滚动轴承故障诊断 文献综述

合集下载

轴承运行状态监测与故障诊断方法研究【文献综述】

轴承运行状态监测与故障诊断方法研究【文献综述】

毕业设计开题报告测控技术与仪器轴承运行状态监测与故障诊断方法研究1前言装备制造业是为国民经济和国防建设提供技术的重要产业,而振兴装备制造业的重中之重是提高装备的创新和产品的国产化,轴承产品作为装备制造业中重大装备的基础零件,也必须实现其自主创新和国产化。

从文献所知,国务院在《关于加快振兴装备制造业若干意见》中提出,选择16个对国家经济和国防建设有重要影响的关键领域,以重大装备为重点,尽快扩大自主装备的市场占有率[1]。

而在这16个关键领域中的重大技术装备中,绝大部分都要装用轴承,并且需要高技术的轴承来保证其精度、性能、寿命和可靠性。

据数据显示,至2010年,这16个关键领域每年要配套轴承约 550.5万套,产值约 116.5亿元。

滚动轴承作为机械设备中重要的零件,是机械设备的重要故障源之一。

统计表明:在使用滚动轴承的机械中,大概有 30%的机械故障是由滚动轴承引起的。

在感应电机故障中,滚动轴承故障约占电机故障的40%左右,而齿轮箱各类故障中的轴承故障率仅次于齿轮占20%。

有关资料表明,我国现有的机车用的滚动轴承,每年约40%要经过下车检验,其中的33%左右被更换。

因此,改定期维修为状态监控维修,研究机车轴承故障监测和诊断,有重要的经济效益和实用价值[2]。

据统计,对机械设备应用状态监测与故障诊断技术,事故发生率可降低75%,维修费用可减少25~50%。

滚动轴承的状态监测与故障诊断技术在了解轴承的性能状态和及时发现潜在故障等方面起着至关重要的作用,并且可以有效提高机械设备的运行管理水平及维修效能,具有显著的经济效益。

2主题现在,我国在滚动轴承监测与故障诊断技术方面的研究经历了2个重要阶段:从70年代末到80年代初,主要吸收国外先进技术,并对一些故障原理和诊断方法展开研究;从80年代初期到现在,全面开展了对滚动轴承的故障诊断新理论及其应用的研究工作,引入了先进技术,大大提高了诊断系统可实施性,并取得了丰硕成果[1]。

基于深度学习的滚动轴承故障诊断研究综述

基于深度学习的滚动轴承故障诊断研究综述
基于深度学习的滚动轴承故障 诊断研究综述
基本内容
摘要:本次演示综述了基于深度学习的滚动轴承故障诊断研究进展,概述了 深度学习在滚动轴承故障诊断中的应用和优缺点,并提出了未来研究的方向和重 点。关键词:深度学习,滚动轴承,故障诊断,机械故障,
引言:滚动轴承是机械设备中的重要组成部分,其故障会对设备的正常运行 产生严重影响。因此,滚动轴承故障诊断具有重要意义。随着人工智能技术的发 展,深度学习作为一种强大的机器学习分支,已在许多领域取得了显著成果。本 次演示将综述基于深度学习的滚动轴承故障诊断研究进展,以期为相关领域的研 究提供参考。
文献综述:近年来,深度学习在滚动轴承故障诊断中得到了广泛。根据应用 的不同,可以分为以下几类:
1、基于卷积神经网络的故障诊断:卷积神经网络(CNN)是一种适用于图像 处理的深度学习算法。有研究表明,将CNN应用于滚动轴承故障诊断,可以有效 地识别轴承表面的损伤图像。通过构建特定的CNN模型,将损伤图像作为输入, 可以实现故障的自动诊断。然而,CNN方法需要大量的标注数据,且对数据的质 量和数量要求较高。
未来研究可以从以下几个方面展开:首先,加强数据预处理工作,提高数据 质量,以减轻深度学习算法对数据的依赖程度。其次,改进现有深度学习算法, 解决其存在的问题,提高算法的稳定性和泛化能力。此外,研究多源信息融合方 法,综合利用不同信息源的特征进行滚动轴承故障诊断,以提高诊断准确性和鲁 棒性。最后,开展实验研究,验证改进算法的有效性,为滚动轴承故障诊断提供 新的解决方案。
通过比较编码向量在不同状态下的差异,可以实现对轴承故障的诊断。然而, AE的诊断效果受限于所提取的特征的有效性,如何选择合适的特征仍是一个问题。
结论:基于深度学习的滚动轴承故障诊断研究取得了一定的进展,但仍存在 一些问题和不足。首先,深度学习算法的应用仍受限于数据的质量和数量,尤其 是在CNN方法中。其次,深度学习算法本身也存在一些问题,如RNN中的梯度消失 和梯度爆炸问题。此外,如何选择合适的特征以及如何构建有效的深断:循环神经网络(RNN)是一种适用于序列 处理的深度学习算法。在滚动轴承故障诊断中,RNN可以处理时间序列数据,如 振动信号等。通过将振动信号转化为序列数据,并输入到RNN模型中进行训练, 可以实现对轴承故障的预测和诊断。但是,RNN模型训练过程中容易出现梯度消 失或梯度爆炸的问题,导致模型无法有效学习。

滚动轴承故障诊断方法综述

滚动轴承故障诊断方法综述

滚动轴承故障诊断方法综述摘要:机械装备的安全运行对于现代工业发展具有重要的现实意义,同时也能有效保障人员安全和降低企业经济损失,因此相关的设备故障诊断技术也得到极大关注。

轴承作为机械装备特别是旋转机械设备中的重要基础部件,各种复杂工况下,容易发生滚动体变形、磨损、腐蚀、裂缝等各种形式的缺陷,因此如何实现对滚动轴承的故障检测和识别具有重要的意义。

关键词:机械;滚动轴承;故障诊断引言轴承故障诊断主要采用的手段是获取设备的振动信号、声发射信号、电磁信号、超声信号等,通过一定的手段从这些信号之中获得轴承的相关故障信息。

通常所采集得到的信号不能直接作为模式识别工具的输入数据,因为这些原始信号不仅数据量大同时对于轴承所处的工况比较敏感,需要对采集的数据进一步处理。

从某种意义上讲,机械故障诊断可视为一个故障模式识别过程,模式识别技术的发展对于机械故障诊断技术的发展有着直接的影响。

通过设计合理的模式分类器来进行故障模式识别是故障诊断的又一关键步骤[2]。

目前在轴承故障诊断领域主要采用统计模式识别方法和人工智能识别方法两大类。

随着人工智能技术的不断发展,为解决滚动轴承的故障诊断问题提供了新的手段和方法,本文主要针对滚动轴承故障模式识别方面的研究工作进行综述,并给出相关的研究趋势。

1基于贝叶斯推理的故障模式识别技术首先采用小波包分解得到峭度特征量;然后,采用主成分分析法、核主成分分析法等降维方法选择合适的特征量,最后将选择的特征量送入到朴素贝叶斯分类器和线性判别分析模型(LDA)中,从而实现对轴承的故障进行分类。

基于红外图像分割的旋转机械故障诊断方法,首先采用图像分割算法对红外图像进行特征提取,然后采用特征融合算法进行故障特征融合,最后将融合后的特征量分别作为朴素贝叶斯分类器和支持向量机分类模型的输入量,对这两种识别模型进行训练并将训练后的模型用于故障识别。

实验结果表明该算法具有故障模式识别分类准确度高、速度快等优势。

滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述引言:滚动轴承作为机械设备中常用的零部件之一,承担着支撑和传递载荷的重要作用。

然而,由于使用环境的恶劣和工作条件的复杂性,滚动轴承往往容易出现各种故障。

因此,为了保证机械设备的正常运行和延长轴承寿命,对滚动轴承的故障进行准确诊断非常重要。

一、故障诊断方法1. 观察法观察法是最常用的故障诊断方法之一。

通过观察滚动轴承的外观和运行状态来判断是否存在故障。

例如,如果发现滚动轴承有异常噪声、温度升高、润滑油泡沫、振动加剧等现象,很可能是轴承出现了故障。

2. 振动诊断法振动诊断法是一种先进的故障诊断方法,可以通过检测轴承的振动信号来判断轴承是否存在故障。

通过分析振动信号的频谱图,可以确定轴承故障的类型和位置。

常用的振动诊断方法包括时域分析、频域分析和小波分析等。

3. 声音诊断法声音诊断法是一种通过听觉判断轴承故障的方法。

通过专业人员对轴承产生的声音进行听觉分析,可以判断轴承是否存在异常。

常见的轴承故障声音包括金属碰撞声、摩擦声和振动声等。

4. 热诊断法热诊断法是一种通过测量轴承的温度来判断轴承故障的方法。

由于轴承在故障状态下会产生摩擦热,因此轴承的温度可以间接反映轴承的工作状态。

通过测量轴承的温度分布,可以判断轴承是否存在异常。

二、故障诊断技术1. 模式识别技术模式识别技术是一种基于机器学习的故障诊断技术,可以根据轴承的振动信号和声音信号等特征,通过训练模型来识别轴承的故障类型。

常用的模式识别技术包括支持向量机、神经网络和决策树等。

2. 图像诊断技术图像诊断技术是一种通过图像处理和分析来判断轴承故障的技术。

通过对轴承的外观图像进行特征提取和分类,可以实现对轴承故障的自动诊断。

常用的图像诊断技术包括边缘检测、纹理分析和目标识别等。

3. 声音信号处理技术声音信号处理技术是一种通过对轴承声音信号进行滤波、频谱分析和特征提取等处理,来判断轴承故障的技术。

通过对声音信号的频谱图和时域图进行分析,可以判断轴承故障的类型和位置。

滚动轴承的故障诊断方法研究

滚动轴承的故障诊断方法研究

滚动轴承的故障诊断⽅法研究滚动轴承的故障诊断⽅法研究第1章绪论1.1研究的⽬的和意义滚动轴承是⽣产机械中的地位⽆可替代,当然也最易损坏的部件。

其运⾏状态会直接影响整台机械⼯作效率、精度寿命和可靠性。

滚动轴承的损坏会导致⽣产机械剧烈振动,并伴有强⼤噪声,不仅会影响产品的加⼯质量,严重时会导致⽣产机械的损坏或机械事故。

随着电机的⼴泛应⽤及其⾃动化程度的不断提⾼,对其安全性、精度和故障诊断的准确性的要求也随之提⾼。

传统的诊断⽅法不仅成本较⾼、准确率偏低,并且更新费⽤⾼,已然不能满⾜⾼科技设备的需求。

基于以上原因,本⽂在虚拟仪器的环境下,利⽤多传感器信息融合技术,实现滚动轴承的故障诊断,会对现在和将来的⽣产技术提供强有⼒的帮助。

1.2国内外电机滚动轴承故障诊断的研究现状近现代以来,国内和国外的研究机构及学者在电机滚动轴承故障诊断的理论、技术与⽅法等⽅⾯进⾏了⼤量的研究分析⼯作,发表了诸多研究成果。

在国外,美国南卡罗林娜⼤学运⽤振动响应的多参数多频率的⽅法,对具有裂纹的和损伤的故障轴承进⾏诊断,⽬前已经取得了良好的成果。

美国宾州⼤学采⽤alpha beta -gamma跟踪滤波器和Kalman滤波器,对轴承故障的智能预⽰实现了完美成功。

⽇本九州⼯业⼤学运⽤基因算法优化组合特征参数,成功诊断出⼯况滚动轴承微弱故障。

意⼤利的Cassino⼤学,使⽤⾃谱技术对出现的轴承进⾏检测,判断故障轴承的初始问题,到⽬前为⽌也取得了有效的研究成果。

国外的这些技术有我们值得借鉴的地⽅,去其糟粕取其精华,研究更有技术的故障轴承诊断系统。

在国内,当滚动轴承存在故障时,⼤都以振动检测为主,因为轴承故障后常伴随巨⼤的声响,以及明显的外观表现。

国内的主要研究成果如下图所⽰。

或⾃⾝故障等多个⽅⾯的原因,会对故障造成误判或错判,如:声级计传感器易受到噪声的⼲扰,不能准确、⽆失真的反映滚动轴承的真实信号,温度传感器由于易受到外界温度的⼲扰,也常会出现误判或者错判等等。

铁路货车滚动轴承故障诊断方法研究

铁路货车滚动轴承故障诊断方法研究

铁路货车滚动轴承故障诊断方法研究1. 引言1.1 研究背景铁路货车是运输重要货物和物资的重要交通工具,其运行安全和效率对经济和社会发展至关重要。

在铁路货车的各个部件中,滚动轴承是承载货车重量和减少摩擦的关键部件之一。

由于长时间运行和大负荷工况的影响,滚动轴承容易出现故障,如磨损、疲劳、错位等,导致铁路货车运行中断,甚至发生事故。

对铁路货车滚动轴承的故障诊断方法进行研究具有极其重要的意义。

通过有效的故障诊断方法,可以及时发现和修复轴承故障,提高铁路货车的运行安全性和可靠性,减少事故发生的可能性。

目前,传统的故障诊断方法在一定程度上已经满足了实际需求,但受限于技术和方法的局限性,依然存在着一些不足之处。

本文旨在探讨基于机器学习、振动信号以及声音信号等先进技术的故障诊断方法,以提高铁路货车滚动轴承故障诊断的准确性和效率,为铁路货车运行安全提供更有力的保障。

1.2 研究目的铁路货车滚动轴承是铁路货运系统中非常重要的零部件,其运行状态直接影响到列车的安全性和运行效率。

由于铁路货车运行环境的复杂性和轴承自身的特点,滚动轴承故障的诊断一直是一个具有挑战性的问题。

本研究的目的在于通过对铁路货车滚动轴承故障诊断方法的研究,提高轴承故障的准确率和效率,从而保证铁路货车的安全运行。

具体来说,研究目的包括:1. 分析铁路货车滚动轴承故障的特点,探讨不同类型故障的表现形式和影响程度,为后续的诊断方法提供依据;2. 分析传统的滚动轴承故障诊断方法的优缺点,总结经验并指出存在的问题;3. 探讨基于机器学习的故障诊断方法在铁路货车滚动轴承故障诊断中的应用前景;4. 研究基于振动信号和声音信号的故障诊断方法,探讨其在铁路货车滚动轴承故障诊断中的可行性和有效性。

1.3 研究意义铁路货车滚动轴承是保障铁路列车正常运行的重要部件,其运行状态直接关系到列车的安全和稳定性。

对铁路货车滚动轴承的故障诊断方法进行研究具有重要的意义。

研究铁路货车滚动轴承故障诊断方法可以提高铁路货车的运行效率和安全性。

滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述

滚动轴承故障诊断方法与技术综述滚动轴承是机械设备中常见的一种元件,其作用是在旋转运动中支撑轴与轴承座之间的转动。

然而,由于长时间的使用或者操作不当,滚动轴承可能会出现故障,导致设备运行不稳定甚至完全停止工作。

因此,对滚动轴承的故障进行及时的诊断是非常重要的。

滚动轴承故障的诊断方法与技术可以分为传统的诊断方法和基于智能化技术的诊断方法。

传统的滚动轴承故障诊断方法主要包括观察法、听诊法和振动分析法。

观察法是最简单直观的一种诊断方法,通过观察滚动轴承的外观是否有异常情况,如颜色变化、表面磨损、断裂等,来判断其是否存在故障。

然而,此方法只适用于故障较为明显的情况,对于隐蔽性较强的故障无法有效判断。

听诊法是通过听取滚动轴承工作时产生的声音来判断其是否存在异常情况。

例如,当滚动轴承出现磨损或损坏时,会产生噪音,通过听诊器可以准确地判断故障的类型和程度。

然而,此方法需要专业的听诊仪器和经验丰富的技术人员,对于一般使用者来说并不容易操作。

振动分析法是一种常用的滚动轴承故障诊断方法,它通过对滚动轴承振动信号的分析来判断其是否存在故障。

滚动轴承在正常工作时会产生一定的振动,当滚动轴承出现故障时,振动信号会发生变化。

通过对滚动轴承振动信号的频谱分析、时域分析和幅值分析,可以准确地判断滚动轴承的故障类型和严重程度。

基于智能化技术的滚动轴承故障诊断方法包括人工智能、模式识别和机器学习等。

这些技术可以通过对滚动轴承振动信号进行大数据分析,利用模型和算法来自动识别故障类型和预测故障发生的概率。

相比于传统的诊断方法,基于智能化技术的方法具有更高的准确性和效率。

在实际应用中,滚动轴承故障的诊断通常是综合应用多种方法和技术。

例如,可以先通过观察法和听诊法初步判断滚动轴承是否存在故障,再通过振动分析法进行进一步的诊断,最后利用基于智能化技术的方法对故障进行确认和预测。

滚动轴承故障的诊断是保证设备正常运行的关键之一。

无论是传统的诊断方法还是基于智能化技术的方法,都需要经验丰富的技术人员进行操作和分析。

滚动轴承故障诊断方法综述

滚动轴承故障诊断方法综述

Internal Combustion Engine &Parts1滚动轴承的主要故障分析滚动轴承的结构具有一定的复杂性,主要是由外圈、内圈、滚动体、保持架等部分组成的。

因此,在具体的运转中可能会存在许多的问题,引起滚动轴承的故障,甚至会导致滚动轴承中出现异物和腐蚀等问题。

虽然在安装和润滑的过程中都是处于一个正常的状态,但是经过一段时间的运转之后,轴承也会因为疲劳和磨损而不能正常工作。

一般来说,轴承的故障主要表现在以下几个方面:首先,是滚动轴承的疲劳点蚀和塑性变形。

在重力的负荷下,滚动体的内外圈之间会发生一定的接触,这种内外圈产生的接触产生的力量被称为接触应力。

当内外圈的接触应力达到一定的数值之后,内外圈的滚动体表面就会形成疲劳点蚀。

疲劳点蚀是滚动轴承的主要故障之一,它的危害性主要表现在轴承工作能力的丧失。

也就是通常所说的轴承失效。

与此同时,在滚动轴承的故障中还存在着塑性变形的问题。

所谓的塑性变形主要指的就是轴承受到过大的冲击荷载的时候、或者是轴承热变而导致的额外载荷和异物侵入导致的轴承划痕等。

这些问题的出现都会导致轴承在实际的工作中产生严重的噪音和振动。

另外,一旦轴承有了压痕就会引起冲击载荷附近区域的表面发生脱落的问题。

其次,是滚动轴承的磨损和疲劳剥落。

滚动轴承由于使用时间、使用次数的增加会出现一定的故障。

例如:在使用的过程中,由于出现了异物或者是尘埃,就会导致滚动轴承和滚动体的相对运动,进而引起滚动体的表面磨损,导致轴承的间隙增大,也让轴承的表面变得更加的粗糙,降低轴承的运转精度和机器的运动精度。

与此同时,也会在运转的过程中出现一些噪音。

而对于一些精密机械的轴承来说,也会在一定程度上缩短机械使用的时间长度和使用寿命。

还有一些由于轻微振动而引起的磨损问题。

主要是轴承在不旋转的情况下,滚动体和滚道之间会有微小的接触,其不断的接触之后就会导致滚道的磨损问题,进而形成不必要的磨痕。

而疲劳剥落主要指的是滚动轴承的内外滚道和滚动体表面的承受载荷导致的问题。

滚动轴承故障诊断研究的国内现状与发展方向

滚动轴承故障诊断研究的国内现状与发展方向

滚动轴承故障诊断研究的国内现状与发展方向一、内容综述随着我国工业生产的不断发展,滚动轴承在各个领域得到了广泛的应用。

然而由于长期使用、磨损、过热等原因,滚动轴承故障问题也日益严重,给企业的生产带来了很大的困扰。

因此对滚动轴承故障诊断技术的研究显得尤为重要。

尽管如此我国在滚动轴承故障诊断方面的研究还存在一些不足之处。

首先理论研究相对较少,很多故障诊断方法和技巧还需要进一步验证和完善;其次,现场检测设备和技术水平有待提高,导致很多故障无法得到及时、准确的诊断;缺乏对滚动轴承故障诊断技术的广泛推广和应用,使得许多企业和用户仍然依赖于国外先进的诊断设备和技术。

面对这些挑战,我国滚动轴承故障诊断领域的研究者们正积极探索新的研究方向和发展模式。

一方面加强基础理论研究,提高滚动轴承故障诊断的准确性和可靠性;另一方面,加大对现场检测设备的研发力度,降低故障诊断的成本和难度;此外,还要加强国内外交流与合作,推动滚动轴承故障诊断技术的普及和应用。

相信在我国科研人员的不懈努力下,滚动轴承故障诊断技术将会取得更加丰硕的成果。

1. 研究背景和意义随着我国经济的快速发展,各行各业对机械设备的需求越来越大,而滚动轴承作为机械设备中的重要部件,其性能直接影响到设备的稳定性和使用寿命。

然而近年来我国滚动轴承故障诊断技术的研究和应用水平相对较低,导致很多企业在设备运行过程中出现了大量滚动轴承故障,给企业带来了巨大的经济损失。

因此深入研究滚动轴承故障诊断技术,提高我国滚动轴承故障诊断技术的研究和应用水平,具有重要的现实意义和紧迫性。

首先滚动轴承故障诊断技术的研究和应用可以有效地降低企业的维修成本。

通过对滚动轴承故障的及时、准确地诊断,可以避免因故障导致的设备停机、生产中断等严重后果,从而降低企业的维修成本。

同时滚动轴承故障诊断技术的提高还可以延长设备的使用寿命,进一步降低企业的维修成本。

其次滚动轴承故障诊断技术的研究和应用可以提高企业的安全生产水平。

基于时域和频域分析的滚动轴承故障诊断

基于时域和频域分析的滚动轴承故障诊断

基于时域和频域分析的滚动轴承故障诊断一、本文概述随着工业技术的不断发展,滚动轴承作为旋转机械中的关键部件,其运行状态直接影响到设备的性能与安全性。

然而,由于工作环境的恶劣、长时间运行以及维护不当等因素,滚动轴承常常会出现各种故障,如疲劳剥落、磨损、裂纹等。

这些故障不仅会降低设备的运行效率,还可能引发严重的安全事故。

因此,对滚动轴承进行故障诊断技术的研究具有重要意义。

本文旨在探讨基于时域和频域分析的滚动轴承故障诊断方法。

文章将简要介绍滚动轴承的工作原理及其常见故障类型,为后续的分析和诊断奠定基础。

然后,重点阐述时域分析和频域分析的基本原理及其在滚动轴承故障诊断中的应用。

时域分析主要关注轴承振动信号的时序特征,通过提取信号中的幅值、相位、频率等信息,揭示轴承的运行状态。

而频域分析则通过对信号进行频谱转换,分析轴承在不同频率下的振动特性,进一步识别潜在的故障特征。

通过结合时域和频域分析,本文旨在提供一种全面、有效的滚动轴承故障诊断方法。

这种方法不仅能够准确识别轴承的故障类型,还能对故障程度进行定量评估,为设备的维护和管理提供有力支持。

本文还将对现有的故障诊断方法进行比较和评价,探讨各种方法的优缺点及适用范围,为相关领域的研究和实践提供参考和借鉴。

二、滚动轴承故障类型及原因滚动轴承作为机械设备中的重要组成部分,其运行状态直接影响到整个设备的性能和稳定性。

因此,对滚动轴承的故障诊断至关重要。

滚动轴承的故障类型多种多样,主要包括疲劳剥落、磨损、腐蚀、裂纹和塑性变形等。

这些故障的产生往往与多种因素有关,如材料质量、制造工艺、运行环境、操作维护等。

疲劳剥落是滚动轴承最常见的故障类型之一,主要是由于轴承在循环应力作用下,材料表面发生疲劳破坏,形成剥落坑。

疲劳剥落的原因主要包括轴承材料的疲劳强度不足、循环应力过大、润滑不良等。

磨损是轴承在运行过程中,由于摩擦力的作用导致材料逐渐损失的现象。

磨损的原因主要包括润滑不良、异物侵入、材料耐磨性不足等。

滚动轴承故障诊断综述

滚动轴承故障诊断综述

摘要:滚动轴承是旋转机械中使用最多,最为关键,同时也是机械设备中最易损坏的机械零件之一。

滚动轴承质量的好坏对机械设备运行质量影响很大,许多旋转机械设备的运行状况与滚动轴承的质量有很大的关系。

滚动轴承作为旋转机械设备中使用频率较高,同时也是机械设备中较为薄弱的环节,因此对滚动轴承进行故障诊断具有重大意义。

引言:故障诊断技术是一门研究设备运行状况信息,查找故障源,研究故障发展趋势,确定相应决策,与生产实际紧密相结合的实用技术。

故障诊断技术是20世纪中后迅速发展起来的一门新型技术。

国外对滚动轴承故障诊断技术的研究开始于20世纪60年代。

美国是世界上最早研究滚动轴承故障诊断技术的国家,于1967年对滚动轴承故障进行研究,经过几十年的发展,先后研制了基于时域分析,频域分析,和时频分析的滚动轴承故障诊断技术。

目前国外已经研制出先进的滚动轴承故障诊断仪器,并且已经应用于工业生产中,对预防机械事故,减少损失起到了至关重要的作用。

国内对故障诊断技术的研究起步较晚,20世纪80年代我过开始研究滚动轴承故障诊断技术,经过多年的研究,先后出现了基于振动信号的滚动轴承故障诊断,基于声音信号的滚动轴承诊断方法,基于温度的滚动轴承诊断方法,基于油膜电阻的滚动轴承诊断方法和基于光钎的滚动轴承诊断方法。

从实用性方面来看,基于振动信号的滚动轴承诊断方法具有实用性强,效果好,测试和信号处理简单等优点而被广泛采用。

在滚动轴承故障诊断中,比较常用的振动诊断方法有特征参数法,频谱分析法,包络分析法,共振解调技术。

其中共振解调技术是目前公认最有效的方法。

振动检测能检测轴承的剥落、裂纹、磨损、烧伤且适于早期检测和在线检测。

因而,振动诊断法得到一致认可。

包络检测是轴承故障振动诊断的一种有效方法,实际中已广泛使用。

当轴承出现局部损伤类故障后,振动信号中包含了以故障特征频率为周期的周期性冲击成分,虽然这些冲击成分是周期出现的,但单个冲击信号却具有非平稳信号的特性。

《基于深度学习滚动轴承故障诊断算法研究》

《基于深度学习滚动轴承故障诊断算法研究》

《基于深度学习滚动轴承故障诊断算法研究》篇一一、引言随着现代工业的飞速发展,机械设备在生产过程中的稳定性和可靠性变得越来越重要。

滚动轴承作为机械设备中常见的关键部件,其故障诊断对于预防设备故障和维护设备的正常运行至关重要。

近年来,深度学习算法在各个领域得到了广泛的应用,其在滚动轴承故障诊断方面的研究也日益增多。

本文旨在研究基于深度学习的滚动轴承故障诊断算法,以提高诊断的准确性和效率。

二、滚动轴承故障诊断的重要性滚动轴承是机械设备中不可或缺的部件,其性能直接影响到整个设备的运行。

轴承故障可能导致设备停机、生产中断,甚至可能引发严重的安全事故。

因此,对滚动轴承进行实时、准确的故障诊断具有重要意义。

传统的故障诊断方法主要依赖于人工经验和专业知识,但这种方法效率低下,且易受人为因素影响。

而基于深度学习的故障诊断算法可以自动提取故障特征,提高诊断的准确性和效率。

三、深度学习在滚动轴承故障诊断中的应用深度学习是一种模拟人脑神经网络的学习算法,其在图像识别、语音识别、自然语言处理等领域取得了显著的成果。

在滚动轴承故障诊断中,深度学习算法可以通过学习大量数据中的故障特征,实现对轴承状态的自动识别和诊断。

常见的深度学习算法包括卷积神经网络(CNN)、循环神经网络(RNN)和长短期记忆网络(LSTM)等。

四、基于深度学习的滚动轴承故障诊断算法研究本文提出一种基于卷积神经网络的滚动轴承故障诊断算法。

该算法通过训练大量的轴承故障数据,自动提取故障特征,实现对轴承状态的准确识别和诊断。

具体步骤如下:1. 数据采集与预处理:首先收集大量的滚动轴承故障数据,包括正常状态和各种故障状态下的数据。

然后对数据进行预处理,包括去噪、归一化等操作,以便于模型的训练。

2. 构建卷积神经网络模型:根据数据的特点和需求,构建合适的卷积神经网络模型。

模型包括多个卷积层、池化层和全连接层等,以实现对故障特征的自动提取和分类。

3. 模型训练与优化:使用采集的轴承故障数据对模型进行训练,通过调整模型的参数和结构,优化模型的性能。

滚动轴承故障诊断文献综述

滚动轴承故障诊断文献综述

滚动轴承故障诊断文献综述滚动轴承故障诊断文献综述[ 2008-4-2 14:38:00 | By: mp2 ]推荐文献综述——滚动轴承故障诊断1.前言滚动轴承是各种旋转机械中应用最广泛的一种通用机械零件,它是机器最易损坏的零件之一。

据统计。

旋转机械的故障有30,是由轴承引起的。

可见轴承的好坏对机器的工作状况影响很大。

轴承故障诊断就是要通过对能够反映轴承工作状态的信号的测取,分析与处理,来识别轴承的状态。

包括以下几个环节:信[1]号测取;特征提取;状态识别:故障诊断;决策干预。

滚动轴承故障诊断传统的分析方法有冲击脉冲法,共振解调法,倒频谱分析技术。

在现代分析方法中,小波分析是最近几年才出现井得以应用和发展的一种时—频信号分析方法。

它具有时域和频域的局部化和可变时频窗的特点(用它分析非平稳信号比传统的傅里叶分析更为最著。

由于滚动轴承的故障信号中禽有非稳态成分,所以刚小波分析来处理其振动信号(可望获得更为有效的诊断特征信息[2]。

滚动轴承故障的智能诊断技术就是把神经网络、专家系统、模糊理论等技术与滚动轴承的特征参数有机地结合起来进行综合分析的故障诊断技术。

2.故障信号诊断方法2.1冲击脉冲法(spm)SPM技术(Shock Pulse Method),是在滚动轴承运转中,当滚动体接触到内外道面的缺陷区时,会产生低频冲击作用,所产生的冲击脉冲信号,会激起SPM 传感器的共振,共振波形一般为20kHz,60kHz,包含了低频冲击和随机干扰的幅值调制波,经过窄带滤波器和脉冲形成电路后,得到包含有高频和低频的脉冲序列。

SPM 方法是根据这一反映冲击力大小的脉冲序列来判断轴承状态的。

此种方法目前被公认为对诊断滚动轴承局部损伤故障工程实用性最强的。

此方法虽然克服了选择滤波中心频率和带宽的困难,但这种固定中心频率和带宽的方法也有其局限性,因为,一些研究结果表明,滚动轴承局部损伤故障所激起的结构共振频率并不是固定不变的,在故障的不同阶段可能激起不同结构的共振响应,而不同部位的故障(内、外圈、滚子)也会激起不同频率结构的共振响应。

(完整word版)机械故障诊断 滚动轴承故障诊断(DOC)

(完整word版)机械故障诊断 滚动轴承故障诊断(DOC)

《机械故障诊断技术》读书报告滚动轴承的诊断案例分析综述Rolling Bearing Fault Diagnosis ApproachBased on Case-Based Reasoning学院:机械与汽车工程学院专业:机械设计制造及其自动化班级:机制一班姓名:王天宇学号:1102135004指导教师:郑冬学年学期:2014—2015学年第一学期摘要:针对滚动轴承的故障诊断问题,提出了一种采用案例推理的诊断方法,为了解决检索相似案例时案例属性多、人工确定关键属性及其权重困难的问题,提出了一种复合特征选择算法,用领域粗糙集算法粗选属性,用遗传算法进一步精选属性和优化权重,并有效地解决了领域粗糙集算法中需要人工确定领域大小的问题,以滚动轴承运行时的振动信号为基本信息,建立了滚动轴承案例库,从案例库中检索与问题案例相似的历史案例,并根据这些历史案例来判断问题案例的故障类别,试验结果表明,故障诊断的正确率达到100%,故障位置诊断的正确率达到93.3%,且算法具有较好的稳定性.关键词:案例推理;滚动轴承;故障诊断Abstract:The case—based reasoning approach is introduced into rolling bearing fault diagnosis。

To solve the complexity of feature selection and weights optimization, a Filter Wrapper integrated features selection algorithm is proposed。

Neighborhood rough set algorithm is applied to select essential features from the feature candidate set,then genetic algorithm is applied to refine the essential features subset. This method solves the problem of determining the size of neighborhood manually in neighborhood rough set algorithm. Genetic algorithm is also used in feature weights optimization. With the run time vibration signal of rolling bearing as the basic information, a rolling bearing fault case database is constructed。

滚动轴承的故障诊断方法和疲劳寿命分析综述

滚动轴承的故障诊断方法和疲劳寿命分析综述

滚动轴承的故障诊断方法和疲劳寿命分析综述发布时间:2021-09-06T15:25:53.253Z 来源:《科学与技术》2021年第12期4月作者:李旭1 李华城2 王璐3[导读] 滚动轴承应用广泛,旋转精度高,传动性能好。

滚动轴承的故李旭1 李华城2 王璐3内蒙古工业大学 010080摘要:滚动轴承应用广泛,旋转精度高,传动性能好。

滚动轴承的故障诊断和疲劳寿命预测能有效降低故障概率,缩短检修和维护时间,提高生产效率和工作可靠性。

基于此,本文从滚动轴承故障诊断方法和疲劳寿命分析两个方面入手,对故障类型、监测系统、故障诊断、故障分析和疲劳寿命展开综述,旨在推动滚动轴承故障诊断和寿命延长的发展,具有深远意义。

关键词:滚动轴承;故障诊断;疲劳寿命滚动轴承结构包含四个部分,分别是内圈、外圈、滚动体和保持架,目前已标准化。

由于载荷分布不均,滚动轴承内外圈接触应力不同,且滚动体抗冲击能力差,易发生塑性变形,随着使用次数的累积,滚动轴承会发生故障,导致使用寿命缩短,甚至损坏或失效。

本文围绕滚动轴承的故障诊断方法和疲劳寿命进行分析综述,目的是为滚动轴承维护与检修领域研究提供新思路。

1.滚动轴承故障类型因工况复杂,滚动轴承的故障类型种类繁多,主要包含以下五种:(1)磨损——异物入侵、润滑不良和高负荷运转等所致,影响光滑度和旋转精度,多发生于滚动体与滚道之间,属于最常见的故障;(2)疲劳——疲劳应力、冲击载荷和装配不当等所致,表现为脱皮或剥落;(3)断裂——热处理、润滑不良和载荷冲击等所致,表现为麻点或凹坑;(4)腐蚀——润滑液使用不当和电火花等所致,包括化学腐蚀、点腐蚀和微振腐蚀;(5)胶合——异物入侵、润滑不良和冲击载荷等所致,表现为凹坑或局部熔合。

2.滚动轴承故障监测及设备2.1监测方法对于不同的故障类型,需采用相应的监测方法,主要包含以下四种:(1)振动分析法——借由轴承座的振动传感器实现振动监测;(2)声发射法——应力集中引起的塑性裂纹扩展,对释放的弹性波进行监测;(3)磨损颗粒法——磨损颗粒计数,包括铁谱分析法和颗粒计数器法等;(4)油膜电阻法——润滑不良会引起油膜破裂,导致内外圈电阻减小,实时监测电阻大小判断是否异常。

1文献综述-小波变换在滚动轴承故障诊断中的应用

1文献综述-小波变换在滚动轴承故障诊断中的应用

小波变换在滚动轴承故障诊断中的应用摘要:近年来,随着人们对小波分析技术研究的不断深入,小波分析得到广泛的应用。

对滚动轴承故障信号的研究,早期采用傅立叶分析方法,而傅立叶分析只能从整体上获得信号的频谱分析,不能对信号做局部分析。

小波变换以其独有的平移、伸缩特性,可达到对高频信号时间细分、低频信号频率细分的要求,由此对滚动轴承故障引入了小波分析。

小波变换分析研究为滚动轴承故障诊断提供了一种新的有效方法。

关键词:小波变换;滚动轴承;故障诊断;应用O引言在机械设备中,回转机械通常占90%以上,而滚动轴承又是各种旋转机械中应用最常见的一种通用部件且已广泛用于各种机器上,它的运行状态正常与否,往往直接影响到整台机器的性能。

如果轴承在运行中发生故障,就可能造成停机、停产,甚至人员伤亡等重大损失,因此,滚动轴承故障诊断是机械设备故障诊断的重要内容之一,也是当前故障诊断领域中研究的热门课题。

用小波变换来分析滚动轴承故障振动信号,可以获得更为有效的诊断特征信息。

因此,小波变换在滚动轴承故障诊断中得到了很多的应用,目前大多采用二进离散小波变换、小波包变换和连续小波变换。

采用二进离散小波变换和小波包变换计算速度快,但是必须采用正交小波基函数,其尺度划分由于基于二进划分而跳跃,离散间隔太大而过于粗糙,这样会影响故障特征的提取;连续小波具有细致的时间尺度网格划分,小波基的选取仅仅要求满足容许条件,而且具有时不变特性,连续小波变换可以充分发挥小波变换在细致刻划信号方面的能力。

1滚动轴承故障特征滚动轴承常见的失效方式有磨损、疲劳、腐蚀、断裂、压痕、胶合失效等。

当轴承元件(包括外圈、内圈和滚珠)的工作表面出现局部缺陷时,会以一定的通过频率(限制取决于转频、轴承型号)产生一系列的宽带冲击,称为轴承的“通过振动”,如图1所示。

通过振动的频率称为“通过频率”或“故障频率”,实际中滚动轴承故障振动检测就是要检测这个频率。

同时,轴承系统会被这些冲击所激励,产生一系列的冲击衰减响应。

轴承故障诊断学参考文献

轴承故障诊断学参考文献

滚动轴承的振动检测与分析工业技术的发展和人民生活水平的提高推动着汽车、家电等产品向超平稳方向发展,使得产品制造厂商对零部件的要求越来越高。

滚动轴承作为旋转机械中最常用的支承部件,它在运行中的振动特性直接影响到整体设备的性能。

因此,对滚动轴承进行质量控制和故障诊断具有十分重要的意义。

目前,由于材料科学和制造技术的进步以及产品换代周期的缩短,滚动轴承的静音寿命往往短于其疲劳寿命,从而轴承的静音特性显得非常重要。

相对于日本、瑞典等轴承工业发达国家的产品来说,国产轴承在低振动低噪声方面的表现不甚理想。

面对国内针对轴承振动异常音的检测分析方法并不十分完善的现状,本文对微小型轴承的振动和异常音的检测与分析进行了研究。

具有理想表面的滚动轴承的振动信号属于平稳信号范畴,然而由于轴承表面存在圆度偏差、波纹度或损伤点等因素,振动信号中往往包含有瞬态脉冲信号,导致其具有非平稳特性。

轴承振动种类:固有振动轴承结构的固有振动主要包括把外圈看作弹性体引起的同有振动、把外圈看作刚体引起的固有振动和把钢球看作刚体的固有振动。

具体可分为套圈径向弹性挠曲振动、轴向挠曲振动、径向刚体振动、轴向刚体振动、角向刚体振动和滚动体固有振动等。

强迫振动滚动轴承的强迫振动大致分为两类。

其一为滚动体通过振动:轴承运转过程中,滚动体不停地旋转,滚动体载荷状态随滚动体所处位置不同而变化,引起交变弹性力,在通过径向载荷作用方向时,引起周期振动。

振动的振幅随径向载荷和游隙的增大而增大,当轴承只承受轴向载荷时,此类振动振幅较小。

另外,由于在轴承安装过程中,多采用过盈配合,并施加了一定的预紧力,因此,在轴承振动分析中,此类振动可忽略。

其二为轴承零件制造误差引起的振动,它主要包括内圈波纹度、外圈波纹度、钢球波纹度和钢球直径差所引起的振动。

冲击振动滚动轴承在运转过程中,由于滚动体与滚道之间的相对运动以及反复承受载荷,轴承部件会发生疲劳剥落、塑性变形和磨损等,这些均会导致在套圈滚道表面或滚动体表面上产生划痕、毛刺、锈斑、凹坑等缺陷。

《基于深度学习滚动轴承故障诊断算法研究》范文

《基于深度学习滚动轴承故障诊断算法研究》范文

《基于深度学习滚动轴承故障诊断算法研究》篇一一、引言滚动轴承作为旋转机械的重要部件,其故障诊断对于保障设备的正常运行具有重要意义。

随着深度学习技术的发展,越来越多的研究者开始探索其在滚动轴承故障诊断领域的应用。

本文旨在研究基于深度学习的滚动轴承故障诊断算法,以提高诊断的准确性和效率。

二、相关研究综述近年来,滚动轴承故障诊断的方法主要有传统的信号处理方法、基于模型的诊断方法和基于数据驱动的诊断方法。

其中,基于数据驱动的深度学习诊断方法因其在特征提取和分类方面的优异性能而备受关注。

目前,深度学习在滚动轴承故障诊断中的应用主要集中在卷积神经网络(CNN)和循环神经网络(RNN)等模型上。

这些模型可以有效地提取轴承振动信号中的时频域特征,提高故障诊断的准确率。

三、深度学习算法在滚动轴承故障诊断中的应用3.1 数据集与预处理本研究采用某大型企业提供的滚动轴承故障数据集。

首先,对原始振动信号进行降噪处理,以提高信号的信噪比。

然后,将处理后的信号划分为训练集和测试集,用于训练和验证深度学习模型。

3.2 模型构建与训练本研究采用卷积神经网络(CNN)作为主要的诊断模型。

在模型构建过程中,通过调整网络结构、卷积层数、滤波器数量等参数,以优化模型的性能。

在训练过程中,采用梯度下降算法对模型进行优化,以提高模型的诊断准确率。

3.3 特征提取与分类CNN模型可以自动提取轴承振动信号中的时频域特征。

通过训练,模型可以学习到不同故障类型对应的特征表示,从而实现故障分类。

在分类过程中,采用softmax函数对输出层进行归一化处理,以得到各故障类型的概率分布。

四、实验结果与分析4.1 实验设置实验采用十折交叉验证的方法,将数据集划分为十份,其中九份用于训练,一份用于测试。

重复该过程十次,以得到更可靠的实验结果。

实验环境为高性能计算机,配置了适当的深度学习框架和硬件资源。

4.2 实验结果实验结果表明,基于深度学习的滚动轴承故障诊断算法在各故障类型上的诊断准确率均有所提高。

轴承故障模式与故障诊断方法综述

轴承故障模式与故障诊断方法综述

轴承故障模式与故障诊断方法综述目录一、内容概览 (2)1.1 轴承的重要性 (2)1.2 轴承故障的背景和研究意义 (3)二、轴承基本原理及类型 (4)2.1 轴承的基本构造和工作原理 (5)2.2 轴承的分类 (6)三、轴承故障模式 (7)3.1 故障类型 (8)3.2 故障特征 (10)3.2.1 表面形貌特征 (11)3.2.2 散热性能变化 (13)3.2.3 振动特性变化 (13)四、故障诊断方法 (15)4.1 振动诊断法 (16)4.1.1 加速度传感器法 (17)4.1.2 振动信号分析 (18)4.2 声音诊断法 (20)4.2.1 声发射技术 (21)4.2.2 声波传导法 (22)4.3 温度诊断法 (23)4.3.1 红外热像技术 (24)4.3.2 热电偶测量 (25)4.4 无损检测法 (26)4.4.1 涡流检测 (28)4.4.2 磁粉检测 (29)4.4.3 射线检测 (30)4.5 其他诊断方法 (31)4.5.1 机器学习方法在轴承故障诊断中的应用 (32)4.5.2 大数据分析在轴承故障诊断中的应用 (34)五、案例分析 (35)5.1 某型号轴承故障案例 (36)5.2 故障诊断过程和方法 (38)5.3 诊断结果与改进措施 (39)六、结论与展望 (40)6.1 研究成果总结 (42)6.2 存在的问题和不足 (43)6.3 未来发展趋势和研究方向 (44)一、内容概览轴承作为机械、设备或结构中的关键部件,其性能的稳定与否直接关系到整个系统的安全、稳定及高效运行。

在实际使用过程中,轴承可能会遭遇各种故障模式,如磨损、腐蚀、疲劳断裂等,这些故障不仅会导致设备停运,还可能引发安全事故,造成人员伤亡和财产损失。

随着工业制造技术的不断进步和智能化发展,对轴承故障的早期发现和准确诊断显得尤为重要。

本文旨在对轴承故障模式及故障诊断方法进行综述,通过深入分析各种故障形式和诊断技术,为工程师提供实用的参考信息,以提升轴承的运行可靠性和使用寿命,确保工业生产的安全与顺畅。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

滚动轴承故障诊断文献综述[ 2008-4-2 14:38:00 | By: mp2 ]推荐文献综述——滚动轴承故障诊断1.前言滚动轴承是各种旋转机械中应用最广泛的一种通用机械零件,它是机器最易损坏的零件之一。

据统计。

旋转机械的故障有30%是由轴承引起的。

可见轴承的好坏对机器的工作状况影响很大。

轴承故障诊断就是要通过对能够反映轴承工作状态的信号的测取,分析与处理,来识别轴承的状态。

包括以下几个环节:信号测取;特征提取;状态识别:故障诊断;决策干预[1]。

滚动轴承故障诊断传统的分析方法有冲击脉冲法,共振解调法,倒频谱分析技术。

在现代分析方法中,小波分析是最近几年才出现井得以应用和发展的一种时—频信号分析方法。

它具有时域和频域的局部化和可变时频窗的特点.用它分析非平稳信号比传统的傅里叶分析更为最著。

由于滚动轴承的故障信号中禽有非稳态成分,所以刚小波分析来处理其振动信号.可望获得更为有效的诊断特征信息[2]。

滚动轴承故障的智能诊断技术就是把神经网络、专家系统、模糊理论等技术与滚动轴承的特征参数有机地结合起来进行综合分析的故障诊断技术。

2.故障信号诊断方法2.1冲击脉冲法(spm)SPM技术(Shock Pulse Method),是在滚动轴承运转中,当滚动体接触到内外道面的缺陷区时,会产生低频冲击作用,所产生的冲击脉冲信号,会激起SPM 传感器的共振,共振波形一般为20kHz~60kHz,包含了低频冲击和随机干扰的幅值调制波,经过窄带滤波器和脉冲形成电路后,得到包含有高频和低频的脉冲序列。

SPM 方法是根据这一反映冲击力大小的脉冲序列来判断轴承状态的。

此种方法目前被公认为对诊断滚动轴承局部损伤故障工程实用性最强的。

此方法虽然克服了选择滤波中心频率和带宽的困难,但这种固定中心频率和带宽的方法也有其局限性,因为,一些研究结果表明,滚动轴承局部损伤故障所激起的结构共振频率并不是固定不变的,在故障的不同阶段可能激起不同结构的共振响应,而不同部位的故障(内、外圈、滚子)也会激起不同频率结构的共振响应。

显然,固定的滤波频带有其局限性。

实际使用情况表明,当背景噪声很强或有其他冲击源时,SPM诊断效果很差,失去实用价值。

2.2共振解调技术共振解调法(Demodulated Resonance Analysis)也称包络分析法或高频共振技术是处理机械冲击引起的高频响应信号的有效方法。

当机械故障引起等间隔的高频冲击脉冲响应信号时,用硬件进行高通滤波,检波和低通滤波提取信号的包络,或对用硬件或软件进行高频带通滤波后的信号进行Hilbert变换求包络;对包络信号检测其峰值P、均值R或P/R值,可诊断滚动轴承的某些故障。

当以轴承结构系统的共振频率为滤波器的中心频率时,包络分析方法存在着如何确定带通滤波器的中心频率和带宽的问题。

由于预先难以确定设备结构系统的共振频率,不同设备结构系统共振频率的变化范围又较大,为了使滤波器具有较大的适应性,只好选择较宽的滤波频带,但是,较宽的频带势必引入大量的干扰噪声,降低信噪比;若带宽选得过窄则有可能漏掉结构系统的共振频率。

对包络信号进行谱分析可识别出冲击产生的频率,但是当出现谐波或由于包络信号存在幅值调制而引起和频、差频时,包络谱变得十分复杂,难以识别;而此时,包络谱单一谱峰的峰值也不能用于评价故障的严重程度。

2.3小波分析小波变换是近年来发展起来的一种新的时频信号分析方法,由于其良好的时频特性,被国内外广大科研工程人员应用于故障诊断领域。

文献[21]以Haar小波变换为基础,采用脉冲指标为诊断参数,对滚动轴承进行故障诊断。

对经过小波变换方法处理后的滚动轴承振动信号进行谱分析,以自定义的诊断参数作为识别滚动轴承损伤类故障的特征量,但是,由于该方法采用的变换尺度较小,当存在其他低频段强能量干扰时,该特征量的有效值得怀疑。

小波变换与其他分析方法的结合对滚动轴承进行故障诊断,取得了良好的诊断效果。

文献[22]对振动信号进行小波分解,然后再进行包络解调分析,减小了计算量,提高了诊断准确率。

文献[23]利用小波包对滚动轴承的振动加速度信号进行分解,得到振动信号在不同频带的能量,并以此作为特征向量,然后采用加权k近邻法对滚动轴承进行故障诊断。

文献[24]利用小波包得到的滚动轴承在不同频带的能量特征与径向基函数网络(RBFN)相结合,同样得到了理想的检测结果。

2.4 倒频谱诊断滚动轴承故障在对齿轮箱类设备进行故障诊断时.为更准确地找出故障特征频率。

往往需要进行频率细化分昕。

但在实际分析时发现,仅进行频率细化分析有时还无法看清频率结构。

还需要进一步做倒频谱分析倒频谱能较好地检测出功率谱上的周期成分.通常在功率谱上无法对边频的总体水平做出估计.而倒频谱则具有“概括”能力。

能较明显地显示出功率谱上的周期成分,使之定量化。

将原来谱上成族的边频带简化为单根谱线。

便于观察。

而齿轮、轴承等零部件发生故障时,振动频谱具有的边频带一般都具有等间隔(故障频率)的结构,利用倒频谱的这个优点。

可以检测出功率谱中难以辨识的周期性信号。

3.故障信号的智能诊断技术滚动轴承的智能诊断技术就是利用人工智能技术中的专家系统、知识工程、遗传算法、模糊理论和人工神经网络等技术和滚动轴承的特征参数或其他信号处理方法相结合对轴承故障进行诊断与监测。

文献[25]利用滚动轴承中状态监测中的几个特征量,即峰值、有效值、峭度值,轴承外圈、内圈和滚动体的特征频率幅值等参数作为神经网络的输入参数,对滚动轴承的故障进行诊断,试验表明该方法可以对轴承故障进行有效的监测和诊断。

文献[26]将分形维数概念与多层感知器神经网络结合,以分形维数作为特征量输入的分形神经网络诊断方法,应用到轴承系统实例诊断分析,获得了明显的诊断结果。

文献[27]构造了基于P一范数模糊神经网络,算法可以对Sugeno—Takagi模型进行逼近,因而更便于学习,克服了单纯前向神经网络训练中容易陷入局部极小及收敛速度较慢的缺点。

文献[28]将小波包和神经网络相结合,先利用小波包分解对滚动轴承的动态信号进行分析、提取特征,然后采用Kohonen神经网络进行滚动轴承故障诊断。

文献[29]利用遗传规划的方法对滚动轴承的振动信号幅值特征参数进行自组织,生成了高分辨率的用于逐次诊断的最佳特征参数,以提高轴承故障诊断的准确率。

明延锋在文献[30]中提出了一种基于并行组合模拟退火算法的故障识别方法。

此算法是将模拟退火算法较强的局部搜索能力和遗传算法对搜索过程总体较强的把握能力相结合,相互取长补短,而构成的一种性能优越的全局搜索算法。

试验表明该算法在滚动轴承早期故障信号(弱信号)识别应用中非常有效,但存在运算速度慢的缺点。

3 总结近几年,新技术和新方法层出不穷,人工智能和计算机在轴承故障诊断中的应用越来越广泛,今后的发展方向主要体现在以下方面:(1)时域分析和频谱分析在轴承故障诊断中的应用将日趋完善;(2)对于轴承故障诊断的理论和方法进一步深入研究,并且各种研究成果将会逐步应用到实际生产;(3)故障诊断智能系统进一步的深入研究,多种轴承故障分析方法相结合,如小波神经网络、模糊识别与小波分析相结合等新分析方法应用智能专家系统,提高诊断的效率和准确率;(4)随着计算机和网络技术的发展,远程故障诊断将是现代故障诊断发展的一个重要的方向。

参考文献[1] 王军. 滚动轴承故障诊断. 中国高教论丛,2002,24(2):27~30[2] 秦香敏,潘宏侠. 滚动轴承故障诊断方法研究. 科技情报开发与经济,2007, 17(2):150~151[3] 仇学青,张鑫.滚动轴承故障诊断研究的国内现状与发展方向.煤矿机械,200 7,28(6):6~8[4] 金晓光,高德柱.倒频谱分析在滚动轴承故障诊断中的应用. 冶金动力,200 7,4:93~97[5] 岳建海,裘正定.信号处理技术在滚动轴承故障诊断中的应用与发展.信号处理,2005,21(2):185~190[6] 周晓凯。

机械设备故障诊断理论方法及其应用的研究,天津大学博士论文,1993。

[7] 钟秉林黄仁.机械故障诊断学[M].北京:机械工业出版社.1997.[8] 中国机械工程学会.设备管理与维修杂志川.2001年8月.[9] 韩庆大.设备状态监测与故障诊断技术【M]耽阳:东北大学设备诊断工程中心。

2005.[10] 盛兆顺,尹琦玲.设备状态监测与故障诊断技术及应用【M】.北京:化学工业出版社,2003.[11] 王江萍.机械设备故障诊断技术及应用[U1.西安:西北工业大学出版社,2001.[12] 刘惟信.机械可靠性设计[M].北京:清华大学出版社,1996[13] 孔瑞莲.航空发动机可靠性工程[M].北京:航空工业出版社,1995[14] 李涛,贺永军,刘志俭.Matlab工具箱应用指南一应用数学篇[M].北京:电子工业出版社,2000[15] 张志涌,徐彦琴.Matlab教程一基于6.X版[M].北京:北京航空航天大学出版社,2001[16] 杨福生.小波变换的工程分析及应用[M].北京:科学出版社,1999.[17] 沈松,刘进明.用小波变换识别机械故障中的通过振动[J].振动与冲击,1999,18(2).[18] 张贤达.现代信号处理[M].北京:清华大学出版社,2002[19] 张贤达,保铮.非平稳随机信号分析与处理.北京:国防工业出版社,19 99.315~320[20] 吴今迈.设备诊断实例.上海:上海科学技术文献出版社.1997.182~187[21] Yan Yuling,Shimogo Taro.Application of the impulseindex in rolling element beating fault diagn osis.Mechanical systems and signal processing,1 992,6(2).[22] Rubibi R.and Meneghetti U.Application of the envelopeand wavel et tran sforin an alyses for the diagnosis ofincipient faults in ball bearings.Mechanical Systems andSignal Processing,2001,15(2),287—302[23] 夏利民,谷士文等。

基于小波包分析的货车滚动轴承故障诊断,中国铁道科学,2002,23(6)。

[24] 李世玲,李治等。

基于小波包能量特征的滚动轴承故障监测方法,系统仿真学报,2003,15(1)。

[25] Bo Li and Mo—Yuen Chow,etc.Neural—network—basedmotor rolling bearing fault diagn osis,IEEE tran sactionson industrial electroni cs,October,2000,47(5).[26] 侯祥林,李永强等。

相关文档
最新文档