人教中考数学提高题专题复习旋转练习题含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、旋转真题与模拟题分类汇编(难题易错题)

1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.

(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;

(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;

(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.

【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.

【解析】

试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知

△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出

CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出

EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;

(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到

△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.

试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,

∴AF=AG,∠FAG=90°,

∵∠EAF=45°,

∴∠GAE=45°,

在△AGE与△AFE中,

∴△AGE≌△AFE(SAS);

(2)设正方形ABCD的边长为a.

将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.

则△ADF≌△ABG,DF=BG.

由(1)知△AEG≌△AEF,

∴EG=EF.

∵∠CEF=45°,

∴△BME、△DNF、△CEF均为等腰直角三角形,

∴CE=CF ,BE=BM,NF=DF,

∴a﹣BE=a﹣DF,

∴BE=DF,

∴BE=BM=DF=BG,

∴∠BMG=45°,

∴∠GME=45°+45°=90°,

∴EG2=ME2+MG2,

∵EG=EF,MG=BM=DF=NF,

∴EF2=ME2+NF2;

(3)EF2=2BE2+2DF2.

如图所示,延长EF交AB延长线于M点,交AD延长线于N点,

将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.

由(1)知△AEH≌△AEF,

则由勾股定理有(GH+BE)2+BG2=EH2,

即(GH+BE)2+(BM﹣GM)2=EH2

又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2

考点:四边形综合题

2.请认真阅读下面的数学小探究系列,完成所提出的问题:

()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B

顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为2

1.(2

a 提示:过点D 作BC 边上的高DE ,可证ABC ≌

)BDE

()2探究2:如图2,在一般的Rt

ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺

时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.

()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针

旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.

【答案】(1)详见解析;(2)BCD 的面积为

2

12

a ,理由详见解析;(3)BCD 的面积为

2

14a . 【解析】 【分析】

()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出

ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论; ()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌

BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;

()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形

的性质可以得出1

BF BC 2

=

,由条件可以得出AFB ≌BED 就可以得出BF DE =,由

三角形的面积公式就可以得出结论. 【详解】

()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,

BED ACB 90∠∠∴==,

由旋转知,AB AD =,ABD 90∠=,

ABC DBE 90∠∠∴+=,

A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, AC

B BED A DBE AB BD ∠=∠⎧⎪

∠=∠⎨⎪=⎩

, ABC ∴≌

()BDE AAS

BC DE a ∴==,

BCD 1

S

BC DE 2=⋅,

2BCD 1

S a 2

∴=;

()2BCD 的面积为21a 2

理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,

BED ACB 90∠∠∴==,

线段AB 绕点B 顺时针旋转90得到线段BE ,

AB BD ∴=,ABD 90∠=,

ABC DBE 90∠∠∴+=,

A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中,

相关文档
最新文档