14-15-1复变、积变与场论A答案
复变函数与积分变换试题及答案19
复变函数与积分变换试题与答案一、题判断(每题2分,共10分,请在正确的题后打"J",错误的题后打"X")1、/(Z)=SinZ是有界函数。
( )2、函数/(z)=e,是以Lri为周期的周期函数。
( )3、如果ZO是/(Z)的奇点,那么/(Z)在Zo不可导。
( )4、假设函数F(Z)在Z I)处解析,那么尸")(z)也在z“解析。
( )5、、的假设"(x,y)与V(X,y)都是调和函数,那么/(z)=w(x,y)+i∖{x,y)是解析函数。
( )二、填空题(每题4分,共16分)1、设Z=2-那么Iz I=,arg z。
1+Z2、(I+*,(1+0,=o3、Ln(―3i)=,主值In[—3/)=。
4、f(I)=t2+te,+e2'sin6/,那么/(f)的拉氏变换是。
三、解答题(8分+12分=20分)1、求卜/+,.y)/,其中C是沿曲线y=/由点z=0到点z=l+i C2、根据R的取值不同,讨论并计算积分 ------ - .... 的值。
其中C是不经过Z=-IJ z2(z+l)(z-2)和z=2的正向圆周IZl=R(R>0)o四、解答题(每题8分,共16分)1、U(X,y)=V-3『y是调和函数,求其共辆调和函数v(x,y).2、/(Z)=/-)在何处可导?何处解析?并在可导处求/"(z).五、解答题(1、2题每题8分,3题6分,共22分)I I万1、求将单位圆∣Z∣<1内保形映照到单位圆I Wl<1内,且满足/(—)=0,arg/,(一)=-的分式线性映照。
2、将/(z)= .............. ?......... 在l<∣z∣<3上展开成罗朗级数。
(z-l×z-3)3、指出/(z)===在有限复平面上的孤立奇点及类型,并求奇点处的留数六、计算题(每题8分,共16分)1、求正弦函数/(r)=Sino/的傅氏变换。
复变函数论第四版答案《复变函数论》试题库及答案
复变函数论第四版答案《复变函数论》试题库及答案导读:就爱阅读网友为您分享以下“《复变函数论》试题库及答案”的资讯,希望对您有所帮助,感谢您对的支持!《复变函数》考试试题(九)一、判断题(20分)1、若函数f(z)在z0可导,则f(z)在z0解析.( )2、若函数f(z)在z0满足Cauchy-Riemann条件,则f(z)在z0处解析.( )3、如果z0是f(z)的极点,则limf(z)一定存在且等于无穷大.( ) z?z014、若函数f(z)在单连通区域D内解析,则对D内任一简单闭曲线C都有( ) ?Cf(z)dz?0.5、若函数f(z)在z0处解析,则它在该点的某个领域内可以展开为幂级数.( )6、若函数f(z)在区域D内的解析,且在D内某一条曲线上恒为常数,则f(z)在区域D内恒为常数.( )7、若z0是f(z)的m阶零点,则z0是1的m阶极点.( ) f(z)(. ) 8、如果函数f(z)在D?z:z?1上解析,且f(z)?1(z?1),则f(z)?1(z?9、lime??.( ) z??z??10、如果函数f(z)在z?1内解析,则f(z?f(z( ) z?1z?1二、填空题(20分)212?i(1?)n,则limzn?___________. 1?nn12、设f(z)?,则f(z)的定义域为____________________________. sinz3、函数sinz的周期为______________. 1、若zn?sin4、sinz?cosz?_______________.5、幂级数22?nzn?0??n的收敛半径为________________.6、若z0是f(z)的m阶零点且m?1,则z0是f?(z)的____________零点.7、若函数f(z)在整个复平面除去有限个极点外,处处解析,则称它是______________.8、函数f(z)?的不解析点之集为__________.9、方程20z?11z?3z?5?0在单位圆内的零点个数为3___________. 83ez,1)?_________________. 10、Res(2z?1三、计算题(30分)n?2?i?1、lim?? n???6?3?2?7??1d?,其中C??z:z?3?,试求f?(1?i). 2、设f(z)??C??zez3、设f(z)?2,求Res(f(z),?i). z?14、求函数z在1?z?2内的罗朗展式. (z?1)(z?2)z?1的实部与虚部. z?15、求复数w?6、利用留数定理计算积分4四、证明题(20分) ?????x2?x?2dx. 42x?10x?91、方程z?9z?6z?1?0在单位圆内的根的个数为6.2、若函数f(z)?u(x,y)?iv(x,y)在区域D内解析,u(x,y)等于常数,则f(z)在D恒等于常数.7、若z0是f(z)的m阶零点,则z0是五、计算题(10分)求一个单叶函数,去将z平面上的带开区域?z:盘w:w?1.7631的m阶极点. f(z)?????Imz???保形映射为w平面的单位圆2???《复变函数》考试试题(十)一、判断题(40分):51、若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导.( )2、如果z0是f(z)的本性奇点,则limf(z)一定不存在.( ) z?z03、若函数f(z)?u(x,y)?iv(x,y)在D内连续,则u(x,y)与v(x,y)都在D内连续.( )4、cosz与sinz在复平面内有界.( )5、若z0是f(z)的m阶零点,则z0是1/f(z)的m阶极点(. )6、若f(z)在z0处满足柯西-黎曼条件,则f(z)在z0解析(. )7、若limf(z)存在且有限,则z0是函数的可去奇点(. ) z?z08、若f(z)在单连通区域D内解析,则对D内任一简单闭曲线C都有?Cf(x)dz?0.( )9、若函数f(z)是单连通区域D内的解析函数,则它在D内6有任意阶导数.( )10、若函数f(z)在区域D内解析,且在D内某个圆内恒为常数,则在区域D内恒等于常数.( )二、填空题(20分):1、函数e的周期为_________________.2、幂级数nnz?的和函数为_________________.n?0??z3、设f(z)?1,则f(z)的定义域为_________________. 2z?14、?nzn?0??n的收敛半径为_________________.ez5、Res(n,0)=_________________. z7三、计算题(40分):1、zzdz. 2(9?z)(z?i)eiz,?i). 2、求Res(1?z23、?. 4、设u(x,y)?ln(x2?y2). 求v(x,y),使得f(z)?u(x,y)?iv(x,y)为解析函数,且满足nnf(1?i)?ln2。
场论习题答案
场论习题答案习题33-1.求数量场2322u x z y z =+在点()2,0,1M -处沿l xi xy j z k 2423=-+的⽅向导数。
解:因()MMlxi xy j z k i k 242343=-+=+,其⽅向余弦为.53cos ,0cos ,54cos ===γβα在点)1,0,2(-M 处有,1223,04,422223=+=??==??-==??y z x zuyz y u xz x u 所以4125300)4(54=?+?+-?=??l u 3-2.求数量场223u x z xy z =-+在点()1,1,1M -处沿曲线23,,x t y t z t ==-=朝t 增⼤⼀⽅的⽅向导数。
解:所求⽅向导数,等于函数u 在该点处沿曲线上同⼀⽅向的切线⽅向导数。
曲线上点M 所对应的参数为1=t ,从⽽在点M 处沿所取⽅向,曲线的切向⽅向导数为33,22,1121==-=-====t Mt MMt dtdz tdtdy dtdx ,其⽅向余弦为.143cos ,142cos ,141cos =-==γβα⼜5)23(,1,7)6(2=+=??-=-=??=-=??MMMMM Mz x zu xyu y xz xu 。
于是所求⽅向导数为14241435142)1(1417)cos cos cos (=?+-?-+?=??+??+??=??MMz u y u x u lu γβα3-3.求数量场23u x yz =在点()2,1,1M -处沿哪个⽅向的⽅向导数最⼤?解:因()uu l u lθ0grad grad cos ?=?=?,当θ0=时,⽅向导数最⼤。
,1244)32()(u grad 22323k j i k yz x j z x i xyz k z u j y u i x u MMM +--=++=??+??+??=即函数u 沿梯度k j i M 1244u grad +--=⽅向的⽅向导数最⼤最⼤值为114176ugrad ==M。
《复变函数论》答案
第1页《复变函数论》答案一、单项选择题1.在复平面上方程|z -i|=|z +i|表示( A ) A .直线 B .圆周 C .椭圆周D .抛物线2.在复平面上方程|z +1|=4表示( B )A .直线B .圆周C .椭圆周D .抛物线3.arg(1=( C )A. 3π- B. 6π- C. 56π D. 2,6k k ππ+∈Z4.arg(1)i +=( B )A.4π- B. 4π C. 54π D. 2,4k k ππ+∈Z5.在z 平面上处处解析的函数是( B ) A. 31()f z z =B. 3()f z z = C. ()f z z = D. ()R e f z z z =6.下列函数中( A )是整函数. A.1()1f z z =- B. ()1f z z =- C. 2()f z z = D. ()I m f z z =7.2||2sin (1)z zdz z ==-⎰( C ) A. 0 B.sin1- C. 2cos1i π D. 2sin1i π-8.2||1cos (2)z zdz z ==-⎰( A ) A.0 B. 2sin 2i π- C. 2cos 2i π D. 2sin 2i π-第2页9.幂级数112nnn n n z z ∞∞==+∑∑的收敛半径是( A )A. 1B. 2C.14 D.1210.在复平面上不等式|z -2|<3表示( C )A .直线B .圆周C .圆D .正方形 11.arg()i -=( A )A.2π- B. 2π C. 32π D. 32,2k k ππ+∈Z12.在z 平面上处处解析的函数是( C ) A. 21()1f z z =+ B. ()f z z = C. 2()1f z z =- D. ()Im f z z =13.||2sin 1z zdz z ==-⎰( D ) A. 0 B.2sin1i π- C. 2cos1i π D. 2sin1i π14.幂级数1!n n n z ∞=∑的收敛半径是( A )A. 0B. 1C. 2D. e15.幂级数21nn z n∞=∑的收敛半径是( B )A.0B. 1C.2D.416.0z =是2cos ()zf z z =的( C )极点A.0B. 1C.2D.417.1z =是2cos ()zf z z=的( D )A.零点B. 极点C.孤立奇点D.解析点第3页18.下列等式中,成立的是( C )A.22Lnz Lnz =B.rg(2)arg()A i i -=-C.10Ln =D.Re()z z z z ⋅=⋅ 19.在复平面上,下列命题中,不正确的是( B )A. 22sin cos 1z z +=B. 0z e >C.cos sin iz e z i z =+D. 10i π是()5z f z e =的周期20.下列等式中,不正确的是( C ) A.33lnz lnz = B.arg(2)arg()i i =-- C.0zLn z= D.Im()0z z ⋅= 二、填空题1. Im(1+i)4=_ _0______.2. Re(1+i)4=____-4______.3.345iz -=,则z = 1 . 4.1z =,则z = 2 . 5.方程41z =-在复数域中共有_ 4 个根. 6.方程21z =-在复数域中共有_ 2 个根. 7.设ω是1的n 次根,1ω≠,则21n ωωω-+++= -18.设31ie πω=,32ieπω-=,则12ωω+= 1 .9.设22()(1)z f z z e =-,则0z =是()f z 的____4____阶零点. 10.设()1z f z e z =--,则0z =是()f z 的____2____阶零点. 11.()f z 以z=a 为m 级极点,则z=a 为2()f z 2m 级极点.12.(),()f z g z 以z=a 为3级和4级极点,则z=a 为()()f z g z +的 4 级极点.第4页13.(),()f z g z 以z=a 为5级和2级极点,则z=a 为()()f zg z 3 级极点. 14.()f z 以z=a 为m 阶零点,且m 0>,则z=a 是()f z '的__m-1___阶零点.15.()zf z e =,则()f z 在0z =的邻域内泰勒展式为212!n z z z n +++++.16.21()1f z z=-,则()f z 在0z =的邻域内泰勒展式为2421n z z z +++++.17. 设sin cos z i αα=+,则z 的三角表示为cos sin 22i ππαα⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭.18.设211)(z z f +=,则)(z f 的孤立奇点有___i ± . 19.设1()1f z z=+,则)(z f 的孤立奇点有___-1 .20.幂级数0nn z n∞=∑的收敛半径为____1_____ .21.幂级数0n n nz ∞=∑的收敛半径为____1_____ .22.4z 在点1z i =-23.3z 在点z i =-处的伸缩率为 3 . 24.z e 在点1z i =+处的伸缩率为 e . 三、完成下列各题 1.求16i ieπ-+解 161cos sin 6622ii iei ie e eπππ-+⎛⎫=+=-+ ⎪⎝⎭第5页2.求n L i .解 n 2,2L i i k i k ππ=+∈Z3. 求()34Ln i +解 ()434ln 5arctan2,3Ln i i k i k π+=++∈Z 4. 函数2()f z z =在复平面上何处可导?何处解析?解 仅在0z =处可导,处处不解析.5. 函数()()222()2f z x y i xy y =-+-,z x iy =+在复平面上何处可导?何处解析? 解 仅在直线0y =上可导,在复平面上处处不解析.6. 函数2()f z x iy =-,z x iy =+在复平面上何处可导?何处解析?解 仅在直线12x =-处可导,处处不解析. 7. 计算()211sin 1z z dz z π+=-⎰解 ()()2111sin sin 2011z z z z dz i z z πππ+==-=⋅=--⎰ 8. 计算211sin 41z z dz z π-=⎛⎫ ⎪⎝⎭-⎰ 解2111sin sin 442112z z z z idz i z z πππ-==⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭=⋅=-+⎰第6页9. 计算()211sin 1z z dz z π+=-⎰解()()2111sin sin 2011z z z z dz i z z πππ+==-=⋅=--⎰ 10. 将sin z 展开为z 的幂级数.解 ()()2101sin 21!nn n z z n +∞=-=+∑ (z <+∞)11. 将cos z 展开为z 的幂级数.解 ()()201c o s2!nn n z z n ∞=-=∑ (z <+∞)12. 将1z展开为1z -的幂级数.解 ()()()0111111n nn z z z ∞===---+∑ (11z -<)四、1. 用留数计算积分:312(1)(2)(4)(5)z dzi z z z z π=----⎰. 解()()()()()31212(1)(2)(4)(5)()()1113412311112612z z z dzi z z z z Res f z Res f z π===----=+=+-⋅-⋅-⋅-⋅-=-+=⎰第7页2. 用留数计算积分:912(1)(2)(5)(10)z dzi z z z z π=----⎰. 解()91012(1)(2)(5)(10)()()1098511985360z z z dzi z z z z Res f z Res f z π===∞----=-+⎛⎫=-+ ⎪⋅⋅⎝⎭=-=-⋅⋅⎰3. 用留数计算积分 ()222211z z z dz z =-+-⎰。
复变函数论作业及答案
习题1第一章 复数及复变函数1.11222z ==-求|z|,Argz 解:1232122=⎪⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=zArgz=arctan 212-+2k π=23k ππ+-, ,2,1,0±±=k2.211i z +=,=2z i -3,试用指数形式表示2121z z z z 及解:211i z +=i e 4π==2z i -3i e62π-=所以21z z =i e62π-ie 4πie122π-=21z z ii i ie e e e 125)64(6421212πππππ===+- 3. 解二项方程440z a += )0(>a 解 由440z a +=得44z a =- 那么二次方程的根为1k w a = 〔k=0,1,2,3〕 =24k i ea ππ+⋅〔k=0,1,2,3〕0w =4i ea π⋅=(1+i)23441(1)2i i a w ea ea i πππ+⋅===-+542(1)2i a w ea i π==--743(1)2i a w ea i π==-4 .设1z 、2z 是两个复数,求证:),Re(2||||||212221221z z z z z z -+=-证明:()()2121221z z z z z z --=-()2122212121222112212221Re 2z z z z z z z z z z z z z z z z -+=--+=---=5. 设123z ,z ,z 三点适合条件:1230z z z ++=及1231z z z ===试证明123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点。
证明:设111z x iy =+,222z x iy =+,333z x iy =+因为1230z z z ++=∴1230x x x ++=,1230y y y ++= ∴123x x x =--,123y y y =--又因为1231z z z ===∴三点123z ,z ,z 在单位圆周上,且有222222112233x y x y x y +=+=+而()()2222112323x y x x y y +=+=+()()2223231x x y y ∴+++=()232321x x y y ∴+=-同理=+)(22121y y x x ()()131********x x y y x x y y +=+=-可知()()()()()()222222121223231313x x y y x x y y x x y y -+-=-+-=-+-即122313z z z z z z -=-=-123z ,z ,z 是一个内接于单位圆周1z =的正三角形的顶点得证。
复变函数作业答案
2 ,0 r
i
3. 6 z
24 xy 2 z 3 6 y 2 z 。
j
+ (3xz 2 1)
F
( z 3 4 xy )
+ (6 y 2 x 2 )
k
则 F =0 , 故 存 在 函 数
u
,使
d u = ( z 3 4 xy )dx (6 y 2 x 2 )dy (3xz 2 1)dz 0 ,即微分方程的解为 u( x, y , z ) c, c 为常数 五.势函数 u 向量势为 G
1 = 1 ( 1 ) ( 1)n 1 nz 2 n 2 , R 1 ; 2 2 2 (1 z ) 2z 1 z n1
2 1 (1i ) z 2 22 n 2 n z 2 2. e sin z = (e e (1i ) z ) sin z ,R ; 2i 4 n 0 n!
2
3
3 0 0 2 0 1 sin 2 3 cos 2 1
四. 4a ,
2
五.
1 4 a 4
向量分析与场论作业 2 一. 1. 二.1.
x2 y2 z ;
b 三. 10 3
2. 0;
3. |grad u |.
四. 1 ( 2 e 4 )
3
五.1. u 1 3
六.
f ( z ) 连 续 u, v 连 续 f ( z ) 连 续 ,
复变函数论作业 3 一.1.全平面, 二 . 1. b 三 . (2) (0,0), (
f ( z ) 3z 2 2i ; 2. 1, 3,3 ; 3. cos x cosh y i sin x sinh y
场论基础试题及答案
场论基础试题及答案一、单项选择题(每题2分,共10分)1. 场论中,场的强度定义为:A. 场源的密度B. 场源的分布C. 场对单位测试电荷的作用力D. 场源的总电荷量答案:C2. 电场强度的方向是:A. 从正电荷指向负电荷B. 从负电荷指向正电荷C. 垂直于等势面D. 与电场线平行答案:B3. 根据麦克斯韦方程组,变化的磁场可以产生:A. 恒定电场B. 变化的电场C. 恒定磁场D. 变化的磁场答案:B4. 电磁波在真空中的传播速度是:A. 光速B. 声速C. 光速的一半D. 声速的两倍答案:A5. 洛伦兹力的方向与电荷运动方向的关系是:A. 垂直B. 平行C. 相反D. 相同答案:A二、填空题(每题2分,共10分)1. 电场强度的单位是________。
答案:牛顿/库仑2. 磁场强度的单位是________。
答案:特斯拉3. 电磁波的频率与波长的关系是________。
答案:频率与波长成反比4. 根据法拉第电磁感应定律,变化的磁场可以产生________。
答案:电场5. 电磁波的传播不需要________。
答案:介质三、简答题(每题5分,共20分)1. 简述电场和磁场的关系。
答案:电场和磁场是电磁场的两个方面,它们相互关联,可以相互转换。
变化的磁场可以产生电场,而变化的电场也可以产生磁场。
2. 什么是电磁波?请简述其特性。
答案:电磁波是由电场和磁场交替变化产生的波动现象。
电磁波的传播不需要介质,可以在真空中传播,具有波长和频率,且波速在真空中是一个常数。
3. 麦克斯韦方程组包含哪四个方程?请简述它们的意义。
答案:麦克斯韦方程组包括高斯定律、高斯磁定律、法拉第电磁感应定律和安培环路定律。
高斯定律描述了电荷分布与电场的关系;高斯磁定律表明磁场是由电流产生的;法拉第电磁感应定律描述了变化的磁场产生电场的现象;安培环路定律则描述了电流和磁场之间的关系。
4. 洛伦兹力是如何定义的?请简述其作用。
答案:洛伦兹力是运动电荷在电磁场中受到的力,其大小和方向由电荷量、电荷速度、电场强度和磁场强度共同决定。
复变函数论第三版课后习题答案
第一章习题解答〔一〕1.设z =z 及Arcz 。
解:由于3i z e π-== 所以1z =,2,0,1,3Arcz k k ππ=-+=±。
2.设121z z =,试用指数形式表示12z z 及12z z 。
解:由于6412,2i i z e z i e ππ-==== 所以()64641212222i i iiz z e eee πππππ--===54()146122611222ii i i z e e e z e πππππ+-===。
3.解二项方程440,(0)z a a +=>。
解:12444(),0,1,2,3k ii z a e aek πππ+====。
4.证明2221212122()z z z z z z ++-=+,并说明其几何意义。
证明:由于2221212122Re()z z z z z z +=++2221212122Re()z z z z z z -=+-所以2221212122()z z z z z z ++-=+其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。
5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。
证明z 1,z 2,z 3是内接于单位圆1=z 的一个正三角形的顶点。
证 由于1321===z z z,知321z z z ∆的三个顶点均在单位圆上。
因为33331z z z ==()[]()[]212322112121z z z z z z z z z z z z +++=+-+-=21212z z z z ++=所以, 12121-=+z z z z ,又)())((122122112121221z z z z z z z z z z z z z z +-+=--=-()322121=+-=z z z z故 321=-z z ,同理33231=-=-z z z z ,知321z z z ∆是内接于单位圆1=z 的一个正三角形。
2023年组织行为学题库及客观题答案
《组织行为学》复习资料试卷题型:选择题(20×1’),简答题(6×5’),论述题(3×10’),案例分析(1×20’)第1章组织行为学理论基础一、单选题1、研究组织的运营及其规律的学科是()。
A.社会学 B.管理学 C.组织行为学 D.市场营销学2、在组织行为学的研究方法中,为了证明某个观点所进行的研究是()。
A.工作研究B.理论性研究C.应用性研究D.描述性研究3、在组织行为学的研究方法中,设有控制组并对研究条件方面进行最大限度控制的研究方法是()。
A.案例研究B.现场研究C.实验室研究D.文献研究4、研究组织的运营及其规律的学科是()。
A.社会学 B.管理学 C.组织行为学 D.市场营销学5、以了解某一社会现象的现状、特点和发展过程为目的所进行的调查研究,称为()。
A.描述性研究B.预测性研究C.归纳性研究D.解释性研究6、被称为“科学管理之父”,并出版了《科学管理原理》一书的人是()。
A.泰罗B.赫兹伯格C.莉莲·吉尔布雷斯D.马科思·韦伯7、在生产管理中,创制了运用线条图来对产品活动进行计划调度和控制的人是()。
A.弗兰克·吉尔布雷斯B.亨利·甘特C.泰罗D.亨利·福特8、组织理论发展共经历了三个阶段,其中第二阶段——近代组织理论的理论依据是()。
A.马科斯·韦伯的理论B.亨利·法约尔的理论C.行为科学理论D.权变管理理论9、提出了抱负的行政组织体系理论,主张通过职务或职位而不是个人或世袭地位来管理,还著有《新教的伦理》、《社会和经济组织的理论》等著作,因此被称为组织管理之父的是()。
A.法约尔B.泰罗C.马科思·韦伯D.亨利·甘特10、法约尔没有提出的理论或观点是()。
A.经营六职能B.行政管理理论C.14条管理原则D.管理五要素理论11、为了克服由于命令的统一原则而产生的信息传递的延误,专门设计了一种分层管理的“跳板”,以沟通信息,及时解决问题。
复变函数论试题库及答案
《复变函数论》试题库《复变函数》考试试题(一)一、 判断题(20分):1.若f(z)在z 0的某个邻域可导,则函数f(z)在z 0解析. ( )2.有界整函数必在整个复平面为常数. ( )3.若}{n z 收敛,则} {Re n z 与}{Im n z 都收敛. ( )4.若f(z)在区域D 解析,且0)('≡z f ,则C z f ≡)((常数). ( )5.若函数f(z)在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( )6.若z 0是)(z f 的m 阶零点,则z 0是1/)(z f 的m 阶极点. ( )7.若)(lim 0z f z z →存在且有限,则z 0是函数f(z)的可去奇点. ( )8.若函数f(z)在是区域D 的单叶函数,则)(0)('D z z f ∈∀≠. ( ) 9. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C0)(=⎰Cdz z f .( )10.若函数f(z)在区域D 的某个圆恒等于常数,则f(z)在区域D 恒等于常数.( ) 二.填空题(20分)1、 =-⎰=-1||00)(z z nz z dz__________.(n 为自然数)2.=+z z 22cos sin _________. 3.函数z sin 的周期为___________.4.设11)(2+=z z f ,则)(z f 的孤立奇点有__________.5.幂级数nn nz∞=∑的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若ξ=∞→n n z lim ,则=+++∞→n z z z nn (i)21______________.8.=)0,(Re n zz e s ________,其中n 为自然数.9. zz sin 的孤立奇点为________ .10.若0z 是)(z f 的极点,则___)(lim 0=→z f z z .三.计算题(40分):1. 设)2)(1(1)(--=z z z f ,求)(z f 在}1||0:{<<=z z D 的罗朗展式.2..cos 11||⎰=z dz z3. 设⎰-++=C d z z f λλλλ173)(2,其中}3|:|{==z z C ,试求).1('i f +4. 求复数11+-=z z w 的实部与虚部.四. 证明题.(20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D 为常数.2. 试证: ()f z 0Re 1z ≤≤的z 平面能分出两个单值解析分支, 并求出支割线0Re 1z ≤≤上岸取正值的那支在1z =-的值.《复变函数》考试试题(二)一. 判断题.(20分)1. 若函数),(),()(y x iv y x u z f +=在D 连续,则u (x,y )与v (x,y )都在D 连续.( )2. cos z 与sin z 在复平面有界. ( )3. 若函数f (z )在z 0解析,则f (z )在z 0连续. ( )4. 有界整函数必为常数. ( )5. 如z 0是函数f (z )的本性奇点,则)(lim 0z f z z →一定不存在. ( )6. 若函数f (z )在z 0可导,则f (z )在z 0解析. ( )7. 若f (z )在区域D 解析, 则对D 任一简单闭曲线C 0)(=⎰Cdz z f .( )8. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( ) 9. 若f (z )在区域D 解析,则|f (z )|也在D 解析. ( ) 10. 存在一个在零点解析的函数f (z )使0)11(=+n f 且,...2,1,21)21(==n nn f . ( )二. 填空题. (20分)1. 设i z -=,则____,arg __,||===z z z2.设C iy x z y x i xy x z f ∈+=∀+-++=),sin(1()2()(222,则=+→)(lim 1z f iz ________.3.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)4. 幂级数0n n nz ∞=∑的收敛半径为__________ .5. 若z 0是f (z )的m 阶零点且m >0,则z 0是)('z f 的_____零点.6. 函数e z 的周期为__________.7. 方程083235=++-z z z 在单位圆的零点个数为________. 8. 设211)(zz f +=,则)(z f 的孤立奇点有_________. 9. 函数||)(z z f =的不解析点之集为________.10. ____)1,1(Res 4=-zz . 三. 计算题. (40分)1. 求函数)2sin(3z 的幂级数展开式. 2. 在复平面上取上半虚轴作割线. 试在所得的区域取定函数z 在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点i z=处的值.3. 计算积分:⎰-=iiz z Id ||,积分路径为(1)单位圆(1||=z )的右半圆.4. 求dzz zz ⎰=-22)2(sin π.四. 证明题. (20分)1. 设函数f (z )在区域D 解析,试证:f (z )在D 为常数的充要条件是)(z f 在D 解析.2. 试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一. 判断题. (20分).1. cos z 与sin z 的周期均为πk2. ( ) 2. 若f (z )在z 0处满足柯西-黎曼条件, 则f (z )在z 0解析. ( )3. 若函数f (z )在z 0处解析,则f (z )在z 0连续. ( )4. 若数列}{n z 收敛,则}{Re n z 与}{Im n z 都收敛. ( )5. 若函数f (z )是区域D 解析且在D 的某个圆恒为常数,则数f (z )在区域D 为常数. ( )6. 若函数f (z )在z 0解析,则f (z )在z 0的某个邻域可导. ( )7. 如果函数f (z )在}1|:|{≤=z z D 上解析,且)1|(|1|)(|=≤z z f ,则)1|(|1|)(|≤≤z z f . ( )8. 若函数f (z )在z 0处解析,则它在该点的某个邻域可以展开为幂级数. ( ) 9. 若z 0是)(z f 的m 阶零点, 则z 0是1/)(z f 的m 阶极点. ( ) 10. 若0z 是)(z f 的可去奇点,则0)),((Res 0=z z f . ( )二. 填空题. (20分) 1. 设11)(2+=z z f ,则f (z )的定义域为___________. 2. 函数e z 的周期为_________.3. 若n n ni n n z )11(12++-+=,则=∞→n z n lim __________.4. =+z z 22cos sin ___________.5.=-⎰=-1||00)(z z n z z dz_________.(n 为自然数)6. 幂级数∑∞=0n n nx 的收敛半径为__________.7. 设11)(2+=z z f ,则f (z )的孤立奇点有__________.8. 设1-=ze,则___=z .9. 若0z 是)(z f 的极点,则___)(lim 0=→z f z z .10. ____)0,(Res =n zze .三. 计算题. (40分)1. 将函数12()zf z z e =在圆环域0z <<∞展为Laurent 级数.2. 试求幂级数nn n z nn ∑+∞=!的收敛半径.3. 算下列积分:⎰-C z z z ze )9(d 22,其中C 是1||=z .4. 求0282269=--+-z z z z在|z |<1根的个数.四. 证明题. (20分) 1. 函数)(z f 在区域D 解析. 证明:如果|)(|z f 在D 为常数,那么它在D为常数. 2. 设)(z f 是一整函数,并且假定存在着一个正整数n ,以及两个正数R 及M ,使得当R z ≥||时n z M z f |||)(|≤,证明)(z f 是一个至多n 次的多项式或一常数。
数学分析课后习题答案--高教第二版(陈纪修)--14章
a
ww
2
2π ( (1 + a 4 ) 3 − 1) 。 3a 2
w. kh d
= 2b ∫ sin t a 2 + (b 2 − a 2 ) cos 2 t dt
0
πHale Waihona Puke aw .解质量 m = ∫ ρds = b ∫0 sin t a 2 sin 2 t + b 2 cos 2 t dt
2π
co m
Σ
∫∫ ( x
Σ
2
+ y + z )dS = ∫∫ a dS = 4πa 4 ,
2 2 2 Σ
所以
⎛ x2 y2 z2 ⎞ 13 13 4 2 ⎜ ∫∫ ⎜ 2 + 3 + 4⎟ ⎟dS = 12 ∫∫ x dS = 9 πa 。 ⎠ Σ ⎝ Σ 1 (6)由对称性,有 ∫∫ x 3 dS = 0 , ∫∫ y 2 dS = ∫∫ ( x 2 + y 2 )dS ,再由 2 Σ Σ Σ 1 zdS = ∫∫ ( x 2 + y 2 )dS ,得到 ∫∫ 2 Σ Σ
⎧ x = (b + a cos φ ) cos ϕ , ⎪ (6) 环面 ⎨ y = (b + a cos φ ) sin ϕ , 0 ≤ φ ≤ 2π , 0 ≤ ϕ ≤ 2π , 其中 0 < a < b 。 ⎪ z = a sin φ , ⎩
解(1) A = ∫∫ 1 + a 2 ( x 2 + y 2 )dxdy
4. 求下列第一类曲面积分: (1) ∫∫ ( x + y + z )dS ,其中∑是左半球面 x 2 + y 2 + z 2 = a 2 , y ≤ 0 ;
复变函数论第四版答案
复变函数论第四版答案引言复变函数是复数域与自然数域的函数,将一个复数作为输入并输出一个复数。
复变函数理论是数学的一个重要分支,它在物理、工程、计算机科学等领域都有广泛的应用。
本文将对《复变函数论第四版》中的一些习题和答案进行探讨和解答,帮助读者更好地理解和掌握该书中的知识点。
第一章复变函数的基本概念习题11.设f(f)=f2−4f+3,求f(f)的零点。
答案:我们需要求解方程f(f)=0。
将f(f)=0展开得f2−4f+3=0。
使用求根公式 $z=\\frac{-b\\pm\\sqrt{b^2-4ac}}{2a}$,可以得到f=1和f=3是f(f)=0的两个解。
因此,f(f)的零点为f=1和f=3。
第二章积分与级数习题21.计算积分 $\\int_{0}^{2\\pi} e^{i\\theta} d\\theta$。
答案:我们使用欧拉公式 $e^{i\\theta} = \\cos\\theta +i\\sin\\theta$。
因此,积分 $\\int_{0}^{2\\pi} e^{i\\theta} d\\theta$ 可以表示为 $\\int_{0}^{2\\pi} (\\cos\\theta + i\\sin\\theta)d\\theta$。
由于 $\\cos\\theta$ 和 $\\sin\\theta$ 在区间 [0, $2\\pi$] 上是周期函数,且在该区间上的积分为零。
因此,$\\int_{0}^{2\\pi} e^{i\\theta} d\\theta = 0$。
习题31.设 $f(z)=\\frac{z-1}{z+1}$,计算积分 $\\int_{C} f(z)dz$,其中f是以原点为中心的单位圆。
答案:我们将积分路径f分为两段,一段为从−1到1的实轴路径,另一段为沿着单位圆逆时针方向的路径。
对于第一段路径,可以使用实数变量f来表示,f可以表示为f=f。
因此,积分可以表示为 $\\int_{-1}^{1} \\frac{x-1}{x+1} dx$。
2015-2016复变、积变、场论A答案 (1)
河北科技大学2015—2016学年第一学期《复变函数、积分变换与场论》期末考试试卷标准答案(A 卷)学院 电气学院 年级 14级 考试班级 电气141、142、143、144、SY14 一、选择题(本题共5小题,每小题3分,共15分) 1. D ; 2. C ; 3.D ; 4.A ; 5.D 。
二、填空题(本题共7小题,每小题3分,共21分) 1. -arctan 34; 2.0; 3.2sin 2; 44422sin )0,1,233k k i k ππππ-+-++=;5.-u ; 67.[(5)(5)]j πδωδω+--。
三、计算下列积分(本题共4小题,每小题5分,共20分) 1.()3321,1Cz z dz z -+-⎰Ñ,其中C 为正向圆周3||=z .解:()33211Cz z dz z -+-⎰Ñ312=(21)2!Z iz z π=''-+ ………………………………2分=12.i π ………………………………3分2. sin (1)zCz dz z e -⎰Ñ,其中C 为正向圆周1||2z =. 解: 0z =sin (1)zzz e -是的一级极点,利用留数定理,………………………………1分 Re [(),0]1s f z =-, ………………………………2分 sin (1)z C z dz z e -⎰Ñ=2Re [(),0]i s f z π=-2i π . ………………………………2分3.24.1x dx x +∞-∞+⎰ 解:241x dx x +∞-∞+⎰2i π=3442244Re [,]Re [,]11i i z z s e s e z z ππ⎧⎫+⎨⎬++⎩⎭…………………2分 2i π=344224411z i z i z z z z ππ==⎧⎫⎪⎪+⎨⎬''++⎪⎪⎩⎭()() 2i π=344223344z iz i z z z z ππ==⎧⎫⎪⎪+⎨⎬⎪⎪⎩⎭=2. …………………3分 4. 20.t te e dt t--+∞-⎰解:利用公式00()[()]f t dt L f t ds t+∞+∞=⎰⎰,20t t e e dt t--+∞-⎰20=L t te e ds +∞--⎡⎤-⎣⎦⎰ …………………3分 011=12ds s s +∞---⎰01=ln 2s s +∞+⎛⎫⎪+⎝⎭=ln2. …………………2分四、(6分)利用卷积定理,证明()-1222L sin 2+s t at a s a ⎡⎤⎢⎥=⎢⎥⎣⎦. 证:由()-122L cos +s at s a ⎡⎤⎢⎥=⎢⎥⎣⎦,()-12211L sin +at a s a ⎡⎤⎢⎥=⎢⎥⎣⎦, …………………2分及卷积定理得()-12221L cos sin +s at at a s a ⎡⎤⎢⎥=*⎢⎥⎣⎦…………………2分 01sin cos ()ta a t d a τττ=-⎰01sin sin(2)2tat a at d a ττ=+-⎰ sin 2tat a = …………………2分 五、计算题 (6分)求函数1()()()()()222a a f t t a t a t t δδδδ⎡⎤=-++-+++-⎣⎦的Fourier 变换. 解:[]221L ()2a aj j j a j a f t e e e e ωωωω--⎡⎤=-+++⎣⎦ …………………4分2222aaj j j a j a e e ee j jωωωω--++=-+sin cos2aj a ωω=-+ …………………2分六、解下列各题 (每小题8分,共32分)1.利用Laplace 变换求方程222cos t y y y e t '''-+=满足(0)(0)1y y '==的解. 解:方程两边取拉氏变换,并记[()]()L y t Y s =,得222(1)()2()2()(1)1s s Y s sY s Y s s --+=-+ …………………2分即2222(1)1()(22)(1)1s Y s s s s -'==--+-+() …………………2分 再取拉氏逆变换,并利用公式11[()][()]L F s tL F s --'=-(微分性质), …………2分 得其解为1112211()[()][()][]sin (1)1(1)1ty t L Y s L tL te t s s ---'==-==-+-+. …………………2分 2. 求矢量场222A yz i zx j xy k =++u v v v v的散度和旋度.解:222022020z zy D A zx x y xy ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦u v0divA = …………………4分222(2)(2)(2)rotA xy x i zy y j xz z k =-+-+-v v v …………………4分3. 把函数()()1()12=--f z z z 分别在011<-<z 和12<-<+∞z 内展开为洛朗级数.解:在011<-<z 内,()()1()12=--f z z z ()()11111z z -=---g ()01(1)1n n z z +∞=-=--∑g …………………2分-101-(1)-(1)n n n n z z +∞+∞===-=-∑∑ …………………2分在12<-<+∞z 内,()()1()12=--f z z z ()()1121+2z z =--g ()()211121+2z z =--g …………………2分 ()21(1)(2)2nnn z z +∞-==---∑g 2(1)(2)nn n z +∞+=-=-∑ …………………2分4.设矢量场cos cos sin ,A y xy i x xy j z k →→→→=++ (1)证明矢量场→A 为有势场; (2)求矢量场→A 的势函数.解:(1)22sin cos sin 0cos sin sin 000cos y xy xy xy xy D A xy xy xy x xy z ⎡⎤--⎢⎥=--⎢⎥⎢⎥⎣⎦u v0rotA =,因此,矢量场→A 为有势场。
复变函数14套题目和答案
复变函数14套题目和答案《复变函数论》试题库《复变函数》考试试题(一)一、判断题(20分):1.若f(z)在z0的某个邻域内可导,则函数f(z)在z0解析.()2.有界整函数必在整个复平面为常数.()3.若收敛,则与都收敛.()4.若f(z)在区域D内解析,且,则(常数).()5.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()6.若z0是的m阶零点,则z0是1/的m阶极点.()7.若存在且有限,则z0是函数f(z)的可去奇点.()8.若函数f(z)在是区域D内的单叶函数,则.()9.若f(z)在区域D内解析, 则对D内任一简单闭曲线C.()10.若函数f(z)在区域D内的某个圆内恒等于常数,则f(z)在区域D内恒等于常数.()二.填空题(20分)1.__________.(为自然数)2._________.3.函数的周期为___________.4.设,则的孤立奇点有__________.5.幂级数的收敛半径为__________.6.若函数f(z)在整个平面上处处解析,则称它是__________.7.若,则______________.8.________,其中n为自然数.9.的孤立奇点为________.10.若是的极点,则.三.计算题(40分):1.设,求在内的罗朗展式.2.3.设,其中,试求4.求复数的实部与虚部.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.试证: 在割去线段的平面内能分出两个单值解析分支, 并求出支割线上岸取正值的那支在的值.《复变函数》考试试题(二)1、判断题.(20分)1.若函数在D内连续,则u(x,y)与v(x,y)都在D内连续.()2.cos z 与sin z在复平面内有界.()3.若函数f(z)在z0解析,则f(z)在z0连续.()4.有界整函数必为常数.()5.如z0是函数f(z)的本性奇点,则一定不存在.()6.若函数f(z)在z0可导,则f(z)在z0解析.()7.若f(z)在区域D内解析, 则对D内任一简单闭曲线C.()8.若数列收敛,则与都收敛.()9.若f(z)在区域D内解析,则|f(z)|也在D内解析.()10.存在一个在零点解析的函数f(z)使且.()二.填空题.(20分)1.设,则 2.设,则________.3._________.(为自然数)4.幂级数的收敛半径为__________.5.若z0是f(z)的m阶零点且m>0,则z0是的_____零点.6.函数ez的周期为__________.7.方程在单位圆内的零点个数为________.8.设,则的孤立奇点有_________.9.函数的不解析点之集为________.10..三.计算题.(40分)1.求函数的幂级数展开式.2.在复平面上取上半虚轴作割线.试在所得的区域内取定函数在正实轴取正实值的一个解析分支,并求它在上半虚轴左沿的点及右沿的点处的值.3.计算积分:,积分路径为(1)单位圆()的右半圆.4.求.四.证明题.(20分)1.设函数f(z)在区域D内解析,试证:f(z)在D内为常数的充要条件是在D内解析.2.试用儒歇定理证明代数基本定理.《复变函数》考试试题(三)一.判断题.(20分).1.cos z与sin z的周期均为.()2.若f(z)在z0处满足柯西-黎曼条件, 则f(z)在z0解析.()3.若函数f(z)在z0处解析,则f(z)在z0连续.()4.若数列收敛,则与都收敛.()5.若函数f(z)是区域D内解析且在D内的某个圆内恒为常数,则数f(z)在区域D内为常数.()6.若函数f(z)在z0解析,则f(z)在z0的某个邻域内可导.()7.如果函数f(z)在上解析,且,则.()8.若函数f(z)在z0处解析,则它在该点的某个邻域内可以展开为幂级数.()9.若z0是的m阶零点, 则z0是1/的m阶极点.()10.若是的可去奇点,则.()二.填空题.(20分)1.设,则f(z)的定义域为___________.2.函数ez的周期为_________.3.若,则__________.4.___________.5._________.(为自然数)6.幂级数的收敛半径为__________.7.设,则f(z)的孤立奇点有__________.8.设,则.9.若是的极点,则.10..三.计算题.(40分)1.将函数在圆环域内展为Laurent级数.2.试求幂级数的收敛半径.3.算下列积分:,其中是.4.求在|z|<1内根的个数.四.证明题.(20分)1.函数在区域内解析.证明:如果在内为常数,那么它在内为常数.2.设是一整函数,并且假定存在着一个正整数n,以及两个正数R及M,使得当时,证明是一个至多n次的多项式或一常数。
华中师大《复变函数》综合测试题及答案
《复变函数》综合测试题及答案一、选择题(单选题)1、(容易)复数z i =的幅角主值为( ) (A )3π (B )3π- (C )6π- (D )6π2、(中等)复数1cos sin ,0z i θθθπ=-+≤≤的模为( ) (A )2sin2θ(B )2sin2θ- (C )22cos θ- (D )2cos 2θ-3、(容易)设z =z 的指数表示为( ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=4、(中等)若ω是方程310z -=的一个非零复数根,则21ωω++=( )(A )0 (B )i (C )2ω (D )ω-5、(容易)函数()f z z =在z 平面上( )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 6、(容易)满足11z z -=+的点z 所组成的点集为( )(A )Im 0z = (B )Re 0z = (C )Im 0z > (D )Re 0z > 7、(容易)函数()f z u iv =+在区域D 内解析的充要条件是( )(A ),,,u u v vx y x y∂∂∂∂∂∂∂∂都在D 内连续 (B )在D 内,u v u v x y y x∂∂∂∂==-∂∂∂∂ (C ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内存在,且,u v u v x y y x ∂∂∂∂==-∂∂∂∂ (D ),,,u u v v x y x y ∂∂∂∂∂∂∂∂都在D 内连续,且,u v u v x y y x∂∂∂∂==-∂∂∂∂ 8、(容易)1(0)()nz a dz z a ρρ-=>-⎰的值为( ) (A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π 9、(容易)1zz e dz z==⎰( )(A )0 (B )2π(C )2i π (D )(2)(0,1,2,)k i k π+= 10、(容易)()f z 在复平面上解析且有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )z (D )()nz n N ∈ 11、(容易)复级数1n n z ∞=∑收敛的必要条件是( )(A )对一切n ,0n z = (B )存在一列自然数{}k n ,使得0kn z =(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=12、(容易)幂级数11n n n z n∞=+∑的收敛半径为( )(A )+∞ (B )0 (C )1 (D )2 13、(容易)0z =为()sin f z z z =-的( )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )3阶零点 14、(容易)设1()1z f z e =-,则0z =是()f z 的( ) (A )1阶极点 (B )2阶极点 (C )可去奇点 (D )本性奇点 15、(容易)0z ≠∞是函数()f z 的可去奇点,则0Re (,)s f z =( ) (A )0()f z (B )0 (C )2π (D )2i π 16、(容易)若复数22z i =-,则z 的幅角主值为( ) (A )2π (B )2π- (C )4π(D )4π-17、(中等)复数1cos sin (0)z i θθθπ=++≤≤的模为( ) (A )2cos2θ(B )2cos2θ- (C )22cos θ+ (D )2sin 2θ+18、(容易)设z =,则z 的指数表示为( ) (A )cossin44z i ππ=+ (B )4i z eπ⋅= (C )cossin44z i ππ=- (D )4i z eπ-⋅=19、(中等)若12ω=-+,则23ωωω++=( ) (A )0 (B )ω (C )2ω (D )ω- 20、(中等)函数()Re f z z =在z 平面上( )(A )不连续 (B )连续且可导 (C )连续但处处不可导 (D )以上答案都不对 21、(容易)下列哪些点集是区域(B ) (A )Im 0z = (B )1Re 2z >(C )12z i ++≤ (D )Re 0z ≥ 22、(中等)若()f z u iv =+,且在区域D 内满足,u v u v x y y x∂∂∂∂==-∂∂∂∂,则( ) (A )()f z 在D 内解析 (B )()f z 在D 内不解析 (C )()f z 在D 内可微 (D )()f z 在D 内不一定可微23、(容易)113z dz z =-⎰的值为( ) (A )2i π (B )0 (C )1 (D )1- 24、(容易)1sin z zdz z==⎰( ) (A )0 (B )i π (C )2i π (D )2i π-25、(中等)若区域D 内解析函数()f z u iv =+满足00ux u y∂⎧=⎪∂⎪⎨∂⎪=∂⎪⎩,则()f z 在区域D 内为( )(A )0 (B )常数 (C )不一定为常数 (D )0v = 26、若复级数1n n z ∞=∑收敛,则( )(A )对一切n ,0n z ≠ (B )存在一列自然数{}k n ,使得0kn z ≠(C )lim 0n n z →∞≠ (D )lim 0n n z →∞=27、(容易)幂级数11!nn z n ∞=+∑的收敛半径为( )(A )+∞ (B )0 (C )1 (D )2 28、(中等)0z =为()1cos f z z =-的( )(A )极点 (B )非孤立奇点 (C )本性奇点 (D )2阶零点29、(容易)设函数()f z 在00z z <-<+∞内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( )(A )非孤立奇点 (B )极点 (C )本性奇点 (D )解析点30、(容易)变换az bw cz d+=+(a ,b ,c ,d 为复常数)为分式线性变换的条件是( ) (A )0ad bc -≠ (B )0ad bc -= (C )a bc d= (D )a b c d ===31、(容易)复数1z =+的幅角主值为( )(A )6π (B )6π- (C )3π(D )3π-32、(中等)若ω是方程310z -=的一个非零复数根,则345ωωω++=( )(A )0 (B )i (C )2ω (D )ω-33、(容易)下列等式正确的是( )(A )z z z ⋅= (B )2z z z ⋅= (C )2Im z z i z += (D )2Re z z z -= 34、(中等)下列哪些函数在复平面上解析( ) (A )sin z (B )z (C )2z (D )Re z 35、(中等)满足11z z ->+的点z 所组成的点集为( ) (A )Im 0z < (B )Re 0z < (C )Im 0z > (D )Re 0z >36、(容易)使函数()f z u iv =+在区域D 内解析的柯西—黎曼条件是( ) (A )在D 内,u v u v x y y x ∂∂∂∂==∂∂∂∂ (B )在D 内,u v u vx y y x ∂∂∂∂==-∂∂∂∂ (C )在D 内,u v u v x y y x ∂∂∂∂=-=∂∂∂∂ (D )在D 内,u v u v x y y x∂∂∂∂=-=-∂∂∂∂ 37、(中等)设()f z 在区域D 内解析,且0{}U z z z D δ=-<⊂,在U 上()0f z =,则在D 内 ( )(A )()f z 不恒为零 (B )()f z 为不为零的常数 (C )()f z 只有惟一的零点 (D )()0f z ≡38、(容易)1()nCdz z a -⎰(其中C 为包围点a 任意围线)的值为( ) (A )当1n =时为2i π;当1n ≠时为0 (B )0 (C )2i π (D )2n i π 39、(容易)21zz e dz z ==⎰( ) (A )0 (B )2π(C )2i π (D )i π 40、(中等)()f z 在复平面上解析且Re ()f z 有界,则()f z 在平面上为( )(A )0 (B )常数 (C )z e (D )ln z41、(中等)在1z <内解析,在区间(1,1)-上具有展式0n n x ∞=∑的函数只能是( )(A )1(1)1z z <+ (B )ln(1)(1)z z -< (C )1(1)1z z <- (D )1(1)1z z<-42、(中等)幂级数21121n n z n -∞=-∑的收敛半径为( )(A )+∞ (B )1 (C )0 (D )2 43、(容易)若1()cosf z z i=+,则z i =-是()f z 的( ) (A )可去奇点 (B )非孤立奇点 (C )极点 (D )本性奇点 44、(中等)若()()g z f z z a=-,且()g z 在点a 解析,()0g a ≠,则Re (,)s f a =( ) (A )()g a (B )2()ig a π (C )0 (D )()g a '45、(中等)变换(01)1z aw a a z-=<<-⋅把单位圆1z <保形映射成( )(A )上半平面Im 0z > (B )单位圆1w < (C )下半平面Im 0z < (D )1w > 46、(容易)arg(34)i -+=( )(A )3arctan4π-(B )3arctan 4π+ (C )4arctan 3π- (D )4arctan 3π+ 47、(中等)若ω是方程31z =的一个非零复数根,则下列哪些也是此方程的根( )(A )ω (B )ω- (C )2ω- (D )i48、(中等)下列等式不正确的是( )(A )2z z z ⋅= (B )1212arg arg arg z z z z ⋅=+(10z ≠,20z ≠) (C )1212rg rg rg A z z A z A z ⋅=+(10z ≠,20z ≠) (D )arg arg (0)z z z =-≠ 49、(容易)下列哪些函数在复平面上不解析( ) (A )sin z (B )cos z (C )chz (D )ze - 50、(容易)设{Im 2,Re 3}E z z z =<<,则E 一定是( )(A )无界区域 (B )有界单连通区域 (C )多连通区域 (D )闭区域 51、(容易)使函数()f z u iv =+在区域D 内解析的充要条件是( )(A )u ,v 在D 内具有一阶连续的偏导数(B )u ,v 在D 内可微,且在D 内满足柯西—黎曼条件(C )u ,v 在D 内具有一阶偏导数,且在D 内满足柯西—黎曼条件 (D )u ,v 在D 内在D 内满足柯西—黎曼条件52、(容易)设()f z 在复平面上解析,且C 为不通过原点的围线,则()Cf z dz z=⎰( ) (A )2(0)i f π⋅ (B )(0)f (C )0 (D )0或2(0)i f π⋅53、(中等)11cos z dz z==⎰( ) (A )0 (B )1 (C )2i π (D )i π54、(容易)若()f z 在区域D 内满足 ()0f z '=,则()f z 在区域D 内必为( ) (A )0 (B )z (C )常数 (D )ze55、(中等)()f z 在复平面上解析且Im ()f z 有界,则()f z 在平面上为( ) (A )0 (B )常数 (C )ze (D )ln z56、(中等)在复平面上解析,在区间[0,1]上等于sin x 的函数只能是( ) (A )sin()2z π+ (B )sin()z π+(C )sin iz (D )sin z57、(容易)若幂级数1nn n a z ∞=∑的收敛半径0R >,则在闭圆()z r R ≤<上1nn n a z ∞=∑( )(A )不绝对收敛 (B )一致收敛且绝对收敛 (C )绝对收敛但不一致收敛 (D )一致收敛但不绝对收敛 58、(中等)0z =为21cos ()zf z z-=的( ) (A )本性奇点 (B )非孤立奇点 (C )二阶极点 (D )可去奇点59、(容易)函数1()z e f z z-=在0z =处的留数为( )(A )0 (B )2i π (C )1 (D )i π 60、(容易)变换z iw z i-=+把上半平面Im 0z >保形映射成( ) (A )上半平面Im 0z > (B )单位圆1w < (C )下半平面Im 0z < (D )1w >61、(容易)若复数1z i =-,则z 的幅角主值为( )(A )4π-(B )4π(C )34π- (D )34π62、(中等)若21z =-,则z 等于( ) (A )i - (B )i ± (C )i (D )1±63、(容易)下列点集是区域的是( )(A )1{Im }2z z = (B ){1}z z = (C )1{Im }2z z > (D )2{1}z z = 64、(容易)设()f z x yi =-(,x y R ∈),则( )(A )()f z 在z 平面上解析 (B )()f z 在0z =可导 (C )()f z 在z 平面上处处可导 (D )()f z 在z 平面上连续 65、(中等)设()f z u iv =+,且在区域D 内满足柯西—黎曼条件,则( ) (A )()f z 在D 内不一定解析 (B )()f z 在D 内解析 (C )()f z 在D 内可导 (D )()f z 在D 内一定不可导 66、(容易)下列哪些函数在z 平面上解析( ) (A )z (B )cos z (C )z (D )ze 67、(容易)11cos z dz z==⎰( ) (A )1 (B )2i π (C )0 (D )1- 68、(容易)1zz e dz z==⎰( ) (A )0 (B )1 (C )12iπ (D )2i π 69、(中等)若()f z 在区域D 内解析,且Re ()f z =实常数,则()f z 在区域D 内为( ) (A )复常数 (B )Re z (C )z (D )sin z 70、(容易)若()sin f z z =,则下列结论不成立的是( )(A )()f z 为解析函数 (B )()f z 有界 (C )()f z 为周期函数 (D )()f z 有零点 71、(中等)复级数0n n i ∞=∑( )(A )一定收敛 (B )等于11i-(C )一定发散 (D )以上结论都不对 72、(容易)设幂级数为00()n n n a z z ∞=-∑,则( )(A )00()nn n a z z ∞=-∑仅在点0z 收敛 (B )00()n n n a z z ∞=-∑在全平面上收敛(C )00()nn n a z z ∞=-∑在点0z 不收敛 (D )00()n n n a z z ∞=-∑在点0z 收敛73、(容易)幂级数11n n n n z ∞=+⋅∑的收敛半径为( )(A )0 (B )+∞ (C )1 (D )2 74、(容易)幂级数1n n z ∞=∑在1z <内的和函数为( )(A )11z - (B )1z z - (C )11z + (D )1zz+ 75、(中等)()1cos f z z =-以0z =为( )(A )一阶零点 (B )一阶极点 (C )二阶零点 (D )二阶极点76、(容易)设()f z 在00z z R <-<内解析,且0lim ()z z f z →=∞,则0z 是()f z 的( )(A )零点 (B )可去奇点 (C )非孤立奇点 (D )极点 77、(中等)若21cos ()zf z z -=,则0z =必为()f z 的 ( ) (A )可去奇点 (B )零点 (C )本性奇点 (D )二阶极点 78、(中等)若∞是函数()f z 的可去奇点,则Re (,)s f ∞=( )(A )0 (B )不一定为0 (C )不存在 (D )以上结论都不对 79、(容易)若1()zf z e =,则Re (,0)s f = ( )(A )∞ (B )0 (C )1 (D )以上答案都不对 80、(中等)映射322w z z =+在点z i =处的伸缩率为 ( )(A (B ) (C )25 (D )581、(容易)若复数1z i =-,则z 的幅角主值为( )(A )23π (B )23π- (C )6π- (D )6π 82、(中等)若31z =且Im 0z >,则z 等于( )(A )1 (B )12-(C )12+ (D )12-- 83、(容易)下列点集不是区域的是( )(A ){Im 0}z z > (B ){Re 0}z z < (C ){1}z z i ≤+ (D ){1}z z > 84、(中等)设()f z i z =⋅,则( )(A )()f z 在z 平面上处处不连续 (B )()f z 在z 平面上解析 (C )()f z 为整函数 (D )()f z 在z 平面上处处不解析85、(容易)设()f z u iv =+,则使得()f z 在区域D 内解析的柯西—黎曼条件是( )(A ),u v u v x y y x ∂∂∂∂==-∂∂∂∂ (B ),u v u vx y y x ∂∂∂∂=-=∂∂∂∂ (C ),u v u v x y y x ∂∂∂∂=-=-∂∂∂∂ (D ),u v u vx y y x∂∂∂∂==∂∂∂∂ 86、(容易)在z 平面上处处不解析的函数是( ) (A )z (B )Im z (C )cos z (D )sin ze87、(容易)13z zdz z ==-⎰( ) (A )2i π- (B )2i π (C )0 (D )1 88、(中等)21sin z z dz z==⎰( ) (A )2i π (B )1 (C )i π- (D )089、(中等)若()f z 在区域D 内解析,且()f z =实常数,则()f z 在区域D 内为( ) (A )复常数 (B )0 (C )z (D )ze 90、(容易)若()zf z e =,则下列结论不成立的是( )(A )()f z 为整函数 (B )()f z 非周期函数 (C )()f z 无零点 (D )()f z 无界 91、(容易)幂级数0!nn n z ∞=⋅∑的收敛半径为( )(A )+∞ (B )1(C )0 (D )以上结论都不对92、(容易)设幂级数为0nn n a z ∞=∑的收敛半径0R >,则此幂级数的和函数( )(A )在z R <内不连续 (B )在z R <内不解析 (C )在z R <内不能逐项求导 (D )在z R <内可逐项积分93、(中等)在1z <内解析,且在区间(1,1)-上具有展式0(1)n n n x ∞=-⋅∑的函数只能为( )(A )11z + (B )11z - (C )211z + (D )211z-94、(容易)若1()cosf z z i=+,则z i =-为()f z 的( ) (A )极点 (B )本性奇点 (C )可去奇点 (D )非孤立奇点 95、(中等)2()(1)z zf z e =-以0z =为( )(A )可去奇点 (B )本性奇点 (C )一阶极点 (D )二阶极点 96、(容易)若()()z f z z aϕ=-,且()z ϕ在点a 解析,则Re (,)s f a =( )(A )0 (B )()a ϕ' (C )2()i a πϕ'⋅ (D )()a ϕ97、(容易)22()1iz e f z z =+在z i =的留数为 ( )(A )2i i e --(B )0 (C )12i e -- (D )112e -- 98、(容易)ln(1)z +在0z =处的幂级数展开式为( )(A )1n n z n ∞=∑ (B )11(1)n n n z n ∞-=-∑ (C )1(1)n n n z n ∞=-∑ (D )0!n n z n ∞=∑99、(中等)变换1i z iw ei zθ-=+⋅(θ为实常数)把单位圆1z <保形映射成( )(A )上半平面Im 0z > (B )下半平面Im 0z < (C )1w < (D )1w > 100、(中等)变换i z iw ez iθ-=+(θ为实常数)把上半平面Im 0z >保形映射成( ) (A )左半平面Re 0z < (B )右半平面Re 0z > (C )上半平面Im 0z >(D )1z <二、多项选择题(每题至少有两个或两个以上的正确答案)1、(较难)若122ω=--是方程31z =的根,则下列哪些值不为21ωω++的值( ) (A )0 (B )i (C )i - (D )2ω 2、(较难)复数1cos sin z i θθ=-+(0θπ<<)的模为 ( ) (A )2sin2θ(B(C )2(1cos )θ- (D )2sin2θ-3、(较难)下列点集哪些是区域 ( ) (A )Im Re(1)z i >+ (B )0arg 4z π<≤(C )1Im 2z << (D )Im 3z =4、(较难)若()Re f z z =,则下列结论正确的是( )(A )()f z 在z 平面上连续 (B )()f z 在z 平面上处处不解析(C )()f z 在z 平面上解析 (D )()f z 仅在0z =处解析 5、(较难)若1()1f z z=+,则下列结论正确的是 ( ) (A )Re (,0)1s f = (B )2Re (,0)1s f = (C )2Re (,0)2s f = (D )Re (,0)0s z f ⋅=6、(较难)若ω不是方程31z =的虚数根,则下列哪些值也一定不是此方程的根( ) (A )ω (B )3ω (C )1- (D )ω-7、(较难)复数z =( ) (A )4i z eπ-⋅= (B )4i z e π⋅= (C )(2)4i k z eππ-⋅+= (k Z ∈)(D )(2)4i k z eππ⋅+= (k Z ∈)8、(较难)设{1Im 1,1Re 1}E z z z =-<<-<<,则E 一定不能是 ( ) (A )有界单连通区域 (B )有界闭区域 (C )无界区域 (D )区域9、(较难)下列哪些函数在全平面上不解析( )(A )sin z (B )z (C )Re z (D )2z 10、(较难)若1()sinf z z=,则0z =为()f z 的( ) (A )本性奇点 (B )孤立奇点 (C )可去奇点 (D )极点三、填空题(将正确的答案填在横线上)1、(中等)复数(3)(2)(3)(2)i i z i i +-=-+的模z = 。
科院复变函数与积分变换试题与答案
复变函数与积分变换试题与答案 (科院)一 判断正确与错误(每题 2 分)1.若(,)u x y 与(,)v x y 都是调和函数, 则()(,)(,)f z u x y iv x y =+是解析函数。
( × )2.因为sin 1z ≤,所以在复平面上sin z 有界。
( × )3.若()f z 在0z 解析,则()()n f z 也在0z 解析。
( √ )4.对任意的z ,22Ln z Lnz = ( × )二 填空题 (每题4分)1.22i i=--4, arg()22i i =-- 34π-, 2.ln(3)i -= ln 32i π-, i i 22k e ππ--,3.级数12n n n n z ∞=∑的收敛半径R = 2 ,在1z i =+处 收敛 。
4.0z =是241z e z -的 3 阶极点,241Re []ze s z-= 43- 。
三 解答题 (每小题7分)1.设2222()()f z x axy by i cx dxy y =++-++。
问,,,a b c d 为何值时()f z 在复平面上处处解析?并求这时的导数。
解:因为2u x ay x ∂=+∂,2u ax by y∂=+∂,2v cx dy x ∂=+∂,2v dx y y ∂=+∂,(2分) 对任意的(),x y 有,u v x y u v yx ∂∂⎧=⎪∂∂⎪⎨∂∂⎪=-⎪∂∂⎩,即2222x ay dx y ax by cy dy +=+⎧⎨+=--⎩, (1分) 可得,2,1a d b c ====-,(2分)()2()2()u v f z i x y i x y x x ∂∂'=+=+--∂∂,或22z iz -(2分)。
2.求13(1)-的所有三次方根。
解:132121(1)cossin (0,1,2)33k k i k ππ++-=+=,(4分)01cos sin 332w i ππ=+=+,1c o s s i n 1w i ππ=+=-,2551cos sin 3322w i i ππ=+=-。
2022年复变函数与积分变换第六章共形映射练习题及答案
第六章 共形映射一、选择题:1.若函数z z w 22+=构成的映射将z 平面上区域G 缩小,那么该区域G 是 ( )(A )21<z (B )211<+z (C )21>z (D )211>+z 2.映射iz iz w +-=3在i z 20=处的旋转角为( ) (A )0 (B )2π (C )π (D )2π-3.映射2iz ew =在点i z =0处的伸缩率为( )(A )1 (B )2 (C)1-e (D )e4.在映射ieiz w 4π+=下,区域0)Im(<z 的像为( )(A)22)Re(>w (B )22)Re(->w (C )22)Im(>z (D )22)Im(->w 5.下列命题中,正确的是( )(A )n z w =在复平面上处处保角(此处n 为自然数) (B )映射z z w 43+=在0=z 处的伸缩率为零(C ) 若)(1z f w =与)(2z f w =是同时把单位圆1<z 映射到上半平面0)Im(>w 的分式线性变换,那么)()(21z f z f =(D )函数z w =构成的映射属于第二类保角映射 6.i +1关于圆周4)1()2(22=-+-y x 的对称点是( )(A )i +6 (B )i +4 (C )i +-2 (D )i7.函数iz iz w +-=33将角形域3arg 0π<<z 映射为 ( )(A)1<w (B )1>w (C ) 0)Im(>w (D )0)Im(<w 8.将点1,,1-=i z 分别映射为点0,1,-∞=w 的分式线性变换为( )(A ) 11-+=z z w (B )zz w -+=11(C )z z e w i-+=112π(D) 112-+=z z e w i π9.分式线性变换zz w --=212把圆周1=z 映射为( ) (A ) 1=w (B) 2=w (B ) 11=-w (D) 21=-w10.分式线性变换zz w -+=11将区域:1<z 且0)Im(>z 映射为( ) (A )ππ<<-w arg 2(B ) 0arg 2<<-w π(C )ππ<<w arg 2(D )2arg 0π<<w11.设,,,,d c b a 为实数且0<-bc ad ,那么分式线性变换dcz baz w ++=把上半平面映射为w 平面的( )(A )单位圆内部 (B )单位圆外部 (C )上半平面 (D )下半平面12.把上半平面0)Im(>z 映射成圆域2<w 且满足1)(,0)(='=i w i w 的分式线性变换)(z w 为( )(A )z i z i i+-2 (B )i z i z i +-2 (C )z i z i +-2 (D )iz iz +-2 13.把单位圆1<z 映射成单位圆1<w 且满足0)0(,0)2(>'=w iw 的分式线性变换)(z w 为( )(A)iz i z --22 (B )iz z i --22 (C )iz i z +-22 (D )izzi +-22 14.把带形域2)Im(0π<<z 映射成上半平面0)Im(>w 的一个映射可写为( )(A )z e w 2= (B )z e w 2= (C )z ie w = (D )ize w =15.函数ie ie w z z +---=11将带形域π<<)Im(0z 映射为( )(A )0)Re(>w (B )0)Re(>w (C )1<w (D )1>w 二、填空题1.若函数)(z f 在点0z 解析且0)(0≠'z f ,那么映射)(z f w =在0z 处具有 . 2.将点2,,2-=i z 分别映射为点1,,1i w -=的分式线性变换为 .3.把单位圆1<z 映射为圆域11<-w 且满足0)0(,1)0(>'=w w 的分式线性变换=)(z w 4.将单位圆1<z 映射为圆域R w <的分式线性变换的一般形式为 .5.把上半平面0)Im(>z 映射成单位圆1)(<z w 且满足31)21(,0)1(=+=+i w i w 的分式线性变换的)(z w = .6.把角形域4arg 0π<<z 映射成圆域4<w 的一个映射可写为 .7.映射z e w =将带形域43)Im(0π<<z 映射为 . 8.映射3z w =将扇形域:3arg 0π<<z 且2<z 映射为 .9.映射z w ln =将上半z 平面映射为 . 10.映射)1(21zz w +=将上半单位圆:2<z 且0)Im(>z 映射为 . 三、设2222211111)(,)(d z c b z a z w d z c b z a z w ++=++=是两个分式线性变换,如果记⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-δγβα11111d c b a ,⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛d c b a d c b a d c b a 22221111 试证1.)(1z w 的逆变换为δγβα++=-z z z w )(11;2.)(1z w 与)(2z w 的复合变换为dcz baz z w w ++=)]([21.四、设1z 与2z 是关于圆周R a z =-Γ:的一对对称点,试证明圆周Γ可以写成如下形式λ=--21z z z z 其中Ra z a z R-=-=12λ.五、求分式线性变换)(z w ,使1=z 映射为1=w ,且使i z +=1,1映射为∞=,1w . 六、求把扩充复平面上具有割痕:0)Im(=z 且0)Re(≤<∞-z 的带形域ππ<<-)Im(z 映射成带形域ππ<<-)Im(w 的一个映射.七、设0>>a b ,试求区域a a z D >-:且b b z <-到上半平面0)Im(>w 的一个映射)(z w .八、求把具有割痕:0)Im(=w 且1)Re(21<≤z 的单位圆1<z 映射成上半平面的一个映射.九、求一分式线性变换,它把偏心圆域⎭⎬⎫⎩⎨⎧<->2511:z z z 且映射为同心圆环域R w <<1,并求R 的值.十、利用儒可夫斯基函数,求把椭圆1452222=+y x 的外部映射成单位圆外部1>w 的一个映射.第六章 共形映射一、1.(B ) 2.(D ) 3.(B ) 4.(A ) 5.(D )6.(C ) 7.(A ) 8.(C ) 9.(A ) 10.(D ) 11.(D ) 12.(B ) 13.(C ) 14.(B ) 15.(C ) 二、1.保角性与伸缩率的不变性 2. 236--=iz iz w 3.z +14.az a z w i --=θ1Re(θ为实数,1<a ) 5.iz iz +---11 6.λ-λ-=ϕ444z z ew i (ϕ为实数,0)Im(>λ) 7.角形域43arg 0π<<w8.扇形域π<<w arg 0且8<w 9.带形域π<<)Im(0w 10.下半平面0)Im(<w 五、)1(1)1(i z z i w ++-+-=. 六、)1ln(-=ze w .七、⎭⎬⎫⎩⎨⎧--π=z a z a b i b w 2exp . 八、221212121⎪⎪⎪⎪⎪⎭⎫⎝⎛-----+=z z z z w . 九、θ++=i e z z w 414(θ为实数),2=R . 十、)9(912-+=z z w .答案。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河北科技大学理工学院2014—2015学年第一学期
《复变函数、积分变换与场论》期末考试试卷标准答案(A 卷)
学院 理工学院 年级 13级 _考试班级 电气类L13
一、填空题。
(本题共10个空,每空2分,共20分;将正确答案填在题中的横线上)
1、2,π43-
2、2
sin 2cos ππi +, 2
πi e 3、k z xz j y zy i x xy ρρρ)2()2()2(222-+-+-
4、1
5、i k i ππ2)34arctan (5ln +-+,)3
4
arctan (5ln -+πi 6、绝对收敛 7、0
二、(本题共5小题,每小题2分,共10分) 1、B 2、D 3、B 4、B 5、C
三、判断下列命题的对错,对的在其后面的括号内打“√”,错误的在其后的括号内打“╳”(本题共5小题,每小题2分,共10分)。
1 ╳
2 ╳
3 ╳
4 ╳
5 ╳ 四、(本题共2小题,每小题10分,共20分) 1. 将221
(1)
z +展开成z 的幂级数. 解:由
21
1(1),11n n z z z z z
=-+++-+<+L L …………………3分 1
2
112(1),1(1)
n n z n z z z --=-++-+<+L L …………………4分 212(1)222
112(1)(1)(1),1(1)n n n n n
n z nz n z z z =∞
--==-++-+=-+<+∑L L ………3分 2. 把函数()
2
1
()f z z z i =
-在以i 为中心的圆环域内展开为洛朗级数。
解:(1)在01z i <-<内 …………………1分
A 卷标准答案 共( 4 )页,第( 1 )页
()21()f z z z i =-11z i z '
⎛⎫=-⋅ ⎪-⎝⎭
…………………2分
211i z z i z i i i '
⎛⎫--⎛⎫=⋅-++ ⎪ ⎪ ⎪-⎝⎭
⎝⎭
L (
)2
1
11
(1)n n n n n
z i i
∞
--+==--∑ …………………2分
(2)在1z i <-<+∞内 …………………1分
()21()f z z z i =-11z i z '
⎛⎫=-⋅ ⎪-⎝⎭
…………………2分
234
1123
()()()
i z i z i z i z i ⎛⎫--=
⋅+-+ ⎪----⎝⎭
L 3
(1)(1)()n
n
n n n i z i ∞
+=+=--∑ ………………2分 五、(本题10分)用两种方法计算积分42
1
z z
dz z =-⎰Ñ。
解:在圆周内被积函数有四个一级极点i ±±,1, ……………………2分 (方法1)利用留数定理
[]2
30000041
4)()(),(Re z z z z Q z p z z f s =='=
, …………………………………1分 []()[][][]{}i z f s i z f s z f s z f s i dz z z
z -++-+=-⎰=),(Re ),(Re 1,Re 1),(Re 212||4π ……………1分
⎭
⎬⎫
⎩⎨⎧--+=414141412i π …………………………………………1分
0= …………………………………………1分
(方法2)利用柯西积分公式
A 卷标准答案 共( 4 )页,第( 2 )
1
2
34
4
2
22221
(z 1)(z 1)
(z 1)(z 1)(z )(z 1)(z )(z 1)
1
1z z C z C z C z C z
dz z z
z z z i i dz dz dz dz z z z i z i
=====-++-++-+-=
+
+-+-+⎰
⎰
⎰
⎰⎰Ñ蜒蜒
…………………………………………2分
⎭
⎬⎫
⎩⎨⎧--+=414141412i π …………………………………………1分
0= …………………………………………1分
六、(本题共3小题,每小题10分,共30分)
1.设|,|,r r k z j y i x r =++=求使0])([=r r f div 的)(r f 。
解:k z r f y r f r x r f r r f )()()()(++= ……………………2分
r
z r f r f r y r f r f r x r f r f r r f div 222)()()()()()(])(['++'++'+= …………………3分
0)()(3='+=r r f r f ………………………………………………2分
3
r C
r f =
)(解得: …………………………………………………3分 2. 1)求⎪⎩
⎪
⎨⎧<<<<--=else
t t t f ,010,
10
1,1)(的傅氏变换。
2)求t te t f -=1)(的拉氏变换。
解: 1)⎰
+∞
∞
--=dt e t f F t j ωω)()(………………………………………………………2分
⎰⎰---+-=10
1dt e dt e
t j t
j ωω ………………………………………………………1分
[]
)cos 1(221
ωω
ω
ωω--
--=
-j
e e j j j 或 ……………………………………2分
2)⎰
+∞
-=0
)()(dt e t f s F st …………………………………………………………… 2分
⎰+∞
--=0
)1(dt e te st t ……………………………………………………………1分 ()1Re )
1(1
12
>--=
s s s ………………………………………………………2分 A 卷标准答案 共( 4 )页,第( 3 )页
3.求下列函数的卷积: ⎩⎨
⎧<≥=0,
00
,
1)(t t t f , ⎩⎨⎧<≥=-0
,
00
,
)(t t e t g t . 解:0<t ,0)()(=*t g t f ; ………………………………………………………2分 0>t ,⎰
+∞
∞
--=*τττd t g f t g t f )()()()( ………………………………………3分
⎰--=t t d e 0
)(ττ…………………………………………… 3分
t e --=1 …………………………………………………2分
A 卷标准答案 共( 4 )页,第( 4 )页。