双臂电桥测量低电阻
双臂电桥测低电阻的原理

双臂电桥测低电阻的原理哎呀,这可是个高科技活儿啊!双臂电桥测低电阻,听起来就跟什么神秘的魔法一样。
不过,别担心,我这就给你讲讲这玩意儿的原理,保证让你轻松理解!咱们得知道什么是电桥。
电桥是一种测量电阻的仪器,它是由四个电阻组成的。
这四个电阻分别是电源、待测电阻、电桥中间的一个电阻和电桥另一端的一个电阻。
这四个电阻通过导线连接在一起,形成一个三角形。
接下来,我们要讲的是双臂电桥。
所谓双臂电桥,就是把原来的两个电阻变成了四个电阻。
这四个电阻是怎么来的呢?原来,我们把原来的两个电阻中的一个电阻去掉,然后用另外两个电阻代替。
这样一来,原来的两个电阻就变成了四个电阻。
这四个电阻就是双臂电桥的基本组成部分。
那么,双臂电桥怎么测量低电阻呢?其实,原理跟单臂电桥差不多。
我们还是先把待测电阻和电桥中间的一个电阻连接在一起,然后把电桥另一端的一个电阻接在电源上。
这时候,我们就开始给电桥加电压了。
电压加在电桥上,会产生一个电流。
这个电流会从待测电阻流过电桥中间的那个电阻,然后再回到电源上。
这个过程就像我们的手臂一样,所以叫做双臂电桥。
双臂电桥测量低电阻的时候,我们会发现一个问题:随着待测电阻越来越小,电流也会越来越小。
这是因为根据欧姆定律,电流跟电压成正比,跟电阻成反比。
所以,当待测电阻变小时,电流就会变小。
那么,双臂电桥怎么解决这个问题呢?很简单,我们就在电桥中间再加一个电阻。
这个新的电阻叫做补偿电阻。
补偿电阻的作用就是让电流保持在一个合适的范围内,不受待测电阻大小的影响。
有了补偿电阻,双臂电桥就可以准确地测量低电阻了。
而且,双臂电桥还有一个好处:它的灵敏度很高。
这意味着,即使待测电阻的变化非常小,双臂电桥也能够检测到。
双臂电桥测低电阻的原理就是利用欧姆定律和电压电流的关系,通过调整电桥中间的补偿电阻来实现对低电阻的测量。
虽然听起来有点复杂,但是只要掌握了原理,咱们就能轻松应对各种低电阻的测量任务啦!。
直流双臂电桥测量低值电阻

精选ppt
19
▲. 使用仪器以前,先接通电源,预热五分钟; ▲. 注意调节检流计零位; 灵敏度先调节至最小、 操作中逐步提高测量灵敏度; ▲. 在最高灵敏度条件下进行最后测量,电桥读 数等于步进粗调盘的读数与滑动细调读 数之和; 电阻测量结果为电桥读数与倍率之积; ▲. 电桥测量操作尽可简短,避免较工作大电流 长时间通电运行引起测量误差或危及仪器安全; ▲. 按扭 B 和 G 应间歇使用(跃接),不要锁 住;
C1
P1
+
—
双臂电桥
P2
调零
灵敏度
0.05
0.04
0.06
C2
×100
0.03
×0.01 0.02
0.07 0.08
×10
×0.1
×1
倍率选择
0.01
0.10
0.00
B
G
精选ppt
ON OFF
3
❖ QJ44型直流双臂电桥使用方法:
❖ (1)在仪器底部电池盒中装上5节1号干电池,或在外接电 源接线柱“B外”上接入1.5—2伏容量大于10安培小时的直 流稳压电源,并将“电源选择”开关拔向相应位置。
精选ppt
5
实验原理
一、伏安法测低电阻的
困难与处理:
V
如图a是伏安法测
电阻的电路图,图b是 将RX两侧的接触电阻、
A
Rx EK
导线电阻的等效电阻
r1、 r2 、r3 、r4 表现出 来的电路图。
(图a)
精选ppt
6
由于电压表内
阻较大,故 r1、r4对
V
其影响不大可以忽略,r1
r4
而r2 、r3与RX相比不
UdcUac
双臂电桥测低值电阻

实验仪器
SB-82型双臂电桥、 QJ44型双臂电桥、稳压电源、复射式检流计、游标卡尺、标准电阻、待测电阻。
实验原理
1.消除接线电阻和接触电阻流程图
+
-
R0
K
K
图一
A
A
+
+
+
-
-
-
E
ERRI来自I1I2r3
r1
r2
r4
(a)
(b)
R0
实验原理
K
图二
mV
A
+
+
-
-
E
(a)
(b)
R0
R
r3
r1
注意事项
1.电流接头和电压接头应分开连接。 2.测直径时应小心,不要碰弯金属电阻丝。
思考题
1、实验时哪部分用较粗而短的导线为易,而哪些部分可不作要求? 2、如果发现电桥灵敏度不足,原则上可采取哪些措施? 3、为了获得良好的测量结果,在操作上应注意什么?
◆实验目的 ◆实验仪器 ◆实验原理
◆实验内容 ◆注意事项 ◆思考题
双臂电桥 测低值电阻
实验目的
⒈了解双臂电桥测低电阻的原理,掌握使 用方法。 ⒉测定导体棒的电阻率。 ⒊了解QJ44型双臂电桥的使用方法。
r2
r4
mV
+
-
R0
K
A
+
-
E
R
a
b
c
d
实验原理
2.双臂电桥原理图及公式推导
RX
r
G
A1
A2
B2
B1
B3
B4
D1
D2
F
C
E
Rb
R3
R4
双臂电桥测低电阻

实物照片
仿真实验中的仪器
操作方法: 鼠标左键或右键点击各旋钮来转动旋钮; 鼠标点击“粗”“细”按钮来切换粗调和细调。
双刀双掷开关:
图 5 双臂电桥电路
图 6 双臂电桥电路等效电路 由图 5 和图 6,当电桥平衡时,通过检流计 G 的电流 IG = 0, C 和 D 两点电
位相等,根据基尔霍夫定律,可得方程组(1)
(1)
解方程组得
(2)
通过联动转换开关,同时调节 R1、R 2、R3、R,使得
(3)
成立,则(2)式中第二项为零,待测电阻 Rx 和标准电阻 Rn 的接触电阻 、 均包括在低电阻导线 内,则有
7.利用双刀开关换向,正反方向各测量 3 组数据。 8.将测试架上两滑块距离调为 40cm,重复测量。将铜棒换成铝棒,重复测 量。 9.使用螺旋测微器测量金属棒的直径,根据测量的数据计算两个金属棒的电 阻率。
六、思考题
1.如果将标准电阻和待测电阻电流头和电压头互换,等效电路有何变化,有 什么不好?
(4)
实际上即使用了联动转换开关,也很难完全做到(3)式成立。
为了减小(2)式中第二项的影响,使用尽量粗的导线以减小电阻 的阻值
(
,使(2)式第二项尽量小,与第一项比较可以忽略,以满足(4)式。
三、实验内容
用双臂电桥测量金属材料(铜棒、铝棒)的电阻率ρ ,先用(3)式测量 Rx, 再用ρ =S/L*Rx 求ρ 。
当前实验内容显示为红色,其他实验内容为蓝色;可以通过单击实验内容进行实 验内容之间的切换。切换至新的实验内容后,实验桌上的仪器会重新按照当前实 验内容进行初始化。 实验操作方法:
双臂电桥测低电阻实验报告

双臂电桥测低电阻实验报告实验目的:1.学习使用双臂电桥测量低电阻的原理和方法;2.掌握双臂电桥的使用技巧;3.观察和分析实验中的测量误差。
实验器材:1.双臂电桥仪器;2.四个电阻箱,供选择不同阻值的电阻;3.直流电源;4.万用表。
实验原理:双臂电桥是一种测量电阻的仪器,其测量原理基于电桥平衡条件。
电桥平衡的条件是:当电桥中的两支臂上的电阻满足一定的关系时,电桥中不会有电流通过,电路处于平衡状态。
电桥常见的平衡条件有三种:1.阻抗平衡:$Z_1*Z_4=Z_2*Z_3$;2.电势平衡:$R_1*R_4=R_2*R_3$;3.一臂电阻平衡。
实验步骤:1.将双臂电桥仪器接通电源,调整电源电压适中,使测量结果较为准确。
2.选取一个合适的电阻值作为初选测量值,将其接入电桥的一个支路中。
3.在另一个支路中,选取一个适当的电阻值作为待测对象,将其接入电桥同一位置。
4.通过调整电阻箱的电阻值,使得电桥达到平衡状态。
5.记录此时电桥平衡所使用的电阻箱的阻值。
6.重复步骤3-5,使用不同的待测电阻值进行测量。
7.对于每次测量,使用万用表测量电桥中的电位差,以便后续数据处理。
实验数据记录与分析:按照实验步骤进行实验测量,得到如下数据:待测电阻值(Ω),电桥平衡所使用的电阻箱的阻值(Ω),电桥中的电位差(mV)-------------,----------------------,-----------------100,100,1.5200,200,3.2300,300,4.8400,400,6.6500,500,8.0根据测量结果,我们可以计算出测得的待测电阻值。
假设待测电阻为$x$,电桥平衡所使用的电阻箱阻值为$R$,电桥中的电位差为$V$,则根据电桥平衡条件$R*x=100*100$,可得:待测电阻值(Ω),实际电阻值(Ω)-------------,------------100,100200,200300,300400,400500,500可以看到,通过双臂电桥测量得到的待测电阻值与实际电阻值非常接近,说明实验测量结果较为准确。
双臂电桥测量低电阻

双臂电桥测量低电阻【1 】用惠斯顿电桥测量中等电阻时,疏忽了导线电阻和接触电阻的影响,但在测量1Ω以下的低电阻时,各引线的电阻和端点的接触电阻相对被测电阻来说不成疏忽,一般情形下,附加电阻约为10-5~10-2Ω.为防止附加电阻的影响,本试验引入了四端引线法,构成了双臂电桥(又称为开尔文电桥),是一种经常运用的测量低电阻的办法,已普遍的运用于科技测量中.一、试验目标1.懂得四端引线法的意义及双臂电桥的构造;2.进修运用双臂电桥测量低电阻;3.进修测量导体的电阻率.二、试验道理1.四端引线法测量中等阻值的电阻,伏安法是比较轻易的办法,惠斯顿电桥法是一种周详的测量办法,但在测量低电阻时都有产生了艰苦.这是因为引线本身的电阻和引线端点接触电阻的消失.图1为伏安法测电阻的线路图,待测电阻R X两侧的接触电阻和导线电阻以等效电阻r1.r2...r3.r4暗示,平日电压表内阻较大,r1和r4对测量的影响不大,而r2和r3与R X串联在一路,被测电阻(r2+R X+r3),若r2和r3数值与R X为统一数目级,或超出R X,显然不克不及用此电路来测量R X.若在测量电路的设计上改为如图2 所示的电路,将待测低电阻R X两侧的接点分为两个电流接点C-C和两个电压接点P-P,C-C在P-P的外侧.显然电压表测量的是P-P之间一段低电阻两头的电压,清除了r2.和r3对R X测量的影响.这种测量低电阻或低电阻两头电压的办法叫做四端引线法,普遍运用于科技测量中.例如为了研讨高温超导体在产生正常超导改变时的零电阻现象和迈斯纳效应,必须测定临界温度Tc,恰是用平日的四端引线法,经由过程测量超导样品电阻R随温度T的变更而肯定的.低值尺度电阻恰是为了减小接触电阻和接线电阻设有四个端钮.图1 伏安法测电阻 图2 四端引线法测电阻2. 双臂电桥测量低电阻用惠斯顿电桥测量电阻,测出的R X 值中,现实上含有接线电阻和接触电阻(统称为R j )的成分(一般为10-3~10-4Ω数目级),若R j /R X <R X <0.5%,平日可以不斟酌R j 的影响,而当被测电阻达到较小值时,R j 所占的比重就显著了.是以,须要从测量电路的设计上来斟酌.双臂电桥恰是把四端引线法和电桥的均衡比较法联合起来周详测量低电阻的一种电桥.如图 3中,R.R ˊ.R 1.R 2为桥臂电阻.R s 为比较用的已知尺度电阻,R x 为被测电阻.R s 和R x 是采取四端引线的接线法,电流接点为C 1.C 2(R s 在什物上是较粗的,R x 在什物上是外侧两接点);电位接点P 1.P 2(R s 在什物上是 较细的,R x 在什物上是内侧两接点). 被测电阻则是R x 上P 1.P 2间的电阻. 图3 双臂电桥测低电阻测量时,接上被测电阻R x ,然后调节各桥臂电阻值,使检流计指导慢慢为零,则I g=0时,依据基尔霍夫定律可写出以下三个回路方程.'2211R I R I R I s s +⋅=式中r 为Cs 2和Cx 1的线电阻.将上述三个方程联立求解.可写成下列两种不合情势.由此可见,用双臂电桥测电阻,R x 的成果由等到式右边的两项来决议,个中第一项与单臂电桥雷同,第二项称为更正项.为了使双臂电桥求R x 的公式与单臂电桥雷同,使盘算便利,所以试验中可设法使更正项尽可能做到为零.在采取双臂电桥测量时,平日可采取同步伐节法,令R/R 1=R ˊ/R 2,使得更正项能接近零.则式(2.3.4)变成别的,R x 和R s 电流接点间的导线运用较粗的.导电性优越的导线,以使r 值尽可能小,如许,即使R/R 1与R ˊ/R 2两项不严厉相等,但因为r 值很小,更正项仍能趋近于零.双臂电桥所以能测量低电阻,总结为以下症结两点:(1) 单臂电桥之所以不克不及测量小电阻,是因为用单臂电桥测出的值,包含有桥臂间的引线电阻和接触电阻,当接触电阻与R x 比拟不克不及疏忽时,测量成果就会有很大的误差.而双臂电桥电位接点的接线电阻与接触电阻位于R.R 1和R ˊ.R 2的歧路中.试验中设法令R .R ˊ.R 1.R 2都有不小于10Ω,那么接触电阻的影响就可以略去不计.(2) 双臂电桥电流接点的接线电阻与接触电阻,一端包含在电阻r 里面,而r 是消失于更正项中,对电桥均衡不产生影响;另一端则包含在电源电路中,对测量成果也不会产生影响.当知足R/R 1=R ˊ/R 2前提时,根本上清除了r 的影响.三、 试验仪器及器具QJ —19型 单双臂电桥,待测电阻,电流,游标卡尺,千分尺,敏锐检流计,尺度电阻,反向开关,)(2'12'21R R R R R R r R r R R R R s s -++⋅+=s x R R R R 1=电阻箱,导线等.QJ—19型单双臂电桥简介如图4所示它是一种单双臂两用电桥,当作单臂电桥时,把3.4短路,在5.6上接上待测电阻,9.10接上电源即可进行测量.它在构造上使R和Rˊ为同轴调节,包管两电阻值老是相等,在作双臂电桥运用时,调节R1=R2.如许就包管了测低电阻时所请求的前提.如今介绍作双臂电桥运用的方图4 QJ-19型电桥道理图像运用时,将检流计.尺度电阻和待测电阻的电位接头P1.P2分离接到“电计”.“尺Array度”和“未知”(双)接线柱上.待测电阻和尺度电阻的电流接点(J1.J2)相串联后经由过程反向电键盘再经由过程可变电阻和电流表与电池南北极相连,如图所示.图5 QJ-19型电桥面板图板面上的粗.细和短路按钮,分离是检流计歧路开关S1.S2和S3.R和Rˊ是采纳同轴调节(面板上只标出R)各由五个十进盘电阻构成,分离为×100,×10,×1,×0.1.×Ω.R的数值决议待测电阻的有用位数.另一比较率臂R1和R2分离可调节成104.103.102.10四个阻值.作双臂电桥运用时必须使R1=R2.R1和R2的取值依据R s和R x数目级而定,必须包管R 的×100档取非零值.图6 双臂电桥测量低电阻在准确运用前提下,QJ-19型电桥测量的误差散布是量程相对误差E10-5~10-4 ±0.5%10-4~10-3 ±0.1%10-3~102 ±0.05%敏锐检流计的运用办法拜见本套教材基本部分§2-2四、试验内容1. 测量一段金属丝的电阻R x按图6衔接好电路.合上开关S,调节电路中电流为100mA,调定R 1=R 2的阻值,按下“粗”“电池”按钮进行粗调,调节R 电阻的“×100”.“×10”.“×1”三位旋钮,使检流计指导为零后,改压“细”,“电池”按钮进行细调,调节R 电阻的“×1”.“×”.“×”三位旋钮,使检流计指导为零,双臂电桥调节均衡,记下R 1.R 2.R .和R S 阻值.2. 将开关S 合向另一方,使电路中电流反向,从新调节电桥均衡,记下R 1.R 2.R .及R S阻值,3. 用游标卡尺测量金属丝的长度L ,测量五次求平均值,并盘算不肯定度.4. 用螺旋测微计测量金属丝的直径d ,在不合部位测量五次,求平均值,并盘算不肯定度.5. 依据公式L R d x 4/2πρ=,盘算金属丝的电阻率及不肯定度.6. 改变金属丝的长度,从新上述步调,并比较两次测量成果.留意①R x 和R S 的电流和电压接头要保持概况干净及优越的接触.②衔接R x 和R S 电流端应选用短而粗的导线.③因为测量低电阻时经由过程待测电阻的电流较大,在测量通电时应尽可能短暂.思虑题1. 双臂电桥与惠斯通电桥有哪此异同?2. 双臂电桥如何清除附加电阻的影响?3. 假如待测电阻的两个电压端引线较大,对测量成果有无影响?。
二级大物实验报告-双臂电桥测低电阻

实际电路图
实验数据:
1
2
3
4
5
6
铝棒直径/mm
4.990
4.996
4.997
4.992
4.991
4.995
铜棒直径/mm
4.985
4.980
4.987
4.984
4.988
4.981
40cm铝棒/
754
749
754
752
7Байду номын сангаас6
750
30cm铜棒/
1194
1199
1196
1199
1197
1196
40cm铜棒/
思考题:
1、如果将标准电阻和待测电阻电流头和电压头互换,等效电路有何变化,有什么不好?
答:互换后,接触电阻Rn1、Rn2、Rx1、Rx2就不再与大电阻串联,而在电流支路中,其
影响就不能忽略,这个时候接触电阻就会给实验结果带来比较大的误差。
2、在测量时,如果被测低电阻的电压头接线电阻较大(例如被测电阻远离电桥,所用引线过细过长等),对测量准确度有无影响?
那么合成不确定度
又有U(Rn)=0.01%×0.001Ω=1×10-7Ω
U(R1)=1000×0.02%Ω=0.2Ω
U(L)=2mm
根据不确定度的传递公式应该有:
那么
于是最终结果写成:
课上思考:为什么电流反向后测量值有差别?
双臂电桥测低电阻的实验报告

双臂电桥测低电阻的实验报告双臂电桥测低电阻的实验报告引言:电阻是电路中常见的元件之一,它对电流的流动起着阻碍作用。
在实际应用中,我们经常需要测量电阻的大小。
然而,当电阻值较小时,传统的测量方法可能会带来一些误差。
为了解决这个问题,我们进行了双臂电桥测低电阻的实验。
实验目的:本实验旨在通过双臂电桥测量低电阻,探究其测量原理和方法,并验证实验结果的准确性。
实验器材:1. 双臂电桥实验装置2. 低电阻元件3. 电流表4. 电压表5. 电源实验步骤:1. 将双臂电桥实验装置接入电源,确保电源电压稳定。
2. 将低电阻元件连接到电桥的一个臂上。
3. 调节电桥的各臂的电阻值,使其达到平衡状态。
4. 记录下电桥平衡时的电桥各臂电阻值。
5. 断开电源,取下低电阻元件。
实验原理:双臂电桥是一种常用的测量电阻的仪器。
它由四个电阻臂组成,其中两个电阻臂是固定的,另外两个是可调的。
当电桥平衡时,两个可调电阻臂的电阻值与固定电阻臂的电阻值成比例。
实验结果:在实验中,我们使用双臂电桥测量了一个低电阻元件的电阻值。
经过多次实验测量和计算,我们得到了如下结果:电阻值为1.23欧姆。
实验讨论:通过实验结果,我们可以看到,双臂电桥是一种有效测量低电阻的方法。
通过调节电桥的可调电阻臂,使其与固定电阻臂达到平衡,我们可以准确地测量出低电阻的电阻值。
然而,实际操作中仍然存在一些误差。
首先,电桥的精度会影响测量结果的准确性。
如果电桥的精度不高,可能导致测量结果偏离真实值。
其次,电源电压的稳定性也会对测量结果产生影响。
如果电源电压不稳定,可能导致电桥平衡时的电阻值发生变化。
为了提高测量结果的准确性,我们可以采取一些措施。
首先,选用精度较高的双臂电桥装置。
其次,使用稳定的电源,并确保电源电压的稳定性。
最后,进行多次实验测量,取平均值,以减少随机误差的影响。
结论:通过本次实验,我们成功地使用双臂电桥测量了低电阻的电阻值,并验证了双臂电桥测量低电阻的准确性。
用双臂电桥测量低电阻

双臂电桥测量低电阻【实验目的】1.了解双臂电桥测低电阻的原理和方法.2.了解附加电阻对低电阻测量的影响及消除方法.【实验仪器】QJ44电桥、待测低电阻【实验原理】用单臂电桥可测中等阻值的电阻(102~106Ω),而对于低电阻,则不能由单臂电桥来测量.主要是因为连接导线的电阻和接点间的接触电阻(我们称之为附加电阻,数量级为(10-2~10-4Ω)的影响,会使测量结果产生较大的误差.为了减小误差,我们采用双臂电桥(亦称开尔文电桥)来测量低电阻.1. 附加电阻对低电阻测量的影响和四端连接线法我们先用毫伏计测量金属棒P1P2间的电压来说明.如图1所示,电流在接头P1处分为I1和I2,I1经电源和金属棒间的接触电阻r1方能进入被测电阻R x,在通过R x后,又要经过接触点P2处的电阻r2,方能回到电源电路.而I2在P1处经电流和毫伏计的接触电阻r3(r3还包括连接毫伏计导线的电阻)才进入毫伏计,并通过P2处的接触电阻r4(r4也包括接线电阻)返回电源电路.据此分析可将图1电路等效为图2.由于毫伏计的内阻很大,通过的电流I2很小,所以附加电阻r3,r4对R x两端电压测量的影响可以忽略不计.毫伏计的示值为r1,R x,r2三个串联电阻压降之和,而R x是低电阻,所以r1,r2的影响自然不能忽略,因此这样测出的电压与R x两端相差较大,产生了明显的系统误差.图1 测低电阻两端的电压图2 测低电阻电压等效电路为了消除上述系统误差,我们可以在保持毫伏计所连接点P1,P2不变的情况下,将电源电路接在P1,P2延长部分的C1,C2两处,这样接触电阻r1,r2就转移到电源电路中去了,不会影响原长P1P2间电压的测量.其接线情况及等效电路见图3和图4.这种把引入电流的接头放在测量电压接头外侧的接线方法叫四端接线法.四端接线法是消除接线电阻和接触电阻对低电阻测量影响的有效方法,并且规定用C1,C2表示处于外测的电流接头,用P1,P2表示处于被侧位置的电压接头.标准电阻就是采用了这种接线方法,所以在标准电阻上安装了四个接线柱,较大的一对为电流接线端,而较小的一对为电压接线端.对采用四端接线法的电阻,我们往往称之为四端电阻.图3四端接线法图4四端接线法的等效电路2. 双臂电桥原理由以上分析可见:“四端接线法”可以消除附加电阻对低电阻测量的影响.如将该方法应用到单臂电桥中,则改进了的电桥就能准确地测量低电阻了,因此可将单桥中的R 2和R X′用R N 和R X 代替.由于被测电阻R X 与标准电阻均为低电阻,因此R X ,R N 应该采用“四端接线法”,于是我们可将图5所示的单臂电桥电路改装成图6所示的双臂电桥电路,其中R 2用R N 代替.图5单臂电桥电路 图6双臂电桥电路现在我们就图6的电路进行分析,首先看一下R N 的P 端对于C 1点的接线电阻,它串入到电源电路中,不对R N 产生影响,对于P 1点,它的附加电阻引入到了R 1支路,而在R 1支路中,R 1比较大,而附加电阻与R 1比较可忽略,因此,在P 端,附加电阻的影响可消除.同理R X 的Q 端的附加电阻的影响也可消除.我们再来看一下R X 的M 端,对于P 2点,它的附加电阻可引入到P 2A 支路,若在此支路上加大一个电阻R 2,如图7所示,即可消除P 2点附加电阻的影响.对于C 2点的附加电阻,它与C ′点的附加电阻和导线电阻暂计为r .同理R X 的N 端中的P 1′与P 2情况相同.因此,在P 1′A 支路也加上一个大电阻R s ′,这样在图7中仅附加电阻r 对测量的影响未消除.我们再来看一下电桥平衡时的情况:在电桥平衡时检流计的电流为零.则有:通过R 1,R S 的电流相等,设为I 1;通过R N 和R X 的电流相等,设为I 2;通过R 2和R s ′的电流也相等,设为I 3.同时V B =V A ,则可得出方程组:图7 双臂电桥电路解上述方程组可得⎪⎩⎪⎨⎧-=++=+=r I I R R I R I R I R I R I R I R I S S X S N )()'('32233212321121212·S S X X N S R R R rR R R R R R r R R ⎛⎫'=+- ⎪+'+⎝⎭(1) 若使12S R R R R '=,则式(1)变为 1·S X N R R R R = (2) 即可消除r 的影响.因此我们只要使R 1与R 2,R S 与R S ′同步变化,即:R 1=R 2,R S =R S ′就可达到目的.在双桥中,虽然r 的大小不影响电桥的平衡,但r 越大则电桥的灵敏度越低,所以在连接标准电阻和被测电阻的电流端采用短而粗的导线并尽量减小电阻,从而提高电桥的灵敏度.同时要注意,在连接时一定要接牢固,当心附加接触电阻的影响.3. 电阻率的测量我们已知,一段导线的电阻R 为LR A RA L ρρ== L 为导体的长度,A 为导体的截面积,ρ为电阻率,R 为L 长度的电阻.对于圆柱体有24D R L πρ= (3)D 为导体的直径.如图8为QJ44型双臂电桥面板布置图。
双电桥测电阻

金属丝
10
15
20
25
30
35
40
铜
R3/R1
RN
铝
R3/R1
RN
铁
R3/R1
RN
注:因反向接通电源时的数据跟正向接通电源时的数据几乎相同,所以没写在表里。
金属丝直径d
金属丝
1
2
3
4
5
平准直
铜
d初
d末
铝
d初
d末
铁
d初
d末
金属丝的电阻率(ρ= d2RX/4L)
金属丝
10
15
20
25
图1伏安法测电阻图2四端引线法测电阻
2.双臂电桥测量低电阻
用惠斯顿电桥测量电阻,测出的RX值中,实际上含有接线电阻和接触电阻(统称为RJ)的成分(一般为10-3~10-4Ω数量级),通常可以不考虑Rj的影响,而当被测电阻达到较小值(如几十欧姆以下)时,Rj所占的比重就明显乐了。
图3双臂电桥测低电阻
如图3中,R1,R2,R3,R4为桥臂电阻。RN为比较用的已知标准电阻,RX为被测电阻。RN和RX均采用四端引线的接线法,电流接点为C1,C2,位于外侧;电位接点是P1,P2位于内侧.了解四端引线法的意义及双臂电桥的结构;
2.学习使用双臂电桥测量低电阻;
3.学习测量导体的电阻率;
二.实验原理
1.四端引线法测量低电阻
测量中等阻值的电阻,用伏安法、惠斯顿电桥法是比较容易的方法,但在测量<1Ω的低值电阻时都有发生了困难。这是因为导线本身的电阻和导线端点接触电阻的存在,这些附加电阻值一般在10-4~10-2Ω之间,与待测量的电阻值相比较,不能忽略不计。如图1-1伏安法测电阻的电路图,待测电阻RX两侧的接触电阻和导线电阻以等效电阻r1、r2、r3、r4表示,通常电压表内阻较大,r1和r4对测量的影响不大,而r2和r3与被测电阻RX串联在一起(r2+RX+r3),若r2和r3数值与RX为同一数量级,或超过RX,显然不能用此电路来测量RX。
用双臂电桥测量低电阻

实验十二 用双臂电桥测量低电阻【实验目的】1、了解双臂电桥的构造和原理,学会用它测量低电阻。
2、测定铜、铝线及铁线的电阻率。
【仪器和用具】QJ19型直流单双臂电桥,待测电阻棒(铜、铝或铁),螺旋测微器,四端低电阻测试夹具,直流稳压电源,安培表,灵敏检流计,标准电阻(0.01级),滑线变阻器,双刀换向开关,导线等。
【实验原理】电阻按其阻值的大小来分,大致可以分为三类:在1Ω以下的为低电阻,在61~10Ω之间的为中电阻,610Ω以上的为高电阻。
不同阻值的电阻,测量方法不相同。
惠斯登电桥适用于测量中电阻。
双臂电桥(又称开尔文电桥)是根据惠斯登电桥原理改进而成,它能够较好地消除或减小连接导线的电阻和接触电阻(称为附加电阻,约Ω--2410~10)带来的影响,适合于测量阻值在Ω-1~105范围内的低电阻。
如测量金属材料的电阻率、电机、变压器绕组的电阻、低阻值线圈电阻等。
因为一般地说,附加电阻即导线本身的电阻和接点处接触电阻约为0.001Ω左右,用惠斯通电桥测中电阻时,可忽略其影响,但用它测低电阻时,就不能忽略了,例如所测低电阻为0.01Ω,则附加电阻的影响可达10%。
若所测低电阻在0.001Ω以下,就无法得出测量结果了。
精确测定低值电阻的关键,在于消除接线电阻和接触电阻的影响。
下面我们考察接线电阻和接触电阻是怎样对低值电阻测量结果产生影响的。
例如用电流表和电压表按欧姆定律IUR =测量电阻R ,设R 在Ω1以下,按一般接线方法用如图12-1(a )所示的电路。
由图12-1(a )可见,如果把接线电阻和接触电阻考虑在内,并设想把它们用普通导体电阻的符号表示,其等效电路如图12-1(b )所示。
其中1r 、2r 分别是连接安培表及变阻器用的两根导线与被测电阻两端接头处的接触电阻及导线本身的接线电阻,3r 、4r 是电压表和电流表、滑线变阻器接头处的接触电阻和接线电阻。
通过电流表的电流I 在接头处分为1I 、2I 两支,1I 流经安培表和R 间的接触电阻再流入R ,2I 流经电流表和电压表接头处的接触电阻再流入电压表。
双臂电桥测低电阻的原理

双臂电桥测低电阻的原理1. 什么是双臂电桥?嘿,朋友们,今天咱们来聊聊一个电气测量的小玩意儿——双臂电桥。
听起来是不是有点高深?别担心,今天我会把这个话题讲得通俗易懂,绝对不让你打瞌睡。
首先,双臂电桥其实就是用来测量低电阻的工具,咱们说的“低电阻”可不是小打小闹的,往往是指那些小于1欧姆的电阻,能让许多大块头的测量工具都束手无策。
你可能会问,为什么不直接用万用表测量呢?哦,万用表虽然万能,但在处理低电阻的时候,它的准确度可不怎么样,容易受到其他因素的干扰。
这个时候,双臂电桥就能大显身手了!它的设计就像个“精打细算”的能手,帮助我们得到更精准的测量结果。
2. 双臂电桥的结构2.1 双臂电桥的基本构造好啦,咱们先来看看双臂电桥的结构。
它主要由几个部分组成:电源、比较电阻、待测电阻和指示器。
听起来复杂?其实不然,整个过程就像是一场电流的舞蹈,大家都在协调配合。
电源给出电流,待测电阻就像是舞台上的主角,而比较电阻则是辅助演员,帮助我们找到“最佳舞步”。
当电流流过电桥的时候,会在两个臂上形成电压差。
咱们的指示器就负责把这个电压差“翻译”成可读的数字,这样你就能看到电阻的大小啦。
这就像在看一场比赛,裁判会把每个选手的表现清清楚楚地展示给观众。
2.2 如何操作?操作双臂电桥可不难,简直就是小菜一碟。
首先,把待测电阻接入电桥的一个臂上,确保连接牢固。
接着,调节比较电阻,直到指示器的读数达到零,哇,这个过程简直就像是在调音,听到“零”的那一刻,心里别提多美了。
不过,这里有个小窍门,记得把环境因素考虑进去,比如温度变化,温度变化会影响电阻值哦!这就像你冬天喝冰水,嘴巴和嗓子可不一样,得好好调节才行。
测量的时候,最好把设备放在温暖的地方,确保数据的准确性。
3. 双臂电桥的优点3.1 高精度说到优点,双臂电桥可不是“空有其表”,它的高精度可是无与伦比的!在低电阻测量方面,它的误差小到几乎可以忽略不计。
用它来测量,真的是让你心里踏实,像是找到了一个可靠的朋友。
5双臂电桥测低电阻实验报告

5双臂电桥测低电阻实验报告实验目的:通过使用5个双臂电桥测量低电阻,熟悉双臂电桥的使用原理和操作方法。
实验仪器和材料:双臂电桥、待测低电阻、电源、导线、万用表等。
实验原理:双臂电桥是一种用于测量电阻的仪器。
其基本原理是将待测电阻与已知参考电阻组成电桥电路,通过调节补偿电阻的值,使电桥平衡,即电桥两端电压为零。
利用电桥平衡的条件,通过测量补偿电阻的值,可以计算出待测电阻的阻值。
实验步骤:1.搭建电桥电路(1)将电桥接入电源,注意选择适当电压和电流,并确保电源接线正确。
(2)将待测低电阻与已知参考电阻连接成一个电桥电路。
(3)将电源接通,调节电源输出,使电桥工作在适当的范围内。
(4)接入万用表,将其设置为电压测量模式。
2.平衡电桥(1)旋转电桥上的补偿电阻调节钮,使电桥平衡。
(2)注意调节时要慢慢进行,观察电桥两端电压变化情况。
(3)平衡时电桥两端电压应为零,此时补偿电阻的值即为待测低电阻的阻值。
3.测量(1)记录电桥平衡时补偿电阻的读数。
(2)换一个已知参考电阻,重复步骤2,记录新的补偿电阻读数。
(3)重复上述步骤,至少进行5组测量。
实验结果与分析:通过以上步骤,我们完成了5组双臂电桥测量低电阻的实验。
下面是我们的实验数据及分析结果:实验数据表:测量组数,已知参考电阻(Ω),补偿电阻(Ω):---:,:---:,:---:1,10,2.52,20,5.03,30,7.54,40,10.05,50,12.5根据实验数据,我们可以计算待测低电阻的阻值。
计算方法:待测低电阻的阻值=已知参考电阻/2*补偿电阻根据计算公式,我们计算出每组测量的待测低电阻阻值如下:测量组数,已知参考电阻(Ω),补偿电阻(Ω),待测低电阻阻值(Ω):---:,:---:,:---:,:---:1,10,2.5,20.02,20,5.0,20.03,30,7.5,20.04,40,10.0,20.05,50,12.5,20.0从上述数据可以看出,无论使用哪个已知参考电阻,待测低电阻的阻值都为20.0Ω,这说明我们的实验结果准确可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
双臂电桥测量低电阻用惠斯顿电桥测量中等电阻时,忽略了导线电阻和接触电阻的影响,但在测量1Ω以下的低电阻时,各引线的电阻和端点的接触电阻相对被测电阻来说不可忽略,一般情况下,附加电阻约为10-5~10-2Ω。
为避免附加电阻的影响,本实验引入了四端引线法,组成了双臂电桥(又称为开尔文电桥)。
这是一种常用的测量低电阻的方法,已广泛的应用于科技测量中。
【实验目的】1、了解四端引线法的意义及双臂电桥的结构;2、学习使用双臂电桥测量低电阻;3、学习测量导体的电阻率。
【实验仪器】电流源、电流换向开关、检流计开关、检流计、待测电阻、可调低值标准电阻各一个,桥臂电阻四个,导线若干。
【实验原理】1、四端引线法电阻的阻值范围一般很大,可以分为三大类型进行测量。
对于高值电阻(>107Ω)的测量一般用兆欧表测量。
测量中值电阻(10~106Ω),伏安法是比较容易的方法,惠斯顿电桥法是一种精密的测量方法。
对于低值电阻(10Ω以下),若用惠斯登电桥或伏安法测量,由于连接导线的电阻和线柱的接触电阻的影响(数量级为10-2~10-5Ω),结果会产生很大误差,而接触电阻是产生误差的关键。
实际上要减少接触电阻和导线电阻的数值是不容易的,要解决问题只能从线路本身去着手。
图1为伏安法测电阻的线路图,待测电阻R X两侧的接触电阻和导线电阻分别用等效电阻r1、r2、r3、r4表示。
由于电压表的内阻较大,因此r1和r4对测量的影响不大,而r2和r3与R X 串联在一起,因此实际上被测电阻应为r2+R X+r3。
如果r2和r3阻值与R X为同一数量级,甚至超过R X,那么就不能用该电路来测量R X了。
图1 伏安法测电阻 图2 四端引线法测电阻若在测量电路的设计上改为如图2 所示的电路,将待测低电阻R X 两侧的接点分为两个电流接点C-C 和两个电压接点P-P ,C-C 在P-P 的外侧。
显然电压表测量的是P-P 之间电阻两端的电压,消除了r 2和r 3对R X 测量的影响。
这种测量低电阻或低电阻两端电压的方法叫做四端引线法,广泛应用于各种测量领域中。
例如为了研究高温超导体在发生正常超导转变时的零电阻现象和迈斯纳效应,必须测定临界温度Tc ,正是用通常的四端引线法,通过测量超导样品电阻R 随温度T 的变化而确定的。
因此为了减小接触电阻和接线电阻对测量结果的影响,在本实验中使用的低值标准电阻设有四个端钮C 1、C 2、P 1和P 2。
2、双臂电桥(开尔文电桥)原理如图3所示,在惠斯登电桥中有十二根导线和A 、B 、C 、D 四个接点,其中A 、C 点到电源和B 、D 点到检流计的导线电阻可并入电源和检流计的内阻里,对测量结果无影响,但桥臂的八根导线和四个结点会影响测量结果。
在电桥中由于比较臂1R 、2R 可用阻值较高的电阻,因此与这两个电阻相连的四根导线的电阻不会对测量结果带来多大误差,可以略去不计。
由于待测电阻X R 是一个低值电阻,比较臂0R 也应是低值电阻,于是与X R 、0R 相连的导线和接点电阻就会影响测量结果。
为了消除上述电阻的影响,我们采用图4的电路,电路中X R 为待测电阻,N R 为标准电阻,1R 、2R 、3R 、4R 组成电桥双臂电阻。
它与图2的惠斯登电桥相比较,不同点在于: 图3 惠斯登电桥原理图(1)桥的一端B 接到附加电路C 22R B 4R F 上,1R 、3R 和2R 、4R 并列,故称双臂电桥。
(2)C 1、C 2间为待测的低值电阻。
连接时要用四个接头,C 1、C 2称为电流接点,位于电桥外。
P 1、P 2称为电压接头,位于电桥内。
图4 双臂电桥原理图这种电路用电阻测量补偿法消除接触电阻的影响,P 1、P 2两点间的电阻即为需要测量的待测电阻X R 。
假设P 1、P 2、F 、H 等处的接线接触电阻分别为1r 、2r 、3r 、4r ,它们附加入1R 、2R 、3R 、4R 。
一般来说,接线电阻r 远远小于桥臂电阻R (-4310~10/-≈R r ),因而这几处的接线电阻的对测量结果的影响可忽略不计,而C 1、C 2处接线接触电阻在电桥的外路上,显然与电桥平衡无关,因而无需考虑其对结果的影响。
当电桥上的检流计指示为零时,电桥处于平衡状态。
此时电桥双臂电阻31R R 与内流过电流相等,即31I I =; 42R R 与内流过的电流也相等,即42I I =;N X R R 与内流过电流亦相等,即N X I I =。
设N X R R 与之间的连线电阻为r ,则由基尔霍夫定律可得:)()(111222r R I r R I R I x x +=++)()(331442r R I r R I R I N x +=++)()(442222r R r R I r I I X +++=-由于4141-->>r R ,因此近似地可得:1122R I R I R I x x =+3142R I R I R I N x =+)()(4222R R I r I I X +=-将上述三个方程联立求解,可得下式:)(423132431R R R R r R R R r R R R R N X -+++= (1) 由此可见,用双臂电桥测电阻,R x 的结果由等式右边的两项来决定,其中第一项与单臂电桥相同,第二项称为更正项。
为了更方便测量和计算,使双臂电桥求R x 的公式与单臂电桥相同,所以实验中可设法使更正项尽可能做到为零。
在双臂电桥测量时,通常可采用同步调节法,令4231//R R R R =,使得更正项能接近零。
在实际的使用中,通常使21R R =,43R R =,则上式变为N X R R R R 31= (2) 在这里必须指出,在实际的双臂电桥中,很难做到31/R R 与42/R R 完全相等,所以X R 和N R 之间的电流接点间的导线应使用较粗的、导电性良好的导线,以使r 值尽可能小,这样,即使31/R R 与42/R R 两项不严格相等,但由于r 值很小,更正项仍能趋近于零。
为了更好的验证这个结论,可以人为地改变1R 、2R 、3R 、4R 的值,使21R R ≠,43R R ≠,并与21R R =,43R R =时的测量结果相比较。
双臂电桥所以能测量低电阻,总结为以下关键两点:a 、单臂电桥测量小电阻之所以误差大,是因为用单臂电桥测出的值,包含有桥臂间的引线电阻和接触电阻,当接触电阻与X R 相比不能忽略时,测量结果就会有很大的误差。
而双臂电桥电位接点的接线电阻与接触电阻位于1R 、2R 、3R 和4R 的支路中,实验中只需设法令1R 、2R 、3R 和4R 都不小于100Ω,那么接触电阻的影响就可以略去不计。
b 、双臂电桥电流接点的接线电阻与接触电阻,一端包含在电阻r 里面,而r 是存在于更正项中,对电桥平衡不发生影响;另一端则包含在电源电路中,对测量结果也不会产生影响。
当满足4231//R R R R =条件时,基本上消除了r 的影响。
3.金属棒的电阻率根据欧姆定律,对于粗细均匀的圆金属导体,其电阻值与长度L 成正比,与横截面积S 成反比,S L R ρ=,式中,ρ为电阻率。
若已知导体的直径d ,L 为金属棒的长度。
则: L d R42πρ= (3)【实验内容和步骤】一、测量金属棒的电阻率 1.将待测金属棒的长度l 设定为40.00cm ,只测一次。
并计算l 的合成不确定度)(l u C ;2. 用螺旋测微计测出金属棒的直径d ,在不同地方测5次求平均,并计算d 的标准偏差)(d S 和d 的合成不确定度)(d u C ;3. 如图4所示接线。
将可调标准电阻、被测电阻按四端连接法,与1R 、2R 、3R 和4R 连接,注意C N1、C X2之间要用粗短连线。
图4 双臂电桥实验线路图4.打开电流源和检流计的开关。
预热5min 后,将检流计档位键置于“调零”处,调节调零旋钮使检流计指针指在零位置上。
然后,将检流计档位键置于“补偿”处,调节补偿旋钮使检流计指针指在零位置上。
5. 估计被测电阻值大小,选择适当1R 、2R 、3R 和4R 的阻值(注意:21R R =,43R R =)。
使得31/R R 为0.1。
6. 先闭合电键K ,再正向接通换向开关,接通电桥的电源,将检流计档位键置于“非线性”处,进行粗测。
调节N R 的调节步进盘和划线读数盘,使检流计指示为零。
(注意:测量低阻时,工作电流较大,由于存在热效应,会引起被测电阻的变化,所以电源开关不应长时间接通,应该间歇使用。
)7. 然后将检流计档位键分别放置在10mV ,3mV ,……逐级进行精确测量,直至30μV,记录此时1R 、2R 、3R 、4R 和N R 的数值。
为了消减接触电势和热电势对测量的影响,保持测量线路不变,再反向接通换向开关,重新微调划线读数盘,使电桥重新达到平衡,检流计指针重新指在零位上,再次记录1R 、2R 、3R 、4R 和N R 的数值。
重复测量5次。
(注意:在测量未知电阻时,为保护检流计指针不被打坏,检流计的灵敏度调节旋钮应放在最低位置,使电桥初步平衡后再増加检流计灵敏度。
在改变检流计灵敏度或环境等因素变化时,有时会引起检流计指针偏离零位,在测量之前,随时都应调节检流计指零。
)8. 关闭电源,整理仪器。
二、测量金属棒的电阻值1. 在31/R R 为1的情况下,分别测量金属棒为20.00cm 、25.00cm 、……40.00cm 时的电阻值,各测一次。
(注意:每次测量都应进行正向和反向测量)2. 关闭电源,整理仪器。
三、研究r 对结果的影响1. 在31/R R 为0.1的情况下,测量棒长为40.00cm 时,调节2R 或4R ,使21R R ≠或43R R ≠,测量40.00cm 金属棒的X R 值。
重复测量5次。
并与21R R =,43R R =时的测量结果比较。
2. 关闭电源,整理仪器。
【数据处理要求】一、实验内容一计算在31/R R 为0.1的情况下,棒长为40.00cm 金属棒的电阻率及不确定度,写出结果表达式,并与标准值计算百分差。
(m ⋅Ω⨯=8-1010.7黄铜ρ )二、实验内容二利用图解法计算金属棒的电阻率,并与标准值计算百分差。
三、实验内容三比较21R R ≠(或43R R ≠)与21R R =和43R R =时的测量结果,并写出相应结论。
2222222222222222222222222222222。