高中数学选修2第二章 2.1《导数的概念》教学设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数的概念及其几何意义(第1课时)教案
一、教材分析
本节内容安排在《普通高中课程标准实验教科书·数学选修2-2》(北师大版)第二章第二节《导数的概念及其几何意义》第一课时,是学生学习了平均变化率与瞬时变化率的基础上形成导数概念.导数是微积分的核心概念之一,也是本章的一个核心概念,它为即将学习导数的几何意义、导数的计算、导数的应用等知识奠定了基础,更是研究函数的单调性、极值、最值和解决生活实际问题等有力工具.
二、学生分析
1.已有基础:基于学生已经学习了平均变化率与瞬时变化率,再通过实例顾上一节平均变化率与瞬时变化率的关系,由此抽象出函数在某点的瞬时变化率就是瞬时变化率就是导数,这是符合学生认知规律的.
2.困难之处:教材安排导数内容时,学生是没有学习极限概念的,这对学生理解导数概念中的极限符号有一定的障碍.
三、教学目标
(一)知识与技能
1.理解导数的概念、知道瞬时变化率就是导数;
2.能解释具体函数在一点的导数的实际意义;
(二)过程与方法
1. 通过实例回顾上一节平均变化率与瞬时变化率的关系,对瞬时变化率从数量方面进行抽象,得到导数概念;
2.通过问题探究的形式复习,再次理解由具体到抽象、由特殊到一般的数学研究方法,体会“无限逼近”的极限思想;
3.通过问题的探究,培养学生的探究意识和探究方法;
(三)情感态度与价值观
1.通过导数概念的学习,体验和认同“有限和无限对立统一”的辩证观点,接受用运动变化的辩证唯物主义思想处理数学问题的方法;
2.通过了解导数产生的历史及它在实际生活、生产和科研中的广泛应用及巨大作用,认识学习导数的必要性,从而激发学生学习导数的兴趣;
三、教学重点与难点
重点:导数概念的形成过程及理解导数在实际问题中的意义.
难点:对导数概念的理解.
四、设计思想
教学设计充分尊重学生认知事物的基本规律,通过实例重现平均变化率到瞬时变化率的过程,在此基础上构建导数的概念,并在具体的问题情境中,让学生解释求得导数值的实际意义,进一步体会导数的本质,即生活实际数学生活实际.
t→
0的平均变化率
x→
教案说明
本节课的设计以新课程的教学理念为指导,遵循“学生为主体,教师为主导,知识为主线,发展思维为主旨”的原则。以学生发展为本,让学生在经历数学知识再发现的过程中获取知识,发展思维,感悟数学。教学的设计充分考虑了以下几方面内容:
一、教学内容的数学本质
(1)导数的科学价值和应用价值
导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。
(2)知识的内在联系
在中学数学中,导数具有相当重要的地位和作用。从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具,它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。
从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展,同时为后继研究导数的几何意义及应用打下必备的基础,具有承前启后的重要作用。
(3)数学思想方法的提炼
通过本课导数概念的形成过程,让学生掌握从具体到抽象,特殊到一般的思维方法;领悟极限思想和函数思想;提高类比归纳、抽象概括、联系与转化的思维能力.进一步体会数学的本质。
二、教学目标的确定
学情是确定教学目标的基础之一。导数概念建立在极限基础之上,无限逼近的思想超乎学生的直观经验,抽象度高;再者,本课所用教材没有给出严格的函数极限的定义。如果对教学目标没有准确的定位,教学的重心很可能被难以理解的极限所牵制。因此,教学中,兼顾数学理想与严谨的同时,也充分考虑学生的认知规律和可接受性原则,循序渐近,螺旋上升。
立足于学情,结合教学大纲的要求,本课从“知识与技能”“过程与方法”“情感、态度与价值观”三方面拟定了立体化的教学目标。以过程与方法为平台,以情感、态度的体验与价值观为依托,让数学知识在课堂中得以传承,能力得到发展。做到知识与能力并重,认知与情感相融。
基于上述分析,结合学生已有的认知水平的年龄特征,制定本节如下的教学目标:(一)知识与技能
1.理解导数的概念、知道瞬时变化率就是导数;
2.能解释具体函数在一点的导数的实际意义;
(二)过程与方法
1. 通过实例回顾上一节平均变化率与瞬时变化率的关系,对瞬时变化率从数量方面进行抽象,得到导数概念;
2.通过问题探究的形式复习,再次理解由具体到抽象、由特殊到一般、由静态到动态的数学研究方法,体会“无限逼近”的极限思想;
3.通过问题的探究,培养学生的探究意识和探究方法;
(三)情感态度与价值观
1.通过导数概念的学习,体验和认同“有限和无限对立统一”的辩证观点,接受用运动变化的辩证唯物主义思想处理数学问题的方法;
2.通过了解导数产生的历史及它在实际生活、生产和科研中的广泛应用及巨大作用,认识学习导数的必要性,从而激发学生学习导数的兴趣;
三、教学诊断分析
导数的定义和用定义求导数的方法是本节的重点,教材后续内容在推导导数运算法则与某些导数公式时,都是以此为依据的。根据求物体瞬时速度的方法和思想进行迁移,并结合导数的定义学生不难掌握求导方法。但是学生对文字,符号,图形三种语言的相互转化仍有
一定困难,特别是对符号语言的规范使用要加以强调,因此在教学中注重培养学生的数学交流能力。
对导数概念的理解是本课的难点。具体教学表明,难点又主要集中在对瞬时变化率中“瞬时”二字的理解上。教学中借助于多媒体直观演示,无限逼近的过程,帮助学生更好理解极限思想,扫清思维障碍,有效突破难点。
导数的定义中还包含了可导的概念,如果0→x ∆时,
x
y
∆∆有极限,才有函数)(x f y =在点0x 处可导,进而才能得到)(x f 在点0x 处的导数。那么“可导”和“导数”两个问题可结合起来,利用转化的思想与已有的极限知识相联系,将问题化归为考察一个关于自变量x ∆的函数x
x x f x F ∆∆∆)
()(0+=
当0→x ∆时极限是否存在以及极限是什么的问题。教学表明,一部份学生往往把需要判断的极限误认为是)(x f 在0x 处的极限,须重视。
导函数简称导数,教材前后两处出现“导数”定义,初学者易产生混淆。问题的实质就在于弄清“函数)(x f 在一点处的导数”、“函数)(x f 在开区间内的导数”与“导数”三者的区别与联系。教学中通过改编的例题,组织学生动脑思考,动手操作,相互交流,帮助学生理清概念间的关系。
四、教法的特点以及预期效果
教学中充分发挥学生的主体和教师的主导作用。用新课程理念处理传统教材,以恰当的问题为纽带,给学生创设自主探究、合作交流的空间,指导学生类比探究形成导数概念,引导学生经历数学知识再发现的过程。因此采用了引导发现式教学法。
(1)教学设计上,把数学知识的“学术形态”转化为数学课堂的“教学形态”,返璞归真,从两个反应概念现实原型的具体问题出发,让学生像数学家那样去“想数学”,“经历”一遍发现、创新的过程,体现了以学生的发展为本,不是教教材而是用教材教。
(2)在概念的教学过程中,与一般设想不同。如一般设想是“重结果,轻过程”,常常是直接给出一个定义,几项注意后,就是大量变式训练。本课的设计上注重过程教学,提出问题、观察归纳、概括抽象,拓展概念让学生充分经历了具体到抽象,特殊到一般,感性到理性,直观到严谨的知识再发现过程,引导学生经历了一个完整的数学概念发生、发展的探究过程,让学生在参与中获取知识,发展思维,感悟数学。
(3)教学过程中,以三种不同数学语言的识别、理解、组织、转换为切入点,组织学生进行数学阅读,培养自主学习的能力。借助于多媒体,直观显示0→t ∆而引起平均速度的系列变化,让学生从“数”的角度领悟极限思想,通过割线变切线的动态过程,让学生从“形”的角度领悟极限思想。从而,更好地揭示导数的本质。
(4)教学中,对不同层次的学生,提出不同的教学要求,采取不同的教学方法进行情感激励。对学有困难的学生更多地给予帮助和肯定,以激发他们学习数学的兴趣和信心。根据不同学情,把可导与连续的关系,设计成弹性化的选作题,既不影响主体知识建构,又能使学有余力的学生得到进一步的发展, 尊重了学生的个体差异,让每位学生的数学才能都能获得较好的发展。