Linux设备驱动程序设计课程

合集下载

嵌入式Linux驱动开发教程PDF

嵌入式Linux驱动开发教程PDF

嵌入式Linux驱动开发教程PDF嵌入式Linux驱动开发教程是一本非常重要和实用的教材,它主要介绍了如何在Linux操作系统上开发嵌入式硬件设备的驱动程序。

嵌入式系统是指将计算机系统集成到其他设备或系统中的特定应用领域中。

嵌入式设备的驱动程序是连接操作系统和硬件设备的关键接口,所以对于嵌入式Linux驱动开发的学习和理解非常重要。

嵌入式Linux驱动开发教程通常包括以下几个主要的内容:1. Linux驱动程序的基础知识:介绍了Linux设备模型、Linux内核模块、字符设备驱动、块设备驱动等基本概念和原理。

2. Linux驱动编程的基本步骤:讲解了如何编译和加载Linux内核模块,以及编写和注册设备驱动程序所需的基本代码。

3. 设备驱动的数据传输和操作:阐述了如何通过驱动程序与硬件设备进行数据的传输和操作,包括读写寄存器、中断处理以及与其他设备的通信等。

4. 设备驱动的调试和测试:介绍了常用的驱动调试和测试技术,包括使用调试器进行驱动程序的调试、使用模拟器进行驱动程序的测试、使用硬件调试工具进行硬件和驱动的联合调试等。

通常,嵌入式Linux驱动开发教程的PDF版本会提供示例代码、实验步骤和详细的说明,以帮助读者更好地理解和掌握嵌入式Linux驱动开发的核心技术和要点。

读者可以通过跟随教程中的示例代码进行实际操作和实验,深入了解和体验嵌入式Linux驱动开发的过程和方法。

总之,嵌入式Linux驱动开发教程是一本非常重要和实用的教材,对于想要在嵌入式领域从事驱动开发工作的人员来说,具有非常重要的指导作用。

通过学习嵌入式Linux驱动开发教程,读者可以系统地了解和学习嵌入式Linux驱动开发的基本原理和技术,提高自己在嵌入式Linux驱动开发方面的能力和水平。

LINUX设备驱动程序(4)

LINUX设备驱动程序(4)

协议简介
对于网络的正式介绍一般都采用 OSI (Open Systems Interconnection)模型, 但是Linux 中网络栈的介绍一般分为四层的 Internet 模型。
协议栈层次对比
OSI七层网络模型 应用层 表示层 会话层 传输层 网络层
数据链路层 物理层
Linux TCP/IP 四层概念模型
网络协议
网络协议层用于实现各种具体的网络协议, 如: TCP、UDP 等。
设备无关接口
设备无关接口将协议与各种网络设备驱动连接在一起。 这一层提供一组通用函数供底层网络设备驱动程序使用,让 它们可以对高层协议栈进行操作。
首先,设备驱动程序可能会通过调用 register_netdevice 或 unregister_netdevice 在内核中 进行注册或注销。调用者首先填写 net_device 结构,然后 传递这个结构进行注册。内核调用它的 init 函数(如果定义 了这种函数),然后执行一组健全性检查,并将新设备添加 到设备列表中(内核中的活动设备链表)。
驱动程序
网络栈底部是负责 管理物理网络设备 的设备驱动程序。
第二节 网卡驱动程序设计
设备注册
设备描述:
每个网络接口都由一个 net_device结构来描述
注册: 网络接口驱动的注册方式与字符驱动不同之处在于 它没有主次设备号,并使用如下函数注册。
int register_netdev(struct net_device *dev)
Linux网络子系统架构
Linux协议架构
Linux 网络子系统的顶部是系统调用接口。它为用 户空间的应用程序提供了一种访问内核网络子系统 的方法。位于其下面的是一个协议无关层,它提供 了一种通用方法来使用传输层协议。然后是具体协 议的实现,在 Linux 中包括内嵌的协议 TCP、 UDP,当然还有 IP。然后是设备无关层,它提供了 协议与设备驱动通信的通用接口,最下面是设备驱 动程序。

(完整)广州大学Linux_实验五

(完整)广州大学Linux_实验五

广州大学学生实验报告一、实验目的通过一个简单的设备驱动的实现过程。

学会Linux中设备驱动程序的编写二、使用仪器、器材1.设备:带网卡的PC若干、交换机一台。

2.工具:网线若干,已经安装好Red Hat Linux 9。

0系统的PC一台。

三、实验内容及原理设计和实现一个虚拟命名管道(FIFO)的字符设备。

写一个模块化的字符设备驱动程序四、实验过程(1)设备的实现1、数据结构/*vfifo.c*/#ifndef __KERNEL__#define __KERNEL__#endif#ifndef MODULE#define MODULE#endif#define __NO_VERSION__#include〈linux/config。

h>#include〈linux/module。

h>#include<linux/kernel.h〉#include〈linux/malloc。

h〉#include〈linux/fs。

h〉#include<linux/proc_fs。

h〉#include<linux/errno.h〉#include<linux/types。

h〉#include〈linux/fcntl。

h>#include〈linux/init。

h〉#include〈asm/system.h〉#include<asm/uaccess.h〉#ifndef VFIFO_MAJOR#define VFIFO_MAJOR 241#endif#ifndef VFIFO_NR_DEVS#define VFIFO_NR_DEVS 4#endif#ifndef VFIFO_BUFFER#define VFIFO_BUFFER 4000#endif#include<linux/devfs_fs_kernel。

h〉devfs_handle_t vfifo_devfs_dir;struct file_operations vfifo_fops;int vfifo_major=VFIFO_MAJOR;int vfifo_nr_devs=VFIFO_NR_DEVS;int vfifo_buffer=VFIFO_BUFFER;MODULE_PARM(vfifo_major,"i");MODULE_PARM(vfifo_nr_devs,"i");MODULE_PARM(vfifo_buffer,"i");MODULE_AUT HOR(”EBUDDY”);结构体/*vfifo。

嵌入式linux开发课程设计

嵌入式linux开发课程设计

嵌入式linux开发课程设计一、课程目标知识目标:1. 理解嵌入式Linux系统的基本概念、原理和架构。

2. 掌握嵌入式Linux开发环境的搭建与使用。

3. 学习嵌入式Linux内核配置、编译与移植方法。

4. 掌握常见的嵌入式Linux设备驱动编程技术。

技能目标:1. 能够独立搭建嵌入式Linux开发环境。

2. 熟练运用Makefile、交叉编译工具链进行代码编译。

3. 能够编写简单的嵌入式Linux设备驱动程序。

4. 学会分析并解决嵌入式Linux开发过程中的常见问题。

情感态度价值观目标:1. 培养学生对嵌入式系统开发的兴趣,提高学习积极性。

2. 培养学生的团队协作意识,增强沟通与表达能力。

3. 培养学生勇于克服困难,面对挑战的精神。

分析课程性质、学生特点和教学要求:本课程为高年级专业课程,要求学生具备一定的C语言基础和计算机硬件知识。

课程性质为理论与实践相结合,注重培养学生的实际动手能力。

针对学生特点,课程目标设定了明确的知识点和技能要求,旨在使学生能够掌握嵌入式Linux开发的基本方法,为后续项目实践和职业发展奠定基础。

课程目标分解为具体学习成果:1. 学生能够阐述嵌入式Linux系统的基本概念、原理和架构。

2. 学生能够自主搭建嵌入式Linux开发环境,并进行简单的程序编译与运行。

3. 学生能够编写简单的嵌入式Linux设备驱动程序,并实现相应的功能。

4. 学生能够针对嵌入式Linux开发过程中遇到的问题,提出合理的解决方案,并进行实际操作。

二、教学内容1. 嵌入式Linux系统概述- 嵌入式系统基本概念- 嵌入式Linux的发展历程- 嵌入式Linux系统的特点与优势2. 嵌入式Linux开发环境搭建- 交叉编译工具链的安装与配置- 嵌入式Linux文件系统制作- 常用开发工具的使用(如Makefile、GDB)3. 嵌入式Linux内核与驱动- 内核配置与编译- 内核移植方法- 常见设备驱动编程(如字符设备、块设备、网络设备)4. 实践项目与案例分析- 简单嵌入式Linux程序编写与运行- 设备驱动程序编写与调试- 分析并解决实际问题(如系统性能优化、故障排查)教学内容安排与进度:1. 嵌入式Linux系统概述(2课时)2. 嵌入式Linux开发环境搭建(4课时)3. 嵌入式Linux内核与驱动(6课时)4. 实践项目与案例分析(8课时)本教学内容基于课程目标,结合教材章节内容,注重理论与实践相结合,旨在培养学生的实际动手能力和解决问题的能力。

操作系统课程设计Linux

操作系统课程设计Linux

操作系统课程设计Linux一、教学目标本课程的教学目标是使学生掌握Linux操作系统的核心概念、原理和应用技能。

通过本课程的学习,学生将能够:1.理解操作系统的基本原理,包括进程管理、内存管理、文件系统和输入/输出系统。

2.掌握Linux操作系统的安装、配置和管理方法。

3.熟练使用Linux命令行界面,进行日常操作和系统管理。

4.掌握Linux常用命令、 shell脚本编写和系统监控工具的使用。

5.了解Linux操作系统在服务器、嵌入式设备和云计算等领域的应用。

二、教学内容本课程的教学内容分为五个部分:1.操作系统概述:介绍操作系统的定义、功能和分类,以及Linux操作系统的历史和发展。

2.进程管理:讲解进程的基本概念、进程控制、进程同步和互斥、死锁及其解决方法。

3.内存管理:介绍内存分配与回收策略、内存保护、虚拟内存和分页分段机制。

4.文件系统:讲解文件和目录结构、文件访问控制、文件系统性能优化和磁盘空间分配策略。

5.输入/输出系统:介绍I/O设备管理、中断和DMA机制、设备驱动程序和I/O调度策略。

三、教学方法本课程采用多种教学方法相结合的方式,以提高学生的学习兴趣和主动性:1.讲授法:教师讲解操作系统的核心概念和原理,引导学生掌握基本知识。

2.讨论法:学生针对实际案例和问题进行讨论,培养学生的思考和分析能力。

3.案例分析法:分析Linux操作系统的实际应用案例,使学生了解操作系统的应用场景。

4.实验法:安排实验室课时,让学生亲自动手进行系统安装、配置和调试,提高学生的实践能力。

四、教学资源本课程的教学资源包括:1.教材:选用权威、实用的Linux操作系统教材,如《Linux操作系统原理与应用》。

2.参考书:提供相关的学术论文、技术博客和在线文档,供学生拓展阅读。

3.多媒体资料:制作课件、教学视频和演示文稿,辅助学生理解和记忆。

4.实验设备:提供Linux服务器、虚拟机和实验室环境,让学生进行实际操作。

Linux设备驱动程序课件(PPT 62页)

Linux设备驱动程序课件(PPT 62页)
Unsigned int iminor(struct inode *inode); Unsigned int imajor(struct inode *inode);
驱动程序中的内存分配
在Linux内核模式下,不能使用用户态的malloc() 和free()函数申请和释放内存。
内核编程最常用的内存申请和释放函数为 kmalloc()和kfree(),其原型为:
Linux设备驱动
广州嵌入式软件公共技术支持中心 梁老师
2007年07月
设备驱动概述
操作系统是通过各种驱动程序来驾驭硬件设备,它为 用户屏蔽了各种各样的设备,硬件设备的抽象。
设备驱动程序:处理和管理硬件控制器的软件。 设备驱动程序是操作系统内核和机器硬件之间的接口。
设备驱动概述
设备由两部分组成,一个是被称为控制器的电器部分, 另一个是机械部分。
设备驱动概述
Linux操作系统把设备纳入文件系统的范畴来管理。 文件操作是对设备操作的组织和抽象。设备操作则是
对文件操作的最终实现。 每个设备都对应一个文件名,在内核中也就对应一个
索引节点。 对文件操作的系统调用大都适用于设备文件。 从应用程序的角度看,设备文件逻辑上的空间是一个
一些重要的数据结构
文件操作结构体file_operations
结构体file_operations在头文件 linux/fs.h中定义, 用来存储驱动内核模块提供的对设备进行各种操作 的函数的指针。
结构体的每个域都对应着驱动模块用来处理某个被 请求的事务的函数的地址。
struct file_operations { struct module *owner; loff_t(*llseek) (struct file *, loff_t, int); ssize_t(*read) (struct file *, char __user *, size_t, loff_t *); ssize_t(*write) (struct file *, const char __user *, size_t, loff_t *); 。。。

linux设备驱动程序的设计与实现

linux设备驱动程序的设计与实现

linux设备驱动程序的设计与实现
Linux设备驱动程序的设计与实现是一个涉及底层系统编程和硬件交互的复杂过程。

下面是一个简单的步骤指南,以帮助你开始设计和实现Linux设备驱动程序:
1. 了解硬件:首先,你需要熟悉你要驱动的硬件设备的规格和特性。

这包括硬件的内存空间、I/O端口、中断请求等。

2. 选择驱动程序模型:Linux支持多种设备驱动程序模型,包括字符设备、块设备、网络设备等。

根据你的硬件设备和需求,选择合适的驱动程序模型。

3. 编写Makefile:Makefile是一个文本文件,用于描述如何编译和链接你的设备驱动程序。

它告诉Linux内核构建系统如何找到并编译你的代码。

4. 编写设备驱动程序:在Linux内核源代码树中创建一个新的驱动程序模块,并编写相应的C代码。

这包括设备注册、初始化和卸载函数,以及支持读写和配置硬件的函数。

5. 测试和调试:编译你的设备驱动程序,并将其加载到运行中的Linux内核中。

使用各种测试工具和方法来验证驱动程序的正确性和稳定性。

6. 文档和发布:编写清晰的文档,描述你的设备驱动程序的用途、用法和已知问题。

发布你的代码以供其他人使
用和改进。

Linux系统开发课程设计

Linux系统开发课程设计

Linux系统开发课程设计一、课程目标知识目标:1. 理解Linux操作系统的基本原理和架构,掌握Linux系统的基本操作命令。

2. 学习Linux系统下的编程环境,熟悉Shell脚本编写和执行过程。

3. 了解Linux系统开发工具,如GCC、GDB等,掌握编译器使用和程序调试技巧。

4. 掌握Linux系统下的文件系统结构和进程管理。

技能目标:1. 能够熟练使用Linux命令行,进行文件操作、目录管理和简单文本处理。

2. 能够编写简单的Shell脚本,实现自动化批处理任务。

3. 能够运用GCC等工具进行C/C++程序编译、链接和调试。

4. 能够分析和解决Linux系统开发中遇到的问题,具备一定的系统编程能力。

情感态度价值观目标:1. 培养学生对Linux系统的兴趣,激发他们探究操作系统原理的欲望。

2. 培养学生严谨的编程态度,注重代码规范和程序优化。

3. 培养学生的团队协作意识,学会在团队中分工合作,共同解决问题。

4. 培养学生面对挑战时的自信和毅力,敢于尝试,勇于创新。

本课程针对高中年级学生,课程性质为实践性较强的学科。

结合学生特点,课程目标注重基础知识掌握、动手实践能力和团队合作精神的培养。

在教学过程中,要求教师关注学生的个体差异,提供丰富的实践机会,引导学生主动探究,培养学生解决问题的能力。

通过本课程的学习,使学生能够掌握Linux系统开发的基本技能,为后续专业课程打下坚实基础。

二、教学内容1. Linux操作系统概述- 操作系统原理- Linux系统发展历史- Linux系统特点2. Linux基本操作命令- 文件和目录操作- 文本处理工具- 用户和权限管理3. Shell脚本编程- Shell概述- 基本语法和变量- 控制结构- 常用命令和函数4. Linux系统开发工具- GCC编译器使用- GDB调试技巧- Makefile编写5. Linux文件系统和进程管理- 文件系统结构- 进程和线程概念- 进程控制命令6. 实践项目与案例分析- 简单的Shell脚本编写- C/C++程序编译与调试- Linux系统编程实例分析教学内容根据课程目标,按照由浅入深的顺序进行组织,确保学生能够逐步掌握Linux系统开发的相关知识。

linux课程设计报告

linux课程设计报告

linux课程设计报告一、课程目标知识目标:1. 理解Linux操作系统的基本概念,掌握其发展历程和特点;2. 学会使用Linux命令行进行基本操作,如文件管理、目录切换、文本编辑等;3. 了解Linux系统的文件权限和用户管理,能够进行简单的系统维护;4. 掌握Linux下软件的安装与配置方法。

技能目标:1. 培养学生熟练运用Linux命令行进行日常操作的能力;2. 培养学生解决Linux系统常见问题的能力;3. 培养学生独立完成Linux软件安装与配置的能力;4. 提高学生的实际操作能力和团队协作能力。

情感态度价值观目标:1. 激发学生对Linux操作系统的兴趣,培养其学习热情和主动性;2. 培养学生严谨、细致的学习态度,树立良好的信息安全意识;3. 增强学生的团队协作精神,培养其尊重他人、善于沟通的品格;4. 引导学生认识到开源软件的价值,培养其创新精神和共享意识。

课程性质:本课程为实践性较强的课程,以学生动手操作为主,结合理论讲解,培养学生实际应用能力。

学生特点:学生具备一定的计算机操作基础,对Linux操作系统有一定了解,但实践经验不足。

教学要求:注重理论与实践相结合,强调实际操作能力的培养,以学生为主体,教师为主导,充分调动学生的积极性与主动性。

通过本课程的学习,使学生能够掌握Linux操作系统的基本知识,具备实际应用能力。

在教学过程中,将课程目标分解为具体的学习成果,便于教学设计和评估。

二、教学内容1. Linux操作系统概述- Linux发展历程- Linux系统特点- 常见Linux发行版介绍2. Linux命令行操作- 基本命令:ls、cd、pwd、mkdir、rm、cp、mv等- 文件和目录权限管理:chmod、chown、umask等- 文本处理命令:cat、grep、sort、uniq等- 压缩和解压缩命令:tar、gzip、bzip2等3. Linux系统管理- 用户和组管理:useradd、usermod、userdel、groupadd等- 软件包管理:rpm、yum、apt等- 系统启动与关闭:init、systemctl等- 网络配置:ifconfig、ip、route等4. Linux软件安装与配置- 源码编译安装:configure、make、make install- 包管理器安装:rpm、deb等- 常用软件安装与配置:Apache、MySQL、PHP等5. 实践操作与案例- 常见系统问题排查与解决- Linux下文件共享与权限设置- Linux下Web服务器搭建- Linux下数据库服务器搭建教学内容安排与进度:第1周:Linux操作系统概述第2周:Linux命令行操作第3周:Linux系统管理第4周:Linux软件安装与配置第5周:实践操作与案例本教学内容根据课程目标,结合教材章节进行选择和组织,确保内容的科学性和系统性。

浅谈嵌入式Linux系统设备驱动的开发与设计

浅谈嵌入式Linux系统设备驱动的开发与设计
Ln x设 备 驱 动 的 大 致 流 程 如 下 : 1定 义 主 、 设 备 号 , iu () 次 也 可 以 动 态 获 取 ; ) 现 驱 动 初 始 化 和 清 除 函 数 , 果 驱 f实 2 如
&I rv Od i
irt fe) ( { r t( E N_ E T“O r e gs ralr!) } pi kK R AL R I di r e ie i e” n v r t fu
设 备 驱 动 程 序 在 Ln x内核 中 占 有 极 其 重 要 的 位 置 , iu 它是 内核用 于完 成对 物理 设 备 的控制 操作 的 功能 模块 。
对设备 的请求 能满足用 户的要求 。 就返 回请求 的数据 ; 否
则。 就调用请 求 函数 来进行 实际 的 I 操作 。网络设 备可 / O 以通 过 B D套接 口访问数据 。所 有嵌入式 Ln x设备驱 S iu 动程 序都有一 些共性 ,是编写 所有类 型 的驱动程 序都通 用 的 , 作系统提供 给驱动 程序 的支持也大致 相 同。 操 这些
I fr a in T c n l g ・ 息技 术 ・ 硬件 n om to e h oo y 信 软
浅谈 嵌 入 式 Ln x系统 设 备 驱 动 的 iu 开发 与设 计
张 玲 玲
( 大庆油 田有 限责任公 司第十采油厂信 息 中心 黑龙 江大庆 16 0 ) 64 5
【 摘
要 】 主要 阐述 了嵌 入式 L u 设备 驱动程 序的概念 , ix n 归纳 嵌入式 L u 设备驱 动程序 的共 性 。 ix n 探讨嵌 入式 L u ix n
【 ew r e bde s m lu;ei i r e e Ky od m edd yt ;nxdv dv ; r l s】 se i e c re, n k

嵌入式Linux操作系统设备驱动程序设计与实现

嵌入式Linux操作系统设备驱动程序设计与实现
_
t w i ) t c fe ,c n t h r s e t o _ ; ( r e( r t l t s u o s ca i — ,l f t) i z f
it e d isrc o e , s u t l* v i ,fl i t; n( a dr tu tn d 十 t c e , od i l r ) r i r f i d
摘要 :主要 阐述 了嵌入 式 L u i x设备 驱动 程序 的概 念 ,归纳嵌 入式 L u n i x设备 驱动程 序 的共 性 , 讨嵌入 式 L u n 探 i x设备 n 驱 动程序 具 体 开发 流程 以及驱 动程 序的 关键 代码 ,总结嵌入 式 L u 设 备驱 动程 序 开发 的主 导思 想。 ix n 关键 词 :嵌入 式 系统 ;Ln x i ;设 备 驱动程 序 ;内核 u
l f t l ek( rcfe,l ft n) o t ( l e) t t l s su o i f ,it ;
_
sie t ra ) t c fe ,c a ,s et o c sz ( e d( r t l s u h r i ,1 _; i z )
_
s ie sz
i (s eO sutnd t cfe ,i ,sl tal ) n e c (rcioe ,sut l t l t r n e c be ; i t e t
i (i t) t c i d t c fe ,u s n d i ,u s e n o 1( r t n e ,s u ti n i e t n i d t c su o r l g n n g i) n; t
{ a : 1 die ra , r d r r ed e 0 v_
wr e I rv r wrt , i : Od ie t ie

操作系统课程设计 内核模块编程和设备驱动程序

操作系统课程设计 内核模块编程和设备驱动程序

课程设计题目内核模块编程和设备驱动程序学生姓名朱小波学号**********专业计算机科学与技术班级20091121指导教师张莉莉完成日期2012年1月5日Linux内核模块编程与设备驱动程序摘要:本文给出了一个linux字符设备驱动程序的例子,其包括了内核模块编程.其主要功能是:在内存虚拟一个字符设备,并由编写的驱动程序加载到系统,完成字符的输入与输出功能.此设备驱动程序可以用作linux实践教学的实例.关键词:字符设备驱动;内核模块编程;虚拟;模拟1 前言驱动程序是应用程序和硬件设备的一个接口,linux设备驱动程序属于内核的一部分,熟练驱动程序和内核模块开发需要硬件知识,了解操作系统的实现,需要了解内核基础知识,了解内核中的并发控制和同步以及复杂的软件结构框架.本文论述了如何在linux下实现一个简单的字符设备驱动程序,主要完成了内核树的建立、内核的编译、字符设备的模拟、字符设备的驱动、字符设备驱动程序的测试等.本文首先阐述了设备驱动程序和内核模块编程的基础知识,然后给出了实现一个设备驱动程序的总体框架,最后根据框架一步步详细完成了一个字符设备驱动程序,包括终端命令和源程序的编写.做好设备驱动程序可以更好的了解硬件和操作系统,本设备驱动程序可以作为操作系统实验课程的实例.2 设备驱动程序和内核模块编程相关基础知识linux内核是一个整体是结构.因此向内核添加任何东西.或者删除某些功能,都十分困难.为了解决这个问题. 引入了内核机制.从而可以可以动态的想内核中添加或者删除模块.模块不被编译在内核中,因而控制了内核的大小.然而模块一旦被插入内核,它就和内核其他部分一样.这样一来就会增加一部分系统开销.同时,假如模块出现问题.,也许会带来系统的崩溃.2.1模块的实现机制:启动时,由函数 void inti_modules 来初始化模块,.因为启动事很多时候没有模块.这个函数往往把内核自身当作一个虚模块.如由系统需要,则调用一系列以sys 开头的函数,对模块进行操作. 如:sys_creat_modules,sys_inti_modules , sys_deldte_modules等等.这里会用到一些模块的数据就结构,在/usr/scr/linux/include/linux/module.h 中.块的加入有两种方法:一是手动加入:如:insmod modulename.另一种是根据需要,动态的加载模块.如你执行命令:$mount -t msdos /dev/hdd /mnt/d 时.系统便自动加载 FAT模块,以支持MSDOS 的文件系统.2.2 模块编程写一个模块,必须有一定的多进程编程基础.因为编的程序不是以一个独立的程序的来运行的.另外,因为,模块需要在内核模式下运行,会碰到内核空间和用户空间数据交换的问题.一般的数据复制函数无法完成这一个过程.因此系统已入了一些非凡的函数以用来完成内核空间和用户空间数据的交换. 这些函数有:void put _user、memcpy_tofs 等等,需要说明的是.模块编程和内核的版本有很大的关系. 假如版本不通可能造成,内核模块不能编译,或者.在运行这个模块时,出现不可测结果.如:系统崩溃等.对于每一个内核模块来说.必定包含两个函数:int init_module :这个函数在插入内核时启动,在内核中注册一定的功能函数,或者用它的代码代替内核中某些函数的内容.因此,内核可以安全的卸载.int cleanup_module:当内核模块卸载时调用.将模块从内核中清除.2.3内核模块与应用程序对比应用程序是一个进程,编程从主函数main()开始,主函数main返回即是进程结束,使用glibc的库.驱动程序是一系列内核函数,函数入口和出口不一样,使用Linux内核的函数,这些函数由内核在适当的时候来调用,这些函数可以用来完成硬件访问等操作.2.4设备的分类设备一般分为字符设备(char device)、块设备(block device)、网络设备(network device).图1:设备的分类i字符设备特点:像字节流一样来存取的设备( 如同文件 )通过/dev下的文件系统结点来访问通常至少需要实现 open, close, read, 和 write 等系统调用只能顺序访问的数据通道,不能前后移动访问指针.特例:比如framebuffer设备就是这样的设备,应用程序可以使用mmap或lseek访问图像的各个区域ii块设备特点:块设备通过位于 /dev 目录的文件系统结点来存取块设备和字符设备的区别仅仅在于内核内部管理数据的方式块设备有专门的接口,块设备的接口必须支持挂装(mount)文件系统.应用程序一般通过文件系统来访问块设备上的内容图2:块设备驱动图3:网络设备驱动linux中的大部分驱动程序,是以模块的形式编写的.这些驱动程序源码可以修改到内核中,也可以把他们编译成模块形式,在需要的时候动态加载.一个典型的驱动程序,大体上可以分为这么几个部分:1,注册设备在系统初启,或者模块加载时候,必须将设备登记到相应的设备数组,并返回设备的主驱动号,例如:对快设备来说调用 refister_blkdec将设备添加到数组blkdev中.并且获得该设备号.并利用这些设备号对此数组进行索引.对于字符驱动设备来说,要使用 module_register_chrdev来获得祝设备的驱动号.然后对这个设备的所有调用都用这个设备号来实现.图4:内核模块调用过程2,定义功能函数对于每一个驱动函数来说.都有一些和此设备密切相关的功能函数.那最常用的块设备或者字符设备来说.都存在着诸如 open read write ioctrol这一类的操作.当系统社用这些调用时.将自动的使用驱动函数中特定的模块.来实现具体的操作.而对于特定的设备.上面的系统调用对应的函数是一定的. 如:在块驱动设备中.当系统试图读取这个设备时),就会运行驱动程序中的block_read 这个函数. 打开新设备时会调用这个设备驱动程序的device_open 这个函数.3,卸载模块在不用这个设备时,可以将它卸载.主要是从/proc 中取消这个设备的文件.可用特定的函数实现.3 设备驱动程序实现框架4 数据结构设计与主要功能函数(1)字符设备描述结构体:struct cdev {struct kobject kobj; /*内嵌的kobject对象*/struct module *owner; /*所属模块*/const struct file_operations *ops; /*文件操作结构体*/struct list_head list; /*双向循环链表*/dev_t dev; /*设备号32位高12位为主设备号,低20位为次设备号*/unsigned int count; /*设备数量*/};(2) 设备描述结构体struct mem_dev{char *data; /*数据*/unsigned long size; /*长度*/};表1 主要功能函数列表主要函数列表功能说明int mem_open(struct inode *inode, struct file *filp) 文件打开int mem_release(struct inode *inode, struct file *filp) 文件释放读文件static ssize_t mem_read(struct file *filp, char __user *buf, size_tsize, loff_t *ppos)写文件static ssize_t mem_write(struct file *filp, const char __user *buf,size_t size, loff_t *ppos)static loff_t mem_llseek(struct file *filp, loff_t offset, int whence) 文件定位static int memdev_init(void) 设备驱动模块加载static void memdev_exit(void) 卸载设备5 字符设备驱动程序的实现下载安装LINUX内核,需要下载和本机一样版本的内核源码.本设备驱动程序是在linux-3.0.12内核下进行的.5.1 安装编译内核所需要的软件并编译内核.使用以下命令安装需要的软件:sudo apt-get install build-essential autoconf automake cvs subversion kernel-package libncurses5-dev图5:安装所需软件在/pub/linux/kernel/v3.0/ 下载内核linux-3.0.12.tar.bz2将内核放置/usr/src目录下使用命令tar解压sudo tar jxvf linux-3.0.12.tar.bz2图6:解压内核使用以下命令配置系统cd linux-3.0.12cp /boot/config-`uname -r` ./.config #拷贝目前系统的配置文件make menuconfig终端会弹出一个配置界面最后有两项:load a kernel configuration... (.config)、save a kernel configuration... (.config) 选择load a kernel configuration保存,然后在选择save akernel configuration再保存退出,并退出配置环境.图7:配置系统参数make #这步需要比较长时间make bzImage #执行结束后,可以看到在当前目录下生成了一个新的文件: vmlinux, 其属性为-rwxr-xr-x.make modules #/* 编译模块*/make modules_install #这条命令能在/lib/modules目录下产生一个目录图8:make内核图9:make bzImage图10:make modules图11:make modules_installcd /usr/includerm -rf asm linux scsiln -s /usr/src/linux-3.0.12/include/asm-generic asmln -s /usr/src/linux-3.0.12/include/linux linuxln -s /usr/src/linux-3.0.12/include/scsi scsi5.2 编写字符设备驱动程序并调试编译.cd /rootmkdir firstdrivertouch memdev.c #建立驱动程序文件touch memdev.h #头文件touch Makefile #编写Makefile编译驱动程序模块make -C /lib/modules/3.0.0-12-generic/build M=/root/firstdriver modules图12:make 驱动程序ls查看当前目录的内容root@cloudswave-VirtualBox:~/firstdriver# lsMakefile memdev.h memdev.mod.c memdev.o Module.symversmemdev.c memdev.ko memdev.mod.o modules.order这里的memdev.ko就是生成的驱动程序模块.通过insmod命令把该模块插入到内核root@cloudswave-VirtualBox:~/firstdriver# insmod memdev.ko查看插入的memdev.ko驱动图13:查看插入的memdev.ko驱动可以看到memdev驱动程序被正确的插入到内核当中,主设备号为88,该设备号为如果这里定义的主设备号与系统正在使用的主设备号冲突,比如主设备号定义如下:#define MEMDEV_MAJOR 254,那么在执行insmod命令时,就会出现如下的错误:root@cloudswave-VirtualBox:~/firstdriver# insmod memdev.koinsmod: error inserting 'memdev.ko': -1 Device or resource busy5.3.测试驱动程序1,首先应该在/dev/目录下创建与该驱动程序相对应的文件节点,使用如下命令创建:root@cloudswave-VirtualBox:/dev# mknod memdev0 c 88 0使用ls查看创建好的驱动程序节点文件root@cloudswave-VirtualBox:/dev# ls -al memdev0图14:驱动程序节点文件2,编写如下应用程序memtest.c,来对驱动程序进行测试.编译并执行该程序root@cloudswave-VirtualBox:~/firstdriver# gcc -o memtest memtest.croot@cloudswave-VirtualBox:~/firstdriver# ./memtest图15:程序测试驱动手动测试驱动的方法:root@cloudswave-VirtualBox:~/firstdriver# echo 'haha shi wo' > /dev/memdev0root@cloudswave-VirtualBox:~/firstdriver# cat /dev/memdev06.小结:LINUX使用make编译驱动程序模块的过程.Linux内核是一种单体内核,但是通过动态加载模块的方式,使它的开发非常灵活、方便.那么,它是如何编译内核的呢?我们可以通过分析它的Makefile入手.以下是一个当我们写完一个hello模块,编写类似以上的Makefile.然后用命令make编译.假设我们把hello模块的源代码放在/home/examples/hello/下.当我们在这个目录运行make时,make是怎么执行的呢?首先,由于make后面没有目标,所以make会在Makefile中的第一个不是以.开头的目标作为默认的目标执行.于是default成为make的目标.make会执行make-C/lib/modules/3.0.0-12-generic/build M=/home/examples/hello/modules是一个指向内核源代码/usr/src/linux的符号链接.可见,make执行了两次.第一次执行时是读hello模块的源代码所在目录/home/examples/hello/下的Makefile.第二次执行时是执/usr/src/linux/下的Makefile.7 结束语本文给出了一个字符设备驱动与内核模块编程的完整实例,可以从中掌握内核编译、内核编程基础、设备驱动程序开发基础,优点是比较详细的给出了驱动开发的流程,并且把每一步的操作进行了详细的说明包括要执行的终端命令.最后还分析了驱动编译的过程.这样有利于初学者了解学习设备驱动的开发.有待进一步改进之处在于:此设备驱动程序针对的是字符设备,实现的功能比较简单,以后有时间可根据这次的开发流程,参考api编写块设备和网络设备的驱动程序.参考文献[1]Abraham Silberschatz 操作系统概念(第七版)影印版高等教育出版社,2007 [2]费翔林Linux操作系统实验教程高等教育出版社,2009[3](美)博韦等(DanielP. Bovet) 编著深入理解LINUX内核北京:中国电力出版社,2008 [4]Jonahan Corbet编著Linux设备驱动程序北京:中国电力出版社,2005附录。

Linux底层驱动开发从入门到精通的学习路线推荐

Linux底层驱动开发从入门到精通的学习路线推荐

Linux底层驱动开发从入门到精通的学习路线推荐Linux底层驱动开发是一项涉及操作系统核心的技术,对于想要深入了解Linux系统内部工作原理的开发人员来说,是一门重要的技能。

本文将为你推荐一条学习路线,帮助你从入门到精通掌握Linux底层驱动开发。

一、基础知识学习阶段在开始学习Linux底层驱动开发之前,你需要掌握一些基础知识。

以下是你可以参考的学习路线:1.1 Linux操作系统基础学习Linux操作系统的基础知识是理解和使用Linux底层驱动的前提。

可以选择阅读《鸟哥的Linux私房菜》等入门书籍,了解Linux的基本概念、命令行操作等。

1.2 C语言编程C语言是Linux底层驱动开发的主要语言。

建议学习《C Primer Plus》等经典教材,掌握C语言的基本语法和编程技巧。

1.3 Linux系统编程学习Linux系统编程是理解Linux内核和驱动开发的关键。

推荐学习《Linux系统编程手册》等教材,学习Linux系统调用、进程管理等知识。

1.4 数据结构与算法良好的数据结构和算法基础对于优化和设计高效的驱动程序至关重要。

可以学习《算法导论》等经典教材,掌握数据结构和常用算法的原理和实现。

二、Linux内核了解与分析阶段在掌握了基础知识后,你需要进一步了解Linux内核和驱动的工作原理。

以下是你可以参考的学习路线:2.1 Linux内核源码阅读通过阅读Linux内核源码,你可以深入了解Linux的内核机制和实现细节。

可以选择《深入理解Linux内核》等相关书籍,逐步学习Linux内核代码的组织结构和关键部分。

2.2 设备驱动模型了解Linux内核的设备驱动模型对于编写高效且可维护的驱动程序至关重要。

可以学习Linux设备驱动模型的相关文档和教程,例如Linux Device Drivers (LDD)等。

2.3 内核调试与分析工具掌握一些常用的内核调试和分析工具是进行底层驱动开发的必要技能。

嵌入式Linux操作系统设备驱动程序设计与实现

嵌入式Linux操作系统设备驱动程序设计与实现

Q i — ig LU T o U Xa pn ,I a o
(nom t n S i c n eh ooyC lg , i in nvr t, i giJ j n 3 0 5 Ifr ai ce e ad T c nlg o ee J j g U i sy J nx i i g3 2 0 ) o n l ua ei a ua
钟 函数 。
信、 数码产 品、 网络设备 、 全系统等领域 。越来越 多的公 司 、 安 研 究单位 、 大专 院校 、 以及个 人开始 进行嵌入 式系统 的研究 , 嵌入 式系统设计将是未来相 当长一段时 间内研究 的热点 。
1 Ln x设 备 驱动 程序 概述 iu
嵌人式 Lnx以其可应用于多种 硬件平 台 、内核高效稳定 、 iu
源码开放 、软件丰富 、网络通信和文件管理机 制完善等优 良特
性, 成为嵌入式系统领域 中的一个研究热点 。嵌入式 Lnx系统 iu
中 ,内核提供保 护机 制 ,用户空间 的进程一般不 能直 接访 问硬
件。 进行嵌入式系统的开发 , 很大的工作量是为各种设 备编写驱
动程序 , 除非系统不使用操作系统 。 iu 设备驱动程序在 Lnx Ln x iu 内核源代码 中占有很 大比例 , 20 2 从 .、. 24版本的 内核 , 2到 . 源代 码 的长度 t益增加 , 3 其实主要是设备驱动程序在 增加 。 设备驱 动程序在 Ln x内核 中占有极其重要的位置 , iu 它是 内 核用于完成对物理设备 的控制操作 的功能模块 。 除了 C U、 P 内存 以及其他很少的几个部分之外 ,所有 的设备 控制操作都必须 由 与被控设备相关 的代码 , 也就是驱 动程序来完成 。内核必须包括 与系统 中的每个外部设备对应 的驱动程序 。否则设备 就无法在 Ln x i 下正常工作。这就是驱 动程序开发成为 Ln x内核开发 的 u iu

Linux网络驱动开发步骤

Linux网络驱动开发步骤
网络设备驱动的模块加载与卸载
加载: int xxx_init_module(void) {
... /* 分配net_device结构体并对其成员赋值 */ xxx_dev = alloc_netdev(sizeof(struct xxx_priv), "sn%d",xxx_init);
if (xxx_dev == NULL) /* 分配net_device失败 */
二、设备驱动功能层
net_device 结构体的成员(属性和函数指针)需要被设备驱动功能层的具体数值 和函数赋予。对于具体的设备xxx,工程师应该编写设备驱动功能层的函数,这些函 数形如xxx_open()、xxx_stop()、xxx_start_xmit()、xxx_hard_header()、xxx_get_stats()、 xxx_tx_timeout()、xxx_poll()等。
设备驱动功能层的函数模板
void xxx_init(struct net_device *dev)
{ /*设备的私有信息结构体*/ struct xxx_priv *priv;
/* 检查设备是否存在和设备所使用的硬件资源 */ xxx_hw_init();
/* 初始化以太网设备的公用成员 */ ether_setup(dev);
unsigned short type;
//接口的硬件类型
unsigned mtu;
//最大传输单元(MTU)
unsigned char dev_addr[MAX_ADDR_LEN]; //存放设备的硬件地址
unsigned char broadcast[MAX_ADDR_LEN]; /*存放设备的广播地址, 以太网设备的广播
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 2.中断方式
• 查询方式白白浪费了大量的处理器时间,而中断方式才是多任务操作系统中最有效利 用处理器的方式。当CPU进行主程序操作时,外设的数据已存入端口的数据输入寄存器, 或端口的数据输出寄存器已空,此时由外设通过接口电路向CPU发出中断请求信号。 CPU在满足一定条件下,暂停执行当前正在执行的主程序,转入执行相应能够进行输入/ 输出操作的子程序,待输入/输出操作执行完毕之后,CPU再返回并继续执行原来被中断 的主程序。这样,CPU就避免了把大量时间耗费在等待、查询外设状态的操作上,使其工 作效率得以大大提高。中断方式的原理示意图如图6.1所示。 • 能够向CPU发出中断请求的设备或事件称为中断源。中断源向CPU发出中断请求,若 优先级别最高,则CPU在满足一定的条件时,可中断当前程序的运行,保护好被中断的主
高回报
路漫漫其悠远

内核空间和用户空间
➢ 系统态:在Linux系统中,内核在最高级执行,也称为“系统
态”,在这一级任何操作都可以执行。 ➢ 用户态:而应用程序则用户态执行在最低级,所谓的“用户 态”,在这一级处理器禁止对硬件的直接访问和对内存的未授权访 问。 ➢ 内核空间:模块运行的空间是在所谓的“内核空间”; ➢ 用户空间:应用程序运行的空间是在“用户空间” 。 ➢ 它们分别引用不同的内存映射,也就是程序代码使用不同的 “地址空间”。
• 块设备接口仅支持面向块的I/O操作,所有I/O操作都通过在内核地址空间中的I/O 缓冲区进行,它可以支持随机存取的功能。文件系统通常都建立在块设备上。
• 字符设备接口支持面向字符的I/O操作,由于它们不经过系统的快速缓存,所以它 们负责管理自己的缓冲区结构。字符设备接口只支持顺序存取的功能,一般不能进行 任意长度的I/O请求,而是限制I/O请求的长度必须是设备要求的基本块长的倍数。 • 处理器与设备间数据交换方式 • 处理器与外设之间传输数据的控制方式通常有3种:查询方式、中断方式和直接内 存存取(DMA)方式。 • 1.查询方式 • 设备驱动程序通过设备的I/O端口空间,以及存储器空间完成数据的交换。例如, 网卡一般将自己的内部寄存器映射为设备的I/O端口,而显示卡则利用大量的存储器 空间作为视频信息的存储空间。利用这些地址空间,驱动程序可以向外设发送指定的
• 《Linux内核设计与实现》(第二版)
• Robert Love著 陈莉君等译

路漫漫其悠远

Linux设备驱动的现状
高需求
➢ Linux内核的绝大多数代码为设备驱动 ➢ 新设备、新芯片、新驱动的需求
高门槛
➢ 涉及到大量硬件操作 ➢ 涉及到内核基础知识 ➢ 涉及到并发控制与同步 ➢ 复杂的软件结构框架
操作指令。通常来讲,由于外设的操作耗时较长,因此,当处理器实际执行了操作指 令之后,驱动程序可采用查询方式等待外设完成操作。
• 驱动程序在提交命令之后,开始查询设备的状态寄存器,当状态寄存器表明操作 完成时,驱动程序可继续后续处理。查询方式的优点是硬件开销小,使用起来比较简 单。但在此方式下,CPU要不断地查询外设的状态,当外设未准备好时,就只能循 路漫环漫其等悠待远 ,不能执行其他程序,这样就浪费了CPU的大量时•间,降低了处理器的利用
模块 可在运行时添加到内核中的代码,包括但
不限于设备驱动程序 insmod
将模块连接到正在运行的内核 rmmod
移除连接
路漫漫其悠远

嵌入式Linux的设备管理
• Linux将设备分成两大类:一类是块设备,类似磁盘以记录块或扇区为单位,成块 进行输入/输出的设备;另一类是字符设备,类似键盘以字符为单位,逐个进行输入/ 输出的设备。网路设备是介于块设备和字符设备之间的一种特殊设备。
• get_user, put_user, copy_from_user, copy_to_user
– 应用程序执行系统调用或者被硬件中断的时候由用户态转换 为内核态,内核代码代表应用程序执行操作,能够访问进程 地址空间的所有数据
路漫漫其悠远

可装载模块
Linux: 内核提供的特性可在运行时进行扩展
• 多数操作系统都把内核和应用程序分为2个层次管 理
– 内核态
• 有较高的权限,可以控制处理器内存的映射和内存的分配方式 • 访问外设空间和处理器的特殊状态寄存器, • 控制中断和DMA
– 用户态
• 权限低,优先级低 • 处理器控制着对硬件的直接访问以及对内存的非授权访问
– 具有不同的内存映射(指针的传递处理)
• YAFFS (Yet Another Flash File System)
• ROMFS
• RAMFS • JFFS2(Journaling Flash File System)
• 设备控制
– 几乎每一个系统操作都会映射到物理设备上 – 除去CPU,内存以及其他几个很有限的对象之外,几乎所有
的设备控制操作都由与被控制设备相关的代码(设备驱动程 序)来完成
Linux设备驱动程序设计 课程
路漫漫其悠远 2020/3/24
参考书籍
• 《Linux设备驱动程序》(第三版)
• Jonatban Corbet等著 魏永明等译
• 中国电力出版社
• 《Linux设备驱动开发详解》(第二版)
• 宋宝华著 人民邮电出版社
• 《Linux设备驱动开发技术及应用》
• (韩)俞永昌著 人民邮电出版社
• 内存管理
– 内核在有限的可用资源之上为每一个进程创建了独立的虚拟 内存空间(MMU)
– 内核的各个部分在和内存管理系统交互的时候都使用相同的 一组函数调用,包括简单的malloc/free和其他一些复杂的函 数
路漫漫其悠远

Linux内核功能
• 文件系统
– 文件系统是Linux基础 – 内核在没有结构的硬件系统上面构造了结构化的文件系统 – Linux支持多种文件系统类型
路漫漫其悠远

Linux内核功能划分
路漫漫其悠远
– 进程管理 – 内存管理 – 文件系统 – 设备管理 – 网络连接(
strcut net_device )

路漫漫其悠远

Linux内核功能
• 进程管理
– 进程管理负责创建和销毁进程,并处理它们与外界之间的通 信
– 控制进程如何共享CPU的调度器 – 总之,在单个或者多个CPU上实现了多个进程的抽象
路漫漫其悠远•ຫໍສະໝຸດ 内核模块的构造和运行• 设备驱动程序的存在形式 • 可卸载模块
– 内核提供的特性可以在运行时进行扩展 – 可在运行时添加到内核中的代码被称为“模块” – 常用模块
• 设备驱动和文件系统 – 灵活
• 编译进内核
– 与内核其他的功能模块静态编译在一起,不可卸载
路漫漫其悠远

内核态和用户态
相关文档
最新文档