人教中考数学提高题专题复习旋转练习题含答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、旋转真题与模拟题分类汇编(难题易错题)
1.在正方形ABCD中,点E,F分别在边BC,CD上,且∠EAF=∠CEF=45°.
(1)将△ADF绕着点A顺时针旋转90°,得到△ABG(如图①),求证:△AEG≌△AEF;
(2)若直线EF与AB,AD的延长线分别交于点M,N(如图②),求证:EF2=ME2+NF2;
(3)将正方形改为长与宽不相等的矩形,若其余条件不变(如图③),请你直接写出线段EF,BE,DF之间的数量关系.
【答案】(1)证明见解析;(2)证明见解析;(3)EF2=2BE2+2DF2.
【解析】
试题分析:(1)根据旋转的性质可知AF=AG,∠EAF=∠GAE=45°,故可证△AEG≌△AEF;(2)将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.由(1)知
△AEG≌△AEF,则EG=EF.再由△BME、△DNF、△CEF均为等腰直角三角形,得出
CE=CF,BE=BM,NF=DF,然后证明∠GME=90°,MG=NF,利用勾股定理得出
EG2=ME2+MG2,等量代换即可证明EF2=ME2+NF2;
(3)将△ADF绕着点A顺时针旋转90°,得到△ABG,根据旋转的性质可以得到
△ADF≌△ABG,则DF=BG,再证明△AEG≌△AEF,得出EG=EF,由EG=BG+BE,等量代换得到EF=BE+DF.
试题解析:(1)∵△ADF绕着点A顺时针旋转90°,得到△ABG,
∴AF=AG,∠FAG=90°,
∵∠EAF=45°,
∴∠GAE=45°,
在△AGE与△AFE中,
,
∴△AGE≌△AFE(SAS);
(2)设正方形ABCD的边长为a.
将△ADF绕着点A顺时针旋转90°,得到△ABG,连结GM.
则△ADF≌△ABG,DF=BG.
由(1)知△AEG≌△AEF,
∴EG=EF.
∵∠CEF=45°,
∴△BME、△DNF、△CEF均为等腰直角三角形,
∴CE=CF ,BE=BM,NF=DF,
∴a﹣BE=a﹣DF,
∴BE=DF,
∴BE=BM=DF=BG,
∴∠BMG=45°,
∴∠GME=45°+45°=90°,
∴EG2=ME2+MG2,
∵EG=EF,MG=BM=DF=NF,
∴EF2=ME2+NF2;
(3)EF2=2BE2+2DF2.
如图所示,延长EF交AB延长线于M点,交AD延长线于N点,
将△ADF绕着点A顺时针旋转90°,得到△AGH,连结HM,HE.
由(1)知△AEH≌△AEF,
则由勾股定理有(GH+BE)2+BG2=EH2,
即(GH+BE)2+(BM﹣GM)2=EH2
又∴EF=HE,DF=GH=GM,BE=BM,所以有(GH+BE)2+(BE﹣GH)2=EF2,即2(DF2+BE2)=EF2
考点:四边形综合题
2.请认真阅读下面的数学小探究系列,完成所提出的问题:
()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B
顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为2
1.(2
a 提示:过点D 作BC 边上的高DE ,可证ABC ≌
)BDE
()2探究2:如图2,在一般的Rt
ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺
时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由.
()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针
旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.
【答案】(1)详见解析;(2)BCD 的面积为
2
12
a ,理由详见解析;(3)BCD 的面积为
2
14a . 【解析】 【分析】
()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出
ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论; ()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌
BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;
()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形
的性质可以得出1
BF BC 2
=
,由条件可以得出AFB ≌BED 就可以得出BF DE =,由
三角形的面积公式就可以得出结论. 【详解】
()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,
BED ACB 90∠∠∴==,
由旋转知,AB AD =,ABD 90∠=,
ABC DBE 90∠∠∴+=,
A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中, AC
B BED A DBE AB BD ∠=∠⎧⎪
∠=∠⎨⎪=⎩
, ABC ∴≌
()BDE AAS
BC DE a ∴==,
BCD 1
S
BC DE 2=⋅,
2BCD 1
S a 2
∴=;
()2BCD 的面积为21a 2
,
理由:如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,
BED ACB 90∠∠∴==,
线段AB 绕点B 顺时针旋转90得到线段BE ,
AB BD ∴=,ABD 90∠=,
ABC DBE 90∠∠∴+=,
A ABC 90∠∠+=, A DBE ∠∠∴=, 在ABC 和BDE 中,