋转对称图形还是中心对称图形;3、会画出给定条件的旋转对称图形或中心对称图形以及会画已知图形关于已知点成中心对称的图形.知识精讲知识点01 生活中的旋转现象(1)旋转的定义:在平面内,把一个图形绕着某一个点O旋转一个角度的图形变换叫做旋转.点O叫做旋转中心,转动的角叫做旋转角,如果图形上的点P经过旋转变为点P′,那么这两个点叫做对应点.(2)注意:①旋转是围绕一点旋转一定的角度的图形变换,因而旋转一定有旋转中心和旋转角,且旋转前后图形能够重合,这时判断旋转的关键.②旋转中心是点而不是线,旋转必须指出旋转方向.③旋转的范围是平面内的旋转,否则有可能旋转成立体图形,因而要注意此点.【知识拓展1】(2021秋•建华区期末)时钟的时针从上午的8时到上午10时,时针旋转的旋转角为.【即学即练1】(2021秋•太原期中)几何图形由点、线、面组成,点动成线、线动成面、面动成体.下列现象中能反映“线动成面”的是()A.流星划过夜空B.笔尖在纸上快速滑动C.汽车雨刷的转动D.旋转门的旋转【即学即练2】(2021春•凤翔县期末)下列运动形式属于旋转的是()A.在空中上升的氢气球B.飞驰的火车C.时钟上钟摆的摆动D.运动员掷出的标枪知识点02 旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.【知识拓展2】(2021秋•泰山区期末)小明把一副三角板按如图所示叠放在一起,固定三角板ABC,将另一块三角板DEF绕公共顶点B顺时针旋转(旋转角度不超过180°).若两块三角板有一边平行,则三角板DEF旋转的度数可能是()A.15°或45°B.15°或45°或90°C.45°或90°或135°D.15°或45°或90°或135°【即学即练1】(2021秋•湖北期末)如图,在△ABC中,∠BAC=110°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则旋转角∠ACD的度数为()A.50°B.40°C.30°D.20°【即学即练2】(2021秋•莆田期末)“三等分角”大约是在公元前五世纪由古希腊人提出来的.借助如图①所示的“三等分角仪”能三等分任意一角.如图②,这个“三等分角仪”由两根有槽的棒OA,OB组成,两根棒在O点相连并可绕O转动,点C固定,点D,E可在槽中滑动,OC=CD=DE.若∠BDE=81°,则∠AOB的度数是()A.24°B.27°C.30°D.33°知识点03 旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.【知识拓展3】(2021秋•北仑区期末)下列正多边形,绕其中心旋转72°后,能和自身重合的是()A.B.C.D.【即学即练1】(2021秋•荆门期末)把如图的五角星绕着它的中心旋转一定角度后与自身重合,则这个旋转角度可能是()A.36°B.72°C.90°D.108°【即学即练2】(2021秋•丰润区期末)如图,五角星的五个顶点等分圆周,把这个图形绕着圆心顺时针旋转一定的角度后能与自身重合,那么这个角度至少为()A.60°B.72°C.75°D.90°知识点04中心对称(1)中心对称的定义把一个图形绕着某个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心,这两个图形中的对应点叫做关于中心的对称点..(2)中心对称的性质①关于中心对称的两个图形能够完全重合;②关于中心对称的两个图形,对应点的连线都经过对称中心,并且被对称中心平分.【知识拓展4】(2021秋•淮南月考)如图,△ABC与△A′B'C'关于O成中心对称,下列结论中不成立的是()A.OC=OC′B.∠ABC=∠A'C'B'C.点B的对称点是B′D.BC∥B'C'【即学即练1】(2021秋•黄陂区期中)如图,点A,B分别是两个半圆的圆心,则该图案的对称中心是()A.点A B.点BC.线段AB的中点D.无法确定【即学即练2】(2021春•清苑区期末)如图,△ABC与△A′B′C′关于点O成中心对称,则下列结论不成立的是()A.点A与点A′是对称点B.BO=B′OC.AB∥A′B′D.∠ACB=∠C′A′B′知识点05中心对称图形(1)定义把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.注意:中心对称图形和中心对称不同,中心对称是两个图形之间的关系,而中心对称图形是指一个图形自身的特点,这点应注意区分,它们性质相同,应用方法相同.(2)常见的中心对称图形平行四边形、圆形、正方形、长方形等等.【知识拓展5】(2021秋•交城县期末)下列交通标志中,是中心对称图形的是()A.向右和向左转弯B.靠左侧道路行驶C.禁止驶入D.环岛行驶【即学即练1】(2021秋•铅山县期末)下列图形中,是中心对称图形但不是轴对称图形的是()A.B.C.D.知识点06关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.【知识拓展6】(2021秋•沙河口区期末)在平面直角坐标系中,点P、点Q关于原点对称,若点P的坐标是(2,3),则点Q的坐标是.【即学即练1】(2021秋•新吴区期末)若点P(a,2)点Q(﹣4,b)关于原点对称,则点M (a,b)在第象限.【即学即练2】(2021秋•开州区期末)平面直角坐标系中点P(7,﹣9)关于原点对称的点的坐标是()A.(﹣9,7)B.(﹣7,9)C.(7,9)D.(﹣7,﹣9)知识点07作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等.【知识拓展7】(2021秋•南开区期末)如图,已知点A(2,0),B(0,4),C(2,4),若在所给的网格中存在一点D,使得CD与AB垂直且相等.(1)直接写出点D的坐标;(2)将直线AB绕某一点旋转一定角度,使其与线段CD重合,则这个旋转中心的坐标为.【即学即练1】(2021秋•南沙区期末)如图,将△ABC绕点A顺时针旋转α,得到△ADE,若点D 恰好在CB的延长线上,则∠CDE等于()A.αB.90°+C.90°﹣D.180°﹣2α【即学即练2】(2021秋•铅山县期末)如图,在平面直角坐标系中,点A、B的坐标分别为A(﹣2,3)、B(﹣3,1).(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求四边形AOA1B1的面积.例题1.(2020·浙江八年级期末)如图,在Rt ABC 中,90C ∠=︒,点P 为AC 边上的一点,将线段AP 绕点A 顺时针方向旋转(点P 对应点'',P AP AP =).当AP 旋转至AP AB'⊥时,点'B P P ,,恰好在同一直线上,此时作'⊥P E AC 于点E .(1)求证:∠=∠CBP ABP ;(2)若4,8AB BC AC -==,求PBC 的面积;(3)在(2)的条件下,点N 为边BC 上一动点,点M 为边BP 上一个动点,连接MC MN ,,求MC MN +的最小值.能力拓展【变式1】(2021·河南郑州市·八年级期末)一副直角三角尺叠放如图1所示,现将45︒的三角尺ADE 固定不动,将含30的三角尺ABC 绕顶点A 顺时针转动,使两块三角尺至少有一组边互相平行.如图2:当角60CAE ∠=︒时,//BC DE .求其它所有可能符合条件的角()0180CAE CAE ∠︒<∠<︒的度数,画出对应的图形并证明.【变式2】(2021·内蒙古呼伦贝尔市·八年级期末)已知:如图1,AOB 和COD 都是等边三角形.(1)求证:①AC=BD ;②∠APB=60°;(2)如图2,在AOB 和COD 中,OA =OB ,OC =OD ,∠AOB=∠COD=α,则AC 与BD 间的等量关系为 ,∠APB的大小为模块三、中心对称例题1.(2020·辽宁锦州市·八年级期末)在边长为1个单位长度的正方形网格中建立如图所示的平面直角坐标系,△ABC 的顶点都在格点上.请回答下列问题:(1)作出△ABC 向左平移4个单位长度后得到111A B C △,并写出1A 的坐标;(2)作出△ABC 关于原点O 对称的222A B C △并写出22B C ,点的坐标.【变式1】(2021·山东济南市·八年级期末)如图网格中,△AOB 的顶点均在格点上,点A 、B 的坐标分别是(3,2)A 、()1,3B .(1)点A 关于点O 中心对称点的坐标为(_______,_______);(2)△AOB 绕点O 顺时针旋转90︒后得到11AOB ,在方格纸中画出11AOB ,并写出点1B 的坐标(______,_______);(3)在y 轴上找一点P ,使得PA PB +最小,请在图中标出点P 的位置,并求出这个最小值.【变式2】(2021·山东烟台市·八年级期末)如图所示,网格中每个小正方冠的边长为1,请你认真观察图(1)中的三个网格中阴影部分构成的图案.解答下列问题:(1)图①中的三个图案面积都是,且都具有一个共同特征:都是对称图形;(2)请在图②中设计出一个面积与图①阴影部分面积相同,且具备上述共同特征的图案,要求所画图案不能与图①中所给出的图案相同.分层提分题组A 基础过关练一.选择题(共8小题)1.(2021秋•澄海区期末)如图,将△AOB绕点O按逆时针方向旋转60°后得到△A′OB′,若∠AOB=25°,则∠AOB′的度数是()A.25°B.35°C.40°D.85°2.(2021秋•崆峒区期末)2022年2月4日﹣2月20日,北京冬奥会将隆重举行,如图是在北京冬奥会会徽征集过程中征集到的一幅图片.旋转图片中的“雪花图案”,旋转后要与原图形重合,至少需要旋转()A.180°B.120°C.90°D.60°3.(2021秋•雨花区期末)如图,△DEF是由△ABC绕点O旋转180°得到的,则下列结论不成立的是()A.点A与点D是对应点B.BO=EOC.∠ACB=∠FED D.AB∥DE4.(2021秋•沙河口区期末)下列图案是一些电视台的台标,是中心对称图形的是()A.B.C.D.5.(2021秋•澄海区期末)在平面直角坐标系中,点A(1,﹣2)和点B(m,2)关于原点对称,则m的值为()A.2B.﹣2C.1D.﹣16.(2021秋•铅山县期末)如图,将△ABC绕点A逆时针旋转80°,得到△ADE,若点D在线段BC的延长线上,则∠PDE的度数为()A.60°B.80°C.100°D.120°7.(2021秋•绥滨县期末)已知,如图,在△AOB中,∠AOB=90°,AO=3cm,BO=4cm.将△AOB绕顶点O按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D的长是()A.1.5cm B.3cm C.5cm D.2.5cm8.(2021秋•澄海区期末)如图,将△ABC绕点A按逆时针方向旋转得到△AB′C′.若点B′刚好落在BC边上,且AB′=CB′,若∠C=20°,则△ABC旋转的角度为()A.60°B.80°C.100°D.120°二.填空题(共1小题)9.(2021秋•杜尔伯特县期末)时针从数字“9”到“12”按时针方向旋转了90°.三.解答题(共9小题)10.(2021秋•大洼区期末)如图,将Rt△ABO绕点O顺时针旋转90°,在所给的直角坐标系中画出旋转后的Rt△A1B1O.11.(2021秋•昆明期末)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别为A(﹣3,3),B(﹣2,4),C(﹣1,1).(1)以x轴为对称轴画出△ABC的对称图形△A'B'C';(2)画出△ABC绕点C按顺时针旋转90°后的△A″B″C;(3)直接写出A'、A″点的坐标.12.(2021秋•尧都区期末)如图,已知O是坐标原点,B、C两点的坐标分别为(3,﹣1),(2,1),将△BOC绕点O逆时针旋转90度,得到△B1OC1,画出△B1OC1,并写出B、C两点的对应点B1、C1的坐标,13.(2021秋•富县期中)如图,△ABC逆时针旋转一定角度后与△ADE重合,且点C在AD上.若∠B=21°,∠ACB=26°,求出旋转的度数,并指出旋转中心.14.(2021秋•新丰县期中)如图,在边长为1的小正方形格中,△AOB的顶点均在格点上.(1)B点关于y轴的对称点坐标为;(2)以原点O为对称中心,画出△AOB关于原点对称的△A1OB1.15.(2020秋•定南县期末)已知点P(2x+y,1)与点Q(﹣7,x﹣y)关于原点对称,求x,y的值.16.(2021春•绿园区期末)如图,将△ABC以点C为旋转中心,顺时针旋转180°,得到△DEC,过点A作AF∥BE,交DE的延长线于点F,试问:∠B与∠F相等吗?为什么?17.(2021春•商河县校级期末)如图,D是△ABC边BC的中点,连接AD并延长到点E,使DE=AD,连接BE.(1)哪两个图形成中心对称?(2)已知△ADC的面积为4,求△ABE的面积;(3)已知AB=5,AC=3,求AD的取值范围.18.(2020春•肇源县期末)如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C (4,3).(1)在平面直角坐标系中画出△ABC,则△ABC的面积是;(2)若点D与点C关于原点对称,则点D的坐标为;(3)已知P为x轴上一点,若△ABP的面积为4,求点P的坐标.题组B 能力提升练一.选择题(共5小题)1.(2021秋•椒江区期末)如图,△DEC是由△ABC绕点C顺时针旋转30°所得,边DE,AC相交于点F.若∠A=35°,则∠EFC的度数为()A.50°B.55°C.60°D.65°2.(2021秋•铜官区期末)如图,将△ABC绕点C逆时针旋转α,得到△DEC,若点A恰好在DE的延长线上,则∠BAD的度数为()A.α﹣30°B.180°﹣αC.90°D.3.(2021秋•句容市期末)如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60°得到BN,连接HN.则在点M运动过程中,线段HN 长度的最小值是()A.B.1C.2D.4.(2021秋•宜州区期末)如图,将Rt△ABC绕点A顺时针旋转40°,得到Rt△AB′C′,点C′恰好落在斜边AB上,连接BB′,则∠ABB′的度数为()A.50°B.60°C.70°D.80°5.(2021秋•绵阳期末)如图,将△ABC绕点B顺时针旋转角α,得到△A1BC1,此时点A,点B,点C1在一条直线上,若∠A1BC=22°,则旋转角α=()A.79°B.80°C.78°D.81°二.填空题(共5小题)6.(2021秋•廉江市期末)如图,△DEC与△ABC关于点C成中心对称,AB=3,AC=1,∠D=90°,则AE的长是.7.(2021秋•山亭区期末)如图,将n个边长都为1cm的正方形按如图所示摆放,点A1,A2,…,A n分别是正方形的中心,则n个正方形重叠形成的重叠部分的面积和为.8.(2021秋•滨城区期末)已知A(2x+1,3),B(﹣5,3y﹣3)关于原点对称,则x+y =.9.(2021秋•海门市期末)点M(﹣3,2)关于原点对称的点的坐标是.10.(2015秋•天津期末)点A(﹣2,3)与点B(a,b)关于坐标原点对称,则a+b的值为.三.解答题(共8小题)11.(2021秋•沙河口区期末)如图,正方形网格中每个小正方形的边长都是1.将△ABC绕点P逆时针旋转90°后得到△A'B'C',其中A和A',B和B',C和C'是对应点.(1)画出△A'B'C';(2)在该网格中建立平面直角坐标系,点P,A坐标分别为P(0,1),A(1,1),直接写出该坐标系下A',B',C'的坐标.12.(2021秋•喀什地区期末)如图,在每个小正方形边长都是1的方格纸中,点O,A,B都在格点上.(1)画出△AOB绕点O顺时针旋转90°后的△A1OB1;(2)求线段OB旋转到OB1时所扫过的扇形面积.13.(2021秋•芝罘区期末)如图,△ABC的顶点坐标分别为A(4,5),B(2,2),C(5,2).(1)将△ABC绕点(0,1)顺时针旋转180°,请画出旋转后的△A1B1C1;(2)将△ABC平移后得到△A2B2C2,若点A对应点A2坐标为(1,﹣2),请画出平移后的△A2B2C2,若△ABC内部一点P的坐标为(a,b),则点P的对应点P2的坐标是;(3)将△A1B1C1绕某一点M旋转可得到△A2B2C2,请画出点M的位置(保留痕迹),并直接写出点M的坐标.14.(2021秋•晋安区校级月考)如图,线段AC、BD相交于点O,AB∥CD,AB=CD.线段AC上的两点E、F关于点O对称.求证:AE=CF.15.(2021•鄂温克族自治旗二模)如图,△ABC中,BC=2AB,D,E分别是边BC,AC的中点.将△CDE绕点E旋转180度,得△AFE.(1)判断四边形ABDF的形状,并证明;(2)已知AB=5,AD+BF=14,求四边形ABDF的面积S.16.(2021春•宽城区期末)如图,在△ABC中,AD是BC边上的中线,△A'BD与△ACD关于点D成中心对称.(1)直接写出图中所有相等的线段.(2)若AB=5,AC=3,求线段AD的取值范围.17.(2021秋•桓台县期末)如图,在直角坐标系内,已知点A(﹣1,0).(1)图中点B的坐标是;(2)点B关于原点对称的点D的坐标是;点A关于y轴对称的点C的坐标是;(3)四边形ABCD的面积是;(4)在y轴上找一点F,使S△ADF=S△ABC.那么点F的坐标为.18.(2021秋•建安区期中)数学兴趣小组活动时,提出了如下问题:如图1,在△ABC中若AB=5,AC=3,求BC边上的中线AD的取值范围.解决方法:延长AD到E.使得DE=AD.再连接BE(或将MCD绕点D逆时针旋转180°得到△EBD).把AB,AC,2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.迁移应用:请参考上述解题方法,证明下列命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.(1)求证:BE+CF>EF;(2)若∠A=90°,探索线段BE,CF,EF之间的等量关系,并加以证明.题组C 培优拔尖练一.填空题(共5小题)1.(2021秋•新抚区期末)如图,△ABC是边长为3的等边三角形,E在AC上且AE=2,D是直线BC 上一动点,线段ED绕点E逆时针旋转90°,得到线段EF,连接DF,AF,下列结论:①DF的最小值为;②AF的最小值是1+;③当CD=1时,DE∥AB;④当DE∥AB时,DE=1.正确结论的题号是.2.(2021秋•思明区校级期中)如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,将△ABC绕点B顺时针旋转得到△A′BC′,其中点A、C的对应点分别为点A′、C′,连接AA′、CC′,直线CC′交AA′于点D,点E为AC的中点,连接DE.则DE的最小值为.3.(2021•西湖区校级三模)如图,已知Rt△ACB,∠ACB=90°,∠B=60°,AC=4,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=.在点D运动过程中,CE的最小值.4.(2021春•龙岗区期末)如图,等腰△ABC中,∠BAC=150°,D是AB上一点,AD=1,BD=4,E点在边BC上,若点E绕点D逆时针旋转15°的对应点F恰好在AC上,则BE的长度为.5.(2019春•市南区期中)如图,一“L”型纸片是由5个边长都是10cm的正方形拼接而成,过点I的直线分别与AE,JN交于点P,Q,且“L”型纸片被直线PQ分成面积相等的上下两部分,将该纸片沿BG,CH,DI,IJ折成一个无盖的正方体盒子后,点P,Q之间的距离为cm.二.解答题(共7小题)6.(2021秋•沙坪坝区校级期末)(1)如图1,在6×6正方形网格中,有一格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),其面积为7cm2,则这个方格纸的面积等于cm2;(2)若点M是图1中不同于点C的一个格点,且△ABC的面积与△ABM的面积相等,则满足条件的点M有个;(3)如图2,在12×12正方形网格中,每个小正方形的边长为1,给定了点D,E的位置,请先画一个△DEF,使DF,EF的长分别为,2,再画△DEF关于点O成中心对称的△D'E'F'.7.(2021秋•阳东区期中)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.8.(2019春•港南区期中)如图,在△ABC中,点D是AB边上的中点,已知AC=4,BC=6,(1)画出△BCD关于点D的中心对称图形;(2)根据图形说明线段CD长的取值范围.9.(2017•中原区校级三模)有这样一个问题:探究函数y=的图象与性质.下面是小强的探究过程,请补充完整:(1)函数y=的自变量x的取值范围;(2)如表是y与x的几组对应值.x…﹣5 ﹣4 ﹣3 ﹣2 0 1 2 3 …y…﹣2 0 …﹣﹣﹣如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.①观察图中各点的位置发现:点A1和B1,A2和B2,A3和B3,A4和B4均关于某点中心对称,则该点的坐标为;②小文分析函数y=的表达式发现:当x<﹣1时,该函数的最大值为﹣2,则该函数图象在直线x=﹣1左侧的最高点的坐标为;(3)小强补充了该函数图象上两个点(﹣,),(﹣,﹣),①在上图中描出这两个点,并画出该函数的图象;②写出该函数的一条性质:.10.(2021秋•渝中区校级期末)已知,如图1,直线AB∥CD,E为直线AB上方一点,连接ED、BE,ED与AB交于P点.(1)若∠ABE=110°,∠CDE=70°,则∠E=;(2)如图1所示,作∠CDE的平分线交AB于点F,点M为CD上一点,∠BFM的平分线交CD于点H,过点H作HG⊥FH交FM的延长线于点G,GF∥BE,且2∠E=3∠DFH+20°,求∠EDF+∠G的度数.(3)如图2,在(2)的条件下,∠FDC=25°,将△FHG绕点F顺时针旋转,速度为每秒钟3°,记旋转中的△FHG为△FH′G′,同时∠FDE绕着点D顺时针旋转,速度为每秒钟5°,记旋转中的∠FDE为∠F′DE′,当∠FDE旋转一周时,整个运动停止.设运动时间为t(秒),则当△FH′G′其中一条边与∠F′DE′的其中一条边互相垂直时,直接写出t的值.11.(2021秋•南川区期中)在△ABC中,AB=10,AC=8,∠ACB=30°,将△ABC绕A按逆时针方向旋转,得到△ADE.(1)如图1,点F为BC与DE的交点,连接AF.求证:FA平分∠DFC;(2)如图2,点P为线段AB中点,点G是线段BC上的动点,在△ABC绕A按逆时针方向旋转的过程中,点G的对应点是点G1,求线段PG1长度的最大值与最小值.12.(2019春•宁波期中)知识背景:过中心对称图形的对称中心的任意一条直线都将其分成全等的两个部分.(1)如图①,直线m经过平行四边形ABCD对角线的交点O,则S四边形AEFB S四边形DEFC(填“>”“<”“=”);(2)如图②,两个正方形如图所示摆放,O为小正方形对角线的交点,求作过点O的直线将整个图形分成面积相等的两部分;(3)八个大小相同的正方形如图③所示摆放,求作直线将整个图形分成面积相等的两部分(用三种方法分割).。
初中数学旋转的知识点
《初中数学旋转知识点全解析》在初中数学的学习中,旋转是一个重要的几何变换概念。
它不仅在数学知识体系中占据着关键地位,也为我们解决各种几何问题提供了有力的工具。
一、旋转的定义在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的图形运动称为旋转。
这个定点称为旋转中心,转动的角称为旋转角。
如果图形上的点 P 经过旋转变为点P′,那么这两个点叫做这个旋转的对应点。
例如,时钟的指针围绕时钟的中心旋转,风车的叶片绕着中心轴旋转等,都是生活中常见的旋转现象。
二、旋转的性质1. 对应点到旋转中心的距离相等。
即旋转前后,图形上任意一点到旋转中心的距离始终保持不变。
例如,在一个正三角形绕其中心旋转的过程中,三角形的三个顶点到旋转中心的距离始终相等。
2. 对应点与旋转中心所连线段的夹角等于旋转角。
旋转过程中,对应点与旋转中心连接形成的线段之间的夹角大小与旋转角相等。
比如,一个矩形绕其对角线的交点旋转一定角度,任意一对对应点与旋转中心所连线段的夹角都等于旋转角。
3. 旋转前后的图形全等。
经过旋转,图形的形状和大小都不会发生改变。
无论旋转角度是多少,旋转后的图形与旋转前的图形完全相同。
例如,一个圆绕其圆心旋转任意角度,得到的图形仍然是与原来一样的圆。
三、旋转的三要素1. 旋转中心旋转中心是图形旋转时所围绕的那个定点。
它决定了图形旋转的位置。
不同的旋转中心会导致图形的旋转结果不同。
2. 旋转方向旋转方向分为顺时针和逆时针两种。
明确旋转方向对于准确描述和进行旋转操作至关重要。
3. 旋转角度旋转角度是指图形绕旋转中心转动的角度大小。
旋转角度的不同会使图形的位置发生不同程度的变化。
四、旋转的应用1. 解决几何问题在证明三角形全等、相似等问题时,常常可以通过旋转图形,使分散的条件集中起来,从而找到解题的思路。
例如,对于两个有公共顶点的等腰三角形,可以通过旋转其中一个三角形,使它们的对应边重合,进而证明全等。
2. 设计图案利用旋转可以设计出各种美丽的图案。
初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
初中数学旋转的知识点归纳总结
旋转章节的要求是让学生经历观察、操作等过程了解旋转的概念,探索旋转的性质,进一步发展空间观察。
那么接下来的旋转内容请同学们认真记忆了。
旋转知识概念
1.旋转:在平面内,将一个图形绕一个图形按某个方向转动一个角度,这样的运动叫做图形的旋转。
这个定点叫做旋转中心,转动的角度叫做旋转角。
(图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的.位置移动,其中对应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小和形状没有改变。
)
2.旋转对称中心:把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角(旋转角小于0°,大于360°)。
3.中心对称图形与中心对称:
中心对称图形:如果把一个图形绕着某一点旋转180度后能与自身重合,那么我们就说,这个图形成中心对称图形。
中心对称:如果把一个图形绕着某一点旋转180度后能与另一个图形重合,那么我们就说,这两个图形成中心对称。
4.中心对称的性质:
关于中心对称的两个图形是全等形。
关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分。
关于中心对称的两个图形,对应线段平行(或者在同一直线上)且相等。
数学旋转的知识点
数学旋转的知识点数学中的旋转是一种基本的几何变换,它可以使我们更好地理解和解决各种问题。
在这篇文章中,我将为您介绍数学旋转的几个重要知识点,帮助您更好地理解和应用它们。
一、旋转的基本概念在数学中,旋转是指围绕一个中心点按照一定的角度将物体或坐标系转动。
旋转可以是顺时针或逆时针方向,角度可以是正数或负数。
二、旋转矩阵旋转可以用一个矩阵来表示,这个矩阵被称为旋转矩阵。
一个二维平面上的旋转矩阵可以写成如下形式:cosθ -sinθsinθ cosθ其中,θ表示旋转的角度。
对于三维空间中的旋转,旋转矩阵会稍有不同。
三、旋转的性质旋转具有一些重要的性质,这些性质有助于我们更好地理解和应用旋转。
1.旋转是保角的:旋转不改变物体之间的角度关系,两个物体的夹角在旋转前后保持不变。
2.旋转是保距的:旋转不改变物体上两点之间的距离,两点间的距离在旋转前后保持不变。
3.旋转是可逆的:旋转可以通过逆向旋转来恢复到原来的状态。
四、旋转的应用旋转在数学和其他科学领域有着广泛的应用。
1.几何学:旋转可以用来解决各种几何问题,如求解物体的位置和姿态,计算点、直线和曲线的旋转等。
2.物理学:旋转在物理学中也有着重要的应用,如刚体转动、天体运动等。
3.计算机图形学:旋转是计算机图形学中的基本操作之一,用于实现物体的旋转、变形和动画效果。
4.人工智能:旋转在人工智能领域也有着广泛的应用,如图像处理、模式识别和机器人导航等。
五、旋转的实例下面给出一个简单的旋转实例,以帮助读者更好地理解旋转的应用。
假设有一个平面上的点A(2, 3),我们要将这个点绕原点逆时针旋转60度。
根据旋转矩阵的公式,我们可以得到旋转后的坐标B(x, y),计算过程如下:x = 2 * cos60° - 3 * sin60° = 1y = 2 * sin60° + 3 * cos60° = 4.196所以,点A(2, 3)绕原点逆时针旋转60度后的坐标为B(1, 4.196)。
初中数学立体几何的旋转体积计算知识点总结
初中数学立体几何的旋转体积计算知识点总结立体几何是数学中的一个重要分支,而旋转体积计算是立体几何的一个重要内容。
通过对不同图形的旋转,我们可以求得旋转体的体积。
本文将总结初中数学中关于旋转体积计算的知识点。
1. 旋转体的概念旋转体是由一个平面图形沿着一条旋转线旋转一周形成的立体图形。
旋转线可以是图形的边,也可以是通过图形某个顶点的直线。
2. 旋转体的表示方法旋转体可以用公式进行表示。
当图形绕横轴旋转时,旋转体的体积公式为V=π∫[a,b] f(x)^2 dx。
当图形绕纵轴旋转时,旋转体的体积公式为V=π∫[a,b] x^2 dy。
3. 旋转体积的计算方法具体计算旋转体积时需要根据图形的形状和旋转轴的位置进行分析。
(1)圆的旋转体积计算当一个圆绕横轴旋转时,形成的旋转体是一个圆柱体。
旋转体积的计算公式为V=πr^2h,其中r为圆的半径,h为圆柱的高度。
(2)正方形的旋转体积计算当一个正方形绕横轴旋转时,形成的旋转体是一个圆柱体。
旋转体积的计算公式为V=πa^2h,其中a为正方形的边长,h为圆柱的高度。
(3)矩形的旋转体积计算当一个矩形绕横轴旋转时,形成的旋转体是一个圆柱体。
旋转体积的计算公式为V=πab^2,其中a为矩形的长,b为矩形的宽。
(4)三角形的旋转体积计算当一个三角形绕横轴旋转时,形成的旋转体是一个圆锥体。
旋转体积的计算公式为V=1/3 πr^2h,其中r为三角形与旋转轴的距离,h为三角形的高。
(5)梯形的旋转体积计算当一个梯形绕横轴旋转时,形成的旋转体是一个圆锥体。
旋转体积的计算公式为V=1/3 πh(a^2+ab+b^2),其中h为梯形的高,a和b分别为上底和下底的边长。
4. 部分旋转体的体积计算有时,我们需要计算旋转体中部分的体积。
(1)半球的体积计算半球是一个球体的一半,当半球绕横轴旋转时,形成的旋转体是一个球冠。
半球的体积计算公式为V=2/3 πr^3。
(2)圆锥的体积计算当一个圆锥绕横轴旋转时,形成的旋转体是一个锥体。
初中旋转知识点归纳总结
初中旋转知识点归纳总结一、旋转概念1. 旋转的定义旋转是物体围绕某一固定轴线或固定点,按照一定规律旋转。
在数学中,旋转通常是指平面内或空间内一个点围绕一个中心点旋转。
2. 旋转的要素旋转有固定轴线或固定点、旋转方向以及旋转的角度等要素。
3. 旋转的表现形式旋转可以通过旋转图形、旋转坐标轴等形式来表现。
4. 旋转的应用旋转在日常生活中有着广泛的应用,比如舞蹈中的旋转动作、工程中的旋转零件等。
二、旋转的基本性质1. 旋转的不变性旋转操作不改变原图形的大小和形状,这是旋转的基本性质之一。
2. 旋转的对称性旋转是一种对称操作,旋转后的图形与原图形是对称的。
3. 旋转的交换律两次旋转操作是可以交换顺序的,即先旋转图形A再旋转图形B,与先旋转图形B再旋转图形A是等价的。
4. 旋转的倍数问题同一图像旋转180°、360°等倍数角度后,它们之间是等价的。
三、旋转的基本步骤1. 旋转的基本步骤a. 确定旋转中心和旋转方向。
b. 以旋转中心为原点,旋转方向为正方向,建立新的坐标系。
c. 利用坐标系的变换规则进行计算,得到旋转后的新坐标。
2. 旋转坐标点的计算公式a. 绕原点旋转:新的坐标(x', y') = (x*cosθ - y*sinθ, x*sinθ + y*cosθ)b. 绕其他点旋转:新的坐标(x', y') = (x0 + (x - x0)*cosθ - (y - y0)*sinθ, y0 + (x - x0)*sinθ + (y - y0)*cosθ)四、旋转的常见图形1. 点的旋转点围绕旋转中心旋转后,它的位置由原来的坐标经过旋转计算公式得到新的坐标。
2. 直线的旋转直线围绕旋转中心旋转后,它变成一条新的直线,其方程可以通过旋转坐标点的方法来得到。
3. 图形的旋转不规则图形围绕旋转中心旋转后,保持图形的大小和形状不变。
五、旋转的应用1. 图像处理中的旋转在图像处理中,旋转可以改变图像的朝向和方位,使得图像更加美观。
旋转翻转与平移的变换知识点总结
旋转翻转与平移的变换知识点总结几何变换是数学中一个重要且常见的概念,对于图形的旋转翻转与平移等操作,能够使得图形在平面内发生变化。
本文将对旋转翻转与平移的变换知识点进行总结,以便更好地理解和应用这些概念。
一、旋转变换旋转变换是指将图形按照一定的角度围绕某一点旋转。
在平面几何中,旋转变换包括顺时针旋转和逆时针旋转两种方式。
1. 顺时针旋转:顺时针旋转是将图形按照顺时针方向进行旋转,一般以正角度表示。
例如,将一个图形按照顺时针旋转90度,就是将原始图形的每个点绕着旋转中心点顺时针旋转90度。
2. 逆时针旋转:逆时针旋转是将图形按照逆时针方向进行旋转,一般以负角度表示。
与顺时针旋转类似,逆时针旋转也是将原始图形的每个点绕着旋转中心点逆时针旋转一定角度。
旋转变换可以用矩阵表示,其中旋转角度为θ,旋转矩阵为:cosθ -sinθsinθ cosθ二、翻转变换翻转变换是指将图形按照某一轴进行对称,常见的有水平翻转和垂直翻转两种方式。
1. 水平翻转:水平翻转是将图形按照水平轴进行对称,即以水平轴为对称轴,上下颠倒图形。
例如,将一个图形按照水平轴进行翻转,原先在上部的图形点转移到下部。
2. 垂直翻转:垂直翻转是将图形按照垂直轴进行对称,即以垂直轴为对称轴,左右颠倒图形。
例如,将一个图形按照垂直轴进行翻转,原先在左侧的图形点转移到右侧。
翻转变换可以用矩阵表示,其中水平翻转可用矩阵表示为:-1 00 1垂直翻转可用矩阵表示为:1 00 -1三、平移变换平移变换是指将图形沿着平面平行移动一段距离。
平移变换可以将图形从一个位置移动到另一个位置,而不改变图形的大小和形状。
平移变换通常用向量表示,其中平移向量为:(dx, dy)。
图形的每个点都将根据平移向量的数值进行水平和垂直方向上的移动。
四、综合应用旋转翻转与平移的变换在实际生活中有广泛的应用,尤其是在计算机图形学和计算机视觉领域。
在计算机图形学中,通过对图像进行旋转、翻转和平移等变换,可以实现图像的缩放、旋转和平移操作。
初中数学图形的平移与旋转知识点归纳
初中数学图形的平移与旋转知识点归纳在初中数学中,图形的平移和旋转是涉及到几何图形的基本操作。
通过平移和旋转,我们可以改变图形的位置和朝向,从而建立几何图形之间的联系和性质。
本文将对初中数学中与图形的平移和旋转相关的知识点进行归纳和总结。
一、图形的平移平移是指将一个图形沿着指定的方向和距离移动,而不改变该图形的大小、形状和方向。
图形的平移可以通过向左、向右、向上或向下平移来完成。
以下是与图形的平移相关的知识点:1. 平移向量:平移向量表示平移的方向和距离,可以用箭头表示。
平移向量的长度表示平移的距离,箭头的方向表示平移的方向。
2. 平行平移:平行平移是指图形沿着平行于给定方向的线段移动。
在平行平移过程中,图形的各个点保持相对位置不变。
3. 坐标平移:坐标平移是指根据给定的平移向量,将图形上每个点的坐标分别增加或减少相应的数值。
例如,对于二维平面上的点A(x, y),进行平移向量为(3, 4)的平移,那么新的点A'(x+3, y+4)就是平移后的坐标。
二、图形的旋转旋转是指将一个图形按照一定的角度围绕某个固定点旋转,使得图形绕着该点旋转后,图形上的各个点的位置发生相应的变化。
以下是与图形的旋转相关的知识点:1. 旋转中心:旋转中心是围绕其进行旋转的点,也称为旋转的原点。
2. 旋转角度:旋转角度是指旋转的角度大小,可以是正数、负数或零。
正数表示顺时针旋转,负数表示逆时针旋转。
3. 旋转方向:旋转方向可以根据旋转角度的正负来确定,正数表示顺时针旋转,负数表示逆时针旋转。
4. 中心旋转:中心旋转是指图形围绕一个给定的点旋转。
在中心旋转中,图形上的各个点以旋转中心为中心点,按照给定的旋转角度进行旋转。
5. 角度旋转:角度旋转是指图形围绕一个给定的角度进行旋转。
在角度旋转中,旋转中心通常是坐标原点,图形上的各个点按给定的旋转角度进行旋转。
三、图形的平移与旋转的性质和应用图形的平移和旋转不仅是数学中的重要概念,也在实际生活中广泛应用。
图形的旋转知识点总结
图形的旋转知识点总结图形的旋转是数学中的一个重要概念,它涉及到几何学、线性代数和复变函数等多个数学分支。
图形的旋转是指将一个图形绕着一个固定的点或一条固定的轴进行转动的操作。
通过旋转,我们可以改变一个图形的位置和朝向,从而在空间中创造出新的图形。
图形的旋转有很多重要的性质和规律,下面我们将对这些知识点进行总结,以便更好地理解和应用旋转。
1. 旋转的基本概念:旋转是指将一个图形按照一定的角度绕着一个固定的点或一条固定的轴进行转动。
旋转可以用旋转矩阵或四元数来表示。
常见的旋转操作有:绕着原点旋转、绕着某个点旋转、绕着某个轴旋转等。
2. 旋转的角度和方向:旋转角度可以是正值、负值或零。
正值表示顺时针旋转,负值表示逆时针旋转,零表示不旋转。
通常,我们用角度来度量旋转的大小,也可以使用弧度来度量。
3. 旋转的坐标系:旋转操作可以改变图形在坐标系中的位置和方向。
旋转操作可能导致图形的坐标发生变换,使得图形在坐标系中的坐标值发生改变。
在进行旋转时,需要考虑坐标系的方向和原点的位置。
4. 旋转的中心点:旋转的中心点是图形旋转的支点,也是旋转轴上的一个点。
图形绕着中心点进行旋转时,中心点保持不动,而图形其他部分相对于中心点发生旋转。
5. 旋转的公式:图形的旋转可以通过一定的数学公式来表示。
对于平面上的图形,可以使用旋转矩阵或复数的乘法来表示。
对于三维空间中的图形,可以使用旋转矩阵、四元数或欧拉角来表示。
6. 旋转的性质:旋转有一些基本性质,如保持长度不变、保持形状不变、保持直线平行性等。
这些性质使得旋转成为一种重要的几何变换方法。
7. 旋转的合成:多个旋转操作可以合成为一个旋转操作。
合成旋转操作可以通过矩阵乘法、四元数的乘法或连续的旋转操作来实现。
合成旋转操作可以用来模拟复杂的旋转变换。
8. 旋转和刚体运动:旋转是刚体运动的一种基本形式。
刚体从一个位置旋转到另一个位置,可以通过旋转操作来实现。
旋转操作可以描述刚体绕着一个固定点或一条固定轴进行转动的过程。
旋转知识点总结大全初中
旋转知识点总结大全初中一、基本概念1. 旋转的定义旋转是指把一个点或者一个图形绕着一个旋转中心进行旋转操作,使其在平面内按照一定的方向进行转动。
在旋转中,点或图形的位置会发生改变,但其大小和形状不会发生改变。
2. 旋转的要素旋转包括旋转中心、旋转角度和旋转方向三个要素。
旋转中心是确定旋转的点,在平面上可以是任意一点;旋转角度是指旋转的角度大小,通常用弧度或者度数表示;旋转方向是指顺时针旋转或者逆时针旋转。
3. 旋转的表示旋转可以用旋转矩阵、向量旋转、复数旋转等多种数学方法进行表示,不同表示方法适用于不同的场景和问题。
二、旋转的性质1. 旋转的封闭性旋转是封闭的,即两个旋转图形的旋转之后的结果仍然是一个图形。
2. 旋转的不变性旋转不改变图形的大小和形状,只是改变了其位置。
3. 旋转的对称性旋转具有对称性,旋转之后的图形与原图形具有镜像对称关系。
4. 旋转的交换律两个旋转操作可以交换次序,即先进行一个旋转再进行另一个旋转的结果与先进行另一个旋转再进行一个旋转的结果是相同的。
三、旋转的计算方法1. 旋转矩阵对于平面上的点(x, y)进行绕原点逆时针旋转θ度,旋转后的坐标为(x', y'),可以用旋转矩阵进行表示:\[ \begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} \]2. 向量旋转对于任意向量(a, b)进行绕原点逆时针旋转θ度,旋转后的向量为(a', b'),可以通过向量的线性变换进行计算。
3. 复数旋转对于复数z=a+bi进行绕原点逆时针旋转θ度,旋转后的复数为z'=a'+bi',可以通过复数的乘法进行计算。
初二上数学旋转知识点归纳总结
初二上数学旋转知识点归纳总结数学是一门既有理论性又有实践性的科学学科,其中旋转是数学中重要的概念之一。
初二上学期,学生们开始在数学课堂上接触到旋转的知识。
本文将对初二上数学旋转知识点进行归纳和总结,以帮助学生更好地掌握和理解这一概念。
下面将从旋转的基本概念、旋转的性质、旋转的应用等方面展开讨论。
一、旋转的基本概念旋转是指物体或图形围绕某一点或某一轴进行旋转运动。
在初二上学期中,我们主要学习了平面上的旋转。
对于平面上的旋转,我们需要了解旋转中心、旋转角度以及旋转方向等基本概念。
1. 旋转中心:旋转中心是旋转运动的中心点,也是旋转轴上的一个点。
在解题时,通常需要确定旋转中心的坐标,并将其作为计算的基准点。
2. 旋转角度:旋转角度表示物体或图形所进行的旋转的角度大小。
旋转角度可以用度数、弧度等形式表示,具体根据题目的要求而定。
3. 旋转方向:旋转方向包括顺时针旋转和逆时针旋转两种,通常会在题目中给出旋转的方向。
二、旋转的性质旋转具有一些重要的性质,学生们需要了解并掌握这些性质,以便在解题时能够灵活运用。
1. 旋转角度的性质:两个角度相等的图形,进行相同角度的旋转后,仍然是全等的。
这个性质常常在证明过程中被使用,是解题的重要依据。
2. 旋转图形的性质:旋转图形的面积和周长均保持不变。
这一性质在计算旋转图形的面积和周长时非常有用。
三、旋转的应用旋转不仅在数学学科中有重要意义,也被广泛应用于各个领域。
在初二上学期的数学课堂上,我们也学习了一些与旋转相关的应用。
1. 图形的旋转:通过旋转图形,我们可以获得一些新的特性和性质,同时也可以帮助我们更好地理解和分析图形。
2. 平面几何的应用:旋转在平面几何中有着广泛的应用,例如在计算平面图形的面积、周长等问题时,通过旋转可以简化计算的过程。
四、例题演练为了帮助同学们更好地理解旋转的知识点,下面将提供一些例题进行演练:例题1:已知△ABC,BC=4,∠B=60°,将△ABC绕点B逆时针旋转60°,得到△A'B'C',求A'C'的长度。
数学旋转知识点总结归纳
数学旋转知识点总结归纳一、旋转的基本概念旋转是指让物体按照某个中心点绕轴旋转一定角度的变换过程。
在数学中,我们通常将旋转定义为一个平面内的变换,它可以用一个角度来描述。
旋转变换可以分为逆时针旋转和顺时针旋转两种方式。
逆时针旋转是指物体按照顺时针的方向旋转,角度取正值;而顺时针旋转则是指物体按照逆时针的方向旋转,角度取负值。
二、旋转的表示方式在数学中,我们可以使用不同的表示方式来描述旋转变换。
常用的表示方式有以下几种:1. 旋转矩阵:旋转矩阵是描述旋转变换的一种方式,它可以用一个2x2的矩阵来表示。
在二维平面内,我们可以通过旋转矩阵来描述物体的旋转变换,从而得到旋转后的坐标。
2. 旋转向量:旋转向量是描述旋转变换的另一种方式,它可以用一个三维向量来表示。
在三维空间内,我们可以通过旋转向量来描述物体的旋转变换,从而得到旋转后的坐标。
3. 旋转角度:旋转角度是描述旋转变换的最直观方式,它可以用一个角度值来表示。
在二维平面和三维空间内,我们可以通过旋转角度来描述物体的旋转变换,从而得到旋转后的坐标。
三、旋转的基本性质旋转变换具有一些基本的性质,这些性质对于我们理解旋转变换的特点非常重要。
以下是旋转变换的一些基本性质:1. 旋转变换是线性的:旋转变换是一种线性变换,它满足加法和数乘的性质。
也就是说,如果我们对一个物体进行旋转变换,然后再对旋转后的物体进行一次旋转变换,那么这两次旋转变换的结果等于先将旋转变换合并成一个变换,然后再对原物体进行这个变换。
2. 旋转变换满足结合律:旋转变换满足结合律,也就是说,如果我们对一个物体依次进行三次旋转变换,那么这三次旋转变换的结果等于先将前两次旋转变换合并成一个旋转变换,然后再进行第三次旋转变换。
3. 旋转变换的逆是自身的逆:旋转变换的逆变换就是将原旋转变换的角度取负值,旋转的方向取相反方向。
也就是说,如果我们对一个物体进行旋转变换,然后再对旋转后的物体进行相反方向的旋转变换,那么这两次旋转变换的结果等于恢复到原来的物体。
旋转和平移知识点总结
旋转和平移知识点总结一、旋转1.1 定义在数学中,旋转是指以某一点为中心,按一定的角度和方向将图形绕该点旋转的过程。
常见的旋转包括顺时针旋转和逆时针旋转,以及以原点为中心的旋转和以其他点为中心的旋转。
1.2 性质(1)旋转是等距变换,旋转前后图形的每个点到中心的距离保持不变。
(2)旋转是保角变换,旋转前后图形上的两个点和中心组成的角度保持不变。
(3)根据旋转的不同角度和方向,可以将图形旋转成不同的位置和姿态。
1.3 公式以原点为中心的逆时针旋转公式:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ以任意点(a,b)为中心的逆时针旋转公式:x' = (x-a) * cosθ - (y-b) * sinθ + ay' = (x-a) * sinθ + (y-b) * cosθ + b1.4 实际应用旋转在计算机图形学、几何建模、航空航天、地理信息系统等领域都有广泛的应用。
例如,在计算机图形学中,旋转可以用来实现图形的变换和动画效果;在航空航天领域,旋转可以用来控制飞机和卫星的姿态;在地理信息系统中,旋转可以用来实现地图的旋转和放大缩小等功能。
二、平移2.1 定义平移是指保持图形大小、形状和方向不变的情况下,将图形沿着某一方向移动一定的距离的过程。
平移可以分为水平平移和垂直平移,分别是在x轴和y轴方向上进行平移。
2.2 性质(1)平移是等距变换,平移前后图形上的任意两点之间的距离保持不变。
(2)平移不改变图形的大小和形状,只改变图形的位置。
2.3 公式水平平移公式:x' = x + ay' = y垂直平移公式:x' = xy' = y + b2.4 实际应用平移在地图导航、工程设计、计算机图形学等领域都有广泛的应用。
例如,地图软件中的平移功能可以让用户在地图上任意移动视角;在工程设计中,平移可以用来调整建筑物或设备的位置;在计算机图形学中,平移可以用来实现图形的移动和拼接。
初二数学图形旋转的知识点
初二数学图形旋转的知识点1. 图形的旋转:在平面内,将一个图形绕一个定点转动必然的角度,如此的图形运动称为图形的旋转。
那个定点称为旋转中心,旋转的角度称为旋转角。
注意:图形旋转后一对对应点与旋转中心的连线确实是旋转角。
图形的旋转不改变图形的形状、大小,只改变图形的位置.2. 旋转的大体性质旋转前、后的图形全等对应点到旋转中心的距离相等每一对对应点与旋转中心的连线所成的角彼此相等.图形的旋转是由旋转中心和旋转的角度决定.3. 旋转的要素:旋转中心,旋转方向,旋转角度;4. 明白顺时针旋转和逆时针旋转5. 中心对阵中心对称概念:把一个图形绕着某一点旋转180度,若是它能与另一个图形重合,就说这两个图形关于那个点成中心对称. 所有的中心对称图形都是旋转对称图形。
中心对称的性质:中心对称的两个图形是全等图形关于中心对称的两个图形,对称点连线都通过对称中心且被对称中心平分关于中心对称的两个图形,对称线段平行且相等中心对称与中心对称图形是两个既有联系又有区别的概念区别: 中心对称指两个全等图形的彼此位置关系;中心对称图形指一个图形本身成中心对称。
联系: 若是将中心对称图形的两个图形看成一个整体,那么它们是中心对称图形若是将中心对称图形,把对称的部份看成两个图形,那么它们是关于中心对称。
6. 轴对称概念:若是一个图形沿一条直线折叠,直线两旁的部份能够相互重合,如此的图形叫做轴对称图形对称轴是一条直线。
垂直而且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。
线段垂直平分线上的点到线段两头的距离相等。
在轴对称图形中,对称轴双侧的对应点到对称轴双侧的距离相等。
在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
若是两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线图形对称。
轴对称图形必然要沿某直线折叠后直线两旁的部份相互重合,关键抓两点:一是沿某直线折叠,二是两部份相互重合;中心对称图形是图形绕某一点旋转180°后与原先的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观看有无转变,没变的是中心对称图形。
中考数学旋转知识点总结
中考数学旋转知识点总结一、旋转的基本概念1. 旋转的定义旋转是几何变换的一种,它将图形绕某一定点进行旋转,使得原图形经过旋转后仍符合原图形的性质。
在平面几何中,这一定点通常被称为旋转中心,而旋转的角度则是旋转的重要参数。
2. 旋转的表示在数学中,旋转可以通过不同的表示方法来描述。
最常见的是使用坐标系中的点和向量表示旋转,也可以使用矩阵来进行描述。
3. 旋转的性质旋转具有许多重要的性质,比如旋转是等距变换,旋转后的图形与原图形的关系等。
这些性质对于理解旋转的本质和应用都具有重要的意义。
二、旋转的基本公式1. 二维平面的旋转公式在平面几何中,二维平面上的点可以通过旋转变换而成。
对于坐标系中的点(x, y),绕原点逆时针旋转θ度后的新坐标可以根据公式进行计算。
2. 三维空间的旋转公式在三维空间中,点的旋转也是常见的几何变换。
旋转的角度可以沿着不同轴进行,因此三维空间中的旋转公式相对复杂一些,但也是可以通过矩阵等方式进行描述的。
三、旋转的应用1. 图形的旋转在几何中,通过旋转可以使得图形的位置和方向发生变化。
通过学习旋转的原理和公式,可以对图形的旋转进行分析和计算,从而更好地理解和掌握图形的性质和特点。
2. 向量的旋转在向量几何中,旋转是常见的几何变换。
向量的旋转不仅可以通过公式进行计算,还可以通过向量的性质和几何特点进行分析,从而更深入地理解向量的旋转。
3. 坐标系的旋转在空间几何和三维几何中,经常需要对坐标系进行旋转变换。
通过学习旋转的原理和方法,可以更清晰地理解坐标系的旋转规律,从而更好地应用于实际问题的解决中。
四、旋转的相关定理1. 旋转对称性质在平面几何中,旋转对称是一种重要的对称方式。
通过学习旋转对称的定理和性质,可以更好地理解和应用旋转对称在几何图形中的作用。
2. 旋转角度的性质旋转角度的性质是旋转的重要定理和性质之一。
通过学习旋转角度的性质,可以更深入地理解和应用旋转的基本特点。
3. 旋转的复合变换旋转可以与其他几何变换进行复合,比如平移、翻转等。
初中旋转知识点总结
初中旋转知识点总结一、基本概念1.1 旋转的概念在数学中,旋转是指绕着固定点进行的转动。
在平面几何中,通常以原点为中心进行旋转,记为O。
1.2 旋转的方向根据旋转的方向,我们可以将旋转分为顺时针旋转和逆时针旋转两种,通常用箭头表示,其中顺时针旋转为逆时针旋转为。
1.3 旋转的角度旋转的角度通常用度数表示,符号为°。
一个完整的旋转为360°,一般用角度的正负来表示旋转的方向,正表示逆时针旋转,负表示顺时针旋转。
二、旋转的性质2.1 旋转的性质(1)旋转不改变图形的大小;(2)旋转前后的图形是全等图形;(3)旋转前后的图形是共形的。
2.2 旋转对称对称轴:图形旋转前后完全重合的轴称为旋转对称轴。
例如正方形、正五边形等都是以中心为中心的旋转对称图形。
2.3 旋转的性质利用在日常生活中,我们常常利用旋转的性质进行问题求解,如寻找物体的镜像、对称等。
三、旋转的公式在旋转的过程中,有一些常见的旋转公式需要初中学生掌握,以便能够快速准确地计算出旋转后的图形。
3.1 旋转的坐标公式对于图形(x, y)绕原点O逆时针旋转θ度后的坐标为(x',y'),则有以下公式:x' = x*cosθ - y*sinθy' = x*sinθ + y*cosθ3.2 旋转的中心公式对于图形(x, y)绕点(A, B)逆时针旋转θ度后的坐标为(x',y'),其中A的横坐标为a,B的纵坐标为b,则有以下公式:x' = (x-a)*cosθ - (y-b)*sinθ + ay' = (x-a)*sinθ + (y-b)*cosθ + b四、旋转的应用4.1 旋转的应用范围旋转的应用范围非常广泛,包括几何学、物理学、工程学等各个领域,如在几何学中,我们可以利用旋转的性质求解对称图形的问题,在工程学中,我们可以利用旋转的公式进行图形的设计等。
4.2 旋转的几何应用旋转在几何学中应用广泛,如计算旋转图形的坐标、利用旋转的性质寻找对称图形等。
数学旋转知识点总结
数学旋转知识点总结1. 旋转的定义旋转是指物体绕某一点或某一轴进行旋转运动的几何变换。
在数学中,我们通常将旋转运动描述为一个平面上的点绕着另一个点进行旋转,或者一个图形绕着平面上的某一点进行旋转。
旋转可以分为顺时针旋转和逆时针旋转两种方向。
2. 旋转的表示方法旋转可以通过不同的表示方法来描述,其中最常见的是使用坐标变换的方式来表示。
假设我们要对一个点P(x, y)进行旋转,旋转角度为θ,则旋转后的点P'(x', y')的坐标可以表示为:x' = x * cosθ - y * sinθy' = x * sinθ + y * cosθ这个公式称为旋转矩阵,通过它我们可以计算出旋转后的点的坐标。
另外,我们也可以使用复数来表示旋转。
假设我们有一个复数z = a + bi,表示平面上的一个点,我们将z乘以一个复数e^(iθ)就可以得到z关于原点旋转θ角度后的新坐标。
3. 旋转的性质旋转具有一些重要的性质,包括保持向量长度不变、保持向量夹角不变、满足结合律和分配律等。
这些性质使得旋转在几何变换中具有重要的作用,它可以帮助我们理解和分析各种几何关系,也为我们解决问题提供了便利。
另外,旋转还具有周期性,即当一个点或一个图形进行多次旋转后,最终还会回到它原来的位置和形状,这对于解决一些周期性问题非常有用。
4. 旋转的应用旋转在各个领域都有重要的应用,特别是在几何学和物理学中。
在几何学中,旋转可以帮助我们解决各种几何问题,如图形的对称性、旋转体的体积和表面积等;在物理学中,旋转则可以用来描述物体的旋转运动、角动量的变化等。
另外,在计算机图形学中,旋转也是一个重要的概念,它可以帮助我们实现各种图形变换和动画效果。
通过旋转,我们可以实现物体的三维旋转、平面上的图形变换等操作,这对于计算机图形的渲染和建模有着很大的意义。
5. 旋转的扩展除了在平面上旋转,我们还可以将旋转的概念扩展到更高维度的空间中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学图形旋转的知识点
1. 图形的旋转:在平面内,将一个图形绕一个定点转动一定的角度,这样的图形运动称为图形的旋转。
这个定点称为旋转中心,旋转的角度称为旋转角。
注意:图形旋转后一对对应点与旋转中心的连线就是旋转角。
图形的旋转不改变图形的形状、大小,只改变图形的位置.
2. 旋转的基本性质
旋转前、后的图形全等
对应点到旋转中心的距离相等
每一对对应点与旋转中心的连线所成的角彼此相等.
图形的旋转是由旋转中心和旋转的角度决定.
3. 旋转的要素:旋转中心,旋转方向,旋转角度;
4. 明白顺时针旋转和逆时针旋转
5. 中心对阵
中心对称定义:把一个图形绕着某一点旋转180度,如果它能与另一个图形重合,就说这两个图形关于这个点成中心对称. 所有的中心对称图形都是旋转对称图形。
中心对称的性质:
中心对称的两个图形是全等图形
关于中心对称的两个图形,对称点连线都经过对称中心且被对称中心平分
关于中心对称的两个图形,对称线段平行且相等
中心对称与中心对称图形是两个既有联系又有区别的概念
区别: 中心对称指两个全等图形的相互位置关系;中心对称图形指一个图形本身成中心对称。
联系: 如果将中心对称图形的两个图形看成一个整体,则它们是中心对称图形
如果将中心对称图形,把对称的部分看成两个图形,则它们是关于中心对称。
6. 轴对称
定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这样的图形叫做轴对称图形对称轴是一条直线。
垂直并且平分一条线段的直线称为这条线段的垂直平分线,或中垂线。
线段垂直平分线上的点到线段两端的距离相等。
在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线
图形对称。
7.总结
轴对称图形一定要沿某直线折叠后直线两旁的部分互相重合,关键抓两点:一是沿某直线折叠,二是两部分互相重合;中心对称图形是图形绕某一点旋转180°后与原来的图形重合,关键也是抓两点:一是绕某一点旋转,二是与原图形重合.实际区别时轴对称图形要像折纸一样折叠能重合的是轴对称图形;中心对称图形只需把图形倒置,观察有无变化,没变的是中心对称图形。
现将教材中常见的图形归类如下:
既是轴对称图形又是中心对称图形的有:直线,线段,两条相交直线,矩形,菱形,正方形,圆等。
只是轴对称图形的有:射线,角?等腰三角形,等边三角形,等腰梯形等。
只是中心对称图形的有:平行四边形等;中心对称的多边形很多,如边数为偶数的正多边形都是中心对称图形。
既不是轴对称图形又不是中心对称图形有:不等边三角形,非等腰梯形等。
轴对称图形中心对称图形有一条对称轴——直线有一个对称中心图形沿轴对折图形绕这个点旋转180度对称对折部分与另一部分重合旋转后与原图重合。