工程流体力学第一章 流体的物理性质

合集下载

流体力学 第1章(下) 流体的主要物理性质

流体力学 第1章(下)  流体的主要物理性质

连续介质假设
连续介质假设是将流体区域看成由流体质点连续组成,占满空 间而没有间隙,其物理特性和运动要素在空间是连续分布的。
为什么要做这样的假设呢?
对流体物质结构的简化,使我们在分析问题时得到两大方便: 第一,它使我们不考虑复杂的微观分子运动,只考虑在外 力作用下的宏观机械运动; 第二,能运用数学分析的连续函数工具。因此,本课程分 析时均采用“连续介质”这个模型。
和流层问距离dy成反比;
2.与流层的接触面积A的大小成正比;
3.与流体的种类有关;
4.与流体的压力大小无关。
动力粘滞系数μ
表征单位速度梯度作用下的切应力,
Байду номын сангаас
所以它反映了粘滞性的动力性质,因此 也称为动力粘滞系数。
单位是N/m2·s或Pa·s。
运动粘滞系数ν
理解为单位速度梯度作用下的切应力对单位体
2、流体质点和连续介质模型
流体质点的概念 流体质点也称流体微团,是指尺度大小同一 切流动空间相比微不足道又含有大量分子,具有 一定质量的流体微元。 如何理解呢?
宏观上看(流体力学处理问题的集合尺度):流体质 点足够小,只占据一个空间几何点,体积趋于零。
微观上看(分子集合体的尺度):流体质点是一个足 够大的分子团,包含了足够多的流体分子,以至于对 这些分子行为的统计平均值将是稳定的,作为表征流 体物理特性的运动要素的物理量定义在流体质点上。
实例应用:以密度为例来说明物理量如何在流体质点上定义的。 假设流体微团的质量为Δm ,体积为ΔV ,则流体质点的密度 m 为Δm/ΔV lim
v 0
V
其中,ΔV的含义可以理解为流体微团趋于流体质点。

连续介质假设为建立流场的概念奠定了基础:设 在t时刻,有某个流体质点占据了空间点(x,y,z), 将此流体质点所具有的某种物理量定义在该时刻和空 间点上,根据连续介质假设,就可形成定义在连续时 间和空间域上的数量或矢量场。

工程流体力学思考题

工程流体力学思考题

思考题第一章流体及其物理性质1.试述流体的定义,以及它与固体的区别。

2.与气体有哪些共同的特性?它们各有什么不同的特性?试分别举例说明,在空气和水中相同与不同的一些流体力学现象。

3.何谓连续介质?引入连续介质模型的目的意义何在?4.流体的密度、比容以及相对密度之间有何关系?这三者的单位如何?5.流体的压缩性与膨胀性可以用哪些参量来描述?6.完全气体的状态方程是什么?请说明方程中每一个参量的意义。

7.何谓不可压缩流体?在什么情况下可以忽略流体的压缩性?8.何谓流体的粘性?流体的粘度与流体的压强和温度的关系如何?9.流体的粘性力与固体的摩擦力有何本质区别?10.试述牛顿内摩擦定律,根据此定律说明,当实际流体处于静止或相对静止状态时,是否存在切向应力?11.何谓理想流体?引入理想流体模型的意义何在?12.试述表面张力的定义,及其产生表面张力的机理。

13.何谓附着力,何谓内聚力?试分析水和水银在毛细管中上升或下降的现象。

14.作用在流体上的力可以分为哪两种?第二章流体静力学1.试述流体静压强的两个重要特性。

2.静力学的全部内容适用于理想流体还是实际粘性流体?或者两者都可?为什么?3.何谓流体的平衡状态与相对平衡状态?它们对应的平衡微分方程有何相同之处与不同之处?4.试写出欧拉平衡微分方程式,叙述该方程的适用范围以及方程中每一项的物理意义。

5.何谓质量力有势?试写出重力的势函数。

6.不可压缩流体处于平衡状态时,对作用在它上面的质量力有什么要求?7.试写出静止流体的压强差公式,并叙述其物理意义,此公式对于相对静止流体是否适用?8.试写出静止流体的等压面的微分方程式,此方程式对于相对静止流体是否适用?9.试述等压面的重要性质。

10.流体静力学的基本方程式的物理意义和几何意义各是什么?11.何谓绝对压强、计示压强与真空?它们之间有何关系?12.静压强的计量单位有哪几种?它们的换算关系如何?13.在一U型管中,盛有两种不相溶的、不同密度的液体,试问,在同一水平面上的液体压强是否相同?为什么?14.叙述帕斯卡原理,试举例说明它在工程中的应用。

工程流体力学知识点

工程流体力学知识点

(3)边界上可有力的作用和能量的交换,但不能有质量的交换。
4
《工程流体力学》------精品学习资料
f = 1 p ρ
该方程的物理意义:当流体处于平衡状态时,作用在单位质量流体上的质量
力与压力的合力相平衡。 其中: 称为哈密顿算子, i j k ,它本身为一个矢量,同时对
x y z
其右边的量具有求导的作用。
4.静力学基本方程式的适用条件及其意义。
牛顿内摩擦定律中的比例系数 μ 称为流体的动力粘度或粘度,它的大小可以
反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。单位
1
《工程流体力学》------精品学习资料
为 Pa·s,常用单位 mPa·s、泊(P)、厘泊(cP),其换算关系: 1 厘泊(1cP)=1 毫帕斯卡·秒(1mPa.s) 100 厘泊(100cP)=1 泊(1P) 1000 毫帕斯卡·秒(1mPa·s)=1 帕斯卡.秒(1Pa·s)
5.膨胀性
指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。其大
小用体积膨胀系数 βt 表示,即
βt
=
1 V
dV dt
6.粘性
流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,
简称粘性。
7.牛顿流体和非牛顿流体
符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。
8.动力粘度
《工程流体力学》------精品学习资料
《工程流体力学》知识点
第一章 流体的物理性质
一、学习引导
1.连续介质假设
流体力学的任务是研究流体的宏观运动规律。在流体力学领域里,一般不考
虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。按照

工程流体力学习题及答案(李良)

工程流体力学习题及答案(李良)

工程流体力学习题第一部分 流体及其物理性质1、按连续介质的概念,流体质点是指:A 、流体的分子;B 、流体内的固体颗粒;C 、几何的点;D 、几何尺寸同流动空间相比是极小量,又含有大量分子的微元体。

2、与牛顿内摩擦定律有关的因素是:A 、压强、速度和粘度;B 、流体的粘度、切应力与角变形率;C 、切应力、温度、粘度和速度;D 、压强、粘度和角变形。

3、在研究流体运动时,按照是否考虑流体的粘性,可将流体分为:A 、牛顿流体及非牛顿流体;B 、可压缩流体与不可压缩流体;C 、均质流体与非均质流体;D 、理想流体与实际流体。

4、理想液体的特征是:A 、粘度为常数B 、无粘性C 、不可压缩D 、符合RT p ρ=。

5、 流体运动黏度υ的国际单位是:A 、m 2/s ;B 、N/m 2;C 、 kg/m ;D 、N·s/m 2。

6、液体黏度随温度的升高而____,气体黏度随温度的升高而_____。

A 、减小,升高;B 、增大,减小;C 、减小,不变;D 、减小,减小7、下列说法正确的是:A 、液体不能承受拉力,也不能承受压力B 、液体不能承受拉力,但能承受压力C 、液体能承受拉力,但不能承受压力D 、液体能承受拉力,也能承受压力。

8、下列流体哪个属牛顿流体:A 、汽油;B 、纸浆;C 、血液;D 、沥青。

9、液体的黏性主要来自于液体:A 、分子热运动;B 、分子间内聚力;C 、易变形性;D 、抗拒变形的能力。

10、 流体是 一种物质。

A 、不断膨胀直到充满容器的;B 、实际上是不可压缩的;C 、不能承受剪切力的;D 、在任一剪切力的作用下不能保持静止的。

11、 简答题(1) 连续介质假设(2) 牛顿流体(3) 流体微团12、 如图所示为压力表校正器。

器内充满压缩系数为βp =4.75×10-10 1/Pa 的油液,器内压力为105Pa 时油液的体积为200mL 。

现用手轮丝杆和活塞加压,活塞直径为1cm ,丝杆螺距为2mm ,当压力升高至20MPa 时,问需将手轮摇多少转?解:p 0=105Pa ,p =20MPa ,βp =4.75×10-10 1/Pa ,V 0=200mL ,d =1cm ,δ=2mm 。

工程流体力学第1章_流体的主要物理性质

工程流体力学第1章_流体的主要物理性质

第1章 流体的主要物理性质
在工程上,也常用体积弹性系数 E 表示压缩性的大小:
E
1 KT
单位:Pa(即N/m2),大气压
E值越大,表示流体越容易被压缩,还是越不容易被压缩? 答案:不容易被压缩。
5、膨胀性
定义:压力不变时,流体温度升高其体积增大的性质称为膨胀性。 膨胀性大小用 体积膨胀系数 αv 来表示。
dV d V
因此,体积压缩系数又可写作:K 1 d T 根据密度是否变化,将流体分为:
dp
不可压缩流体:密度视为不变的流体, = Const。 可压缩流体:密度视为可变化的流体,气体p = RT, = f(p,T)。
说明:
(1)通常液体的压缩性很小,一般视为不可压缩流体。但当压强变化很大时, 如水击、水中爆炸等,则必须考虑压缩性。 (2)气体的压缩性较大,一般将气体视为可压缩流体。但在流速不高、压强 变化较小时,可按不可压缩流体对待。 14
9
第1章 流体的主要物理性质
2、重度
定义:单位体积流体所具有的重量。
数学表达式:对均质流体:
G V
V 0
对非均质流体: lim G dG
单位:国际单位:N/m3 物理单位:dyn/cm3 工程单位:kgf/m3
V
dV
达因/10-5牛顿
根据牛顿第二定律:G = Mg,两端同除以体积V,则得到重度与密度的关系:
体积膨胀系数αv:在压力不变的条件下,每增加一个单位温度,所发生
的流体体积的相对变化量。
15
第1章 流体的主要物理性质
数学表达式: dV V ,或 V
dt
aV
V V t
式中:V ——原有体积,m3; dV ——体积改变量,m3; dt ——温度的变化,℃,K; αv——体积膨胀系数,1/℃,1/K; 说明:液体的膨胀系数αv较小,工程上一般不考虑液体的膨胀性。 气体的膨胀性系数αv较大,一般应考虑。

工程流体力学

工程流体力学
τ
我们将会看到,是否忽略粘性影响将对流动问题的处理带来很大的区别,理想流体假设可以大大简化理论分析过程。 而 是流体的客观属性,所以往往是在变形速率不大的区域将实际流体简化为理想流体。
ΔV
流体的压缩性
V
流体能承受压力,在受外力压缩变形时,产生内力(弹性力)予以抵抗,并在撤除外力后恢复原形,流体的这种性质称为压缩性。
长度单位:m(米)
质量单位:kg(公斤)
时间单位:s(秒)
流体力学课程中使用的单位制
SI 国际单位制(米、公斤、秒制)
三个基本单位
导出单位,如:
01
密度 单位:kg/m3
02
力的单位:N(牛顿),1 N=1 kgm/s2
03
应力、压强单位:Pa(帕斯卡),1Pa=1N/m2
04
动力粘性系数 单位:Ns/m2 =Pas
05
运动粘性系数 单位:m2/s
06
体积弹性系数 K 单位: Pa
07
一般取海水密度为
常压常温下,空气的密度是水的 1/800 与水和空气有关的一些重要物理量的数值 1大气压,40C 1大气压,100C
空气的密度随温度变化相当大,温度高,密
度低。
水的密度随温度变化很小。 1大气压,00C 1大气压,800C
04
流体不能承受集中力,只能承受分布力。
02
一般情况下流体可看成是连续介质。
03
力学
§1-1 课程概述
工程流体力学的学科性质
研究对象 力学问题载体
宏观力学分支 遵循三大守恒原理
流体力学
水力学
流体

力学
强调水是主要研究对象 偏重于工程应用,水利工程、流体动力工程专业常用

第一章+粘性与表面张力

第一章+粘性与表面张力

判断:水温一定时,逐步升高水中的压强直至水开始汽化,则该压强称为
该水温下的汽化压强。
第六节 汽化压强
20
三、空化
空化(Cavitation):是指液体内局部压力降低到低于汽化压强时,该
处液体就会沸腾,液体内部或液固交界面上蒸汽或气体(空泡)的形成、 发展和溃灭的过程。
四、空蚀 空蚀:空化时气泡进入高压处,在高压作用下迅速破灭,伴随气泡溃灭,
a.液体:内聚力是产生粘度的主要因素,当温度升高,分子间距离增大, 吸引力减小,因而使剪切变形速度所产生的切应力减小,所以
值减小。
b.气体:气体分子间距离大,内聚力很小,所以粘度主要是由气体分子 运动动量交换的结果所引起的。温度升高,分子运动加快,动
量交换频繁,所以 值增加。
第四节 粘度
5 选择题:下面关于流体粘性的说法中,不正确的是:
(cm2/s)
(3)粘度的影响因素
4
流体粘度的数值随流体种类不同而不同,并随压强、温度变化而变化。
1)流体种类。一般地,相同条件下,液体的粘度大于气体的粘度。
2)压强。对常见的流体,如水、气体等, 值随压强的变化不 大,一般可 忽略不计。
3)温度。是影响粘度的主要因素。当温度升高时,液体的粘度减小,气体 的粘度增加。
第五节 表面张力


rh

三、毛细作用的计算
毛细高度:
h

2 cos r
对于水有: =0°, =0.074N/m
h

29.8 d
(mm)
对于水银有: =140°, =0.514N/m
h

10.15 d
(mm)
第五节 表面张力
18

工程流体力学

工程流体力学

§1.1 流体的定义
一、流体特征(续)
液体与气体的区别 液体的流动性小于气体; 液体具有一定的体积,并取容器的形状; 气体充满任何容器,而无一定体积。
流体的定义
流体是一种受任何微小的剪切力作用时,都 会产生连续变形的物质。 流动性是流体的主要特征。
§1.2 连续介质假说
微观:流体是由大量作无规则热运动的分子所组成, 分子间存有空隙,在空间上是不连续的。
在通常情况下,一个很小的体积内流体的分子数量极多;
例如,在标准状态下,1mm3体积内含有2.69×1016个气体分 子,分子之间在10-6s内碰撞1020次。
宏观:流体力学研究流体的宏观机械运动,研究的是 流体的宏观特性,即大量分子的平均统计特性。 结论:不考虑流体分子间的间隙,把流体视为由无 数连续分布的流体微团组成的连续介质。
1686年牛顿(Newton,I.)发表了名著《自然哲学的数学原理》 对普通流体的黏性性状作了描述,即现代表达为黏性切应力 与速度梯度成正比—牛顿内摩擦定律。为了纪念牛顿,将黏 性切应力与速度梯度成正比的流体称为牛顿流体。 18世纪~ 19世纪,流体力学得到了较大的发展,成为独立的一门学科。 古典流体力学的奠基人是瑞士数学家伯努利(Bernoulli,D.) 和他的亲密朋友欧拉(Euler,L.)。1738年,伯努利推导出了 著名的伯努利方程,欧拉于17 55年建立了理想流体运动微分 方程,以后纳维(Navier,C .-L.-M.-H.)和斯托克斯(Stokes, G.G.)建立了黏性流体运动微分方程。拉格朗(Lagrange)、 拉普拉斯(Laplace)和高斯(Gosse)等人,将欧拉和伯努利所 开创的新兴的流体动力学推向完美的分析高度。但当时由于 理论的假设与实际不尽相符或数学上的求解困难,有很多疑 不能从理论上给予解决。

工程流体力学课后习题答案(杨树人)

工程流体力学课后习题答案(杨树人)

工程流体力学目录第一章流体的物理性质 (1)一、学习引导 (1)二、难点分析 (2)习题详解 (3)第二章流体静力学 (5)一、学习引导 (5)二、难点分析 (5)习题详解 (7)第三章流体运动学 (13)一、学习引导 (13)二、难点分析 (13)习题详解 (16)第四章流体动力学 (22)一、学习引导 (22)习题详解 (24)第五章量纲分析与相似原理 (34)一、学习引导 (34)二、难点分析 (34)习题详解 (36)第六章粘性流体动力学基础 (40)一、学习引导 (40)二、难点分析 (40)习题详解 (42)第七章压力管路孔口和管嘴出流 (50)一、学习引导 (50)二、难点分析 (50)习题详解 (51)主要参考文献 (59)第一章流体的物理性质一、学习引导1.连续介质假设流体力学的任务是研究流体的宏观运动规律。

在流体力学领域里,一般不考虑流体的微观结构,而是采用一种简化的模型来代替流体的真实微观结构。

按照这种假设,流体充满一个空间时是不留任何空隙的,即把流体看作是连续介质。

2.液体的相对密度是指其密度与标准大气压下4℃纯水的密度的比值,用δ表示,即=ρδρ水3.气体的相对密度是指气体密度与特定温度和压力下氢气或者空气的密度的比值。

4.压缩性在温度不变的条件下,流体的体积会随着压力的变化而变化的性质。

压缩性的大小用体积压缩系数βp表示,即1 =p dVβV dp5.膨胀性指在压力不变的条件下,流体的体积会随着温度的变化而变化的性质。

其大小用体积膨胀系数βt表示,即1 = t dVβV dt6.粘性流体所具有的阻碍流体流动,即阻碍流体质点间相对运动的性质称为粘滞性,简称粘性。

7.牛顿流体和非牛顿流体符合牛顿内摩擦定律的流体称为牛顿流体,否则称为非牛顿流体。

8.动力粘度牛顿内摩擦定律中的比例系数μ称为流体的动力粘度或粘度,它的大小可以反映流体粘性的大小,其数值等于单位速度梯度引起的粘性切应力的大小。

《工程流体力学》习题答案

《工程流体力学》习题答案

封面作者:Pan Hongliang仅供个人学习第一章流体及其主要物理性质1-1.轻柴油在温度15ºC时相对密度为0.83,求它的密度和重度。

解:4ºC时相对密度:所以,1-2.甘油在温度0ºC时密度为1.26g/cm3,求以国际单位表示的密度和重度。

解:1-3.水的体积弹性系数为1.96×109N/m2,问压强改变多少时,它的体积相对压缩1%?解:1-4.容积4m3的水,温度不变,当压强增加105N/m2时容积减少1000cm3,求该水的体积压缩系数βp和体积弹性系数E。

解:1-5.用200L汽油桶装相对密度为0.70的汽油,罐装时液面上压强为1个大气压,封闭后由于温度变化升高了20ºC,此时汽油的蒸气压为0.18大气压。

若汽油的膨胀系数为0.0006ºC-1,弹性系数为14000kg/cm2。

试计算由于压力及温度变化所增减的体积?问灌桶时每桶最多不超过多少公斤为宜?解:E=E’·g=14000×9.8×104PaΔp=0.18at所以,从初始状态积分到最终状态得:另解:设灌桶时每桶最多不超过V升,则(1大气压=1Kg/cm2)V=197.6升dV t=2.41升dV p=2.52×10-3升G=0.1976×700=138Kg=1352.4N1-6.石油相对密度0.9,粘度28cP,求运动粘度为多少m2/s?解:1-7.相对密度0.89的石油,温度20ºC时的运动粘度为40cSt,求动力粘度为多少?解:ν=40cSt=0.4St=0.4×10-4m2/sμ=νρ=0.4×10-4×890=3.56×10-2 Pa·s1-8.图示一平板在油面上作水平运动,已知运动速度u=1m/s,板与固定边界的距离δ=1,油的动力粘度μ=1.147Pa·s,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:1-9.如图所示活塞油缸,其直径D=12cm,活塞直径d=11.96cm,活塞长度L=14cm,油的μ=0.65P,当活塞移动速度为0.5m/s时,试求拉回活塞所需的力F=?解:A=πdL , μ=0.65P=0.065 Pa·s , Δu=0.5m/s , Δy=(D-d)/2第二章流体静力学2-1. 如图所示的U形管中装有水银与水,试求:(1)A、C两点的绝对压力及表压各为多少?(2)A、B两点的高度差为多少?解:①p A表=γh水=0.3mH2O=0.03at=0.3×9800Pa=2940Pap A绝=p a+ p A表=(10+0.3)mH2O=1.03at=10.3×9800Pa=100940Pap C表=γhg h hg+ p A表=0.1×13.6m H2O+0.3mH2O=1.66mH2O=0.166at=1.66×9800Pa=16268Pap C绝=p a+ p C表=(10+1.66)mH2O=11.66 mH2O=1.166at=11.66×9800Pa=114268Pa② 30c mH2O=13.6h cmH2Oh=30/13.6cm=2.2cm题2-2 题2-32-2.水银压力计装置如图。

第1章流体的主要物理性质.ppt

第1章流体的主要物理性质.ppt


作业: P13
参考答案
3、5、6
3. ν=5.9×10-6 m2/s 5. τ=0.61 N/m2 6. μ1=0.967Pa.s, μ2=1.933 Pa.s


2 ( m / s )
( 1.13 )
-运动粘度 m2/s。又称“动量扩散系数”。


3. 恩氏粘度 是一种相对粘度,仅适用于液体,便于测定。 测定方法:将200mL的待测液体装入恩氏粘度计中, 测定它在某一温度下通过底部Φ 2.8mm标准小孔口流 尽所需时间t1,再将200mL的蒸馏水加入同一恩氏粘 度计中,在20℃标准温度下,测出其流尽所需时间 t2,时间t1 与t2的比值就是该液体在该温度下的恩 氏粘度,即
0
t E 1 t 2
( 1.14 )
与ν的换算关系

G dG i m A l V 0 V dV


1.4.4 影响粘度的因素:
1、物质种类;
气体: T ; 2 、温度 液体: T .
例子:








Байду номын сангаас
非牛顿流体

牛顿流体(newtonian fluids):是指 任一点上的剪应力都同剪切变形速率呈 线性函数关系的流体,即遵循牛顿内摩 擦定律的流体称为牛顿流体。
理想气体状态方程 :pv=RT v-比体积

当气体温度不变 当气体压力不变
R-气体常数,空气气体常数= 287N·m/(kg· K) G
V
3 ( N /m )
yx d
( Pa s )

工程流体力学水力学

工程流体力学水力学

且垂直于AB线,如下图。在AB线上H 各点的每一点
上各绘亦垂直AB线的γhi线γhi 段,等于各该点上的 静压强,这些线段的终点将处在一条直线AC上。
三角形ABC图就是铅垂线AB上的静压强分布图。
事实上,由式〔1-9〕C 知,当液B 体重度γ为常数
时,静压强p只是随淹没深γH度h而变化,两者成直
线关系。因此,在绘制静压图 1-强5 分布图时,只需在
单位重量流体从某一基准面算起所具有的位能,
因为对重量而言,所以称单位位能。的物理意义
是:单位重量流体所具有的压能,称单位压能。 因此流体静力学根本方程的物理意义是:在静止
❖ 流体中任以点的单位位能与单位压能之和,亦即 单位势能为常数。对于气体来说,因为重度γ值 较小,常忽略不计。由上式可知,气体中任意两 点的静压强,在两点间高差不大时,可认为相等。 对于液体来说,因为自由外表上的静压强p0常为 大气压强,是的。所以由上式可知液体中任一点 的静压强p为
止流体中任一点上流体静压强的大小与其作用面的方
位无关,即同一点上各个方向的静压强大小均相等

2.重力作用下的流体平衡方程

在实际工程中,静止流体所受的质量力只有重力。
这种流体通常称静止重力流体,因此,对于静止不可
压缩均质流体来说,总有一平衡方程式:

(1-12)
z p c
❖ 对于静止流体中任意两点来说,上式可写为:
❖ 〔二〕质量•密度
❖ 流体和其它物质一样,具有质量。流体单位
体积内所具有的质量称密度,以ρ表示。对于均
质流体,设体积为V的流体具有的质量为m,那
么密度ρ为

m
V
❖ 密度的单位为kg/m3。
〔1-1〕

1.1流体力学基础知识

1.1流体力学基础知识

hf = kω
m
对于层流m=1,对于湍流m=1.75~2.0.很 对于层流m=1,对于湍流m=1.75~2.0.很 显然,湍流状态的损失要大的多,因此在 成本允许的情况下,输送管道要尽量粗一 些,保证以层流的形态进行输送.
(三),影响流动阻力损失大小的 ),影响流动阻力损失大小的 因素
流体的沿程阻力损失跟管道长度成正比; 流体的沿程阻力损失跟管道长度成正比; 管道长度成正比 跟平均流动速度的平方成正比, 跟平均流动速度的平方成正比,跟管径大 小成反比. 小成反比. 流体的局部阻力损失跟平均流动速度的平 流体的局部阻力损失跟平均流动速度的平 方成正比. 方成正比. 显然,流体的流动阻力损失还跟流体本身 显然, 的粘滞性和管道跟局部构件的粗糙程度有 关系. 关系.
2.局部阻力和局部损失 2.局部阻力和局部损失 管道中的弯头,三通,阀件和过流截 面有变化(例如管径突然增大或者缩小) 时的连接件等统称为管道局部构件.流体 流经管道局部构件时,由于构件边壁的阻 碍或扰动作用及流体自身的惯性,将发生 撞击,旋涡等现象,流速的大小和方向会 有急剧的改变,形成较大的流动阻力,称 为局部阻力.局部阻力造成的能量损失比 较集中.为克服局部阻力而消耗的单位重 量流体的机械能,称为局部损失 量流体的机械能,称为局部损失,用hj表示. 局部损失,用h 整个管道的能量损失应该分段计算沿 程损失和局部损失,再进行叠加.
六,泵与风机
有关离心式水泵的结构和工作原理的内容在 高中物理中已经有讲授,这里不在赘述.需 要注意的是离心式泵与风机是中心进入边沿 要注意的是离心式泵与风机是中心进入边沿 流出,离心式水泵开机前要将机壳中注满水. 流出,离心式水泵开机前要将机壳中注满水. 水泵和风机在工程中是一种能量转换装置, 它消耗原动机的能量,提高流体的全压力 它消耗原动机的能量,提高流体的全压力. 全压力. 泵与风机的主要性能参数:流量, 泵与风机的主要性能参数:流量,扬程和压 流量 功率,效率,转速请同学们自行了解. 头,功率,效率,转速请同学们自行了解.

1工程流体力学 第一章流体及其主要物理性质

1工程流体力学 第一章流体及其主要物理性质
质量力含重力和离心惯性力。
§1-4 作用在液体上的力(续1)
单位质量力在各轴的分量为X、 Y、 Z。
液体体积为V,质量为M,质量力为F,
在各轴的分量为F x、F y 、 F z 、则:
X
Y
Fx M
Fy
Z
M
Fz
M
§1-4 作用在液体上的力(续2) ❖ 单位质量力表示外力场的强度,
它的物理量纲与加速度相同。 ❖在直角坐标系中,习惯以X,Y,Z
转轴上的摩擦力矩 M 10.89J, 如图1-4所示。
求润滑油的粘性系数 。
§1-2 流体的粘性(续10)
解:根据牛顿内摩擦定律计算摩擦力
在转轴圆心角 d
的微面积为 dA L d d上
2
所受的摩擦力为:
dF du dA du L d d
dy
dy 2
摩擦力对轴心的矩为
dM
d
dF
d
du
dA
d
§1-1 流体与连续介质模型(续3)
引入连续介质模型后,流体的宏观 物理量,如压强(pressure)密度(density) 等,都可表示成空间坐标和时间的连续 函数,可用数学中的连续函数来描述和
分析流体的平衡和运动规律——重要 作用。
§1-2 流体的粘性
一、粘性的概念
如图1-2所示,设
有两块相距h的平行
第一章 流体及其物理性质小结
三、流体的压缩性 体积弹性模量的定义
Ev
dp dV
V
流体的压缩性小,对应的体积弹性模量
值越大。
不可压缩流体:忽略流体密度的变化,不
可压缩流体的密度视为常量,体积弹性模量
为无限大。
第一章 流体及其物理性质小结

工程流体力学 课后习题(简精版)答案

工程流体力学 课后习题(简精版)答案

第一章 流体及其主要物理性质1-1.轻柴油在温度15ºC 时相对密度为0.83,求它的密度和重度。

解:4ºC 时所以,33/8134980083.083.0/830100083.083.0mN m kg =⨯===⨯==水水γγρρ1-2.甘油在温度0ºC 时密度为1.26g/cm3,求以国际单位表示的密度和重度。

333/123488.91260/1260/26.1m N g m kg cm g =⨯==⇒==ργρ 1-3.水的体积弹性系数为1.96×109N/m 2,问压强改变多少时,它的体积相对压缩1%?MPa Pa E E VVVV p p6.191096.101.07=⨯==∆=∆=∆β 1-4.容积4m 3的水,温度不变,当压强增加105N/m 2时容积减少1000cm 3,求该水的体积压缩系数βp 和体积弹性系数E 。

解:1956105.2104101000---⨯=⨯--=∆∆-=Pa p V V p β Pa E p89104105.211⨯=⨯==-β 1-5石油相对密度0.9,粘度28cP ,求运动粘度为多少m 2/s?()cSt St s m 3131.0/101.310009.01028253==⨯=⨯⨯==--ρμν 1-6 相对密度0.89的石油,温度20ºC 时的运动粘度为40cSt ,求动力粘度为多少? 解:89.0==水ρρd ν=40cSt =0.4St =0.4×10-4m 2/s μ=νρ=0.4×10-4×890=3.56×10-2 Pa ·s1-7 图示一平板在油面上作水平运动,已知运动速度u=1m/s ,板与固定边界的距离δ=1mm ,油的动力粘度μ=1.147Pa ·s ,由平板所带动的油层的运动速度呈直线分布,求作用在平板单位面积上的粘性阻力为多少?解:233/10147.11011147.1m N dy du ⨯=⨯⨯==-μτ 1-8 如图所示活塞油缸,其直径D =12cm ,活塞直径d =11.96cm ,活塞长度L =14cm ,油的μ=0.65P ,当活塞移动速度为0.5m/s 时,试求拉回活塞所需的力F=?解:A =πdL , μ=0.65P =0.065 Pa ·s , Δu =0.5m/s , Δy=(D-d)/2()N dy du AF 55.821096.11125.010141096.1114.3065.0222=⨯-⨯⨯⨯⨯⨯⨯==---μ第二章 流体静力学2-1. 如图所示的U 形管中装有水银与水,试求:(1)A 、C 两点的绝对压力及表压各为多少? (2)A 、B 两点的高度差为多少?解:① p A 表=γh 水=0.3mH 2O =0.03at =0.3×9800Pa =2940Pap A 绝=p a + p A 表=(10+0.3)mH 2O =1.03at =10.3×9800Pa=100940Pap C 表=γhg h hg + p A 表=0.1×13.6m H 2O+0.3mH 2O =1.66mH 2O =0.166at=1.66×9800Pa =16268Pap C 绝=p a + p C 表=(10+1.66)mH 2O =11.66 mH 2O =1.166at =11.66×9800Pa =114268Pa ② 30c mH 2O =13.6h cmH 2O ⇒h =30/13.6cm=2.2cm题2-22-2 今有U 形管,内装水和四氯化碳(CCl 4),如图所示。

工程流体力学流体及其主要物理性质.ppt

工程流体力学流体及其主要物理性质.ppt

z=z0,p=p0 ,得
上式称为流体静力学 基本方程,或不可压缩流 体的静压强分布规律。
2020-6-17
谢谢阅读
19 12
2.压强形式的方程的推论 p p0 gh
❖ 帕斯卡定律 平衡流体中,自由表面处压强p0的任何变化都会
等值地传递到液体中的任意一点上。
❖ 流体静压强分布 静止液体中,任一点的压强值与其所处的深度h成
fx
1 6
dxdydz
0
px
pn
fx
1 dx 3
0
当dx 0;
px pn
得出结论
pn px py pz
2020-6-17
谢谢阅读
11
第二节 流体的平衡微分方程 及其积分
➢平衡微分方程的推导
取研究对象
受力分析
1.表面力
p 设压强在x方向上的变化率为 x
dP左
(
p
1 2
p x
dx)dydz
1 p dP右 ( p 2 x dx)dydz
p0 1水 2 A
pa B
3 油4
5
6
水银
2020-6-1程
2.能量形式的静力学基本方程
p gz C
z p C
g
——不可压缩流体的 静力学基本方程 (能量形式)
p2
p0
2020-6-17
谢谢阅读
2.质量力
在x方向上:
dFx fxdxdydz
12
导出关系式
对于任一轴
Fx 0; Fy 0; Fz 0
f x
p x
0
流体静力学平衡微分—— 方程或欧拉平衡微分方程
fx
1
p x

工程流体力学基础知识

工程流体力学基础知识

工程流体力学复习题第一章 流体的力学性质1、连续介质(概念)、假设(质量分布、运动、内应力连续))2、流体的主要物理性质(a )分类(固、液、气各自特点)(b )流动性(c )可压缩性和膨胀性(d )粘性(牛顿内摩擦定律、液体和气体(温度、压力))(e )表面张力(润湿和不润湿)3、牛顿流体和非牛顿流体第二章 流体运动学基本概念1、流动分类(流体性质、流动状态、流动空间的坐标数目)2、描述流体运动的两种方法(a )拉格朗日法和欧拉法基本思路 (b )质点导数()v v tv ∇⋅+∂∂ (c )迹线和流线的意义及其求解(()()()t z y x v dtdz t z y x v dt dy t z y x v dt dx z y x ,,,,,,,,,,,===,zy x v dz v dy v dx ==) 3、有旋流动和无旋流动(概念及其基本性质)涡量的连续性方程()0≡⨯∇⋅∇=Ω⋅∇v、速度场有势的充要条件是流动无旋等第三章 流体静力学1、作用在流体上的力(质量力和表面力)2、流体静止时质量力必须满足的条件3、有势质量力场中静止流体的分界面上,既是等压面也是等势面。

4、静止的正压流场,其质量力必然有势;反之,质量力有势,非正压流场不可能处于静止状态,处于静止状态的必然是正压流场。

5、重力场静止液体的压力分布和物体受力(0p gh p +=ρ、k gV F ρ=)第四章 流体流动基本原理1、系统和控制体的定义和区别2、输运公式定义及其表达式(系统质量、动量、能量变化率)3、质量守恒方程(a )定义(()0=∂∂+⋅⎰⎰⎰⎰⎰CVCS dV t dA n v ρρ ,质量流量()dA n v ⋅ρ、质量通量()n v v⋅=ρθρc o s )(b )特殊形式的应用(012=∂∂+-tm q q CV m m ,稳态、不可压缩) 4、动量守恒方程 (a )定义(()⎰⎰⎰⎰⎰∑∂∂+⋅=CVCS dV v t dA n v v F ρρ ,动量流量) (b )应用5、能量守恒方程(a )定义(b )伯努利方程(简化条件、公式2222121122gz v p gz v p ++=++ρρ(理想不可压缩流体稳态流动)第五章 不可压缩流体的一维层流流动1、常见边界条件(固壁-流体、液体-气体、液体-液体)2、流动条件说明(稳态、不可压缩、一维、层流、充分发展流动)3、狭缝流动(概念、产生流动的因素——压差流、剪切流)4、管内流动分析(切应力和速度分布规律)5、降膜流动分析第六章 流体流动微分方程——连续性方程和运动方程(了解)1、连续性方程()()()0=∂∂+∂∂+∂∂+∂∂z v y v x v t z y x ρρρρ不可压缩流体0=⋅∇v2、运动方程(以应力表示的运动方程→引入牛顿流体本构方程→N -S 方程)第八章 流体力学的实验研究方法1、流动相似(几何相似、运动相似、动力相似的定义和应用)2、相似准则(至少四个相似准数及其物理意义、计算应用)3、量纲分析(常见物理量的量纲、基本量纲(M 、L 、T )、量纲分析方法:瑞利(Rayleigh )方法和白金汉姆(Buckingham )方法)第九章 管内流体流动1、流态的判定(指标、层流、过渡流、湍流)2、圆管内充分发展的层流流动(阻力损失、阻力系数)3、湍流的半经验理论(布辛聂斯克涡粘性假设、普朗特混合长度理论、壁面附近湍流的三个区域)4、圆管内充分发展的湍流流动(光滑管、粗糙管(水力光滑管、过渡型圆管、水力粗糙管)沿程阻力系数)5、圆管内流体流动的速度分布6、沿程阻力损失的计算7、圆管进口段流动分析8、非圆形截面管内的流体流动(水力当量直径的计算)参考公式 哈密尔顿算子k z j y i x ∂∂+∂∂+∂∂=∇ 速度梯度()k z u j y u i x u u u grad ∂∂+∂∂+∂∂=∇= 流体的散度()z A y A x A A A div z y x ∂∂+∂∂+∂∂=⋅∇= 旋度 ()k y v x v j x v z v i z A y A A A rot x y z x y z ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=⨯∇= gu D L g u D L u D g R Lu g p h m m m m f 2Re 642648222===∆=ρμρμρ g u D L u u g u D L u g R L g p h m m m m f 2828222*2200⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛==∆=ρτρτρ 012=∂∂+-tm q q CV m m ()⎰⎰⎰⎰⎰∑∂∂+⋅=CV CS dV v t dA n v v F ρρ()()()⎰⎰⎰⎰⎰∑⨯∂∂+⋅⨯=CVCS dV v r t dA n v v r M ρρ ()∙∙∙+⎪⎪⎭⎫ ⎝⎛++∂∂+⋅⎪⎪⎭⎫ ⎝⎛++=-⎰⎰⎰⎰⎰μρρW dV gz v u t dA n v gz v h W Q CV CS s 2222。

中国石油大学(华东)工程流体力学答案4

中国石油大学(华东)工程流体力学答案4

c1
a1 + b1 − 3c1 = 0 a1 = −1 µ 1 ⇒ −a1 − 1 = 0 ⇒ b1 = −1 ⇒ π 1 = = ρUD Re c +1 = 0 c = −1 1 1
M 0 L0T 0 = LT −1 π 2 = U a Db ρ c l ⇒
解:1)v = 4Q 4 × 0.05 = = 2.83m / s π D 2 3.14 × 0.152 vD 2.83 × 0.15 Re = = = 42441 > 2000, 紊流 ν 10 × 10−6
4-17
Re1 < 105 , 可用布拉修斯公式
λ=
0.3164 = 0.022(水力光滑区) 4 Re l v2 103 2.832 hf 1 = λ =λ = 60m, D 2g D 19.6 ∆p = γ h f = 4.7 ×105 Pa
Q=
M
ρ
=
108 ×1000 = 0.04m3 / s 750 × 3600
v = 4Q / π d 2 = 4 × 0.04 /(3.14 × 0.22 ) = 1.27 m / s
Re = vd = 1.27 × 0.2 = 63500 > 2000 4 ×10−6
ν
Re < 105
4-20
0.1atm
选l,v,ρ为基本物理量,有两个π 项:
1
第一章 流体及主要物理性质
f ( R, ρ , l , v, g ) = 0
π 1 = l a vb ρ c g
1 1 1
1 0 0 0 −1 −3 −2 M L T = [ L] LT ML LT a1 + b1 − 3c1 + 1 = 0 a1 = 1 lg 1 π1 = 2 = ⇒ −b1 − 2 = 0 ⇒ b1 = −2 ⇒ v Fr c =0 c = 0 1 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

式中: —流体的密度,kg/m3;
m—流体的质量, V —流体的体积,m3。
Theoretical Mechanics
m V
(1-1)
第一章
流体的主要物理性质
对于各点密度不同的非均质流体,在流体的空间中某点取包含 该点的微小体积 V,该体积内流体的质量m,则该点的密度 m dm 为 lim (1-2)
对应于某流体微元表面,其面积为 作用于该微元表面的表面力为 的表面力,即 : ,其外法线单位向量为 , 。我们常关心单位面积所对应
从普遍意义上讲,表面力 有如下特点: (1) 和作用面不一定垂直;(可分解为正应力和切应力两部 分)。 (2) 和 的方向有关。
Theoretical Mechanics
一、流体与固体的区别:
从力学角度看,固体在确定的剪切力的作用下产生一
定的变形;流体在剪切力作用下产生连续的的变形,即连续 运动。
Theoretical Mechanics
第一章
流体的主要物理性质
流体的定义:流体是一种受到任何微小剪切应力作用时,都能
连续变形的物质。

这种连续变形的运动,就是流动。
流体的流动性表现在: 1. 在剪切力持续作用下,流体能产生无限大的变形; 2. 在剪切力停止作用时,流体不作任何恢复变形; 3. 在流体内部压强可向任何方向传递; 4. 任意搅拌的均质流体,不影响其宏观物理性质; 5. 粘性流体在固体壁面满足不滑移条件;
第一章 表1-1
液体种类 (℃) 纯水 海水 20% 盐 水 乙醇(酒精) 苯 四氯化碳 氟 利 昂 -12 甘油 汽油 煤油 原油 润滑油 氢 氧 水银 20 20 20 20 20 20 20 20 20 20 20 20 -257 -195 20
流体的主要物理性质
在标准大气压下常用液体的物理性质
1.16 1.33 0.668 0.747
二氧化碳 一氧化碳 氦

0.0839
0.90
4120
Theoretical Mechanics
第一章 三、流体的比容
流体的主要物理性质
单位质量流体所占用的空间体积。 =1/ kg/m3
§ 1-3
流体的压缩性和膨胀性
随着压强的增加,流体体积缩小;随着温度的增高,流体体
Theoretical Mechanics
第一章 § 1-4
流体的主要物理性质
作用在流体上的力
这里所说的力是静力学及动力学均适用的力。 作用在流体上的力被分为质量力和表面力两类。 一、质量力: 又称体积力,作用于流体的质量上,是一种非接触力。 如重力,静电力,电磁力;研究非惯性系统问题时引入惯性 力概念,它也是质量力。 单位质量力是作用在单位质量上的质量力,通常用表示, 其单位为 m/s2 ,与加速度的单位相同。如果作用在体积为 V , 质量为m的流体上的质量力为Ff,其在x、y、z三个坐标轴上的
分力分别为Ffx, Ffy, Ffz,则单位质量力在x、y、z轴上的分量x、
Theoretical Mechanics
y、z可写为:
第一章
流体的主要物理性质
(1-7)
Theoretical Mechanics
第一章 二、表面力:
流体的主要物理性质
由毗邻的流体质点或其它的物体所直接施加的接触力。
第一章
流体的主要物理性质
§ § § § § §
1-1 1-2 1-3 1-4 1-5 1-6
流体的特征及连续介质模型 流体密度的相关概念 流体的压缩性和膨胀性 作用在流体上的力 流体的粘性 表面张力和毛细现象
Theoretical Mechanics
第一章 § 1-1
流体的主要物理性质
流体的特征及连续介质模型
-6
强 1~ 10 14×10 43×10 72×10
-6
(10 Pa)
10~ 20 150×10 165×10 83×10 236×10 289×10
-6
60~ 70 556×10 548×10 539×10 523×10 514×10
-6
90~ 100 719×10 704×10
-6
0.98 98 196 490 882
t 温度
密度
( kg/m 3 ) 998 1026 1149 789 895 1588 1335 1258 678 808 850-958 918 72 1206 13555
d 相对密度
度 104 动力黏
( Pa · s )
1.00 1.03 1.15 0.79 0.90 1.59 1.34 1.26 0.68 0.81 0.85-0.93 0.92 0.072 1.21 13.58
Theoretical Mechanics
第一章
流体的主要物理性质
图1-2 流体的粘性实验
Theoretical Mechanics
第一章
流体的主要物理性质
由于流体与平板间有附着力(录像),紧贴上板的一薄层流体 将以速度u0跟随上板一起向右运动,而紧贴下板的一薄层流体将和 下板一样静止不动。两板之间的各流体薄层在上板的带动下,都作 平行于平板的运动,其运动速度由上向下逐层递减,由上板的u0减 小到下板的零。在这种情况下,板间流体流动的速度是按直线变化 的。显然,由于各流层速度不同,流层间就有相对运动,从而产生 切向作用力,称其为内摩擦力。作用在两个流体层接触面上的内摩 擦力总是成对出现的,即大小相等而方向相反,分别作用在相对运 动的流层上。速度较大的流体层作用在速度较小的流体层上的内摩 擦力F,其方向与流体流动方向相同,带动下层流体向前运动,而 速度较小的流体
• 连续介质假设模型是对物质分子结构的宏观数学抽象。
• 除了稀薄气体与激波的绝大多数工程问题,均可用连续介质模型 作理论
分析。
Theoretical Mechanics
第一章 § 1-2
流体的主要物理性质
流体密度的相关概念
一 流体的密度
流体的密度是流体的重要属性之一,它表征流体在 空间某点质量的密集程度,流体的密度定义为:单位体 积流体所具有的质量,用符号来表示。 对于流体中各点密度相同的均质流体,其密度
1 dV V dt V
式中
(1-4)
V —流体的体积膨胀系数,1/℃,1/K;
d t —流体温度的增加量,℃,K;
V —原有流体的体积,m3;
dV —流体体积的增加量,m3。
Theoretical Mechanics
第一章 表1-3

5
流体的主要物理性质 水的体胀系数 (1/℃)
温 度 (℃ ) 40~ 50 422×10 422×10 426×10 429×10 437×10
V 0
二、流体的相对密度
V
dV
流体的相对密度是指某种流体的密度与4℃时水的密度的比值, 用符号d来表示。
f d (1-3) W W —4℃时水的密度,kg/m3。 式中: f —流体的密度,kg/m3;
表1-1和表1-2列出了一些常用液体、气体在标准大气压强下的 物理性质。
Theoretical Mechanics
Theoretical Mechanics
第一章
流体的主要物理性质
层作用在速度较大的流体层上的内摩擦力F’,其方向与流体流动方 向相反,阻碍上层流体运动。通常情况下,流体流动的速度并不按 直线变化,而是按曲线变化,如图1-2虚线所示。 二、牛顿内摩擦定律 根据牛顿(Newton)实验研究的结果得知,运动的流体所产生 的内摩擦力(切向力) F 的大小与垂直于流动方向的速度梯度du/dy 成正比,与接触面的面积A成正比,并与流体的种类有关,而与接 触面上压强P 无关。内摩擦力的数学表达式可写为
-6
-6
-6
-6
-6
-6
-6
-6
-6
149×10 229×10
-6
-6
-6
-6
661×10 621×10
-6
-6
-6
-6
-6
-6
Theoretical Mechanics
第一章 2、流体的压缩性
流体的主要物理性质
在一定的温度下,流体的体积随压强升高而缩小的性质称为 流体的压缩性。流体压缩性的大小用体积压缩系数k来表示。它表 示当温度保持不变时,单位压强增量引起流体体积的相对缩小量, 1 dV 即 (1-5)
积膨胀,这是所有流体的共同属性,即流体的压缩性和膨胀性。
一、流体的膨胀性 在一定的压强下,流体的体积随温度的升高而增大 的性质称为流体的膨胀性。
Theoretical Mechanics
第一章
流体的主要物理性质
流体膨胀性的大小用体积膨胀系数 V 来表示,它表示当 压强不变时,升高一个单位温度所引起流体体积的相对增 加量,即
即:
则:
Theoretical Mechanics
第一章 流体的主要物理性质 例1-2 使水的体积减小0.1%及1%时,应增大压强各为多少? (K=2000MPa,K=1/k,体积模量)
解:
dV/V =-0.1% =-2000×106 ×(-0.1%)=2× 106 Pa=2.0MPa dV /V = -1% = -2000×106 ×(-1%)=20 MPa
( Pa · s ) 1.80 1.48 1.82 1.97
105 R
( kg/m 3 ) ( Pa · s ) 1.76 2.00 1.34 1.01 [ J/(kg · K) ] 297 260 520 462
( kg/m 3 ) 空 气 1.205 1.84 1.16 0.166
[ J/(kg · K) ] 287 188 297 2077 氮 氧 甲 烷 饱和水蒸 汽
相关文档
最新文档