实验四:不规则三角网

合集下载

不规则三角网TIN的建立

不规则三角网TIN的建立

2019/12/29
15
第5章 不规则三角网 (TIN) 的建立
?关于delaunay 三角网
5.1 TIN概述
? 1934年Delaunay 提出了Voronoi 图的对称图, 即Delaunay 三角网(用直线段连接两个相邻 多边形内的离散点而生成的三角网)。
构建TIN 的采样数据;
?边(Edge ):指两个三角形的公共边界,是 TIN 不光滑
性的具体反映。边同时还包含特征线、断裂线以及区域边 界。
?面(Face ):由最近的三个节点所组成的三角形面,是
TIN 描述地形表面的基本单元。 TIN 中的每一个三角形都 描述了局部地形倾斜状态,具有唯一的坡度值。三角形在 公共节点和边上是无缝的,或者说三角形不能交叉和重叠。
两三角形中的最小内角一定大于交换凸四边形对角线后所形成的两三 角形的最小内角;
最短距离和准则:指一点到基边的两端的距离和为最小。
2019/12/29
12
第5章 不规则三角网 (TIN) 的建立
5.1.2 TIN 的三角剖分准则
5.1 TIN概述
张角最大准则:一点到基边的张角为最大。
面积比准则:三角形内切圆面积与三角形面积或三角形面积与周长
N:网( Network ),表达整个区域的三角形分布形 态,即三角形之间不能交叉和重叠。三角形之间的拓 扑关系隐含其中。
2019/12/29
5
第5章 不规则三角网 (TIN) 的建立
5.1.1 TIN 的理解
?TIN 的基本元素
5.1 TIN概述
?节点(Node ):是相邻三角形的公共顶点,也是用来
2019/12/29
4
第5章 不规则三角网 (TIN) 的建立

不规则三角网(TIN)

不规则三角网(TIN)

不规则三角网(TIN)Ⅰ 数字高程模型(DEM)地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。

于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已被普遍广泛采用。

数字高程模型即DEM(Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。

DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。

格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。

不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。

不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。

Ⅱ TIN的基本知识在TIN中,满足最佳三角形的条件为:尽可能的保证三角形的三个角都是锐角,三角形的三条边近似相等,最小角最大化。

TIN 是基于矢量的数字地理数据的一种形式,通过将一系列折点(点)组成三角形来构建。

形成这些三角形的插值方法有很多种,例如Delaunay 三角测量法或距离排序法。

ArcGIS 支持Delaunay 三角测量方法。

TIN 的单位是英尺或米等长度单位,而不是度分秒。

当使用地理坐标系的角度坐标进行构建时,Delaunay 三角测量无效。

创建TIN 时,应使用投影坐标系(PCS)。

TIN 模型的适用范围不及栅格表面模型那么广泛,且构建和处理所需的开销更大。

获得优良源数据的成本可能会很高,并且,由于数据结构非常复杂,处理TIN 的效率要比处理栅格数据低。

不规则三角网DE

不规则三角网DE

长沙理工大学测绘工程系 谢树春
不规则三角网DEM 不规则三角网DEM
基于张角最大准则的Delaunay三角网建立 五. 基于张角最大准则的 三角网建立
张角最大准则: 张角最大准则:
指一点到基边的张角为最大。 指一点到基边的张角为最大。 张角为最大
与空外接圆准则等价。 与空外接圆准则等价。 等价
长沙理工大学测绘工程系 谢树春
不规则三角网DEM 不规则三角网DEM
一.概念
不规则三角网( 不规则三角网(Triangulated Irregular Network, TIN)DEM是由 ) 是由 优化组合联结而成的连续三角面 不规则分布的有限个地形离散点按优化组合联结而成的连续三角面。 不规则分布的有限个地形离散点按优化组合联结而成的连续三角面。
长沙理工大学测绘工程系 谢树春
LOP算法实现新点 插入的过程: 算法实现新点p插入的过程 算法实现新点 插入的过程:
求出包含新插入点p 外接圆的三角形; 求出包含新插入点p的外接圆的三角形; 的三角形 删除影响三角形的公共边; 删除影响三角形的公共边; 影响三角形的公共边 与全部影响三角形的顶点连接 将p与全部影响三角形的顶点连接。 与全部影响三角形的顶点连接。
构建TIN比较费时; 比较费时; 构建 比较费时 算法设计比较复杂; 算法设计比较复杂; 复杂 表面分析能力较差。 表面分析能力较差。 能力较差
长沙理工大学测绘工程系 谢树春
不规则三角网DEM 不规则三角网DEM
思考: 思考:
能否结合规则格网 DEM和不规则三角网 和不规则三角网 DEM各自的优点? 各自的优点 各自的优点?
不规则三角网DEM 不规则三角网DEM
基于张角最大准则的Delaunay三角网建立 五. 基于张角最大准则的 三角网建立

如何判断DTM法(不规则三角网法)中三角网是否正确并修改

如何判断DTM法(不规则三角网法)中三角网是否正确并修改

如何判断DTM法(不规则三角网法)中三角网是否正确并修改韩老师山西测量三角网法是利用实测地形碎部点、特征点进行三角构网,对计算区域按三棱柱法计算土方。

它是直接利用野外实测的地形特征点(离散点)构造出邻接的三角形,组成不规则三角网结构。

1、建网过程先从点集中选择一点作为起始三角形的一个端点,然后找离它距离最近的点连成一个边,以该边为基础,遵循角度最大原则或距离最小原则找到第三个点,形成初始三角形。

由起始三角形的三边依次往外扩展, 并进行是否重复的检测,最后将点集内所有的离散点构成三角网,直到所有建立的三角形的边都扩展过为止。

2、三角网特点三角网中的点和线的分布密度和结构完全可以与地表的特征相协调,直接利用原始资料作为网格结点;不改变原始数据和精度;能够插入地性线以保存原有关键的地形特征,以及能很好地适应复杂、不规则地形,从而将地表的特征表现得淋漓尽致致。

技术比较高经验多的人去了现场,虽然他自己没有去测量,但是根据你测回来的成图的三角网直接判断你的数据哪里不详细,哪里没有采集到位。

这是因为他知道现场的一条或者多条地性线,所谓地性线就是指能充分表达地形形状的特征线,他的判断依据就是地性线不应该通过三角网的任何一个三角形的内部,否则三角形就会“进入”或“悬空”于地面,与实际地形不符,产生的数字地面模型(DTM)有错。

3、三角网调整地性线与一般地形点一道参加完初级构网后,再用地形特征信息检查地性线是否成为了初级三角网的边,若是,则不再作调整;否则,按图下图作出调整,总之要务必保证三角网所表达的数字地面模型与实际地形相符。

如图上图(a)P1-P2所示,为地性线,它直接插入了三角形内部,使得建立的三角网偏离了实际地形,因此需要对地性线进行处理,重新调整三角网。

上图(b)是处理后的图形,即以地性线为三角边,向两侧进行扩展,使其符合实际地形。

①地物对构网的影响及处理方法等高线在遭遇房屋、道路等地物时需要断开,这样在地形图生成三角网时,除了要考虑地性线的影响之外,更应该顾及到地物的影响。

不规则角网(TIN)的建立

不规则角网(TIN)的建立
5.2.1 无约束散点域的三角剖分算法与实现
5.2 TIN的建立
目前散点域的三角剖分使用最为广泛的算法是 Delaunay直接三角剖分算法。 根据实现过程,把DT分成三类:
1)三角网生长算法 2)逐点插入算法
3)分割合并算法
2019/2/7 28
第5章 不规则三角网(TIN)的建立
1、三角网生长算法
目前这类算法主要有地形骨架法、地形滤波 法等。
2019/2/7 23
• 地形骨架法:
– 利用地形特征点、线建立地形的骨架模型, 然后对其进行插点,达到预定的精度;
• 地表滤波法:
– 将格网DEM看作为一幅数字图像,可使用空 间高通滤波器对其滤波,保留图像中的高频 信息,即为地形特征点,滤掉低频信息也即 对地形特征而言不重要的点,在此基础上建 立TIN模型。
2019/2/7 24
第5章 不规则三角网(TIN)的建立
5.1.3 三角剖分算法分类与特点
5.1 TIN概述
从混合数据生成三角网(P70)
混合数据:是指链状数据 (如断裂线、河流线等)与规 则格网采样数据结合形成的一 种数据。
此种数据建立三角网的方法: 首先分解规则三角形,然后考 虑特征线上的点,在格网中生 成不规则三角形。
2019/2/7
根据规则数据建成的三角形格网
22
第5章 不规则三角网(TIN)的建立
5.1.3 三角剖分算法分类与特点
5.1 TIN概述
规则分布采样数据三角剖分
重要点法DEM建模有两个关键步骤: 1)确定格网点的“重要程度”:全局最重要或局 部最重要; 2)确定终止条件:达到预设的点数或预设的精度、 或两者折中。
2019/2/7 15

不规则三角网(TIN)的建立分析

不规则三角网(TIN)的建立分析
TIN描述地形表面的基本单元。TIN中的每一个三角形都描 述了局部地形倾斜状态,具有唯一的坡度值。三角形在公 共节点和边上是无缝的,或者说三角形不能交叉和重叠。
2018/10/22 5
数据和TIN的类型
用来进行TIN构建的原始数据根据数据点之间的约束 条件可分为无约束数据域和约束数据域两种类型。
2018/10/22
3
不规则三角网(TIN)的建立
T:三角化( Triangulated )是离散数据的三角剖分 过程,也是TIN的建立过程。位于三角形内的任意一点 的高程值均可以通过三角形平面方程唯一确定。 I:不规则性( Irregular ),指用来构建TIN的采样 点的分布形式。TIN具有可变分辨率,比格网DEM能更 好反映地形起伏。 N:网( Network ),表达整个区域的三角形分布形 态,即三角形之间不能交叉和重叠。三角形之间的拓 扑关系隐含其中。
平方之比最小。
对角线准则:两三角形组成的凸四边形的两条对角线之比。这一准
则的比值限定值,须给定,即当计算值超过限定值才进行优化。
2018/10/22
10
说明:
1)三角形准则是建立三角形格网的基本原 则,应用不同的准则将会得到不同的三角网。 2)一般而言,应尽量保持三角网的唯一性, 即在同一准则下由不同的位置开始建立三角 形格网,其最终的形状和结构应是相同的。 3)空外接圆准则、最大最小角准则下进行 的三角剖分称为Delaunay (译为狄洛尼或德 劳内)三角剖分(Triangulation),简称DT。 空外接圆准则也叫Delaunay法则。
扩张生长算法与收缩算法过程刚好相反,是从一个 三角形开始向外层层扩展,形成覆盖整个区域的三角 网。
2018/10/22 15

不规则三角网的建立与应用

不规则三角网的建立与应用

摘要作为空间数据基础设施中的“4D”产品之一和地理信息系统的核心数据库,数字高程模型(DEM)已在测绘、遥感、农林规划、城市规划、土木水利工程、地学分析等各个领域都有了广泛的应用。

数字高程模型的表示方法主要有规则格网模型、不规则三角网模型和等高线模型三种,而不规则三角网(TIN)是数字高程模型中最基本和最重要的一种模型,它能以不同层次的分辨率来描述地形表面,并可以灵活的处理特殊地形。

因此,围绕基于TIN 的DEM 的构建,本文主要论述了基于 TIN 结构的数字高程模型建模原理和方法,离散点的Delaunay 三角网生成算法,建立有约束条件的约束三角网,最后分析了建立的 TIN模型在土方计算方面的应用。

在本论文论述的过程中,针对传统算法进行了对比和分析后,在逐点插入法的基础之上,提出了一些新的细部改进的实现方法。

局部优化操作和改进的算法实现使得对大容量离散点的三角网构建速度更快,效率更高;对限制条件的嵌入满足由此计算出来的土方量更接近实际期望值。

本论文中主要的研究成果和内容如下: 1)在离散点的 Delaunay 三角网生成方面,本文中在插入点算法的基础上,建立凸包和矩形包容盒,建立虚拟网格,对原始离散点进行一级格网自适应分块,并建立索引关系。

在定位点所在三角形时引入快速点定位算法,简易的空外接圆及圆内测试公式,通过这些改进使得 Delaunay 三角网的剖分更加高效。

2)在约束 Delaunay 三角网理论基础之上,结合上面散点域的剖分方法,对已有的两步算法基础上改进,完成约束 Delaunay 三角网的构建。

在其过程中应用矢量点积等数学工具改善了计算中的凹凸点判断,继续采用上章的快速索引和最速定位方法,并且对约束线相切等特殊情形进行了处理,进一步完善了算法的稳健性。

3)对于在约束三角网构造基础上的 TIN 模型的应用,文中对其在土方量计算方面精度的优越性进行了分析,在可视化表达方面最后结合广东省东莞市某高尔夫球场工程给出了例证。

不规则三角网(TIN)的建立

不规则三角网(TIN)的建立
数字高程模型
不规则三角网(TIN)的建立算法
马仕航 1410040222
2016/11/20
1
TIN概述
5.1.1 TIN的理解 5.1.2 TIN的三角剖分准则
5.1.3

三角剖分算法分类与特
2016/11/20
2
TIN的基本概念
不规则三角网(Triangulated Irregular Network 简称TIN):是用一系列互不交叉、互不重叠的连接在一 起的三角形来表示地形表面。TIN既是矢量结构又有栅格 的空间铺盖特征,能很好地描述和维护空间关系。
20
2、逐点插入算法 :
• 1)定义包含所有数据点的最小外界矩形范围,并以此作 为最简单的凸闭包。 • 2)按一定规则将数据区域的矩形范围进行格网划分(如 限定每个格网单元的数据点数)。 • 3)剖分数据区域的凸闭包形成两个超三角形,所有数据 点都一定在这两个三角形范围内。 • 4)对所有数据点进行循环,作如下工作(设当前处理的 数据点为P):
将等高线作为特征线的方法;
自动增加特征点及优化TIN的方法。
2016/11/20
25
等高线离散点直接生成TIN方法
该方法直接将等高线离散化,然后利用常用TIN的生成 算法,该方法没有考虑离散点间原有的连接关系,模拟 的地形就会失真,具体表现为三角形的边穿越等高线和 存在平三角形的两种情况。 在实际应用中该方法较少使用。
无约束数据域是指数据点之间不存在任何关系,即 数据分布完全呈离散状态,数据点之间在物理上相互 独立。
约束数据域则是部分数据点之间存在着某种联系, 这种联系一般通过线性特征来维护,如地形数据中的 山脊线、山谷线上的点等。
2016/11/20

不规则三角网(TIN)

不规则三角网(TIN)

不规则三角网(TIN)Ⅰ数字高程模型(DEM)地球表面高低起伏,呈现一种连续变化的曲面,这种曲面无法用平面地图来确切表示。

于是我们就利用一种全新的数字地球表面的方法——数字高程模型的方法,这种方法已被普遍广泛采用。

数字高程模型即DEM(Digital Elevation Model),是以数字形式按一定结构组织在一起,表示实际地形特征空间分布的模型,也是地形形状大小和起伏的数字描述。

DEM有三种主要的表示模型:规则格网模型,等高线模型和不规则三角网。

格网(即GRID)DEM在地形平坦的地方,存在大量的数据冗余,在不改变格网大小情况下,难以表达复杂地形的突变现象,在某些计算,如通视问题,过分强调网格的轴方向。

不规则三角网(简称TIN,即Triangulated Irregular Network)是另外一种表示数字高程模型的的方法(Peuker等,1978),它既减少了规则格网带来的数据冗余,同时在计算(如坡度)效率方面又优于纯粹基于等高线的方法。

不规则三角网能随地形起伏变化的复杂性而改变采样点的密度和决定采样点的位置,因而它能够避免地形起伏平坦时的数据冗余,又能按地形特征点如山脊,山谷线,地形变化线等表示数字高程特征。

Ⅱ TIN的基本知识在TIN中,满足最佳三角形的条件为:尽可能的保证三角形的三个角都是锐角,三角形的三条边近似相等,最小角最大化。

TIN 是基于矢量的数字地理数据的一种形式,通过将一系列折点(点)组成三角形来构建。

形成这些三角形的插值方法有很多种,例如 Delaunay 三角测量法或距离排序法。

ArcGIS 支持 Delaunay 三角测量方法。

TIN 的单位是英尺或米等长度单位,而不是度分秒。

当使用地理坐标系的角度坐标进行构建时,Delaunay 三角测量无效。

创建TIN 时,应使用投影坐标系(PCS)。

TIN 模型的适用范围不及栅格表面模型那么广泛,且构建和处理所需的开销更大。

不规则三角网(TIN)生成的算法

不规则三角网(TIN)生成的算法

不规则三角网(TIN)生成的算法第五章不规则三角网(TIN)生成的算法在第四章,基于三角网和格网的建模方法使用较多,被认为是两种基本的建模方法。

三角网被视为最基本的一种网络,它既可适应规则分布数据,也可适应不规则分布数据,即可通过对三角网的内插生成规则格网网络,也可根据三角网直接建立连续或光滑表面模型。

在第四章中同时也介绍了Delaunay 三角网的基本概念及其产生原理,并将三角网构网算法归纳为两大类:即静态三角网和动态三角网。

由于增量式动态构网方法在形成Delaunay 三角网的同时具有很高的计算效率而被普遍采用。

本章主要介绍静态方法中典型的三角网生长算法和动态方法中的数据点逐点插入算法;同时,还将给出考虑地形特征线和其他约束线段的插入算法。

而其他非Delaunay 三角网算法如辐射扫描法Radial Sweep Algorigthm(Mirante & Weingarten, 1982)等本文将不再介绍。

5.1 三角网生长法5.1.1 递归生长法递归生长算法的基本过程为如图 5.1.1 所示:3 213 21(a)形成第一个三角形(b) 扩展生成第二个和第三个三角形图5.1.1 递归生长法构建 Delaunay 三角网(1)在所有数据中取任意一点1(一般从几何中心附近开始),查找1距离此点最近的点 2,相连后作为初始基线 1-2;(2)在初始基线右边应用 Delaunay 法则搜寻第三点 3,形成第一个Delaunay 三角形;(3)并以此三角形的两条新边(2-3,3-1)作为新的初始基线;(4)重复步骤(2)和(3)直至所有数据点处理完毕。

该算法主要的工作是在大量数据点中搜寻给定基线符合要求的邻域点。

一种比较简单的搜索方法是通过计算三角形外接圆的圆心和半径来完成对邻域点的搜索。

为减少搜索时间,还可以预先将数据按 X 或 Y 坐标分块并进行排序。

使用外接圆的搜索方法限定了基线的待选邻域点,因而降低了用于搜寻Delaunay 三角网的计算时间。

不规则三角网

不规则三角网

不规则三角网(TIN )生成算法一、三角剖分的标准:空外接圆法:任意四点不能共圆最大最小角法:三角网内的最小角尽可能的大最短距离和准则:形成的三角形三边之和应满足最优解——三边之和最短张角最大准则:面积比准则: 三角形的内切圆面积/三角形面积或三角形面积/三角形周长的平方的值最小对角线法则:但插入另一个点时,寻找四边形对角线最短的那条边作为新的三角网二、Delaunay 符合的标准:三、递归生长算法的基本思路:四、凸闭包收缩法:先找到包含数据区域的最小凸多边形,并从该多边形开始从外向里逐层形成三角形网络五、逐点插入法生成TIN 的思路:首先提取整个数据区域的最小外边界矩形范围,以此作为最简单的凸闭包->按一定法则将数据区域的矩形范围进行格网划分,限定每个格网单元平均拥有的数据点数->根据数据点的(x,y )坐标建立分块索引的线性链表->剖分数据区域的凸闭包形成两个超多边形->按照3建立的顺序链表顺序往4的三角形中插入数据点:先找到包含数据点的三角形,进而连接该点与三角形的三个顶点,简单剖分该三角形为三个新的三角形->分别调整新生成的三个三角形及其相邻的三角形,交换公共边->重复5~6,直到所有数据点都被插入到三角网中六、三角网TIN数据类型:无约束数据域——无约束TIN 约束数据域:内部约束及外部约束七delaunay法则:当三角形外接圆内不包含任意其他点,且其三个顶点相互通视时形成的三角网为一个带约束条件的delaunay法三角形八、带约束条件的delaunay Lawson LOP交换:在带约束的delaunay法则满足的条件下,由两相邻三角形组成的凸四边形的局部最佳对角线才被选取九、在TIN生成中如何考虑地形特征线三角剖分时要求TIN三角网中得三角形满足形态最优和无地形线穿越三角形的要求,主要有:三角形初始剖分->判断剖分三角形是否满足三角形形态比最大原则->判断特征线是否穿越剖分三角形->剖分点选择。

5-9不规则三角形构网.ppt

5-9不规则三角形构网.ppt
这一问题的核心是计算圆心d的坐标dx , d y 。
Delaunay三角网生成的基本思路 1)确定点集中距离最近的两个点(a,b),以此边ab
为基础,点集被划分为两个子集;
2)分别在ab左侧的点集和右侧的点集寻找一个点c 和d,使左侧点集中的其他任何点都位于Δabc的最小 外接圆外,右侧点集中的其他任何点都位于Δabd的最 小外接圆外;
(3)三角形的扩展。
由第一个三角形往外扩展,将全部离散点 构成三角网,并要保证三角网中没有重复和交 叉的三角形。其做法是依次对每一个已生成三 角形的新增加的两边,按角度最大的原则往外 进行扩展,并进行是否重复的检测。
1)向外扩展的处理。若从顶点为
的 三 角 形 之 边 向 外 P1x1, y1 , P2 x2 , y2 , P3 x3, y3
扩展,应取直线P1P2与 P3的异侧点。
直线方程为 P1P2
Fx, y y2 y1 x x1 y y1 x2 x1 0
若备选点P之坐标为 xp, yp ,则当
时, 与 F x p , y p • F x3 , y3 0
P P3
在直线P1P2
的异侧,该点可作为备选扩展点。
2)重复与交叉的检测。由于任意一 边最多只能是两个三角形的公共边,因 此只需给每一边记下扩展的次数,当该 边的扩展次数超过2,则该扩展无效;否 则扩展才有效。
归下去,找第四点,并作它与前三点的垂直平分线, 一直循环下去,这些垂直平分线形成了Voronoi图 的边即泰森多边形,根据泰森多边形的性质,每个 泰森多边形内仅有一个参考点,将这些参考点连起 来即形成了狄洛尼三角网。
泰森多边形的计算亦可以通过栅格运 算的方法进行,以发生点为中心点,同 时向周围相邻八方向做栅格扩张运算 (也可以说是一种距离变换),两个相 邻发生点扩张运算的交线即为泰森多边 形的邻接边,三个相邻发生点扩张运算 的交点即为泰森多边形的顶点。

不规则三角网(tin)的构建与应用-(5313)

不规则三角网(tin)的构建与应用-(5313)

第一章绪论1.1研究背景地球是人类生活和活动的承载体。

多年以来,我们为了更充分的认识自然客体和改造自然,总在不懈的努力尝试用不同的方式方法来描述、表达人所处的环境,其中地形图就是一个有代表性的测绘表述变迁的缩影。

从最开始的象形符号抽象的雏形到后来的在二维介质上对三维表面进行地形写景图,地貌写景图等描述是一个进步,但写景方式不具备可量测性,所以还是很局限的。

随着测绘技术发展,地形的表达也由写景式的定性表达过渡到了以等高线为主的矢量化表达。

航空摄影测量,遥感技术提供的影响都在对三维现实世界的模拟。

但是有一个矛盾体,那就是对于地形表面形态而言,一方面我们尽可能的从几何角度去理解和描述以解决实际应用中的可量测性;另外一个方面它本身是一种三维景观现象,对于其表述要考虑生理视觉感受,我们总是希望能够尽可能的直观形象逼真。

从20世纪四十年代开始的计算机图形学、计算机辅助制图等相关学科和理论的发展,使得在测绘领域,在图形表达表述方面发生了从模拟表达时代走向了数字表达时代,有了质的飞跃。

其中地理信息系统(GIS )及数字高程模型(DEM )学科或技术显得尤为重要。

地理信息系统,简称GIS (Geographical Information System ),它源于20世纪60年代初期加拿大测量学家Tomlinson 的“把地图变成数字形式的地图,以便计算机进行处理与分析”的观点,但是在技术工具处理中,则是利用计算机存贮、处理地理信息,并且在计算机软、硬件支持下,把各种资源信息和环境参数按空间分布或地理坐标,以一定的格式或者分类输入、处理、存贮、输出,用以满足其应用需要的人机交互系统。

因此GIS 的本质是在二维地理空间基础上实现对地下、地表和空中诸地理信息的数字化表达和管理。

当然地理信息系统技术发展到当前,功能不再是当初的局限于查询、检索和制图,而是丰富到空间分析、建模、决策等诸多方面,在数据管理上则从简单的栅格数据、矢量数据管理转向多元数据融合,在现实生活中应用的很活跃,也很充分。

不规则三角网的原理和应用

不规则三角网的原理和应用

不规则三角网的原理和应用1. 引言不规则三角网是一种在地理信息系统(GIS)和计算机图形学中常用的数据结构,用于表示地形、地貌和其他空间数据。

本文将介绍不规则三角网的原理和应用。

2. 不规则三角网的原理不规则三角网是由一组不重叠的三角形组成的网络,其中每个三角形的边都共享一条边。

它可以用于将二维或三维空间上的数据进行离散化表示。

以下是建立不规则三角网的基本原理:•节点选择:首先需要选择一组合适的节点来构建三角网。

节点可以是地理位置、数据采集点或其他感兴趣的位置。

这些节点将成为三角网的顶点。

•三角剖分:根据节点的位置,在节点之间进行三角形的剖分。

通常使用Delaunay三角剖分方法,保证所有三角形的内接圆不包含其他节点,这样可以避免形成过于细长或扭曲的三角形。

•节点连接:将每个三角形的顶点连接起来形成三角网。

每个三角形的边都共享一条边,这样可以保证三角网的连续性。

3. 不规则三角网的应用不规则三角网在地理信息系统和计算机图形学中有广泛的应用。

以下是几个常见的应用场景:3.1 地形分析不规则三角网可以用于对地形进行离散化表示和分析。

通过节点的高程信息,可以计算每个三角形的面积、坡度和曲率等地形属性。

这对于地质学、测绘学和环境科学等领域的地形分析非常重要。

3.2 地理可视化不规则三角网可以用于地理可视化,将地理数据以更直观的方式呈现出来。

通过对三角形进行插值,可以根据节点上的数据对整个区域进行表面重建,从而生成地形模型或地图。

这对于城市规划、区域分析和地理导航等应用非常有用。

3.3 网格生成在计算机图形学中,不规则三角网可以用于网格生成。

根据给定的节点,可以通过插值方法生成一系列网格点,用于绘制曲线、表面或其他图形。

这对于计算机辅助设计、虚拟现实和游戏开发等领域非常重要。

3.4 数据插值不规则三角网可以用于数据插值,将离散的数据点进行填充。

通过插值方法,可以根据已知节点的属性估计其他位置的属性。

这对于气象学、地质学和农业等领域的数据分析非常有用。

工学不规则三角网TIN的建立

工学不规则三角网TIN的建立

• Voronoi图的定义(P105)
– Voronoi图把平面分成N个区,每一个区包括一 个点,该点所在的区域是距离该点最近的点的集 合。
2020/5/28
16
第5章 不规则三角网(TIN)的建立
• 关于delaunay三角网
5.1 TIN概述
• 1934年Delaunay提出了Voronoi图的对称图, 即Delaunay三角网(用直线段连接两个相邻 多边形内的离散点而生成的三角网)。
➢TIN的体系结构
5.1 TIN概述
TIN对三角形的几何形状有严格的要求。 TIN模型一般有三个基本要求:
1)三角形的格网唯一;
2)最佳三角形形状,尽量接近正三角形;
3)三角形边长之和最小,保证最近的点形成 三角形。
2020/5/28
10
第5章 不规则三角网(TIN)的建立
5.1.1 TIN的理解
目前,在GIS、计算机和图形学领域常用 的三角剖分准则有6种。
2020/5/28
12
第5章 不规则三角网(TIN)的建立
5.1.2 TIN的三角剖分准则
5.1 TIN概述
空外接圆准则:在TIN中,过每个三角形的外接圆均不包含点集的
其余任何点;
最大最小角准则:在TIN中的两相邻三角形形成的凸四边形中,这
两三角形中的最小内角一定大于交换凸四边形对角线后所形成的两三 角形的最小内角;
最短距离和准则:指一点到基边的两端的距离和为最小。
2020/5/28
13
第5章 不规则三角网(TIN)的建立
5.1.2 TIN的三角剖分准则
5.1 TIN概述
张角最大准则:一点到基边的张角为最大。
面积比准则:三角形内切圆面积与三角形面积或三角形面积与周长

ArcGIS不规则三角网

ArcGIS不规则三角网

专题7 ArcGIS不规则三角网
一、实验目的
1、掌握建立不规则三角网方法,建立地形表面;
2、线要素的邻近区生成方法;
3、点要素的邻近区生成方法;
4、掌握矢量型空间分析方法的实际应用;
二、实验准备
实验数据位置:Training Material | 不规则三角网
预备知识:
1、通过离散点和线数据构建的不规则三角网,可以用于表达地形表面,参与三维分析操作;
三、实验内容与步骤
第1部分建立场景不规则三角网
实验数据:实例1 | ex13.mxd
1)打开地图文档,激活Data frame2,存在“场地高程”离散点层;
2)激活3D Analyst工具栏,选择菜单,弹出对话框;
3)选用添加数据工具,加载bldg多边形、road线和water多边形三个CAD地物层;
结果如下:
4)启动ArcScene,加载生成的地形表面,和三个CAD地物层;
5)在导入的三个CAD地物层的属性中的Base Height属性页中,将TIN地形表面设置为基底:
结果如下:
5)在建筑物层的属性对话框的Extrusion属性页,如下设置,将建筑物拉伸;
6)生成三维动画:选择一条道路,然后启动ArcScene中的Animation工具栏,选取菜单Animation/Camera Flyby from Path…,然后选取Open animation Controls工具即可播放路径漫游动画。

作业:
1、请使用上述动画工具栏,并完成该工具栏的详细用户手册,其中需要每个过程的详细抓图和介绍,并介绍个人使用该工具栏的心得体会。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科学生野外实验报告
学号姓名
学院旅游与地理科学学院专业、班级
实验课程名称地理信息系统实习教程
教师及职称
开课学期2012 至2013 学年下学期填报时间2013 年 5 月29 日
云南师范大学教务处编印
1、实验现象与结果
(1)视线分析,打开ex15.mxd,激活Data frame1,在General标签栏中,在Units框内,用下拉式菜单将Map和Display从Unknow Units改为Meters,完成后按“确定”关闭,选用菜单Tool/Extension,加载3D Analyst扩展模块,选用菜单View/Toolbars/3D Analyst,加载
3D Analyst工具条,点击产生视线按钮,出现Line of Sight对话框:
(2)基于视点的视域分析
①产生单个观察点的视域栅格,选用3D/Options,作初始设置,初始设置完成后,选用菜单3D Analyst/Sueface Analysis/Viewshed…,出现Viewshed参数设置对话框,按ok键确定后,软件产生栅格状视域分析结果图层Visibilel。

②改变观察点的高程,视域分析中,需预先设定部分参数,其中有观察点的高度。

在前面分析的视域分析中,没有作任何特别的设置,软件默认为观察点的高度比所在位置的三维面高一个地图单位,其观察点绝对高程为90m的视域:
③两次视域分析结果的比较,前一次不作任何设置,观察点高程仅仅是比对应的三维表面层
Analyst/Convert/Features to 3D,出现“Convert features to 3D”参数设置对话框进行设置,再Viewshed参数设置对话框进行设置,最后就能得到基于路径的视域分析结果图;。

相关文档
最新文档