第一章光的干涉习题与答案解析说课讲解

合集下载

第一章光的干涉习题和答案解析

第一章光的干涉习题和答案解析

λdr y 0=∆第一章 光的干涉●1.波长为nm 500的绿光投射在间距d 为cm 022.0的双缝上,在距离cm 180处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为nm 700的红光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第2级亮纹位置的距离.解:由条纹间距公式λd r y y y j j 01=-=∆+ 得:cm 328.0818.0146.1cm146.1573.02cm818.0409.02cm573.010700022.0180cm 409.010500022.018021222202221022172027101=-=-=∆=⨯===⨯===⨯⨯==∆=⨯⨯==∆--y y y drj y d rj y d r y d r y j λλλλ●2.在杨氏实验装置中,光源波长为nm 640,两狭缝间距为mm 4.0,光屏离狭缝的距离为cm 50.试求:(1)光屏上第1亮条纹和中央亮条纹之间的距离;(2)若p 点离中央亮条纹为mm 1.0,问两束光在p 点的相位差是多少?(3)求p 点的光强度和中央点的强度之比.式: 解:(1)由公得λd r y 0=∆ =cm 100.8104.64.05025--⨯=⨯⨯(2)由课本第20页图1-2的几何关系可知52100.01sin tan 0.040.810cm 50y r r d d dr θθ--≈≈===⨯521522()0.8106.4104r r πππϕλ--∆=-=⨯⨯=⨯(3) 由公式2222121212cos 4cos 2I A A A A A ϕϕ∆=++∆= 得8536.042224cos 18cos 0cos 421cos 2cos42cos 422202212212020=+=+==︒⋅=∆∆==πππϕϕA A A A I I pp●3. 把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为6×10-7m.解:未加玻璃片时,1S 、2S 到P 点的光程差,由公式2rϕπλ∆∆=可知为 Δr =215252r r λπλπ-=⨯⨯=现在1S 发出的光束途中插入玻璃片时,P 点的光程差为()210022r r h nh λλϕππ'--+=∆=⨯=⎡⎤⎣⎦所以玻璃片的厚度为421510610cm 10.5r r h n λλ--====⨯-4. 波长为500nm 的单色平行光射在间距为0.2mm 的双狭缝上.通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样.求干涉条纹间距和条纹的可见度.解:6050050010 1.250.2r y d λ-∆==⨯⨯=mm122I I = 22122A A =12A A =()()122122/0.94270.941/A A V A A ∴===≈+5. 波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ。

高中物理(新人教版)选择性必修一课后习题:光的干涉(课后习题)【含答案及解析】

高中物理(新人教版)选择性必修一课后习题:光的干涉(课后习题)【含答案及解析】

光的干涉课后篇巩固提升必备知识基础练1.(多选)下列关于双缝干涉实验的说法正确的是()A.单缝的作用是获得频率保持不变的相干光源B.双缝的作用是获得两个振动情况相同的相干光源C.频率相同、相位差恒定、振动方向相同的两列单色光能够发生干涉现象D.照射单缝的单色光的波长越小,光屏上出现的条纹宽度越宽,单缝的作用是获得一个线光源,双缝的作用是获得两个振动情况完全相同的光源,故选项A错误,B正确;频率相同、相位差恒定的两列光可以发生干涉现象,选项C正确;由Δx=ldλ可知,波长越短,条纹间距越窄,选项D错误。

2.(2021河北博野中学高二开学考试)某一质检部门为检测一批矿泉水的质量,利用干涉原理测定矿泉水的折射率。

方法是将待测矿泉水填充到特制容器中,放置在双缝与光屏之间(可视为双缝与光屏之间全部为矿泉水),如图所示,特制容器未画出,通过比对填充后的干涉条纹间距x2和填充前的干涉条纹间距x1就可以计算出该矿泉水的折射率。

则下列说法正确的是(设空气的折射率为1)()A.x2=x1B.x2>x1C.该矿泉水的折射率为x1x2D.该矿泉水的折射率为x2x1n=cv和v=fλ可知光在水中的波长小于在空气中的波长,根据双缝干涉条纹的间距公式Δx=ldλ可知填充矿泉水后的干涉条纹间距x2小于填充前的干涉条纹间距x1,所以A、B错误;根据n=cv 和v=fλ可得n=λ1λ2,又由x1=ldλ1和x2=ldλ2得n=x1x2,故C正确,D错误。

3.如图所示,用频率为f 的单色光垂直照射双缝,在光屏上的P 点出现第3条暗条纹,已知光速为c ,则P 点到双缝距离之差S 2P-S 1P 应为( )A.c 2fB.3c 2fC.3c fD.5c 2fλ=c f ,又P 点出现第3级暗条纹,即S 2P-S 1P=5×λ2=5c 2f ,选项D 正确。

4.某同学自己动手利用如图所示的器材,观察光的干涉现象,其中,A 为单缝屏,B 为双缝屏,C 为像屏。

光的干涉习题(附答案) (1)

光的干涉习题(附答案) (1)


2h c arcsin 0.1 5.7 o arcsin 2hf
11. 油船失事,把大量石油(n=1.2)泄漏在海面上,形成一个很大的油膜。试求: (1)如果你从飞机上竖直地向下看油膜厚度为 460nm 的区域,哪些波长的 可见光反射最强? (2 ) 如果你戴了水下呼吸器从水下竖直的向上看这油膜同 一区域,哪些波长的可见光透射最强?(水的折射率为 1.33) 答:因为在油膜上下表面反射光都有半波损失, (1)反射光干涉加强:2nd=k
π
S1
S2
3λ 4
4. 用波长为 λ 的单色光垂直照射牛顿环装置,观察牛顿环,如图所示。若使凸 透镜慢慢向上垂直移动距离 d, 移过视场中某固定观察点的条纹数等于 2d/λ 。
5. 空气中两块玻璃形成的空气劈形膜, 一端厚度为零, 另一端厚度为 0.005 cm, 玻璃折射率为 1.5,空气折射率近似为 1。如图所示,现用波长为 600 nm 的 单色平行光, 沿入射角为 30°角的方向射到玻璃板的上表面, 则在劈形膜上形 成的干涉条纹数目为 144 。
答: 根据几何光学作图法可知点光源 S 发出的光束经过上半个透镜 L1 和下 半个透镜 L2 分别折射后所形成的两光束, 可形成类似于双峰干涉的两个同相 位相干光源 S1 和 S2。由透镜成像公式
1 u
+ v = f 和 u=2f
1
1
可以得到 v=2f
又因 SS1 和 SS2 分别通过上下两个半透镜的中心(物和像的连线通过透镜中 心) ,可得: s1 s2 :h=(u+v):u=2:1 ̅̅̅̅̅ 所以两模拟光源的间距̅̅̅̅̅ s1 s2 =2h,且 S1S2 平面与屏的距离为 8f,根据类似双峰 干涉的计算可知 P 点的光强: 1 2 I=2A2 1 (1+cos∆∅)=4I1 cos ( ∆∅) 2 其中相位差 ∆∅= 置坐标 得到: 当 x=0 时,I0=4I1 I=4I1 cos2 4λf I=I0 cos2 4λf

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案

一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。

【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。

【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。

图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。

由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。

【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )A.C 是明的,圆环是等距离的;B.C 是明的,圆环是不等距离的;C.C 是暗的,圆环是等距离的;D.C 是暗的,圆环是不等距离的。

【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。

【答案】:B6、若把牛顿环装置(都是用折射率为1.52的玻璃制成的)由空气搬入折射率为1.33的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。

【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。

【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O 处。

4-3 光的干涉(人教版2019版选择性必修第一册) (解析版)

4-3 光的干涉(人教版2019版选择性必修第一册) (解析版)

4.3 光的干涉学习目标:1.知道光的干涉现象和产生干涉现象的条件。

2.理解产生明暗条纹的条件,理解条纹间距与波长的关系。

3.理解薄膜干涉及其应用。

重点:1.光的干涉图样。

2.产生干涉条纹的条件。

难点:1.判断光屏上某一点出现的条纹情况。

2.用波动学说解释光的干涉现象中明暗条纹形成的原因。

知识点一、杨氏双缝干涉实验1.史实:1801年,英国物理学家托马斯·杨成功地观察到了光的干涉现象,杨氏实验有力地证明了光是一种波。

2.双缝干涉实验(1)双缝干涉的装置示意图:有光源、单缝、双缝和光屏。

①单缝屏的作用:获得一个线光源,使光源有唯一的频率和振动情况。

②双缝屏的作用:平行光照射到单缝S上,又照到双缝S1、S2上,这样一束光被分成两束频率相同和振动情况完全一致的相干光。

(2)实验过程:如图,让一束平行的单色光投射到一个有两条狭缝S1和S2的挡板上,狭缝S1和S2相距很近,两条狭缝就产生两个光源,它们的振动情况总是相同,两光源发出的光在挡板后面的空间互相叠加。

(3)实验现象:在屏上得到明暗相间的条纹。

(4)实验结论:证明光是一种波。

(5)现象解释—出现明暗条纹的判断:当两个光源与屏上某点的距离之差等于半波长的偶数时(即恰好等于波长的整数时),两列光在这点相互加强,这里出现亮条纹;当两个光源与屏上某点的距离之差等于半波长的奇数倍时,两列光在这一点相互削弱,这里出现暗条纹。

【题1】如图所示,在用单色光做双缝干涉实验时,若单缝S从双缝S1、S2的中央对称轴位置处稍微向上移动,则A.不再产生条纹B.仍可产生干涉条纹,且中央亮纹P的位置不变C.仍可产生干涉条纹,中央亮纹P的位置略向上移D.仍可产生干涉条纹,中央亮纹P的位置略向下移【答案】D【解析】本实验中单缝S的作用是形成频率一定的线光源,双缝S1、S2的作用是形成相干光源,稍微移动S后,没有改变传到双缝的光的频率,由S1、S2射出的仍是相干光,由单缝S发出的光到达屏上P点下方某点的光程差为零,故中央亮纹下移。

光的干涉(教学课件)(完整版)

光的干涉(教学课件)(完整版)
双缝干涉亮(暗)纹间距的公式
l
d
X x
d
L
P1
S1
d
S2
l
1.相邻明(暗)纹间的距离大小的影响因素:
(1)波长λ: 波长越大,相邻的亮纹间距越大
(2)双缝之间的距离d: d越小,相邻的亮纹间距越大
(3)双缝与屏间的距离 l : L越大,相邻的亮纹间距越大
x
P
学习任务二、干涉条纹和光的波长之间的关系
后表面
学习任务三:薄 膜 干 涉
光程差为波长的整数倍,形成亮条纹。
光程差为半波长的奇数倍,形成暗条纹。
白光照射时是彩色条纹
学习任务三:薄 膜 干 涉
薄膜干涉的应用(一)——检查表面的平整程度
如果被检表面是平的,产生的干涉条纹就是平行的,如图(b)
所示;如果观察到的干涉条纹如图(c)所示,则表示被检测表面微
恰好是10号亮条纹。设直线S1P1的长度为r1,S2P1的长度为r2,则r2-r1等于 (
)
A.9.5λ B.10λ
C.10.5λ
D.20λ
答案:B
解析:由题设可知,P1点处是第10号亮条纹的位置,表明缝S1、S2到P1处的距离差r2-r1
为波长的整数倍,且刚好是10个波长,所以选项B正确。
考点三:薄膜干涉
亮(暗)纹间距的公式推导
如图所示,双缝间距为d,双缝到屏的距离为l。双缝S1、S2的连线的中垂线与屏的交点为P 。
对屏上与P距离为x的一点 P1,两缝与P1的距离P1 S1=r1, P1 S2=r2。
在线段P1 S2上作P1 M= P1 S1,则S2M=r2-r1,
因d≪l,三角形S1S2M可看做直角三角形。
)

《光的干涉》 说课稿

《光的干涉》 说课稿

《光的干涉》说课稿尊敬的各位评委、老师:大家好!今天我说课的题目是“光的干涉”。

接下来我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“光的干涉”是高中物理光学部分的重要内容,它是波动光学的基础,对于理解光的波动性具有重要意义。

本节课在教材中的地位举足轻重。

它既是对前面所学的光的直线传播等知识的深化和拓展,也为后续学习光的衍射、光的偏振等内容奠定了基础。

教材首先通过杨氏双缝干涉实验引入光的干涉现象,接着介绍了相干光的条件以及干涉条纹的特点和规律。

通过对教材的深入研究,我发现其中蕴含着丰富的物理思想和方法,如通过实验观察和分析归纳得出结论的科学方法,以及从现象到本质的认识规律。

二、学情分析授课对象是高中学生,他们已经具备了一定的物理基础知识和逻辑思维能力,但对于抽象的光波概念和干涉现象的理解可能存在一定困难。

学生在之前的学习中,已经了解了光的直线传播和折射等现象,但对于光的波动性认识还不够深入。

他们具备一定的实验观察和数据处理能力,但在分析复杂的物理现象时,可能还需要教师的引导和帮助。

三、教学目标基于对教材和学情的分析,我确定了以下教学目标:1、知识与技能目标(1)学生能够理解光的干涉现象和相干光的概念。

(2)掌握光的干涉条件,会用公式计算光的干涉条纹间距。

(3)能够解释常见的光的干涉现象。

2、过程与方法目标(1)通过观察实验现象,培养学生的观察能力和分析问题的能力。

(2)经历探究光的干涉规律的过程,提高学生的实验设计和数据处理能力。

3、情感态度与价值观目标(1)让学生体会物理实验的魅力,激发学生对物理学科的兴趣。

(2)培养学生严谨的科学态度和实事求是的精神。

四、教学重难点1、教学重点(1)光的干涉现象和相干光的条件。

(2)杨氏双缝干涉实验中条纹间距的计算。

2、教学难点(1)对光的干涉现象的本质理解。

(2)如何引导学生设计实验探究光的干涉规律。

《光的干涉》 说课稿

《光的干涉》 说课稿

《光的干涉》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“光的干涉”。

接下来,我将从教材分析、学情分析、教学目标、教学重难点、教学方法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“光的干涉”是高中物理光学部分的重要内容,它是理解光的波动性的关键。

本节课的内容在教材中起着承上启下的作用,既是对前面光的直线传播、光的折射和反射等知识的深化和拓展,又为后续学习光的衍射、光的偏振等内容奠定了基础。

在教材编排上,通过实验现象引入光的干涉概念,然后从理论上进行分析和解释,注重培养学生的观察能力、实验探究能力和逻辑思维能力。

二、学情分析学生在之前的学习中已经掌握了光的直线传播、折射和反射等基本规律,但对于光的波动性的认识还比较模糊。

在数学知识方面,学生已经具备了一定的三角函数和几何知识,这为理解光的干涉原理提供了一定的基础。

然而,光的干涉现象较为抽象,学生在理解和接受上可能会存在一定的困难。

因此,在教学过程中,需要通过实验演示和多媒体辅助等手段,帮助学生直观地感受光的干涉现象,降低学习难度。

三、教学目标1、知识与技能目标(1)学生能够理解光的干涉现象及其产生条件。

(2)掌握光的干涉条纹间距与波长、双缝间距以及双缝到光屏距离之间的关系。

(3)能够运用光的干涉原理解决一些简单的实际问题。

2、过程与方法目标(1)通过观察光的干涉实验,培养学生的观察能力和实验操作能力。

(2)经历对光的干涉现象的分析和推理过程,提高学生的逻辑思维能力和科学探究能力。

3、情感态度与价值观目标(1)通过对光的干涉现象的研究,激发学生对物理学的兴趣,培养学生的科学态度和探索精神。

(2)让学生体会物理学在生活和科技中的广泛应用,增强学生的学以致用的意识。

四、教学重难点1、教学重点(1)光的干涉现象的产生条件。

(2)光的干涉条纹间距的计算公式及其应用。

2、教学难点(1)对光的干涉现象的原理的理解。

(2)光的干涉条纹间距公式的推导。

光学教程姚启钧课后习题解答

光学教程姚启钧课后习题解答

光学教程姚启钧习题解答 第一章 光的干涉1、波长为500nm 的绿光投射在间距d 为0.022cm 的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离;若改用波长为700nm 的红光投射到此双缝上,两个亮纹之间的距离为多少算出这两种光第2级亮纹位置的距离;解:1500nm λ= 改用2700nm λ=两种光第二级亮纹位置的距离为:2、在杨氏实验装置中,光源波长为640nm ,两狭缝间距为0.4mm ,光屏离狭缝的距离为50cm ,试求:⑴光屏上第1亮条纹和中央亮纹之间的距离;⑵若P 点离中央亮纹为0.1mm 问两束光在P 点的相位差是多少⑶求P 点的光强度和中央点的强度之比;解:⑴7050640100.080.04r y cm d λ-∆==⨯⨯= ⑵由光程差公式⑶中央点强度:204I A = P 点光强为:221cos4I A π⎛⎫=+ ⎪⎝⎭3、把折射率为1.5的玻璃片插入杨氏实验的一束光路中,光屏上原来第5级亮条纹所在的位置变为中央亮条纹,试求插入的玻璃片的厚度;已知光波长为7610m -⨯解: 1.5n =,设玻璃片的厚度为d 由玻璃片引起的附加光程差为:()1n d δ'=-4、波长为500nm 的单色平行光射在间距为0.2mm 的双缝上;通过其中一个缝的能量为另一个的2倍,在离狭缝50cm 的光屏上形成干涉图样,求干涉条纹间距和条纹的可见度;解:7050500100.1250.02r y cm d λ-∆==⨯⨯= 由干涉条纹可见度定义: 由题意,设22122A A =,即12A A =5、波长为700nm 的光源与菲涅耳双镜的相交棱之间距离为20cm ,棱到光屏间的距离L 为180cm ,若所得干涉条纹中相邻亮条纹的间隔为1mm ,求双镜平面之间的夹角θ;解:700,20,180,1nm r cm L cm y mm λ===∆= 由菲涅耳双镜干涉条纹间距公式6、在题 图所示的劳埃德镜实验中,光源S 到观察屏的距离为1.5m ,到劳埃德镜面的垂直距离为2mm ;劳埃德镜长40cm ,置于光源和屏之间的中央;⑴若光波波长500nm λ=,问条纹间距是多少⑵确定屏上可以看见条纹的区域大小,此区域内共有几条条纹提示:产生干涉的区域P 1P 2可由图中的几何关系求得解:由图示可知:7050050010,40.4, 1.5150nm cm d mm cm r m cm λ-==⨯==== ①70150500100.018750.190.4r y cm mm d λ-∆==⨯⨯== ②在观察屏上可以看见条纹的区域为P 1P 2间即21 3.45 1.16 2.29P P mm =-=,离屏中央1.16mm 上方的2.29mm 范围内可看见条纹;P 2 P 1 P 0题图7、试求能产生红光700nm λ=的二级反射干涉条纹的肥皂膜厚度;已知肥皂膜折射率为1.33,且平行光与法向成300角入射;解:2700, 1.33nm n λ==由等倾干涉的光程差公式:22λδ=8、透镜表面通常镀一层如MgF 2 1.38n =一类的透明物质薄膜,目的是利用干涉来降低玻璃表面的反射;为了使透镜在可见光谱的中心波长550nm 处产生极小的反射,则镀层必须有多厚解: 1.38n =物质薄膜厚度使膜上下表面反射光产生干涉相消,光在介质上下表面反射时均存在半波损失;由光程差公式:9、在两块玻璃片之间一边放一条厚纸,另一边相互压紧,玻璃片l 长10cm ,纸厚为0.05mm ,从600的反射角进行观察,问在玻璃片单位长度内看到的干涉条纹数目是多少设单色光源波长为500nm解:02cos602o n hδ=+相邻亮条纹的高度差为:605005001012cos60212oh nm mm n λ-∆===⨯⨯⨯可看见总条纹数60.0510050010H N h -===∆⨯ 则在玻璃片单位长度内看到的干涉条纹数目为: 即每cm 内10条;10、在上题装置中,沿垂直于玻璃表面的方向看去,看到相邻两条暗纹间距为1.4mm ;已知玻璃片长17.9cm ,纸厚0.036mm ,求光波的波长;解:当光垂直入射时,等厚干涉的光程差公式: 可得:相邻亮纹所对应的厚度差:2h nλ∆=由几何关系:h H l l ∆=∆,即l h H l∆∆= 11、波长为400760nm 的可见光正射在一块厚度为61.210m -⨯,折射率为1.5的薄玻璃片上,试问从玻璃片反射的光中哪些波长的光最强;解:61.210, 1.5h m n -=⨯= 由光正入射的等倾干涉光程差公式:22nh λδ=-使反射光最强的光波满:足22nh j λδλ=-=12、迈克耳逊干涉仪的反射镜M 2移动0.25mm 时,看到条纹移过的数目为909个,设光为垂直入射,求所用光源的波长;解:光垂直入射情况下的等厚干涉的光程差公式:22nh h δ==移动一级厚度的改变量为:2h λ∆=13、迈克耳逊干涉仪的平面镜的面积为244cm ⨯,观察到该镜上有20个条纹,当入射光的波长为589nm 时,两镜面之间的夹角为多少解:由光垂直入射情况下的等厚干涉的光程差公式: 22nh h δ==相邻级亮条纹的高度差:2h λ∆=由1M 和2M '构成的空气尖劈的两边高度差为:M 1 M214、调节一台迈克耳逊干涉仪,使其用波长为500nm 的扩展光源照明时会出现同心圆环条纹;若要使圆环中心处相继出现1000条圆环条纹,则必须将移动一臂多远的距离若中心是亮的,试计算第一暗环的角半径;提示:圆环是等倾干涉图样,计算第一暗环角半径时可利用21sin ,cos 12θθθθ≈≈-的关系;解:500nm λ=出现同心圆环条纹,即干涉为等倾干涉 对中心2h δ=15、用单色光观察牛顿环,测得某一亮环的直径为3mm ,在它外边第5个亮环的直径为4.6mm ,所用平凸透镜的凸面曲率半径为1.03m ,求此单色光的波长;解:由牛顿环的亮环的半径公式:r = 以上两式相减得:16、在反射光中观察某单色光所形成的牛顿环,其第2级亮环与第3级亮环间距为1mm ,求第19和20级亮环之间的距离;解:牛顿环的反射光中所见亮环的半径为:即:2r =则:)2019320.160.40.4rr r r r mm ∆=-==-==第2章 光的衍射1、单色平面光照射到一小圆孔上,将其波面分成半波带;求第k 个带的半径;若极点到观察点的距离0r 为1m ,单色光波长为450nm ,求此时第一半波带的半径;解:由公式对平面平行光照射时,波面为平面,即:R →∞2、平行单色光从左向右垂直射到一个有圆形小孔的屏上,设此孔可以像照相机光圈那样改变大小;问:⑴小孔半径应满足什么条件时,才能使得此小孔右侧轴线上距小孔中心4m 的P 点的光强分别得到极大值和极小值;⑵P 点最亮时,小孔直径应为多大设此光的波长为500nm ;解:⑴04400r m cm == 当k 为奇数时,P 点为极大值 当C 数时,P 点为极小值⑵由()112P k A a a =±,k 为奇,取“+”;k 为偶,取“-” 当1k=,即仅露出一个半波带时,P 点最亮;10.141,(1)H R cm k ==,0.282D cm =3、波长为500nm 的单色点光源离光阑1m ,光阑上有一个内外半径分别为0.5mm 和1mm 的透光圆环,接收点P 离光阑1m ,求P 点的光强I 与没有光阑时的光强0I 之比;解:即从透光圆环所透过的半波带为:2,3,4 设1234a a a a a ==== 没有光阑时光强之比:2204112I a I a ==⎛⎫ ⎪⎝⎭4、波长为632.8nm 的平行光射向直径为2.76mm 的圆孔,与孔相距1m 处放一屏,试问:⑴屏上正对圆孔中心的P 点是亮点还是暗点⑵要使P 点变成与⑴相反的情况,至少要把屏分别向前或向后移动多少解:由公式对平面平行光照射时,波面为平面,即:R →∞2290 2.7623632.8101H R k r λ-⎛⎫ ⎪⎝⎭===⨯⨯, 即P 点为亮点; 则 0113kr R ⎛⎫=⨯+ ⎪⎝⎭, 注:0,r R 取m 作单位向右移,使得2k=,031.5, 1.510.52r m r m '==∆=-= 向左移,使得4k =,030.75,10.750.254r m r m '==∆=-=5、一波带片由五个半波带组成;第一半波带为半径1r 的不透明圆盘,第二半波带是半径1r 和2r 的透明圆环,第三半波带是2r 至3r 的不透明圆环,第四半波带是3r 至4r 的透明圆环,第五半波带是4r 至无穷大的不透明区域;已知1234:::r r r r =用波长500nm 的平行单色光照明,最亮的像点在距波带片1m 的轴上,试求:⑴1r ;⑵像点的光强;⑶光强极大值出现在哪些位置上;解: ⑴由1234:::r r r r =波带片具有透镜成像的作用,2HkR f k λ'=⑵2242,4A a a a I a =+==无光阑时,2201124I a a ⎛⎫== ⎪⎝⎭即:016I I =,0I 为入射光的强度; ⑶由于波带片还有11,35f f ''…等多个焦点存在,即光强极大值在轴上11,35m m … 6、波长为λ的点光源经波带片成一个像点,该波带片有100个透明奇数半波带1,3,5,…,199;另外100个不透明偶数半波带;比较用波带片和换上同样焦距和口径的透镜时该像点的强度比0:I I ;解:由波带片成像时,像点的强度为: 由透镜成像时,像点的强度为: 即014I I = 7、平面光的波长为480nm ,垂直照射到宽度为0.4mm 的狭缝上,会聚透镜的焦距为60cm ;分别计算当缝的两边到P 点的相位差为/2π和/6π时,P 点离焦点的距离;解:对沿θ方向的衍射光,缝的两边光的光程差为:sin b δθ= 相位差为:22sin b ππϕδθλλ∆==对使2πϕ∆=的P 点对使6πϕ∆=的P `点8、白光形成的单缝衍射图样中,其中某一波长的第三个次最大值与波长为600nm 的光波的第二个次最大值重合,求该光波的波长;解:对θ方位,600nm λ=的第二个次最大位对 λ'的第三个次最大位 即:5722b bλλ'⨯=⨯ 9、波长为546.1nm 的平行光垂直地射在1mm 宽的缝上,若将焦距为100cm 的透镜紧贴于缝的后面,并使光聚焦到屏上,问衍射图样的中央到⑴第一最小值;⑵第一最大值;⑶第三最小值的距离分别为多少解:⑴第一最小值的方位角1θ为:1sin 1b θλ=⋅⑵第一最大值的方位角1θ'为: ⑶第3最小值的方位角3θ为:3sin 3bλθ=⋅10、钠光通过宽0.2mm 的狭缝后,投射到与缝相距300cm 的照相底片上;所得的第一最小值与第二最小值间的距离为0.885cm ,问钠光的波长为多少若改用X 射线0.1nm λ=做此实验,问底片上这两个最小值之间的距离是多少解:单缝衍射花样最小值位置对应的方位θ满足: 则 11sin 1bλθθ≈=⋅11、以纵坐标表示强度,横坐标表示屏上的位置,粗略地画出三缝的夫琅禾费衍射包括缝与缝之间的干涉图样;设缝宽为b ,相邻缝间的距离为d ,3d b =;注意缺级问题;12、一束平行白光垂直入射在每毫米50条刻痕的光栅上,问第一级光谱的末端和第二光谱的始端的衍射角θ之差为多少设可见光中最短的紫光波长为400nm ,最长的红光波长为760nm解:每毫米50条刻痕的光栅,即10.0250dmm mm == 第一级光谱的末端对应的衍射方位角1θ末为第二级光谱的始端对应的衍射方位角2θ始为13、用可见光760400nm 照射光栅时,一级光谱和二级光谱是否重叠二级和三级怎样若重叠,则重叠范围是多少解:光谱线对应的方位角θ:sin kdλθθ≈=即第一级光谱与第二级光谱无重叠 即第二级光谱与第三级光谱有重叠 由2152015203,506.73nm nm d dλθλ==⨯==末即第三级光谱的400506.7nm 的光谱与第二级光谱重叠;14、用波长为589nm 的单色光照射一衍射光栅,其光谱的中央最大值和第二十级主最大值之间的衍射角为01510',求该光栅1cm 内的缝数是多少解:第20级主最大值的衍射角由光栅方程决定 解得20.4510d cm -=⨯15、用每毫米内有400条刻痕的平面透射光栅观察波长为589nm 的钠光谱;试问:⑴光垂直入射时,最多功能能观察到几级光谱⑵光以030角入射时,最多能观察到几级光谱解:61,58910400dmm mm λ-==⨯⑴光垂直入射时,由光栅方程:sin d j θλ= 即能看到4级光谱⑵光以30o角入射16、白光垂直照射到一个每毫米250条刻痕的平面透射光栅上,试问在衍射角为030处会出现哪些波长的光其颜色如何解:1250dmm =在30o的衍射角方向出现的光,应满足光栅方程:sin 30od j λ=17、用波长为624nm 的单色光照射一光栅,已知该光栅的缝宽b 为0.012mm ,不透明部分的宽度a 为0.029mm ,缝数N 为310条;求:⑴单缝衍射图样的中央角宽度;⑵单缝衍射图样中央宽度内能看到多少级光谱⑶谱线的半宽度为多少解:0.012,0.029b mm a mm ==⑴6062410220.1040.012rad b λθ-⨯∆==⨯= ⑵j 级光谱对应的衍射角θ为:即在单缝图样中央宽度内能看到()2317⨯+=条级光谱⑶由多缝干涉最小值位置决定公式:sin j Ndλθ'=⋅第3章 几何光学的基本原理1、证明反射定律符合费马原理 证明:设A 点坐标为()10,y ,B 点坐标为()22,x y入射点C 的坐标为(),0x光程ACB为:∆=令2sin sin 0x x d i i dx -∆'==-=即:sin sin i i '=2、根据费马原理可以导出近轴光线条件下,从物点发出并会聚到像点的所有光线的光程都相等;由此导出薄透镜的物像公式;3、眼睛E 和物体PQ 之间有一块折射率为1.5的玻璃平板见题图,平板的厚度d 为30cm ;求物体PQ 的像P `Q`与物体PQ 之间的距离2d 为多少解:由图:()121211tan tan sin sin 1sin BB d i d i d i i d i n ⎛⎫'=-≈-=-⎪⎝⎭4、玻璃棱镜的折射角A 为060,对某一波长的光其折射率n 为1.6,计算:⑴最小偏向角;⑵此时的入射角;⑶能使光线从A 角两侧透过棱镜的最小入射角;解:⑴ 由()()()1212112211i i i i i i i i i i A θ'''''=-+-=+-+=+- 当11i i '=时偏向角为最小,即有221302o i i A '=== ⑵15308oi '= 5、略6、高5cm 的物体距凹面镜顶点12cm ,凹面镜的焦距是10cm ,求像的位置及高度,并作光路图解:由球面成像公式: 代入数值1121220s +='-- 得:60s cm '=- 由公式:0y y s s '+='7、一个5cm 高的物体放在球面镜前10cm 处成1cm 高的虚像;求⑴此镜的曲率半径;⑵此镜是凸面镜还是凹面镜解:⑴5,10y cm s cm ==-1y cm '=, 虚像0s '>由y s y s''=- 得:2s cm '=⑵由公式112s s r+=' 5r cm =为凸面镜8、某观察者通过一块薄玻璃板去看在凸面镜中他自己的像;他移动着玻璃板,使得在玻璃板中与在凸面镜中所看到的他眼睛的像重合在一起;若凸面镜的焦距为10cm ,眼睛距凸面镜顶点的距离为40cm ,问玻璃板距观察者眼睛的距离为多少解:由题意,凸面镜焦距为10cm ,即10r = 玻璃板距观察者眼睛的距离为1242dPP cm '==9、物体位于凹面镜轴线上焦点之外,在焦点与凹面镜之间放一个与轴线垂直的两表面互相平行的玻璃板,其厚度为1d ,折射率为n ;试证明:放入该玻璃板后使像移动的距离与把凹面镜向物体移动()11/d n n -的一段距离的效果相同;证明:设物点P 不动,由成像公式s s r+='由题3可知:11110PP d d n ⎛⎫==-> ⎪⎝⎭入射到镜面上的光线可视为从1P 发出的,即加入玻璃板后的物距为s d +反射光线经玻璃板后也要平移d ,所成像的像距为11s s d '''=- 放入玻璃板后像移量为:()()()1122r s d rss s s d s d r s r +''''∆=-=--+--凹面镜向物移动d 之后,物距为s d + 0,0s d <>2s '相对o 点距离()()222r s d s s d d s d r+'''=-=-+-10、欲使由无穷远发出的近轴光线通过透明球体并成像在右半球面的顶点处,问这透明球体的折射率应为多少解:由球面折射成像公式:n n n n s s r''--=' 解得: 2n '=11、有一折射率为1.5、半径为4cm 的玻璃球,物体在距球表面6cm 处,求:⑴物所成的像到球心之间的距离;⑵像的横向放大率;解:⑴P 由球面1o 成像为P ',P '由2o 球面成像P ''211s cm '=,P ''在2o 的右侧,离球心的距离11415cm += ⑵球面1o 成像1111y s y s n β''==⋅ 利用P194:y s ny s n ''=⋅'球面2o 成像12、一个折射率为1.53、直径为20cm 的玻璃球内有两个小气泡;看上去一个恰好在球心,另一个从最近的方向看去,好像在表面与球心连线的中点,求两气泡的实际位置;解:设气泡1P 经球面1o 成像于球心,由球面折射成像公式:n n ns s r'--=' 110s cm =-, 即气泡1P 就在球心处 另一个气泡2P2 6.05s cm =-, 即气泡2P 离球心10 6.05 3.95cm -=13、直径为1m 的球形鱼缸的中心处有一条小鱼,若玻璃缸壁的影响可忽略不计,求缸外观察者所看到的小鱼的表观位置和横向放大率;解:由球面折射成像公式:n n n ns s r''--=' 解得 50s cm '=-,在原处14、玻璃棒一端成半球形,其曲率半径为2cm ;将它水平地浸入折射率为1.33的水中,沿着棒的轴线离球面顶点8cm 处的水中有一物体,利用计算和作图法求像的位置及横向放大率,并作光路图;解:由球面折射成像公式:s sr-='15、有两块玻璃薄透镜的两表面均各为凸球面及凹球面,其曲率半径为10cm ;一物点在主轴上距镜20cm 处,若物和镜均浸入水中,分别用作图法和计算法求像点的位置;设玻璃的折射率为1.5,水的折射率为1.33;解:由薄透镜的物像公式:211212n n n n n n s s r r ---=+' 对两表面均为凸球面的薄透镜: 对两表面均为凹球面的薄透镜:16、一凸透镜在空气的焦距为40cm ,在水中时焦距为136.8cm ,问此透镜的折射率为多少水的折射率为1.33若将此透镜置于CS 2中CS 2的折射率为1.62,其焦距又为多少解:⑴ 薄透镜的像方焦距:21212n f n n n n r r '=⎛⎫--+ ⎪⎝⎭12n n = 时,()111211n f n n r r '=⎛⎫-- ⎪⎝⎭在空气中:()1121111f n r r '=⎛⎫-- ⎪⎝⎭在水中:()2121.33111.33f n r r '=⎛⎫-- ⎪⎝⎭两式相比:()()12 1.33401.331136.8n f f n -'=='- 解得 1.54n = ⑵12 1.62n n ==而:()11211111f n r r '-=⎛⎫- ⎪⎝⎭则:()1.6240 1.541437.41.54 1.62f cm '=⨯⨯-=--第4章 光学仪器的基本原理1、眼睛的构造简单地可用一折射球面来表示,其曲率半径为5.55mm ,内部为折射率等于4/3的液体,外部是空气,其折射率近似地等于1;试计算眼球的两个焦距;用肉眼观察月球时月球对眼的张角为01,问视网膜上月球的像有多大解:由球面折射成像公式:n n n ns s r''--=' 令43,5.55 2.22413n s f r cm n n ''=-∞=⋅=⨯='--令1,5.5516.7413n s f r cm n n '=∞=-⋅=-⨯=-'--2、把人眼的晶状体看成距视网膜2cm 的一个简单透镜;有人能看清距离在100cm 到300cm 间的物体;试问:⑴此人看远点和近点时,眼睛透镜的焦距是多少⑵为看清25cm 远的物体,需配戴怎样的眼镜解:⑴对于远点:11300,2s cm s cm '=-= 由透镜成像公式:111111s s f -='' 对于近点:2211121001.961f f cm-='-'= ⑵对于25cm 由两光具组互相接触0d =组合整体:110.030cm f -=''近视度:300o3、一照相机对准远物时,底片距物镜18cm ,当镜头拉至最大长度时,底片与物镜相距20cm ,求目的物在镜前的最近距离解:由题意:照相机对准远物时,底片距物镜18cm , 由透镜成像公式:111s s f -=''4、两星所成的视角为4',用望远镜物镜照相,所得两像点相距1mm ,问望远镜物镜的焦距是多少解: 3.14118060rad '=⨯5、一显微镜具有三个物镜和两个目镜;三个物镜的焦距分别为16mm 、4mm 和1.9mm ,两个目镜的放大本领分别为5和10倍;设三个物镜造成的像都能落在像距为160cm 处,问这显微镜的最大和最小的放大本领各为多少解:由显微镜的放大本领公式: 其最大放大本领: 其最小放大本领:6、一显微镜物镜焦距为0.5cm ,目镜焦距为2cm ,两镜间距为22cm ;观察者看到的像在无穷远处;试求物体到物镜的距离和显微镜的放大本领;解:由透镜物像公式:111s s f -=''解得:0.51s cm =- 显微镜的放大本领:1212252522255500.52s l M f f f f '=-⋅≈-⋅=-⨯=-'''' 7、略8、已知望远镜物镜的边缘即为有效光阑,试计算并作图求入光瞳和出射光瞳的位置;9、 10、13、焦距为20cm 的薄透镜,放在发光强度为15cd 的点光源之前30cm 处,在透镜后面80cm 处放一屏,在屏上得到明亮的圆斑;求不计透镜中光的吸收时,圆斑的中心照度;解:230Sd Id Iφ=Ω= S 为透镜的面积P 点的像点P '的发光强度I '为:14、一长为5mm 的线状物体放在一照相机镜头前50cm 处,在底片上形成的像长为1mm ;若底片后移1cm ,则像的弥散斑宽度为1mm ;试求照相机镜头的F 数;解:由y s y s''= 1550s '= 得10s cm '=由透镜物像公式:111s s f -=''由图可见,100.11d = 1d cm = F 数:508.336f d '==15、某种玻璃在靠近钠光的黄色双谱线其波长分别为589nm 和589.6nm 附近的色散率/dn d λ为1360cm --,求由此种玻璃制成的能分辨钠光双谱线的三棱镜,底边宽度应小于多少解:由色分辨本领:dnP d λδλλ==∆ 16、设计一块光栅,要求⑴使波长600nm 的第二级谱线的衍射角小于030,并能分辨其0.02nm 的波长差;⑵色散尽可能大;⑶第三级谱线缺级;求出其缝宽、缝数、光栅常数和总宽度;用这块光栅总共能看到600nm 的几条谱线解:由sin d j θλ= 由第三级缺级 由 P jN λλ==∆ 光栅的总宽度:315000 2.41036L Nd mm -==⨯⨯=由sin 9024004600od j λ=== 能看到0,1,2±±,共5条谱线17、若要求显微镜能分辨相距0.000375mm 的两点,用波长为550nm 的可见光照明;试求:⑴此显微镜物镜的数值孔径;⑵若要求此两点放大后的视角为2',则显微镜的放大本领是多少解:⑴由显微镜物镜的分辨极限定义⑵ 3.1418060387.70.000375250M ⨯==18、夜间自远处驶来汽车的两前灯相距1.5m ;如将眼睛的瞳孔看成产生衍射的圆孔,试估计视力正常的人在多远处才能分辨出光源是两个灯;设眼睛瞳孔的直径为3mm ,设光源发出的光的波长λ为550nm ;解: 1.5U L=当0.610URλθ==才能分辨出19、用孔径分别为20cm 和160cm 的两种望远镜能否分辨清月球上直径为500m 的环形山月球与地面的距离为地球半径的60倍,面地球半径约为6370km ;设光源发出的光的波长λ为550nm ;解:63500 1.31060637010Urad -==⨯⨯⨯ 孔径20cm 望远镜:孔径160cm 望远镜:1U θ'<,即用孔径20cm 望远镜不能分辨清 1U θ''>,即用孔径160cm 望远镜能分辨清20、电子显微镜的孔径角028u =,电子束的波长为0.1nm ,试求它的最小分辨距离;若人眼能分辨在明视距离处相距26.710mm -⨯的两点,则此显微镜的放大倍数是多少解: 3.144sin sin 4180o n uu u ⨯====第五章光的偏振1、试确定下面两列光波的偏振态;解:①()10cos cos 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:22211x y E E A += 分析()(),0000,2x y x y E At kz A E E t kz A E Aωπω=⎧⎪-=⎨=⎪⎩=⎧⎪-=⎨=⎪⎩为左旋圆偏振光②()20sin sin 2x y E A e t kz e t kz πωω⎡⎤⎛⎫=-+-- ⎪⎢⎥⎝⎭⎣⎦有:22211x y E E A += 分析()()0,,002x y x y E t kz A E A E A t kz A E ωπω=⎧⎪-=-⎨=-⎪⎩=⎧⎪-=⎨=⎪⎩为左旋圆偏振光2、为了比较两个被自然光照射的表面的亮度,对其中一个表面直接进行观察,另一个表面通过两块偏振片来观察;两偏振片的透振方向的夹角为060;若观察到两表面的亮度相同;则两表面实际的亮度比是多少已知光通过每一块偏振片后损失入射光能量的0010;解:由于被光照射的表面的亮度与其反射的光的光强成正比;设直接观察的表面对应的光强为1o I ,通过两偏振片观察的表面的光强为2o I通过第一块偏振片的光强为:通过第二块偏振片的光强为: 由1220.1o o I I I ==则:120.1ooI I = 3、两个尼科耳N 1和N 2的夹角为060,在它们之间放置另一个尼科耳N 3,让平行的自然光通过这个系统;假设各尼科耳对非常光均无吸收,试问N 3和N 1的透振方向的夹角为何值时,通过系统的光强最大设入射光强为0I ,求此时所能通过的最大光强;解:令:20dI d α=得:()tan tan 60αα=- 4、在两个正义的理想偏听偏振片之间有一个偏振片以匀角速度ω绕光的传播方向旋转见题图,若入射的自然光强为0I ,试证明透射光强为()011cos 416I I t ω=- 证明:5、线偏振光入射到折射率为1.732的玻璃片上,入射角是060,入射光的电矢量与入射面成030角;求由分界面上反射的光强占入射光强的百分比;解:设入射线偏振光振幅为A ,则入射光强为20I A = 入射光平行分量为:1cos 30oP A A = 入射光垂直分量为:1sin 30o S A A = 由:21sin603sin i =得:230o i =由:()()()()121112tan 6030tan 0tan tan 6030oPo P i i A A i i --'===++ 6、一线偏振光垂直入射到一方解石晶体上,它的振动面和主截面成030角;两束折射光通过在方解石后面的一个尼科耳棱镜,其主截面与入射光的振动方向成050角;计算两束透射光的相对强度;解:当光振动面与N 主截面在晶体主截面同侧: 当光振动面与N 主截面在晶体主截面两侧:7、线偏振光垂直入射到一块光轴平行于表面的方解石波片上,光的振动面和波片的主截面成030角;求:⑴透射出来的寻常光和非常光的相对强度为多少⑵用钠光入时如要产生090的相位差,波片的厚度应为多少589nm λ=解:⑴1sin 302o o A A A ==214o I A = ⑵ 方解石对钠光 1.658 1.486o e n n ==由()2o e n n d πϕλ∆=-8、有一块平行石英片是沿平行于光轴方向切成一块黄光的14波片,问这块石英片应切成多厚石英的01.552, 1.543,589e n n nm λ===;解:()2o e n n d πϕλ∆=-9、⑴线偏振光垂直入射到一个表面和光轴平行的波片,透射出来后,原来在波片中的寻常光及非常光产生了大小为π的相位差,问波片的厚度为多少0 1.5442, 1.5533,500e n n nm λ===⑵问这块波片应怎样放置才能使透射出来的光是线偏振光,而且它的振动面和入射光的振动面成090的角解:⑴()()221o e n n d k πϕπλ∆=-=+⑵振动方向与晶体主截面成45o角10、线偏振光垂直入射到一块表面平行于光轴的双折射波片,光振动面和波片光轴成025角,问波片中的寻常光和非常光透射出来后的相对强度如何解:cos 25oe A A =11、在两正交尼科耳棱镜N 1和N 2之间垂直插入一块波片,发现N 2后面有光射出,但当N 2绕入射光向顺时针转过020后, N 2的视场全暗,此时,把波片也绕入射光顺时针转过020,N 2的视场又亮了,问:⑴这是什么性质的波片;⑵N 2要转过多大角度才能使N 2的视场以变为全暗;解:⑴由题意,当2N 绕入射光向顺时针转动20o 后,2N 后的视场全暗,说明A '与1N 夹角为20o;只有当波片为半波片时,才能使入射线偏振光出射后仍为线偏振光;⑵把波片也绕入射光顺时针转过020,2N 要转过040才能使2N 后的视场又变为全暗12、一束圆偏振光,⑴垂直入射1/4波片上,求透射光的偏振状态;⑵垂直入射到1/8波片上,求透射光的偏振状态;解:在xy 平面上,圆偏振光的电矢量为: ()()cos sin x y E A t kz e A t kz e ωω=-±- +为左旋;-为右旋圆偏振光设在波片入射表面上为 ⑴波片为14波片时,2πϕ∆= 即透射光为振动方向与晶片主截面成45o角的线偏振光⑵波片为18波片时,4πϕ∆= 即透射光为椭圆偏振光;13、试证明一束左旋圆偏振光和一束右旋圆偏振光,当它们的振幅相等时,合成的光是线偏振光;解:左旋圆偏振光 右旋圆偏振光 即E 为线偏振光14、设一方解石波片沿平行光轴方向切出,其厚度为0.0343mm ,放在两个正交的尼科耳棱镜间,平行光束经过第一尼科耳棱镜后,垂直地射到波片上,对于钠光589.3nm 而言,晶体的折射率为 1.658, 1.486o e n n ==;问通过第二尼科耳棱镜后,光束发生的干涉是加强还是减弱如果两个尼科耳棱镜的主截面是互相平行的,结果又如何解:①1N 与2N 正交时,即通过第二个尼科耳棱镜后,光束的干涉是减弱的; ②1N 与2N 互相平行时,即通过第二个尼科耳棱镜后,光束的干涉是加强的;15、单色光通过一尼科耳镜N 1,然后射到杨氏干涉实验装置的两个细缝上,问:⑴尼科耳镜N 1的主截面与图面应成怎样的角度才能使光屏上的干涉图样中的暗条纹为最暗⑵在上述情况下,在一个细缝前放置一半波片,并将这半波片绕着光线方向继续旋转,问在光屏上的干涉图样有何改变解:⑴尼科耳镜N 1的主截面与图面应成90的角度时,光屏上的干涉图样中的暗条纹为最暗;⑵在一个细缝前放置一半波片,并将这半波片绕着光线方向继续旋转,光屏上的干涉图样随半波片的旋转而由清晰变模糊再由模糊变清晰的改变;16、单色平行自然光垂直入射在杨氏双缝上,屏幕上出现一组干涉条纹;已知屏上A 、C 两点分别对应零级亮纹和零级暗纹,B 是AC 的中点,如题图所示,试问:⑴若在双缝后放一理想偏振片P,屏上干涉条纹的位置、宽度会有何变化A 、C 两点的光强会有何变化⑵在一条缝的偏振片后放一片光轴与偏振片透光方向成045的半波片,屏上有无干涉条纹A 、B 、C 各点的情况如何答:⑴若在双缝后放一理想偏振片P,屏上干涉条纹的位置、宽度不全有变化;A 、C 两点的光强会减弱;⑵在一条缝的偏振片后放一片光轴与偏振片透光方向成045的半波片,屏上有无干涉条纹位置不变,A 、B 、C 各点的光强有变化,干涉图样可见度下降了; C B A。

《光的干涉》 说课稿

《光的干涉》 说课稿

《光的干涉》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是“光的干涉”。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程以及教学反思这几个方面来展开我的说课。

一、教材分析“光的干涉”是高中物理光学部分的重要内容,它是理解光的波动性的关键。

本节课在教材中的地位举足轻重,既是对前面光的直线传播和光的折射等知识的深化和拓展,也为后续学习光的衍射、光的偏振等内容奠定了基础。

教材首先通过实验引入光的干涉现象,让学生观察到明暗相间的条纹,引发学生的探究兴趣。

接着,教材从理论上分析了光的干涉产生的条件,以及干涉条纹的间距与波长、双缝间距和双缝到屏的距离之间的关系。

最后,教材介绍了一些光的干涉在实际生活中的应用,让学生感受到物理知识与生活的紧密联系。

二、学情分析学生在之前的学习中已经掌握了光的直线传播和光的折射等知识,对光的基本性质有了一定的了解。

但是,光的干涉现象较为抽象,学生在理解上可能会存在一定的困难。

此外,学生对于物理实验的观察和分析能力还有待提高,需要在教学中加以引导和培养。

三、教学目标1、知识与技能目标(1)学生能够理解光的干涉现象及产生的条件。

(2)掌握光的干涉条纹间距的计算公式,并能进行简单的计算。

(3)了解光的干涉在生活中的应用。

2、过程与方法目标(1)通过观察光的干涉实验,培养学生的观察能力和分析问题的能力。

(2)通过对光的干涉现象的理论分析,培养学生的逻辑思维能力和推理能力。

3、情感态度与价值观目标(1)让学生在学习中体验科学探究的乐趣,激发学生学习物理的兴趣。

(2)培养学生严谨的科学态度和实事求是的精神。

四、教学重难点1、教学重点(1)光的干涉现象及产生的条件。

(2)光的干涉条纹间距的计算公式。

2、教学难点(1)对光的干涉现象的本质的理解。

(2)干涉条纹间距的计算公式的推导。

五、教法与学法1、教法(1)实验演示法:通过演示光的干涉实验,让学生直观地观察到干涉现象,激发学生的学习兴趣。

光的干涉(解析版)

光的干涉(解析版)

第3节光的干涉一、光的双缝干涉1.如图所示是研究光的双缝干涉的示意图,挡板上有两条狭缝S1、S2,由S1和S2发出的两列波到达屏上时会产生干涉条纹。

已知入射激光的波长为λ,屏上的P点到两缝S1和S2的距离相等,如果把P处的亮条纹记作第0号亮条纹,由P向上数,与0号亮条纹相邻的亮条纹为1号亮条纹,与1号亮条纹相邻的亮条纹为2号亮条纹,则P1处的亮条纹恰好是10号亮条纹.设直线S1P1的长度为r1,S2P1的长度为r2,则r2-r1等于()A.9.5λB.10λC.10.5λD.20λ【答案】B【详解】由题设可知,从中央亮条纹P算起,P1点处是第10号亮条纹的位置,表明缝S1、S2到P1处的距离差r2-r1为波长的整数倍,且刚好是10个波长,B正确。

故选B。

2.双缝干涉实验装置如图所示,双缝间距离为d,双缝到光屏的距离为L,调整实验装置使光屏上见到清晰的干涉条纹。

关于该干涉条纹及改变条件后其变化情况,下列叙述中正确的是()A.屏上所有暗线都是从双缝中出来的两列光波的波谷与波谷叠加形成的B.若将光屏向右平移一小段距离,屏上仍有清晰的干涉条纹C.若只减小双缝间距d,屏上两相邻明条纹间距离变小D.若只改用频率较大的单色光,屏上两相邻明条纹间距离变大【答案】B【详解】A.从双缝中出来的两列光波的波谷与波峰叠加形成暗线,故A错误;B.根据双缝干涉条纹的间距公式Lxd λ∆=可知将光屏向右平移一小段距离,屏上仍有清晰的干涉条纹,故B 正确;C.根据双缝干涉条纹的间距公式Lxd λ∆=可知,若只减小双缝间距d,屏上两相邻明条纹间距离变大,故C 错误;D.频率变大,波长变短,根据间距公式可知条纹间距变短,故D错误;故选B。

二、薄膜干涉3.关于光在竖直的肥皂液薄膜上产生的干涉条纹,下列说法正确的是()A.干涉条纹是光在薄膜前、后两个表面反射,形成的两列光波叠加的结果B.若明暗相间的条纹相互平行,说明薄膜的厚度是均匀的C.用紫光照射薄膜产生的干涉条纹间距比红光照射时的间距大D.薄膜上的干涉条纹基本上是竖直的【答案】A【详解】A.干涉条纹是光在薄膜前、后两个表面反射,形成的两列光波叠加的结果,故A正确;B.若明暗相间的条纹相互平行,说明肥皂液薄膜的厚度变化是均匀的,故B错误;C.由于紫光的波长比红光的小,故用紫光照射薄膜产生的干涉条纹间距比红光照射时的间距小,故C错误;D.薄膜上的干涉条纹基本上是水平的,故D错误。

关于光的干涉的习题与答案

关于光的干涉的习题与答案

关于光的干涉的习题与答案
光的干涉习题与答案
光的干涉是光学中非常重要的一个现象,它揭示了光波的波动性质。

在干涉现象中,光波会相互叠加,形成明暗条纹,从而产生干涉图样。

下面我们来看一些关于光的干涉的习题与答案。

习题一:两束相干光波在空气中相遇,它们的波长分别为600nm和450nm,求它们的相位差。

解答:相位差可以用公式Δφ=2πΔx/λ来计算,其中Δx为两束光波的光程差,λ为光波的波长。

由于光程差Δx=0,所以相位差Δφ=0。

习题二:在双缝干涉实验中,两个狭缝间距为0.2mm,波长为500nm的光波垂直入射到狭缝上,求干涉条纹的间距。

解答:干涉条纹的间距可以用公式dλ/D来计算,其中d为狭缝间距,λ为光波的波长,D为观察屏到狭缝的距离。

代入数据可得,间距为0.1mm。

习题三:在双缝干涉实验中,两个狭缝间距为0.1mm,波长为600nm的光波垂直入射到狭缝上,观察屏到狭缝的距离为2m,求干涉条纹的间距。

解答:代入数据可得,间距为0.3mm。

通过以上习题与答案,我们可以看到光的干涉现象在实际问题中的应用。

对于学习光学的同学来说,掌握光的干涉原理和计算方法是非常重要的。

希望大家能够通过练习,加深对光的干涉现象的理解,提高解决实际问题的能力。

第一章 光的干涉 习题

第一章 光的干涉 习题

光的干涉一、填空题1.可见光在谱中只占很小的一部分,其波长范围约是nm。

2.光的相干条件为、和。

3.振幅分别为A1和A2的两相干光同时传播到P点,两振动的相位差为Δφ。

则P点的光强I=__________________。

4.强度分别为I1和I2的两相干光波迭加后的最大光强I max=_____________。

5.强度分别为I1和I2的两相干光波迭加后的最小光强I max=_____________。

6.振幅分别为A1和A2的两相干光波迭加后的最大光强I max=_____________。

7.振幅分别为A1和A2的两相干光波迭加后的最小光强I max=_____________。

8.两束相干光迭加时,光程差为λ时,相位差Δφ=__________。

9.两相干光波在考察点产生相消干涉的条件是光程差为半波长的_______倍,相位差为π的_________倍。

10.两相干光波在考察点产生相长干涉的条件是光程差为半波长的_______倍,相位差为π的_________倍。

11.两相干光的振幅分别为A1和A2,则干涉条纹的可见度V=____________。

12.两相干光的振幅分别为I1和I2,则干涉条纹的可见度V=____________。

13.两相干光的振幅分别为A1和A2,当它们的振幅都增大一倍时,干涉条纹的可见度为_____________。

14.两相干光的强度分别为I1和I2,当它们的强度都增大一倍时,干涉条纹的可见度_____________。

15.振幅比为1/2的相干光波,它们所产生的干涉条纹的可见度V=______________。

16.光强比为1/2的相干光波,它们所产生的干涉条纹的可见度V=______________。

17.在杨氏双缝干涉实验中,缝距为d,缝屏距为D,屏上任意一点P到屏中心P0点的距离为y,则从双缝所发光波到达P点的光程差为___________。

18.在杨氏双缝干涉实验中,缝距为d,缝屏距为D,波长为λ,屏上任意一点P到屏中心P0点的距离为y,则从双缝所发光波到达p点的相位差为_______________。

光的干涉习题与答案解析

光的干涉习题与答案解析

组合产生的第 10 个暗环半径分别为 rBC 4.5mm 和 rAC 5mm ,试计算 RA 、 RB 和 RC 。
h r2
解:
2R
OA
hAB
hA
hB
rAB 2 2RA
rAB 2 2RB
rAB 2 2
1 ( RA
1 )
RB
同理, hBC
rBC 2
1 ( RB
1 RC
)
RA
hAC
rAC 2
P2
2mm
P1
P0
0.4m
1.5m
题图
y r0 1500 500106 0.1875mm
解:(1)干涉条纹间距
d
4
(2)产生干涉区域 P1P2 由图中几何关系得:设 p2 点为 y2 位置、 P1 点位置为 y1
则干涉区域
y y2 y1
y2
1 2
r0
r tan2
1 2
r0
r
1 2
1 2
r0
y r0 500 500106 1.25
解: d 0.2
mm
I1 2I2
A12 2 A22
A1 2 A2
V
1
2
A1 A1
/ /
A2 A2
2
22 1 2
0.9427
0.94
5. 波长为 700nm 的光源与菲涅耳双镜的相交棱之间距离为 20cm,棱到光屏间的距离 L 为 180cm,若所得干涉条纹中相邻亮条纹的间隔为 1mm,求双镜平面之间的夹角θ。
1 ( RA
1 RC
解:对于亮环,有
rj
(2 j 1) R 2
( j 0,1,2,3,)

光的干涉习题答案

光的干涉习题答案

光学干涉测量技术
利用光的干涉现象测量长度、角 度、表面粗糙度等物理量,具有 高精度和高灵敏度。
光学干涉滤镜
利用光的干涉现象制作出的滤镜, 可以实现对特定波长的光进行过 滤或增强。
光学干涉仪
利用光的干涉现象测量光学元件 的表面形貌、折射率等参数,广 泛应用于光学研究和制造领域。
02 光的干涉原理
光的波动理论
光的干涉习题答案
目录
• 光的干涉现象 • 光的干涉原理 • 光的干涉实验 • 光的干涉习题解析 • 光的干涉理论的发展
01 光的干涉现象
光的干涉现象定义
1 2
光的干涉现象
当两束或多束相干光波在空间某一点叠加时,由 于光波的相互加强或减弱,形成明暗相间的干涉 条纹的现象。
相干光波
频率相同、振动方向相同、相位差恒定的光波。
题目:一束单色光垂直入射到一对相互平行的狭缝上, 光通过狭缝后形成的光斑可看作是什么图形?
解析:根据光的干涉原理,当单色光垂直入射到一对相 互平行的狭缝上,光通过狭缝后形成的光斑是圆形干涉 图样。
进阶习题解析
题目
如何通过双缝干涉实验验证光的波动性?
答案
通过观察干涉条纹的形状和分布,可以证明光具有波动性 。
光的波动理论。
20世纪初,爱因斯坦提出光的 量子理论,解释了光的干涉现象
的微观机制。
光的干涉理论在现代物理学中的应用
光的干涉理论在光学、 量子力学和凝聚态物 理学等领域有广泛应 用。
在量子力学中,光的 干涉被用于研究量子 纠缠和量子计算等前 沿领域。
在光学中,光的干涉 被用于制造高精度光 学仪器和检测技术。
光的干涉理论的前沿研究
01
目前,光的干涉理论的前沿研究主要集中在量子光 学和量子信息领域。

《光的干涉》 说课稿

《光的干涉》 说课稿

《光的干涉》说课稿尊敬的各位评委老师:大家好!今天我说课的题目是《光的干涉》。

下面我将从教材分析、学情分析、教学目标、教学重难点、教法与学法、教学过程、板书设计这几个方面来展开我的说课。

一、教材分析《光的干涉》是高中物理光学部分的重要内容,它是在学生学习了光的直线传播、光的折射和反射等知识的基础上,进一步深入研究光的波动性的重要实验现象。

通过对光的干涉现象的学习,学生能够更加深入地理解光的本质,为后续学习光的衍射、偏振等内容奠定基础。

本节课在教材中的地位十分重要,它不仅是对前面所学知识的巩固和拓展,更是培养学生科学思维和实验探究能力的重要契机。

二、学情分析学生在之前的学习中已经对光的传播特性有了一定的了解,但对于光的波动性认识还比较模糊。

在数学知识方面,学生已经具备了一定的三角函数和几何知识,这为理解光的干涉条纹的形成和计算提供了有力的支持。

然而,学生在抽象思维和空间想象能力方面可能还存在一定的不足,需要在教学中通过直观的实验演示和形象的图示来帮助他们理解。

1、知识与技能目标(1)学生能够理解光的干涉现象及其产生的条件。

(2)掌握双缝干涉条纹间距与波长、双缝间距和屏到双缝距离之间的关系,并能进行简单的计算。

(3)了解薄膜干涉的现象及其应用。

2、过程与方法目标(1)通过观察实验现象,培养学生的观察能力和分析问题的能力。

(2)经历对光的干涉现象的探究过程,培养学生的科学探究能力和创新思维。

3、情感态度与价值观目标(1)让学生体会到物理知识与生活实际的紧密联系,激发学生学习物理的兴趣。

(2)培养学生严谨的科学态度和实事求是的精神。

四、教学重难点1、教学重点(1)光的干涉现象产生的条件。

(2)双缝干涉条纹间距的计算公式及其应用。

(1)对光的干涉现象的理解和解释。

(2)干涉条纹的形成过程和明暗条纹的位置确定。

五、教法与学法1、教法为了突破教学重难点,实现教学目标,我将采用以下教学方法:(1)实验演示法:通过演示杨氏双缝干涉实验和薄膜干涉实验,让学生直观地观察到光的干涉现象,增强学生的感性认识。

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案

(完整版)光的干涉练习题及答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一、选择题1、严格地讲,空气折射率大于1,因此在牛顿环实验中,若将玻璃夹层中的空气逐渐抽去而成为真空时,干涉环将:( )A.变大;B.缩小;C.不变;D.消失。

【答案】:A2、在迈克耳逊干涉仪的一条光路中,放入一折射率n ,厚度为h 的透明介质板,放入后,两光束的光程差改变量为:( )A.h n )1(2-;B.nh 2;C.nh ;D.h n )1(-。

【答案】:A3、用劈尖干涉检测工件(下板)的表面,当波长为λ的单色光垂直入射时,观察到干涉条纹如图。

图中每一条纹弯曲部分的顶点恰与左边相邻的直线部分的连线相切。

由图可见工件表面: ( )A.一凹陷的槽,深为λ/4;B.有一凹陷的槽,深为λ/2;C.有一凸起的埂,深为λ/4;D.有一凸起的埂,深为λ。

【答案】:B4、牛顿环实验装置是用一平凸透镜放在一平板玻璃上,接触点为C ,中间夹层是空气,用平行单色光从上向下照射,并从下向上观察,看到许多明暗相间的同心圆环,这些圆环的特点是:( )是明的,圆环是等距离的; 是明的,圆环是不等距离的;是暗的,圆环是等距离的; 是暗的,圆环是不等距离的。

【答案】:B5、若将牛顿环玻璃夹层中的空气换成水时,干涉环将: ( )A .变大;B .缩小;C .不变;D .消失。

【答案】:B6、若把牛顿环装置(都是用折射率为的玻璃制成的)由空气搬入折射率为的水中,则干涉条纹 ( )A .中心暗斑变成亮斑;B .变疏;C .变密;D .间距不变。

【答案】:C7、两个不同的光源发出的两个白光光束,在空间相遇是不会产生干涉图样的,这是由于( )A.白光是由许多不同波长的光组成;B.两个光束的光强不一样;C.两个光源是独立的不相干光源;D.两个不同光源所发出的光,频率不会恰好相等。

【答案】:C8、在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明条纹位于O处。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4
(3)
由公式
I
A12
A22
2 A1 A2
cos
4 A12
cos2
2

Ip I0
Ap2 A02
4 A12
c os2
2
4 A12
c os2
0 2
cos2 1 24
cos2 0
cos2 8
1
c
os
4
2
2 0.8536
2
4
●3. 把折射率为 1.5 的玻璃片插入杨氏实验的一束光路中,光屏上原来第 5 级亮条纹所在的位置为中央亮条纹,试求插入的玻璃片的厚度.已知光波长为 6 ×10-7m.
解:未加玻璃片时, S1 、 S2
到P
点的光程差,由公式
2
r
可知为
Δr
=
r2
r1
2
5
2
5
现在 S1 发出的光束途中插入玻璃片时, P 点的光程差为
r2
r1
h
nh
2
2
0
0
所以玻璃片的厚度为
h r2 r1 5 10 6104 cm n 1 0.5
4. 波长为 500nm 的单色平行光射在间距为 0.2mm 的双狭缝上.通过其中一 个缝的能量为另一个的 2 倍,在离狭缝 50cm 的光屏上形成干涉图样.求干涉条纹 间距和条纹的可见度.
第一章光的干涉习题 与答案解析
精品文档
第一章 光的干涉
●1.波长为 500nm的绿光投射在间距 d 为 0.022cm的双缝上,在距离180cm 处的光屏上形成干涉条纹,求两个亮条纹之间的距离.若改用波长为 700nm的红 光投射到此双缝上,两个亮条纹之间的距离又为多少?算出这两种光第 2 级亮纹 位置的距离.
1 2
r0
d
r
d r0 r 2(1500 400) 3800 3.455mm 2 r0 r 1500 400 1100
收集于网络,如有侵权请联系管理员删除
精品文档
y1
1 2
(r0
r)
tan 1
1 2
(r0
r)
1 2
1 2 (r0
d
r)
d 2
(r0 (r0
r) r)
2(1500 400) 1.16mm 1500 400
当 j 0时厚度最小
hm in
4n
550 4 1.38
99.64nm
10-5 cm
收集于网络,如有侵权请联系管理员删除
精品文档
●9. 在两块玻璃片之间一边放一条厚纸,另一边相互压紧.玻璃片 l 长 10cm, 纸厚为 0.05mm,从 60°的反射角进行观察,问在玻璃片单位长度内看到的干涉条 纹数目是多少?设单色光源波长为 500nm.
y y2 y1 3.46 1.16 2.30mm
y (3) 劳埃镜干涉存在半波损失现象 N 暗 y
y 1 2.3 1 12 1 11
N 亮 N 暗 1 y
0.1875
条亮纹
●7. 试求能产生红光(λ=700nm)的二级反射干涉条纹的肥皂膜厚度.已知 肥皂膜折射率为 1.33,且平行光与法向成 30°角入射.
y r0 500 500106 1.25
解: d 0.2
mm
I1 2I2
A12 2 A22
A1 2 A2
收集于网络,如有侵权请联系管理员删除
精品文档
V
1
2
A1 A1
/ /
A2 A2
2
22 1 2
0.9427
0.94
5. 波长为 700nm 的光源与菲涅耳双镜的相交棱之间距离为 20cm,棱到光屏 间的距离 L 为 180cm,若所得干涉条纹中相邻亮条纹的间隔为 1mm,求双镜平面 之间的夹角θ。
解:可以认为光是沿垂直方向入射的。即 i1 i2 0
由于上下表面的反射都由光密介质反射到光疏介质,所以无额外光 程差。
因此光程差 2nhcosi2 2nh
r (2 j 1)
如果光程差等于半波长的奇数倍即公式
2
相消的条件
因此有
2nh (2 j 1) 2
,则满足反射
所以
h (2 j 1) ( j 0,1,2) 4n
●2.在杨氏实验装置中,光源波长为 640nm,两狭缝间距为 0.4mm,光屏离狭缝
的距离为 50cm.试求:(1)光屏上第 1 亮条纹和中央亮条纹之间的距离;(2)
若 p 点离中央亮条纹为 0.1mm ,问两束光在 p 点的相位差是多少?(3)求 p 点
的光强度和中央点的强度之比.
解:(1)由公 y r0 式:

d
y r0
50 6.4 105 8.0 102 cm
d = 0.4
(2)由课本第 20 页图 1-2 的几何关系可知
r2
r1
d
sin
d
tan
d
y r0
0.04
0.01 50
0.8105 cm
收集于网络,如有侵权请联系管理员删除
精品文档
2
(r2
r1 )
2 6.4 105
0.8105
sin (r L) (200 1800) 700 106 35104
解:
2ry
2 2001
弧度 12
6. 在题 1.6 图所示的劳埃德镜实验中,光源 S 到观察屏的距离为 1.5m,到 劳埃德镜面的垂直距离为 2mm。劳埃德镜长 40cm,置于光源和屏之间的中央.(1) 若光波波长λ=500nm,问条纹间距是多少?(2)确定屏上可以看见条纹的区域大小, 此区域内共有几条条纹?(提示::产生干涉的区域 P1P2 可由图中的几何关系求 得.)
y 解:由条纹间距公式
y j1
yj
r0 d
得:
y1
ቤተ መጻሕፍቲ ባይዱ
r0 d
1
180 500107 0.022
0.409c m
y2
r0 d
2
180 700107 0.022
0.573c m
y 21
j2
r0 d
1
2 0.409 0.818cm
y 22
j2
r0 d
2
2 0.573 1.146cm
y j2 y22 y21 1.146 0.818 0.328cm
解:根据题意
2d n22 n12 sin2 (2 j 10) 2
d (2 j 1) (2 2 1) 700 710nm 2 2 n22 n12 sin2 4 1.332 sin2 30
●8. 透镜表面通常镀一层如 MgF2(n=1.38)一类的透明物质薄膜,目的是 利用干涉来降低玻璃表面的反射.为了使透镜在可见光谱的中心波长(550nm) 处产生极小的反射,则镀层必须有多厚?
P2
2mm
P1
P0
0.4m
1.5m
题 1.6 图
y r0 1500 500106 0.1875mm
解:(1)干涉条纹间距 d
4
(2)产生干涉区域 P1P2 由图中几何关系得:设 p2 点为 y2 位置、 P1 点位
置为 y1
则干涉区域
y y2 y1
y2
1 2
r0
r tan2
1 2
r0
r
1 2
相关文档
最新文档