大学导数公式
高数入门知识点
高数入门知识点高等数学(简称"高数")是大学数学的一门重要基础课程,为后续学习更高级数学及其他理工科学科打下坚实的基础。
本文将介绍一些高数的入门知识点,帮助初学者快速了解和掌握这门学科。
一、极限极限是高等数学的核心概念之一。
它描述的是函数在某一点无限接近于某个特定值的性质。
例如,当自变量x趋近于某个值时,函数f(x)的极限为L,可以用符号表示为:lim(x→a) f(x) = L在求解极限时,常常用到一些基本的极限公式,如:- 极限的四则运算法则:假设lim(x→a) f(x) = A,lim(x→a) g(x) = B,则(1) lim(x→a) [f(x) ± g(x)] = A ± B(2) lim(x→a) [f(x) · g(x)] = A · B(3) lim(x→a) [f(x) / g(x)] = A / B (如果B≠0)- 常见函数的极限:(1) lim(x→∞) 1/x = 0(2) lim(x→0) sin(x)/x = 1二、导数导数是高数中另一个重要概念。
它描述的是函数在某一点的变化率。
对于函数y = f(x),其导数可以表示为dy/dx,也可以用f'(x)来表示。
导数的求解可以通过计算函数的导函数来实现。
常见的一些导数公式包括:(1) 常数函数的导数为0(2) 形如y = x^n的函数的导数为ny'(x) = nx^(n-1)(3) 指数函数、对数函数和三角函数的导数公式导数在实际应用中具有广泛的意义,例如可以用来求解函数的最值、描绘函数的切线等。
三、积分积分是高数中的另一个重要概念,它描述的是函数与自变量之间的关系。
对于函数y = f(x),其积分可以表示为∫f(x)dx,表示对函数f(x)的自变量x进行求和。
常见的一些积分公式包括:(1) 基本积分法则:∫f(x)dx = F(x) + C,其中F(x)是f(x)的一个原函数,C是常数。
大学数学公式大全
大学数学公式大全1. 代数1.1 一元二次方程一元二次方程是指形如aa2+aa+a=0的方程,其中a,a,a为常数,a是未知数。
公式为:$$x = \\frac{-b \\pm \\sqrt{b^2-4ac}}{2a}$$1.2 二项式定理二项式定理用于展开(a+a)a的表达式,其中a为正整数。
公式为:$$(a+b)^n = \\sum_{k=0}^{n} \\binom{n}{k} a^{n-k}b^k$$1.3 指数函数和对数函数指数函数和对数函数是代数中常见的函数类型。
指数函数公式为:a=a a其中a表示函数的值,a为底数,a为指数。
对数函数公式为:$$y = \\log_a x$$其中a表示函数的值,a为底数,a为真数。
1.4 多项式函数多项式函数是由常数和变量的幂次方和乘积所组成的函数。
一般形式为:$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \\ldots + a_1 x + a_0$$其中a(a)表示多项式函数的值,a为多项式的次数,a a为系数。
2. 微积分2.1 导数导数表示函数在某一点的变化率,是研究函数性质的重要工具。
公式为:$$f'(x) = \\lim_{h \\to 0} \\frac{f(x+h)-f(x)}{h}$$2.2 积分积分是导数的逆运算,表示曲线下方面积。
不定积分公式为:$$\\int f(x) dx = F(x) + C$$其中a(a)为被积函数,a(a)为原函数,a为常数。
定积分公式为:$$\\int_a^b f(x) dx = F(b) - F(a)$$其中a和a为积分的上下限。
2.3 泰勒展开泰勒展开是用无限的项求取函数在某点的近似值的方法。
公式为:$$f(x) = f(a) + f'(a)(x-a) + \\frac{f''(a)(x-a)^2}{2} + \\ldots + \\frac{f^{(n)}(a)(x-a)^n}{n!}$$3. 几何3.1 直角三角形直角三角形是指其中一个角是直角的三角形。
同济大学高等数学2.2求导法则与导数公式
3cos2 x2 (sin x2) 2x 6xsin x2 cos2 x2
(2) y ln( x 1 x2 )
解: y [ln(x 1 x2 )]
1
(x 1 x2 )
x 1 x2
1 (1 1 (1 x2 )) x 1 x2 2 1 x2
例 1.求下列函数的导数
(1) y x5 x 13x cos x ;
x3
解:
y
x2
x
5 2
x
3
3x
cosx
,
y
(
x2
)
(x
5 2
)(
x3
)(3x
)co
sx
3x
(cosx)
2x
5
7
x2
3x
4
3x
ln3cosx
3x
sin
x
。
2
(2) y x3 sin x(ln x 1 )
x
解: y[x3 sin x(ln x 1 )] x
解: f (e) 2 ,
∵ f (x) 在x e 的某邻域内是严格单调增加的连续函数,
且
f
(e)
(1 x
3x2 e3
)
xe
4 e
0
,
∴ ( f 1)(2) 1 e 。 f (e) 4
例 7.(1)求 y arcsin x ,x (1, 1) 的导数。
解:∵ y arcsin x 在(1, 1) 内严格单调增加且连续,
§2.2 求导法则与导数公式
2.2.1 若干基本初等函数的导数
1.(C)0 ;
2.(x ) x1 (R) ;
大学高等数学公式大全
高等数学公式·平方关系:sin^2(α)+cos^2(α)=1tan^2(α)+1=sec^2(α)cot^2(α)+1=csc^2(α)·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·三角和的三角函数:sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)·辅助角公式:Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)tan(2α)=2tanα/[1-tan^2(α)]·三倍角公式:sin(3α)=3sinα-4sin^3(α)cos(3α)=4cos^3(α)-3cosα·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα·降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]·积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]·和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2)^2·其他:sinα+sin(α+2π/n)+sin(α+2π*2/n)+sin(α+2π*3/n)+……+sin[α+2π*(n-1)/n]=0cosα+cos(α+2π/n)+cos(α+2π*2/n)+cos(α+2π*3/n)+……+cos[α+2π*(n-1)/n]=0 以及sin^2(α)+sin^2(α-2π/3)+sin^2(α+2π/3)=3/2tanAtanBtan(A+B)+tanA+tanB-tan(A+B)=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-s inαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得):sinx=[e^(ix)-e^(-ix)]/(2i) cosx=[e^(ix)+e^(-ix)]/2 tanx=[e^(ix)-e^(-ix)]/[ie^(ix)+ie^(-ix)]泰勒展开有无穷级数,e^z=exp(z)=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
大学高等数学公式大全
大学高等数学公式大全第一部分:微积分基础一、导数1. 导数的定义:导数是一个函数在某一点上的瞬时变化率,表示为f'(x)或dy/dx。
2. 导数的运算法则:常数函数的导数为0。
幂函数的导数为指数乘以底数的指数减1,即d/dx(x^n) =nx^(n1)。
指数函数的导数为指数函数乘以指数,即d/dx(a^x) = a^xln(a)。
对数函数的导数为1除以x乘以底数的对数,即d/dx(ln(x)) =1/x。
三角函数的导数:d/dx(sin(x)) = cos(x),d/dx(cos(x)) =sin(x),d/dx(tan(x)) = sec^2(x)。
3. 高阶导数:函数的导数可以继续求导,得到高阶导数。
例如,f''(x)表示二阶导数。
二、积分1. 定积分的定义:定积分是一个函数在某个区间上的累积和,表示为∫[a,b]f(x)dx。
2. 积分的运算法则:常数函数的积分为其乘以区间长度,即∫[a,b]c dx = c(ba)。
幂函数的积分为其指数加1除以指数加1乘以区间长度,即∫[a,b]x^n dx = (b^(n+1)a^(n+1))/(n+1)。
指数函数的积分为其指数函数除以指数,即∫[a,b]a^x dx = (a^ba^a)/ln(a)。
对数函数的积分为其对数函数乘以区间长度,即∫[a,b]ln(x) dx = (xln(x)x)。
三角函数的积分:∫[a,b]sin(x) dx = cos(x) + C,∫[a,b]cos(x) dx = sin(x) + C,∫[a,b]tan(x) dx = ln|cos(x)| + C。
3. 积分的性质:积分与导数互为逆运算,即d/dx(∫f(x)dx) = f(x)。
积分区间可以改变顺序,即∫[a,b]f(x)dx = ∫[b,a]f(x)dx。
积分可以分解为多个区间上的积分,即∫[a,c]f(x)dx =∫[a,b]f(x)dx + ∫[b,c]f(x)dx。
大学高等数学所有公式大全.
大学高等数学公式·积的关系:sinα=tanα*cosαcosα=cotα*sinαtanα=sinα*secαcotα=cosα*cscαsecα=tanα*cscαcscα=secα*cotα·平方关系:sin^2(α+cos^2(α=1tan^2(α+1=sec^2(αcot^2(α+1=csc^2(α·倒数关系:tanα·cotα=1sinα·cscα=1cosα·secα=1直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·三角函数恒等变形公式·两角和与差的三角函数:cos(α+β=cosα·cosβ-sinα·sinβcos(α-β=cosα·cosβ+sinα·sinβsin(α±β=sinα·cosβ±cosα·sinβtan(α+β=(tanα+tanβ/(1-tanα·tanβtan(α-β=(tanα-tanβ/(1+tanα·tanβ·三角和的三角函数:sin(α+β+γ=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγcos(α+β+γ=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ=(tanα+tanβ+tanγ-tanα·tanβ·tanγ/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα·辅助角公式:Asinα+Bcosα=(A^2+B^2^(1/2sin(α+t,其中sint=B/(A^2+B^2^(1/2cost=A/(A^2+B^2^(1/2tant=B/AAsinα+Bcosα=(A^2+B^2^(1/2cos(α-t,tant=A/B·倍角公式:sin(2α=2sinα·cosα=2/(tanα+cotαcos(2α=cos^2(α-sin^2(α=2cos^2(α-1=1-2sin^2(αtan(2α=2tanα/[1-tan^2(α]·三倍角公式:sin(3α=3sinα-4sin^3(αcos(3α=4cos^3(α-3cosα·半角公式:sin(α/2=±√((1-cosα/2cos(α/2=±√((1+cosα/2tan(α/2=±√((1-cosα/(1+cosα=sinα/(1+cosα=(1-cosα/sinα·降幂公式sin^2(α=(1-cos(2α/2=versin(2α/2cos^2(α=(1+cos(2α/2=covers(2α/2 tan^2(α=(1-cos(2α/(1+cos(2α·万能公式:sinα=2tan(α/2/[1+tan^2(α/2] cosα=[1-tan^2(α/2]/[1+tan^2(α/2] tanα=2tan(α/2/[1-tan^2(α/2]·积化和差公式:sinα·cosβ=(1/2[sin(α+β+sin(α-β] cosα·sinβ=(1/2[sin(α+β-sin(α-β] cosα·cosβ=(1/2[cos(α+β+cos(α-β] sinα·sinβ=-(1/2[cos(α+β-cos(α-β]·和差化积公式:sinα+sinβ=2sin[(α+β/2]cos[(α-β/2] sinα-sinβ=2cos[(α+β/2]sin[(α-β/2] cosα+cosβ=2cos[(α+β/2]cos[(α-β/2] cosα-cosβ=-2sin[(α+β/2]sin[(α-β/2]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos^2α1-cos2α=2sin^2α1+sinα=(sinα/2+cosα/2^2·其他:sinα+sin(α+2π/n+sin(α+2π*2/n+sin(α+2π*3/n+……+sin[α+2π*(n-1/n]=0cosα+cos(α+2π/n+cos(α+2π*2/n+cos(α+2π*3/n+……+cos[α+2π*(n-1/n]=0 以及sin^2(α+sin^2(α-2π/3+sin^2(α+2π/3=3/2tanAtanBtan(A+B+tanA+tanB-tan(A+B=0三角函数的角度换算[编辑本段]公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z部分高等内容[编辑本段]·高等代数中三角函数的指数表示(由泰勒级数易得:sinx=[e^(ix-e^(-ix]/(2i cosx=[e^(ix+e^(-ix]/2 tanx=[e^(ix-e^(-ix]/[ie^(ix+ie^(-ix]泰勒展开有无穷级数,e^z=exp(z=1+z/1!+z^2/2!+z^3/3!+z^4/4!+…+z^n/n!+…此时三角函数定义域已推广至整个复数集。
大学导数知识点总结
大学导数知识点总结一、导数的概念导数是微积分中一个非常重要的概念,它是某一函数在某一点上的变化率。
在几何意义上,导数表示了曲线在某一点的切线斜率;在物理学中,导数表示了物体在某一时刻的速度和加速度。
因此,导数在数学、物理、经济等领域中都有着非常广泛的应用。
设y=f(x),x为自变量,y为因变量。
如果函数f(x)在点x=a处的导数存在,则称函数f(x)在点x=a处可导,记作f'(a)。
导数f'(a)就是函数f(x)在点x=a处的瞬间变化率,也就是函数的斜率。
导数的计算是微积分中的一个重要内容,它可以通过极限的方法来求得。
二、导数的计算方法求导数的过程即为求函数的瞬间变化率的过程,常用的方法有以下几种:1. 函数的基本求导公式:包括多项式函数、指数函数、对数函数、三角函数等求导公式。
这些基本求导公式是求导的起点,通过它们可以得到更复杂函数的导数。
2. 导数的四则运算:如果函数f(x)和g(x)都在点x=a处可导,那么f(x)与g(x)的和、差、积、商函数在点x=a处的导数可分别表示为(f+g)'(a)、(f-g)'(a)、(fg)'(a)、(f/g)'(a)。
3. 复合函数求导:对于复合函数f(g(x)),可以利用链式法则求导,即先对最外层函数求导,再乘以内层函数的导数。
4. 隐函数求导:对于以x和y为自变量的方程,如果y不能表示为x的函数形式,则称y是x的隐函数。
对隐函数求导需要利用隐函数求导的公式。
5. 参数方程求导:对参数方程x=x(t)和y=y(t)所确定的轨迹求切线斜率时,需要计算dy/dx=y'(t)/x'(t)。
6. 反函数求导:如果函数y=f(x)在一段区间内是单调、连续、可导的,并且f'(x)≠0,则其反函数在对应区间内也是可导的,且有f^(-1)'(y)=1/f'(x),即反函数的导数等于原函数导数的倒数。
大学高等数学公式(珍藏版)
高等数学公式导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x aa a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。
大学高等数学 2-2导数的四则运算
例3 求 y = tan x 的导数 . 解
y ′ = (tan x )′ = ( sin x )′ cos x
(sin x )′ cos x − sin x (cos x )′ = cos 2 x 1 cos 2 x + sin 2 x = = sec 2 x = cos 2 x cos 2 x
当x = 0时, 时
f −′ ( 0) = lim(1 + 0) = 1, h
ln[1 + (0 + h)] − ln(1 + 0) = 1, f +′ (0) = lim+ h→ 0 h
∴ f ′( 0 ) = 1 .
1, ′( x ) = 1 ∴f 1 + x , x≤0 x>0 .
一、和、差、积、商的求导法则
定理 如果函数u( x), v( x)在点x处可导 则它 , 们的和、 ) 们的和、差、积、商(分母不为零 在点x处也 , 可导 并且
(1) [u( x) ± v( x)]′ = u′( x) ± v′( x); (2) [u( x) ⋅ v( x)]′ = u′( x)v( x) + u( x)v′( x); u( x) u′( x)v( x) − u( x)v′( x) (3) [ ]′ = (v( x) ≠ 0). 2 v( x) v ( x)
推论
(1) [∑ fi ( x)]′ = ∑ fi′( x);
i =1 i =1
n
n
(2) [Cf ( x)]′ = Cf ′( x);
′ (3) [∏ fi ( x)]′ = f1 ( x) f2( x)⋯ fn( x)
n i =1
′ +⋯+ f1( x) f2( x)⋯ fn( x) = ∑ ∏ fi′( x) fk ( x);
大学高等数学公式汇总大全(珍藏版)
-ctgα tgα -tgα -ctgα ctgα tgα -tgα -ctgα ctgα
·和差角公式:
sin(α ± β ) = sinα cos β ± cosα sin β
cos(α ± β ) = cosα cos β ∓ sinα sin β
tg(α
±
β
)
=
tgα ± 1∓ tgα
tgβ ⋅ tgβ
∂x ∂y
∂x ∂y ∂z
全微分的近似计算:∆z ≈ dz = f x (x, y)∆x + f y (x, y)∆y
多元复合函数的求导法:
z = f [u(t),v(t)] dz = ∂z ⋅ ∂u + ∂z ⋅ ∂v dt ∂u ∂t ∂v ∂t
z = f [u(x, y),v(x, y)] ∂z = ∂z ⋅ ∂u + ∂z ⋅ ∂v ∂x ∂u ∂x ∂v ∂x
π
π
∫ ∫ In
=
2 0
sin n
xdx
2
=
0
cosn
xdx
=
n −1 n
In−2
∫ x2 + a2 dx = x x2 + a2 + a2 ln(x + x2 + a2 ) + C
2
2
∫ x2 − a2 dx = x x2 − a2 − a2 ln x + x2 − a2 + C
2
2
∫ a2 − x2 dx = x a2 − x2 + a2 arcsin x + C
平均曲率:K = ∆α .∆α : 从M点到M′点,切线斜率的倾角变化量;∆s:MM ′弧长。 ∆s
大学微积分公式大全整理
有关高等数学计算过程中所涉及到的数学公式(集锦)」、重要公式(1) limsinx11(2) lim 1 xex 0(3) lim Va(a o) 1nx 0x(4)lim n n 1(5) limarctan x — (6) lim arctanxnx2x2(7)limarccot x 0x(8) lim arccot xx(9) lim e xx(10)lim e x (11)lim x x 1xx 0三、下列常用等价无穷小关系(x 0)In 1 x : x e x 1: x a x 1 : xln a四、导数的四则运算法则u v u vuv五、基本导数公式 ⑴c 0⑵x x⑷ cosx sinx ⑸ tanxu v uvu u v uv2vv1⑶ s in xcosx2secx⑹ cot x2csc x⑺ secx secx tan x⑻ cscx cscx cot x六、高阶导数的运算法则nnn1) u x v x u x v xlim xna °x mb o x n 1 Ia 1x L mi~b 1x La nb ma。
b o 0(系数不为o 的情况)⑼ e x e x/ \ xx ■⑽ a a In a(ii) In x -x(12) log a x (13) arcsinx 1(14) arccosx1(15)arctanx 1 1 x 2(16) arccot x•(17) x 1 (18) x1 x 22\ xtanx: x arcsinx : xarctanx: x1 2cosx: x2n(2) cu x ncun(3) u axa n u n ax b(4)k n kc n ux k 0v (k)七、基本初等函数的 阶导数公式(1) “ 、 ax b(2) eax bex na In asin ax na sin ax bcos ax na cos ax八、(12) d(15)dax b nna n!ax bIn nax bn 1 ! nax b微分公式与微分运算法则 cosx secx Iog a x1dxsin x cosxdx sin xdx ⑸ d secx tan xdx e x dx tanx seS xdx In adx cotxcsc xdxcscx cscx cot xdx (ii) d In x-dx x—dx xln a(13) d arcs in x—12 dx (14) d 1 x 2arccosxA dx x21 , arcta nx2 dx 1 x 2(16) darccotx^dx x九、微分运算法则 ⑴ d u v du dv cu cdu⑶ d uv vdu udv vdu 十、 基本积分公式 kdx kx cx dxa x dxIn ae x dx dxudv-2 vIn xcosxdx sin x c⑺ sin xdx cosx c1 ~~2~ sin x csc xdx cot x c—dxcos x2dx1 x2sec xdx tanxarctanx c(ii )------ dx.1 x2arcs in x c十二、补充下面几个积分公式tan xdx In cosx c secxdx In secx tanx c1」1丄xdx arcta n c a x a a cot xdx In sin x c cscxdx In cscx cotx c2 dx 丄ln|x ac2 a |x a十三、 分部积分法公式⑴形如 x n e ax dx ,令 u n axix , dv e dx形如x n sin xdx 令ux n , dv sin xdx形如x n cosxdx 令ux n , dv cosxdx⑵形如x n arctanxdx ,令 u arctanx , dv xndx形如x n ln xdx ,令 u ln x , dv x n dx⑶形如 e ax sin xdx ,e ax cosxdx 令 u e ax ,sin x,cosx 均可。
大学数学公式大全
x x
sec 2 xdx tgx C csc 2 xdx ctgx C
dx
2
a
sec x tgxdx sec x C csc x ctgxdx csc x C
x a dx
2
ax C ln a
shxdx chx C chxdx shx C
ctg -ctgα tgα -tgα -ctgα ctgα tgα -tgα -ctgα ctgα
·和差化积公式:
sin( ) sin cos cos sin cos( ) cos cos sin sin tg ( ) tg tg 1 tg tg ctg ctg 1 ctg ( ) ctg ctg
平面的方程: 1、点法式:A( x x0 ) B( y y0 ) C ( z z 0 ) 0,其中n { A, B, C}, M 0 ( x0 , y0 , z 0 ) 2、一般方程:Ax By Cz D 0 x y z 3、截距世方程: 1 a b c 平面外任意一点到该平 面的距离:d Ax0 By0 Cz 0 D A2 B 2 C 2
sin tg
2
1 cos 1 cos cos 2 2 2 1 cos 1 cos sin 1 cos 1 cos sin ctg 1 cos sin 1 cos 2 1 cos sin 1 cos
dx 1 x arctg C 2 x a a dx 1 xa x 2 a 2 2a ln x a C dx 1 ax a 2 x 2 2a ln a x C dx x a 2 x 2 arcsin a C
大学数学公式大全
大学数学公式大全数学是一门研究数量、结构、变化以及空间等概念和关系的学科。
在大学数学中,许多重要的公式被广泛应用于各个领域,如代数、几何、微积分、概率论等。
下面将详细介绍一些大学数学中常用的公式。
1.代数公式- 二次方程公式:对于二次方程ax^2+bx+c=0,解可以通过求根公式得到:x=(-b±√(b^2-4ac))/(2a)。
- 平方差公式:(a+b)(a-b)=a^2-b^2。
- 三角恒等式:包括正弦、余弦和正切等函数的恒等关系,如sin^2θ+cos^2θ=1。
2.几何公式- 周长和面积:常见的图形如正方形、长方形、圆形、三角形的周长和面积公式。
- 三角形内角和:三角形内角和为180°,即α+β+γ=180°。
3.导数和微积分公式- 导数定义:函数f(x)在x点处的导数定义为f'(x)=lim_(Δx→0)(f(x+Δx)-f(x))/Δx。
- 基本导数法则:包括常数规则、幂级数规则、和差规则、乘积规则和商规则等。
- 高阶导数:对于一个函数f(x)的导函数f'(x),可以继续求导得到f''(x)、f'''(x)等。
- 泰勒展开:将一个函数在某个点附近展开成无穷级数的形式,可用于近似计算。
- 不定积分:即反导数,是求解微分方程中的一个重要工具。
4.矩阵和矩阵运算公式- 矩阵乘法:对于两个矩阵A和B,它们的乘积C=AB的定义是矩阵C的第i行第j列元素等于矩阵A的第i行与矩阵B的第j列对应元素的乘积之和。
- 矩阵转置:将一个矩阵的行变为列,列变为行得到的新矩阵称为原矩阵的转置矩阵。
- 逆矩阵:对于一个可逆矩阵A,存在一个矩阵B使得AB=BA=I,其中I为单位矩阵。
5.概率论和统计公式- 概率的基本公式:包括互斥事件概率公式、独立事件概率公式等。
- 二项分布:对于n次独立重复试验中成功次数X的概率分布,其概率质量函数为P(X=k)=C(n,k)*p^k*(1-p)^(n-k),其中C(n,k)为组合数,p为每次试验成功的概率。
大学文科数学-导数与微分-导数的基本公式与运算法则
大学文科数学第2章 导数与微分第2讲导数地基本公式与运算法则主讲教师 |引 言导数地定义提供了求导数地方法.但对于一些比较复杂地函数,求导数时不仅烦琐,而且需要相当地技巧.本节将给出所有基本初等函数地求导公式与导数地四则运算法则及复合函数地求导法则,借助于这些法则与公式,就能比较方便地求出常见函数地导数.01 基本初等函数地导数本节内容02 求导法则03 反函数地导数04 可导与连续地关系常见函数都是由基本初等函数生成地,因此首先考虑基本初等函数地导数。
利用导数地定义,可以比较容易地得到它们地求导公式。
先回顾一下导数地定义通过上一节地例题,我们知道 ,Ὅ 例1证明证明: 。
由于,故.于是有. 注事实上可以证明,当指数是任意实数也有完全相同地公式,即特别地,有Ὅ 例2证明:证明根据定义,.证明:Ὅ 例3证明已知 试求Ὅ 例4思路对于分段函数地导数,在各区段内直接求导即可;在分界点处需要通过单侧导数确定导数地存在性。
解01 基本初等函数地导数当 时,当 时,当 时,所以 于是有01 基本初等函数地导数本节内容02 求导法则03 反函数地导数04 可导与连续地关系初等函数是由基本初等函数经过有限次四则运算与复合运算得到地,前面已经求得基本初等函数地导数,如果能够建立起导数地运算与函数运算之间地关系,则会使计算简化很多。
下面推导几个主要地求导法则,借助这些法则以及上节得到地导数公式,可以求出一系列函数地导数公式,并在此基础上解决初等函数地求导问题.Ὅ 定理2.3设函数 都在点 处可导,则函数 在点 处也可导,且(1)(2)特别地,并不像极限地四则运算法则那么美好(3)特别地,证明(1)根据导数地定义,(2)u’v可导必连续v’(3)(1)与(差)地求导法则可以推广至有限个可导函数地情形,即(2)乘积地求导法则注意:每次只对一个因子求导!这一求导法则也可以推广至有限个可导函数地连乘积,例如Ὅ 例5解根据定理2.3,有练 习设 求,特别地,设 求Ὅ 例6设,求解Ὅ 例7设 求 解同理,Ὅ 例8设 求 解同理,01 基本初等函数地导数本节内容02 求导法则03 反函数地导数04 可导与连续地关系Ὅ 定理2.4(反函数求导法则)即:反函数地导数等于直接函数导数地倒数。