2.2求解分钱博弈的纳什均衡
博弈论-纳什均衡(非合作博弈均衡)
完全理性:理性指一种行为方式,它适合实现指定目标,而且在给定条件和约束的限度之内。
在不同的学科领域,理性所涵盖的内容存在着差异完全理性的内涵具有完全理性的行为人是个无所不知的超人,他具有纵向和横向方面完备的知识。
在纵向方面,他可以预测未来;在横向方面,他通晓资源、交易伙伴和环境等情况。
具体而言,行为人的完全理性包括以下隐含内容。
(1)不存在不确定性,即使存在不确定性,也可以预知不确定性的概率分布。
也就是说,对于具有完全理性的行为人来说,一切信息都是确定的。
(2)行为人具有可以确定的效用函数(消费者的效用函数和厂商的利润函数可以统称为效用函数),同时行为人具有同质性以及一致性的偏好体系。
(3)选择结果具有描述不变性、程序不变性和前后关系独立性。
描述不变性要求行为人选择的先后顺序不应依赖于所描述或显示的选项,也就是说如果行为人经过再三思考,将两种描述视为同一问题的同义表达,那么它们必定导致相同的选择——即这种思考不存在异处;程序不变性要求不同方式的等价学说揭露相同的偏好次序;前后关系独立性指一项选择与其他替代方案互为独立的原则,它要求在给定Z而不提供有关X或Y 的新的信息的情况下,X与Y的优先权顺序不应该依赖于Z是否有效。
(4)行为人具备完备的计算和推理能力,可以像计算机一样在数秒内从事无穷尽的计算步骤,同时也不存在感性因素对选择的干扰。
(5)选择意味着在各种方案或选择集中进行比较和挑选,因此完全理性的行为人可以设计出所有的被选方案,以及各项方案所产生的全部后果。
(6)一个确定的报酬函数,即行为人可以确定地赋予每项行动结果一个具体的量化价值或效用。
(7)确定性的结果,也就是行为人町以实现效用最大化或最优目标(消费者效用最大化和企业利润最大化)。
在上述条件下,建立在完全理性假设的基础上的主流经济学的方法论,即行为人的选择或决策意味着在资源约束的条件下实现效用最大化或利润最大化。
行为人在选择过程中,可以遵循确定性原则、极大极小法则、边际原理以及概率法则(也就是主观期望原则)。
纳什均衡
纳什均衡简介纳什均衡,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。
在一个博弈过程中,无论对方的策略选择如何,当事人一方都会选择某个确定的策略,则该策略被称作支配性策略。
如果两个博弈的当事人的策略组合分别构成各自的支配性策略,那么这个组合就被定义为纳什均衡。
一个策略组合被称为纳什均衡,当每个博弈者的均衡策略都是为了达到自己期望收益的最大值,与此同时,其他所有博弈者也遵循这样的策略。
纳什均衡的得来关于纳什均衡的普遍意义和存在性定理的证明等奠定非合作博弈理论发展基础的重要成果,是约翰·纳什在普林斯顿大学攻读博士学位时完成的。
实际上,博弈论的研究起始于1944年冯·诺依曼(Von Neumann)和奥斯卡·摩根斯坦(Oscar Morgenstern)合著的《博弈论和经济行为》。
然而却是纳什首先用严密的数学语言和简明的文字准确地定义了纳什均衡这个概念,并在包含“混合策略(mixed strategies)”的情况下,证明了纳什均衡在n人有限博弈中的普遍存在性,从而开创了与诺依曼和摩根斯坦框架路线均完全不同的“非合作博弈(Non-cooperative Game)”理论,进而对“合作博弈(Cooperative Game)”和“非合作博弈”做了明确的区分和定义。
阿尔伯特·塔克(Alberttucker)教授评价其论文,“这是对博弈理论的高度原创性和重要的贡献。
它发展了本身很有意义的n人有限非合作博弈的概念和性质。
并且它很可能开拓出许多在两人零和问题以外的,至今尚未涉及的问题。
在概念和方法两方面,该论文都是作者的独立创造。
”纳什均衡例子博弈论中一个著名的例子就是囚徒困境。
囚徒困境是一个非零和博弈,说的是两个嫌疑犯甲和乙私人民宅联手作案,被警方逮住但未获证据。
警方于是将两个嫌疑犯分开审讯。
警官分别告诉两个囚犯,如果你招供,而对方不招供,则你将被判刑3个月,对方将被判刑10年;若两人都不招供则因未获证据但私人民宅将各拘留1年;如果两人均招供,每人将被判刑5年。
博弈论和纳什均衡
博弈论和纳什均衡引言博弈论是一门研究决策制定者之间相互作用的学科。
纳什均衡是博弈论中的一个重要概念,表示在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。
本文将介绍博弈论的基本概念和纳什均衡的理论,并探讨其在现实生活中的应用。
博弈论基本概念博弈论研究的对象是决策制定者之间的相互作用,其中包括两个或更多个决策制定者,每个决策制定者可以选择不同的策略。
博弈论的基本元素包括玩家、策略和收益。
玩家是决策制定者的角色,策略是玩家在每个决策点上可以采取的行动,收益是每个玩家在不同策略组合下所获得的利益。
博弈论中常见的博弈形式包括合作博弈和非合作博弈。
在合作博弈中,玩家之间可以进行合作并达成协议,而在非合作博弈中,玩家之间相互独立且没有协作的能力。
纳什均衡的概念纳什均衡是博弈论中的一个重要概念,由诺贝尔经济学奖得主约翰·纳什提出。
纳什均衡指的是在每个决策制定者根据自己的利益进行选择的情况下,不存在个体可以通过单独改变自己的策略来进一步获益的状态。
具体来说,在一个博弈中,如果每个玩家选择了一个策略组合,且任何一个玩家单独改变自己的策略都无法提高自己的收益,那么这个策略组合就是一个纳什均衡。
纳什均衡可以通过数学方法进行计算,其中最常用的方法是利用最优响应函数。
最优响应函数指的是一个玩家在其他玩家的策略给定时,可以最大化自己的收益的策略选择。
纳什均衡的特性纳什均衡具有以下几个重要的特性:1.独立于个体的理性决策:纳什均衡的形成不依赖于玩家之间的协商或合作,而是由每个玩家根据自己的利益进行独立的决策而达成的。
2.稳定性:在纳什均衡中,每个玩家都在最优响应下选择策略,没有动机或能力单独改变自己的策略来获得更好的结果。
这种稳定性使得纳什均衡成为一种理想的博弈状态。
3.不一定最优:纳什均衡并非一定是博弈的最优结果,即每个玩家获得的收益并不一定是最大化的。
纳什均衡是一种均衡状态,每个玩家在给定其他玩家的策略下无法获得更多的收益。
博弈中的黑马——纳什均衡
博弈中的黑马——纳什均衡博弈中的黑马——纳什均衡在《童区寄传》的故事中,牧童区寄假装软弱,扮猪吃象,杀死一名强盗,又以做一个人奴仆的美好前景打消了第二名强盗试图杀死自己的意图,保全了自己,再利用强盗睡觉之际,杀死对方。
这其中的情节一波三折,惊心动魄。
对于这场对垒,我们称之为博弈,区寄的策略称之为博弈策略。
那么,什么是博弈,博弈的核心概念又是什么?掌握点博弈知识对我们有些什么裨益呢?博弈是个外来词,在英文中用game来表示,如果直译的话,博弈就是游戏。
但东方的游戏和西方的game还是有较大差别的。
我们所理解的游戏中是一种纯粹的娱乐,而在英文中的game 的含义,却是指这种游戏是在一定规则之下的活动,而目的是要自己赢。
所以,如果直接把“博弈”理解为东方的“游戏”,显然玩的味道太浓,很容易让人把它当作小孩子“玩家家”一类不登大雅之堂的小儿科,会让这门学科失去严肃性。
于是,我们把西方的“博弈”翻译成game theory。
这样,博弈又称为“博弈论”,就使得博弈有了理论的色彩和意味。
博弈或者博弈论的准确定义应该是:一些个人、团队或其他组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,同时或先后,一次或多次,从各自允许选择的行为或策略进行选择并加以实施,并从中各自取得相应结果或收益的过程。
一个完整的博弈应当包括五个方面的内容:第一,博弈的参加者,即博弈过程中独立决策、独立承担后果的个人和组织;第二,博弈信息,即博弈者所掌握的对选择策略有帮助的情报资料;第三,博弈方可选择的全部行为或策略的集合;第四,博弈的次序,即博弈参加者做出策略选择的先后;第五,博弈方的收益,即各博弈方做出决策选择后的所得和所失。
由于博弈的内容和方式是不一样的,我们可以从不同角度对博弈进行分类:一是分为合作博弈与非合作博弈。
如果各博弈方能达成某种有约束力的契约或默契,以选择共同的策略,此种博弈就是合作博弈。
反之,就属于非合作博弈。
博弈论和纳什均衡
(记为:Q=a-bP),并且A、B两个厂商都准确地了解市 场的需求曲线(完全信息)。 5. A、B两个厂商各自再作出决策时都假定另一个厂商的行 为是既定不变的。厂商都是在已知对方产量的情况下, 各自确定能够给自己带来最大利润的产量。即每一个产 商都是消极地以自己的产量去适应对方已确定的产量。 6. 两个厂商同时决策,无行动的先后差别。
博弈论和纳什均衡
.
1
博弈无处不在
2
三国中的博弈——联吴抗魏
诸葛亮在《隆中对》中提出“跨有 荆益、东有孙权、北图中原”,他 舌战群儒,力劝东吴孙权与刘备联 盟。
3
三国中的博弈—华容道
火烧赤壁一战,孙刘联军大败曹操,曹操北 逃。诸葛亮明知关羽重义气,必然放走曹操, 为何还将捉曹重任交给关羽? 结论:诸葛亮并不想杀掉曹操——曹操一死,刘备亦亡矣!
11
案例扩展—性别大战
“性别战”:一对恋人有两种选择,或去看足球 比赛,或去看芭蕾舞。男方偏好足球,女方偏好 芭蕾,但他们宁愿在一起,不愿分开。
12
在这个博弈中,如果双方同时决定,则有两个纳 什均衡,即都去看足球比赛或者都去看芭蕾演出。 但是到底最后他们去看足球比赛还是去看芭蕾演 出,并不能从中获得结论。
* i
的最好的策略。
纳什均衡的定义
定义2.1 设 G N,S1,,Sn , u1,, un 为一具有完全信息的策略型博弈模型,称
策略组合s*
(s
* i
,
s
* i
),
s
* i
S i ,
s
*
i
S
\ Si
为G的一个纳什均衡。如果对
纳什均衡——博弈论的基础
纳什均衡——博弈论的基础下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。
文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!纳什均衡——博弈论的基础引言博弈论作为一门交叉学科,融合了数学、经济学、政治学等多个领域的知识,旨在研究决策者在相互影响下的最佳策略选择。
纳什均衡求解方法
纳什均衡求解方法
纳什均衡是博弈论中的一个重要概念,主要用于描述多个参与者选择一个策略后,达到一种相互协调的状态。
通常来说,纳什均衡被认为是一种不可协调的状态,因为所有参与者都没有动机改变自己的策略。
求解纳什均衡可以利用以下方法:
1. 策略消元法:这是一种非常基本的求解方法,适用于简单的博弈模型。
该方法的核心思想是根据参与者的策略做出相应的推理,将局面简化为更容易分析的形式。
最终得到的一个或多个均衡状态就是纳什均衡。
2. 迭代删除劣势策略法:该方法适用于有限的博弈模型,可以通过迭代删除每个参与者的劣势策略逐步缩小均衡的可能性。
最终会得出一个或多个纳什均衡状态。
3. 前瞻解法:该方法主要适用于完全信息博弈,通过加权平均和后验概率的计算方法,可求解出参与者的最佳策略组合。
最终的最优解就是纳什均衡。
需要注意的是,纳什均衡的求解并不总是存在,并且可能存在多个均衡状态。
而一旦找到了均衡状态,参与者就不会再改变策略,因为任何人的单方面行动都可能导致良性均衡的破裂。
(完整版)博弈中纯策略纳什均衡点
《博弈论及其应用》 (汪贤裕) 9
完全信息静态博弈三要素
完全信息静态博弈就是在上述三要素的基础上,分 析各局中人为实现自身利益最大化的策略行为分析。
简记为: G [N ,{Si },{Pi }]
《博弈论及其应用》 (汪贤裕) 10
§2.1.2 占优均衡
(s
||
s
(i h
)
)
(2.1.1)
i 则称,局中人 的策略 sk(i) 严格占优策略 sh(i),或称策略 sh(i)相
对于sk(i)是严格劣策略。
《囚徒困境》中、犯罪嫌疑人A和B策略(承认)就是一个严
格占优策略。
《博弈论及其应用》 (汪贤裕) 12
定义2.1.2 占优均衡
在博弈G [N,{Si},{Pi}]中,若每一个局中人 i
定理2.2.1
在n 人非合作博弈 G [N ,{Si },{Pi }] 中:
若, s
都存在一个策略
s
' i
Si
, (i
N
)
,使得
si'占优于
Si \ {si' }
中任何策略,那么策略组合
s'
(
s1'
,
s
' 2
,
sn' )
称为 G 的占优策略均衡,简称占优均衡。对应的
{Pi (s') | i N} 称为占优均衡结果。
《博弈论及其应用》 (汪贤裕) 13
定义2.1.2 占优均衡(续)
《博弈论及其应用》 (汪贤裕) 17
§2.2.1 纯策略纳什均衡
定义2.2.1 纯策略纳什均衡点和均衡结果 定理2.2.1 重复剔除占优均衡与纯策略纳什均衡 ※ 纳什均衡点与多目标规划求解比较
博弈论 启发式算法和纳什均衡-概述说明以及解释
博弈论启发式算法和纳什均衡-概述说明以及解释1.引言1.1 概述博弈论是一门研究决策和策略的数学理论,它以个体或组织在面对冲突和竞争时的互动行为为研究对象。
在现实生活中,博弈论可以应用于各种领域,如经济学、政治学、社会科学等。
启发式算法是一种基于经验和规则的问题解决方法,它通过不断试错和搜索最优解的过程,逐步逼近问题的解。
启发式算法可应用于各种优化问题、组合问题以及决策问题等。
本文旨在探讨博弈论、启发式算法和纳什均衡之间的关系。
博弈论的基本概念将会被介绍,包括博弈的类型、参与者的策略选择、收益与支付等因素。
启发式算法的原理和应用将会被解释,以展示它们在解决博弈论问题中的潜力。
本文的结论将会重点探讨纳什均衡的概念和特点。
纳什均衡是指在博弈中,每个参与者根据其他参与者的策略选择下的最佳响应策略。
此外,还将探讨博弈论、启发式算法和纳什均衡之间的联系,以揭示它们在实际问题中的应用潜力和相互作用关系。
通过本文的阅读,读者将对博弈论、启发式算法和纳什均衡有更深入的理解,并能够将它们应用于实际问题的解决中。
本文的目的是为读者提供一种全面的视角,以便能够更好地理解和应用这些概念和方法。
1.2 文章结构文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,将对博弈论、启发式算法和纳什均衡进行简要概述,并介绍文章的目的。
正文部分将着重阐述博弈论的基本概念以及启发式算法的原理和应用。
最后,在结论部分将探讨纳什均衡的概念和特点,并深入讨论博弈论、启发式算法和纳什均衡之间的关系。
本文旨在通过对博弈论、启发式算法和纳什均衡的研究,探索博弈论在实际问题中的应用,并探讨启发式算法与纳什均衡的关联性,从而提供对博弈论和启发式算法的理解和应用以及对纳什均衡的深入认识。
1.3 目的本部分将重点介绍本文的目的。
通过阅读本文,读者将能够深入了解博弈论、启发式算法和纳什均衡之间的关系。
我们将首先简要介绍博弈论的基本概念,包括博弈的定义和元素,以及博弈论在经济学、政治学和计算机科学等领域的应用。
博弈论中的纳什均衡-教案
博弈论中的纳什均衡-教案一、引言1.1博弈论的基本概念1.1.1博弈论的定义:博弈论是研究具有冲突和合作特点的决策制定过程。
1.1.2博弈论的应用:经济学、政治学、心理学等领域。
1.1.3博弈论的重要性:帮助理解竞争和合作中的决策行为。
1.1.4博弈论的局限性:假设理性人行为,实际中存在非理性行为。
1.2纳什均衡的提出1.2.2纳什均衡的意义:预测博弈结果,分析策略选择。
1.2.3纳什均衡的挑战:存在多个纳什均衡,选择合适的均衡。
1.2.4纳什均衡的应用:经济学、社会学、生物学等领域。
1.3教学目标和结构1.3.1教学目标:理解博弈论的基本概念,掌握纳什均衡的原理和应用。
1.3.3教学方法:讲授、案例分析、小组讨论。
1.3.4教学评估:课堂参与、案例分析报告、期末考试。
二、知识点讲解2.1博弈论的基本要素2.1.1参与者:博弈中的决策主体。
2.1.2策略:参与者可选择的行动方案。
2.1.3支付函数:参与者选择不同策略所得到的收益。
2.1.4结果:博弈的最终状态。
2.2纳什均衡的求解方法2.2.1纯策略纳什均衡:参与者选择确定的策略。
2.2.2混合策略纳什均衡:参与者以一定概率选择不同的策略。
2.2.3反复剔除劣势策略:通过剔除劣势策略找到纳什均衡。
2.2.4最佳响应动态:分析参与者对其他参与者策略的最佳响应。
2.3纳什均衡的应用实例2.3.1囚徒困境:两个囚犯选择合作或背叛的策略。
2.3.2鹰鸽博弈:参与者选择攻击或退让的策略。
2.3.3公地悲剧:多个参与者共享资源时的策略选择。
2.3.4供应链协调:供应商和零售商之间的策略选择。
三、教学内容3.1博弈论的基本模型3.1.1零和博弈:参与者的收益和损失相加为零。
3.1.2非零和博弈:参与者的收益和损失不相加为零。
3.1.3完美信息博弈:参与者了解其他参与者的策略和支付。
3.1.4不完美信息博弈:参与者不了解其他参与者的策略和支付。
3.2纳什均衡的性质和分类3.2.1稳定性:在纳什均衡下,参与者没有改变策略的动机。
博弈论2纳什均衡及应用举例
房地产开发博弈
需求大的情况 开发商A 开发 不开发 需求小的情况 开发 开发商A 开发商B 开发 不开发
4000,4000 8000,0
0,8000
0,0
开发商B 开发 不开发
-3000,-3000 0,1000 1000,0 0,0
不开发
房地产开发博弈
若双方同时决策 若市场需求已知 若市场需求未知,是否开发依赖于 (1)各自在多大程度上认为需求是大的, (2)对方是否开发
Complete and Perfect ——完全信息与完美信息
如房地产开发博弈中,如果至少有一个 参与人不知道市场需求的大小,信息是 不完全的也是不完美的 如果两个参与人都知道市场需求是大的 还是小的,信息是完全的,但如果A不知 道B选择了什么行动,那么A的信息是不 完美的。
支付Payoff
房地产开发博弈
需求大的情况 开发商A 开发 不开发 需求小的情况 开发 开发商A 开发商B 开发 不开发
4000,4000 8000,0
0,8000
0,0
开发商B 开发 不开发
-3000,-3000 0,1000 1000,0 0,0
不开发
市场进入博弈
高
N
低
[P]
不进入
进入者
进入 不进入
[1-P]
有限策略与无限策略同时存在一个博弈问题中
零和博弈
零和博弈: 社会总得益,即各博弈方得益之和总是为 0 猜硬币方
正面 正 面 反 面 反面
盖 硬 币 方
-1,1
1,-1
1,-1
-1,1
零和博弈
零和博弈的特点:
[管理学]分钱游戏
3
最后通牒博弈 实验分析: x1—A给B的分配 局中人A A1 A2 A3 A4 A5 A6 A7 A8 A9 x1 2 1 50 40 40 21 2 80 局中人B B1 B2 B3 B4 B5 B6 B7 B8 B9 x2 50 50 40 45 40 50 50 50
x2—B的要价
若x1≥x2,则双方 的收益分别为 100-x1,x1
局中人B B1 B2 B3 B4 B5 B6 B7 B8 B9
x2 50 50 50 50 50 50 50 50
2
方法2(最后通牒博弈):由A提出分配方案(A给B分配x1,A得到剩下
的 100-x1),B 决定自己是否接受这一分配方案 . 如果 B 接受 , 按方案
分配;如果B不接受,他们就什么也到不到. 理论分析:对这100元的任何一种瓜分方法都是一个纳什均衡. 同样,这一博弈也有太多的纳什均衡.
独裁者博弈 实验分析: 由 A 提出分配方 局中人A A1 A2 A3 A4 A5 A6 A7 A8 A9 x 100 20 1 10 1 50 50 1 0 局中人A A12 A13 A14 A15 A16 A17 A18 A19 A20 x 40 0 10 20 0
案 ( 分给 B x 元 ),
x2 100
该点是纳什均衡吗?
0
100
x1
1
双方各自要价 实验分析: x1—A的要价
x2—B的要价
若 x1+x2 ≤ 100, 则双 方的收益分别为 x1,x2; 否则 , 双方的 收益均为0.
局中人A A1 A2 A3 A4 A5 A6 A7 A8 A9
x1 50 50 50 50 55 49 50
分钱游戏
第二章 纳什均衡 《博弈论与经济》 PPT课件
▪ G的纳什均衡可由以下划线法求得。
▪ 1.对局中人1的每个策略i (i 1,2,, m) ,寻找局中人2的最
优反应。若最优反应为
j
,即 bij
max
k 1,2,,n
bik
,则在支付矩
阵元素 bij 下划一短线。
▪ 2.对局中人2的每个策略 j ( j 1,2,, n) ,寻找局中人1的
最优反应,若最优反应为 i
▪ 考虑由商店A, B构成的市场,A与B分别销售不同品牌的商 品,进行价格竞争。假设生产的单位成本为零。消费者 分为两类, n A ( 0)个消费者偏好于产品A,nB ( 0)个消费者 偏好于产品B。A,B两种品牌价格分别为 PA , PB 。设消费 者可从A或B处购买单位商品。
▪ 用 0表示由于购买不喜欢的产品所付出的厌恶成本,假 设消费者具有如下的效用函数
按 等待
等按待
(5,1) (9,1)
4,4
(0, 0)
▪ 严格纳什均衡为大猪“按”,小猪“等待”。
▪ 例2.7 在例1.8中的大堤维护博弈中,支付矩阵为
维护
不维护
不维维护护 ((1
4,4) 0,1 4)
((1140,,1100))
▪ 利用划线法可得纳什均衡(维护,维护),(不维护, 不维护)。
▪ 为了保护生命财产的安全,政府可以立法,如果参与人
第2章 纳什均衡
2.1 纳什均衡的定义
▪ 纳什均衡是博弈论中最重要的概念,各种非合作博弈模型的均衡概念都是建 立在纳什均衡基础之上的。
▪ 纳什均衡是个策略组合 s* (si*, s*i ) ,它满足两个要求。
▪
1.对每个局中人 i N
,能够预期到对手采用策略组合s
博弈论中的博弈策略与纳什均衡
博弈论中的博弈策略与纳什均衡博弈论是一门研究决策制定和行为选择的学科,主要应用于经济学、政治学、社会学等领域。
在博弈论中,博弈策略和纳什均衡是两个重要的概念。
本文将探讨博弈策略和纳什均衡的含义、应用以及相关案例。
一、博弈策略的概念博弈策略是指在博弈过程中参与者采取的行动方案。
博弈策略的选择会影响参与者的利益和最终的结果。
博弈策略可以分为纯策略和混合策略两种形式。
1. 纯策略纯策略是指在博弈中,参与者只选择一种特定的行动方案。
例如,在一个两人零和博弈中,参与者可以选择合作或背叛。
如果参与者选择合作,那么他们的策略就是纯策略“合作”;如果参与者选择背叛,那么他们的策略就是纯策略“背叛”。
2. 混合策略混合策略是指在博弈中,参与者以一定的概率选择不同的纯策略。
例如,在一个两人博弈中,参与者可以选择以50%的概率选择合作,以50%的概率选择背叛。
这样的策略就是混合策略。
二、纳什均衡的概念纳什均衡是博弈论中的一个重要概念,指的是在一个博弈中,每个参与者都选择了最优的策略,而且没有动机再次改变策略。
纳什均衡是一种稳定的策略状态,参与者无法通过改变自己的策略来获得更好的结果。
纳什均衡可以分为纯策略均衡和混合策略均衡两种形式。
1. 纯策略均衡纯策略均衡指的是在一个博弈中,每个参与者都选择了一个特定的纯策略,而且没有其他纯策略可以给他们带来更好的结果。
在纯策略均衡下,每个参与者的策略选择是最优的。
2. 混合策略均衡混合策略均衡指的是在一个博弈中,每个参与者以一定的概率选择不同的纯策略,而且没有其他混合策略可以给他们带来更好的结果。
在混合策略均衡下,每个参与者的策略选择是最优的。
三、博弈策略与纳什均衡的应用博弈策略和纳什均衡在许多领域都有广泛的应用,尤其是在经济学和政治学中。
下面将介绍一些实际案例。
1. 俘虏困境俘虏困境是一个经典的博弈论案例。
在这个案例中,两名嫌疑人被关押在不同的牢房,警察给他们提供了一个选择:如果两人都保持沉默,那么他们都只会被判处轻罪;如果其中一个人供认,而另一个人保持沉默,供认者将被免罪,而保持沉默者将被判处重罪;如果两人都供认,那么他们都将被判处重罪。
“博弈论”习题及参考答案
《博弈论》习题一、单项选择题1.博弈论中,局中人从一个博弈中得到的结果常被称为( )。
A.效用B.支付C.决策 D.利润2.博弈中通常包括下面的内容,除了( )。
A.局中人 B.占优战略均衡C.策略D.支付3.在具有占优战略均衡的囚徒困境博弈中( )。
A.只有一个囚徒会坦白B.两个囚徒都没有坦白C.两个囚徒都会坦白D.任何坦白都被法庭否决了4.在多次重复的双头博弈中,每一个博弈者努力( )。
A.使行业的总利润达到最大 B.使另一个博弈者的利润最小C.使其市场份额最大D.使其利润最大5.一个博弈中,直接决定局中人支付的因素是( )。
A. 策略组合 B. 策略C. 信息 D. 行动6.对博弈中的每一个博弈者而言,无论对手作何选择,其总是拥有惟一最佳行为,此时的博弈具有()。
A.囚徒困境式的均衡 B.一报还一报的均衡C.占优策略均衡D.激发战略均衡7.如果另一个博弈者在前一期合作,博弈者就在现期合作;但如果另一个博弈者在前一期违约,博弈者在现期也违约的策略称为()。
A.一报还一报的策略 B.激发策略C.双头策略D.主导企业策略8.在囚徒困境的博弈中,合作策略会导致( )。
A.博弈双方都获胜 B.博弈双方都失败C.使得先采取行动者获胜D.使得后采取行动者获胜9.在什么时候,囚徒困境式博弈均衡最可能实现()。
A. 当一个垄断竞争行业是由一个主导企业控制时B.当一个寡头行业面对的是重复博弈时C.当一个垄断行业被迫重复地与一个寡头行业博弈时D.当一个寡头行业进行一次博弈时10.一个企业采取的行为与另一个企业在前一阶段采取的行为一致,这种策略是一种( )。
A.主导策略 B.激发策略C.一报还一报策略D.主导策略11.关于策略式博弈,正确的说法是( )。
A. 策略式博弈无法刻划动态博弈B. 策略式博弈无法表明行动顺序C. 策略式博弈更容易求解D. 策略式博弈就是一个支付矩阵12.下列关于策略的叙述哪个是错误的( ):A. 策略是局中人选择的一套行动计划;B.参与博弈的每一个局中人都有若干个策略;C. 一个局中人在原博弈中的策略和在子博弈中的策略是相同的;D. 策略与行动是两个不同的概念,策略是行动的规则,而不是行动本身。
纳什均衡求解方法
纳什均衡求解方法纳什均衡是博弈论中的一个重要概念,用于描述多方参与的博弈中的一种均衡状态。
纳什均衡是指在每个参与者都选择了最优策略的情况下,无法通过改变单个参与者的策略来获得更好结果的状态。
为了求解纳什均衡,我们需要用到不同的方法,其中较为常用的有策略消去法、支配消去法和极小化极大值法。
接下来,我将详细介绍这些方法。
首先是策略消去法。
该方法适用于有限个数的参与者的纳什均衡求解。
具体步骤如下:1. 首先,根据博弈的规则和参与者可选择的策略,列出博弈矩阵。
2. 对于每个参与者,分别找出其在其他参与者选择各种策略时的最优策略。
这意味着参与者会考虑其他参与者的策略,并选择对自己最有利的策略。
3. 通过逐步消去各个参与者的非最优策略,最终得到仅剩最优策略的结果。
这就是纳什均衡点。
接下来是支配消去法。
该方法同样适用于有限个数的参与者的纳什均衡求解。
具体步骤如下:1. 根据博弈的规则和参与者可选择的策略,列出博弈矩阵。
2. 找出矩阵中的支配策略。
支配策略是指某个参与者在某种策略下的支付结果总是大于其他所有策略。
3. 将支配策略剔除,并将博弈矩阵缩小。
4. 重复步骤2和3,直到无法找到支配策略为止。
5. 最终剩下的策略组合就是纳什均衡点。
最后是极小化极大值法。
该方法适用于含有两个参与者的博弈求解。
具体步骤如下:1. 根据博弈的规则和参与者可选择的策略,列出博弈矩阵。
2. 将一个参与者的策略固定,求另一个参与者对应策略下的最大值。
3. 在最大值中选择最小值,并记录该最小值对应的策略。
4. 交换参与者的角色,重复步骤2和3。
5. 返回交换策略后的最小值和对应的策略,这就是纳什均衡点。
需要注意的是,有时博弈可能存在多个纳什均衡点,也可能不存在纳什均衡点。
此外,纳什均衡点不一定是全局最优解,而是在每个参与者选择了最优策略的情况下无法获得更好结果的一种均衡状态。
除了上述方法,还有其他一些求解纳什均衡的方法,如线性规划、拉格朗日乘子法等。