数字电路的逻辑运算

合集下载

数字逻辑电路基础知识整理

数字逻辑电路基础知识整理

数字逻辑电路基础知识整理数字逻辑电路是电子数字系统中的基础组成部分,用于处理和操作数字信号。

它由基本的逻辑门和各种组合和顺序逻辑电路组成,可以实现各种功能,例如加法、减法、乘法、除法、逻辑运算等。

下面是数字逻辑电路的一些基础知识整理:1. 逻辑门:逻辑门是数字逻辑电路的基本组成单元,它根据输入信号的逻辑值进行逻辑运算,并生成输出信号。

常见的逻辑门包括与门、或门、非门、异或门等。

2. 真值表:真值表是描述逻辑门输出信号与输入信号之间关系的表格,它列出了逻辑门的所有输入和输出可能的组合,以及对应的逻辑值。

3. 逻辑函数:逻辑函数是描述逻辑门输入和输出信号之间关系的数学表达式,可以用来表示逻辑门的操作规则。

常见的逻辑函数有与函数、或函数、非函数、异或函数等。

4. 组合逻辑电路:组合逻辑电路由多个逻辑门组合而成,其输出信号仅取决于当前的输入信号。

通过适当的连接和布线,可以实现各种逻辑操作,如加法器、多路选择器、比较器等。

5. 顺序逻辑电路:顺序逻辑电路由组合逻辑电路和触发器组成,其输出信号不仅取决于当前的输入信号,还取决于之前的输入信号和系统状态。

顺序逻辑电路可用于存储和处理信息,并实现更复杂的功能,如计数器、移位寄存器、有限状态机等。

6. 编码器和解码器:编码器将多个输入信号转换成对应的二进制编码输出信号,解码器则将二进制编码输入信号转换成对应的输出信号。

编码器和解码器可用于信号编码和解码,数据传输和控制等应用。

7. 数字信号表示:数字信号可以用二进制表示,其中0和1分别表示低电平和高电平。

数字信号可以是一个比特(bit),表示一个二进制位;也可以是一个字(word),表示多个二进制位。

8. 布尔代数:布尔代数是逻辑电路设计的数学基础,它通过符号和运算规则描述了逻辑门的操作。

布尔代数包括与、或、非、异或等基本运算,以及与运算律、或运算律、分配律等运算规则。

总的来说,数字逻辑电路是由逻辑门和各种组合和顺序逻辑电路组成的,它可以实现各种基本逻辑运算和数字信号处理。

数字电路的逻辑运算

数字电路的逻辑运算

非运算:1 0
0 1
请特别注意与普 通代数不同之处
2.基本公式
0-1律 : A A 10 AA
A11 A00
互补律: A A 1 A A 0
分别令A=0及 A=1代入这些 公式,即可证 明它们的正确 性。
重叠律: A A A A A A
还原律(双重否定律): ( A) A
亦称 非非律
ABCD Y 1 0 00 1 1 0 01 1 1 0 10 1 1 0 11 1 1 1 00 1 1 1 01 1 1 1 10 1 1 1 11 1
四输入变 量,16种 组合
n个变量可以有2n个组合, 一般按二进制的顺序,输出与输 入状态一一对应,列出所有可能 的状态。
逻辑函数式 把逻辑函数的输入、输出关系写成与、或、
A′·(A·B) ′=A′·(A′+B′) =A′·A′+A′·B′ = A′·(1+B′) =A′
§2.4 逻辑代数的基本定理
一、代入定理 任何一个含有变量A的等式,如果将所有出
现A的位置都用同一个逻辑函数代替,则等式仍 然成立。这个规则称为代入定理。
例如,已知等式 (A B )A B ,用函数Y=BC代
A ⊙ 0= A′ A ⊙ 1= A A ⊙ A′= 0 A ⊙ A= 1
5、 与或非运算:逻辑表达式为:
Y (A B C D )
A
& ≥1
B
Y
C
D
与或非门的逻辑符号
§2.3 逻辑代数的基本公式和常用公式
一、基本公式
1.常量之间的关系
与 运 算 : 0 0 0 0 1 0 1 0 0 1 1 1 或 运 算 : 0 0 0 0 1 1 1 0 1 1 1 1

《数字电子技术(第三版)》2. 基本逻辑运算及集成逻辑门

《数字电子技术(第三版)》2. 基本逻辑运算及集成逻辑门

Y=A+ Y=A+B
功能表
开关 A 断开 断开 闭合 闭合 开关 B 断开 闭合 断开 闭合 灯Y 灭 亮 亮 亮
真值表
A 0 0 1 1
B 0 1 0 1
逻辑符号
Y 0 1 1 1
实现或逻辑的电 路称为或门。或 门的逻辑符号:
A B
≥1
Y=A+B
2.1.3、非逻辑(非运算) 2.1.3、非逻辑(非运算) 非逻辑指的是逻辑的否定。当决定事件(Y) 发生的条件(A)满足时,事件不发生;条件不 满足,事件反而发生。表达式为: Y=A 开关A控制灯泡Y
A E B Y
A断开、B接通,灯不亮。 断开、 接通 灯不亮。 接通, 断开
A E B Y
A接通、B断开,灯不亮。 接通、 断开,灯不亮。 接通 断开
A、B都接通,灯亮。 、 都接通,灯亮。 都接通
两个开关必须同时接通, 两个开关必须同时接通, 灯才亮。逻辑表达式为: 灯才亮。逻辑表达式为:
Y=AB
2.4 集成逻辑门
2.4.1 TTL与非门 TTL与非门 2.4.2 OC门和三态门 OC门和三态门 2.4.3 MOS集成逻辑门 MOS集成逻辑门 2.4.4 集成逻辑门的使用问题 退出
逻辑门电路:用以实现基本和常用逻辑运算的电子电 路。简称门电路。 基本和常用门电路有与门、或门、非门(反相器)、 与非门、或非门、与或非门和异或门等。 逻辑0和1: 电子电路中用高、低电平来表示。 获得高、低电平的基本方法:利用半导体开关元件 的导通、截止(即开、关)两种工作状态。 集成逻辑门 双极性晶体管逻辑门 TTL ECL I2L 单极性绝缘栅场效应管逻辑门 PMOS NMOS CMOS
(6)平均传输延迟时间tpd:从输入端接入高电平开始,到输出端 输出低电平为止,所经历的时间叫导通延迟时间(tpHL); 从输入端接入低电平开始,到输出端输出高电平为止,所经 历的时间叫截止延迟时间(tpLH)。 tpd=(tpHL+ tpLH)/2=3~40ns 平均传输延迟时间是衡量门电路运算速度的重要指标。 (7)空载功耗:输出端不接负载时,门电路消耗的功率。 静态功耗是门电路的输出状态不变时,门电路消耗的功率。其中: 截止功耗POFF是门输出高电平时消耗的功率; 导通功耗PON是门输出低电平时消耗的功率。 PON> POFF (8)功耗延迟积M:平均延迟时间tpd和空载导通功耗PON的乘积。 M= PON× tpd (9)输入短路电流(低电平输入电流)IIS:与非门的一个输入端直 接接地(其它输入端悬空)时,由该输入端流向参考地的电流。 约为1.5mA。

数字电路逻辑运算公式

数字电路逻辑运算公式

数电逻辑运算公式是A+0=A、A+1=1、A+A=A。

逻辑运算又称布尔运算。

布尔用数学方法研究逻辑问题,成功地建立了逻辑演算。

他用等式表示判断,把推理看作等式的变换。

这种变换的有效性不依赖人们对符号的解释,只依赖于符号的组合规律。

这一逻辑理论人们常称它为布尔代数。

20世纪30年代,逻辑代数在电路系统上获得应用,随后,由于电子技术与计算机的发展,出现各种复杂的大系统,它们的变换规律也遵守布尔所揭示的规律。

逻辑运算(logicaloperators)通常用来测试真假值。

最常见到的逻辑运算就是循环的处理,用来判断是否该离开循环或继续执行循环内的指令。

组合逻辑电路(半加器全加器及逻辑运算)

组合逻辑电路(半加器全加器及逻辑运算)

组合逻辑电路是数字电路中的一种重要类型,主要用于实现逻辑运算和计算功能。

其中,半加器和全加器是组合逻辑电路的两种基本结构,通过它们可以实现数字加法运算。

本文将详细介绍组合逻辑电路的相关知识,包括半加器、全加器以及逻辑运算的原理和应用。

一、半加器半加器是一种简单的数字电路,用于对两个输入进行加法运算,并输出其和及进位。

其结构由两个输入端(A、B)、两个输出端(S、C)组成,其中S表示和,C表示进位。

半加器的真值表如下:A B S C0 0 0 00 1 1 01 0 1 01 1 0 1从真值表可以看出,半加器只能实现单位加法运算,并不能处理进位的问题。

当需要进行多位数的加法运算时,就需要使用全加器来实现。

二、全加器全加器是用于多位数加法运算的重要逻辑电路,它能够处理两个输入以及上一位的进位,并输出本位的和以及进位。

全加器由三个输入端(A、B、Cin)和两个输出端(S、Cout)组成,其中Cin表示上一位的进位,S表示和,Cout表示进位。

全加器的真值表如下:A B Cin S Cout0 0 0 0 00 0 1 1 00 1 0 1 00 1 1 0 11 0 0 1 01 0 1 0 11 1 0 0 11 1 1 1 1通过全加器的应用,可以实现多位数的加法运算,并能够处理进位的问题,是数字电路中的重要组成部分。

三、逻辑运算除了实现加法运算外,组合逻辑电路还可用于实现逻辑运算,包括与、或、非、异或等运算。

这些逻辑运算能够帮助数字电路实现复杂的逻辑功能,例如比较、判断、选择等。

逻辑运算的应用十分广泛,不仅在计算机系统中大量使用,而且在通信、控制、测量等领域也有着重要的作用。

四、组合逻辑电路的应用组合逻辑电路在数字电路中有着广泛的应用,其不仅可以实现加法运算和逻辑运算,还可以用于构建各种数字系统,包括计数器、时序逻辑电路、状态机、多媒体处理器等。

组合逻辑电路还在通信、控制、仪器仪表等领域得到了广泛的应用,为现代科技的发展提供了重要支持。

数字电路第2章逻辑代数基础及基本逻辑门电路

数字电路第2章逻辑代数基础及基本逻辑门电路
AB+AC+ABC+ABC = = AB+ABC)+(AC+ABC) ( = AB+AC
(5)AB+A B = A (6)(A+B)(A+B )=A 证明: (A+B)(A+B )=A+A B+AB+0 A( +B+B) = 1 JHR A =
二、本章教学大纲基本要求 熟练掌握: 1.逻辑函数的基本定律和定理; 门、 2.“与”逻辑及“与”门、“或”逻辑及“或”
“非”逻辑及“非”门和“与”、“或”、“非” 的基本运算。 理解:逻辑、逻辑状态等基本概念。 三、重点与难点 重点:逻辑代数中的基本公式、常用公式、 基本定理和基本定律。
JHR
难点:
JHR
1.具有逻辑“与”关系的电路图
2.与逻辑状态表和真值表
JHR
我们作如下定义: 灯“亮”为逻辑“1”,灯“灭”为逻辑“0” 开关“通”为逻辑“1”,开关“断”为逻辑 “0” 则可得与逻辑的真值表。 JHR
3.与运算的函数表达式 L=A·B 多变量时 或 读作 或 L=AB L=A·B·C·D… L=ABCD… 1.逻辑表达式 2.逻辑符号
与非逻辑真值表
Z = A• B
3.逻辑真值表
逻辑规律:有0出1 全1 出0
JHR
A 0 0 1 1
B 0 1 0 1
Z 1 1 1 0
二、或非逻辑 1.逻辑表达式 2.逻辑符号
Z = A+ B
先或后非
3.逻辑真值表
JHR
三、与或非逻辑 1.逻辑表达式 2.逻辑符号
1.代入规则 在任一逻辑等式中,若将等式两边出现的同 一变量同时用另一函数式取代,则等式仍然成立。
JHR
代入规则扩大了逻辑代数公式的应用范围。例如摩 根定理 A+B = A ⋅ B 若将此等式两边的B用B+C 取代,则有

数字电路知识点汇总

数字电路知识点汇总

数字电路知识点汇总第1章数字逻辑概论一、进位计数制1.十进制与二进制数的转换2.二进制数与十进制数的转换3.二进制数与16进制数的转换二、基本逻辑门电路第2章逻辑代数表示逻辑函数的方法,归纳起来有:真值表,函数表达式,卡诺图,逻辑图及波形图等几种。

一、逻辑代数的基本公式和常用公式1)常量与变量的关系A+0=A与A=⋅1AA+1=1与0⋅A0=A⋅=0AA+=1与A2)与普通代数相运算规律a.交换律:A+B=B+AA⋅⋅=ABBb.结合律:(A+B)+C=A+(B+C)⋅A⋅B⋅⋅=(C)C()ABc.分配律:)⋅=+A⋅B(CA⋅⋅BA C+A+=+)B⋅)(C)()CABA3)逻辑函数的特殊规律a.同一律:A+A+Ab.摩根定律:BBA+=A⋅A+,BBA⋅=b.关于否定的性质A=A二、逻辑函数的基本规则代入规则在任何一个逻辑等式中,如果将等式两边同时出现某一变量A的地方,都用一个函数L表示,则等式仍然成立,这个规则称为代入规则例如:C⋅+A⊕⊕⋅BACB可令L=CB⊕则上式变成L⋅=C+AA⋅L⊕⊕=LA⊕BA三、逻辑函数的:——公式化简法公式化简法就是利用逻辑函数的基本公式和常用公式化简逻辑函数,通常,我们将逻辑函数化简为最简的与—或表达式1)合并项法:利用A+1A=⋅B⋅,将二项合并为一项,合并时可消去=+A=A或ABA一个变量例如:L=B+BA=(C+)=ACACBBCA2)吸收法利用公式AA⋅可以是⋅+,消去多余的积项,根据代入规则BABA=任何一个复杂的逻辑式例如化简函数L=EAB++DAB解:先用摩根定理展开:AB=BA+再用吸收法L=E+AB+ADB=E B D A B A +++ =)()(E B B D A A +++ =)1()1(E B B D A A +++ =B A +3)消去法利用B A B A A +=+ 消去多余的因子 例如,化简函数L=ABC E B A B A B A +++ 解: L=ABC E B A B A B A +++ =)()(ABC B A E B A B A +++=)()(BC B A E B B A +++=))(())((C B B B A B B C B A +++++ =)()(C B A C B A +++ =AC B A C A B A +++ =C B A B A ++4)配项法利用公式C A B A BC C A B A ⋅+⋅=+⋅+⋅将某一项乘以(A A +),即乘以1,然后将其折成几项,再与其它项合并。

数字电子技术基础7 与、或、非(基本逻辑运算)1.3.1.1 与、或、非

数字电子技术基础7 与、或、非(基本逻辑运算)1.3.1.1 与、或、非
数字电子技术基础
7. 与、或、非(基本逻辑运算)
主讲人:杨聪锟
1. 问题的引入
数制与码制 常用的逻辑运算
逻辑门电路 布尔代数(逻辑代数基础)
1. 问题的引入
常用的 逻辑运算


基本逻辑运算

常用复合逻辑 同或
异或
与非 或非 与或非
2. 逻辑“与”
当一个逻辑命题的所有条件(输入)同时成立时,
结论(输出)才成立。
AB F
F A B AB
00 0 01 0 10 0 11 1
A &F B 矩形轮廓符号
A
B
F
特定外形符号
A FB 曾用符号源自2. 逻辑“或”一个逻辑命题的所有条件(输入)中,只要有一个
成立,结论(输出)就成立。 A B F
F A B
00 0 01 1 10 1 11 1
A ≥1 F B 矩形轮廓符号
A B
F
特定外形符号
A F
B 曾用符号
2. 逻辑“非”
逻辑命题的条件不成立时,结论必成立; 条件成立时,结论必不成立,
简言之,结论是条件的否定。
F A F A
AF
01 10
A1
FA
FA
F
矩形轮廓符号 特定外形符号
曾用符号

数字电路逻辑关系

数字电路逻辑关系

B +C + D+ E
实行原反互换后的部分就不需要再进 行加乘和“0” “1”互换了。
4.展开规则 展开规则也叫展开定理,主要有二个公式。 展开规则一:
P ( x1 , x 2 , Λ , x n ) = x1 P(1, x 2 ,Λ , x n ) + x1 P (0, x 2 , Λ , x n )
这里我们应把
看为一个整体M,上面有一个反号,就好象
M = B+C + D+ E
用代入规则替代以后一样。所以,若
P = A+ M

P = A ⋅ (B + C + D + E )
显然M式中的加乘、原反不应互换,否则就错了。 一个布尔变量或布尔式的上方有不止一个 反号时,反演时只能去掉最外层的一个,即整 个布尔式的反号 。 如式:
展开规则二推证如下:
P(x1 , x2 ,Λ , xn ) = x1P(x1 , x2 ,,Λ , xn ) + x1 P(x1 , x2 ,,Λ , xn ) = x1P(x1 , x2 ,,Λ , xn ) + x1 P(x1 , x2 ,,Λ , xn ) + P(x1 , x2 ,,Λ , xn ) + x1 x1 = [x1 + P(x1 , x2 ,,Λ , xn )][x1 + P(x1 , x2 ,,Λ , xn )]
例:(A+B)(A+B+C+DE) =(A+B)[(A+B)+(C+DE)] =(A+B)(A+B)+(A+B)(C+DE) =(A+B)+(A+B)(C+DE) =A+B (2) 定理12:A( A + B) = AB 在一个或与布尔式中,如果一个或项的反包 含在另一个或项之中,该或项的反是多余的。 现证明如下:

电工电子技术 第十二章逻辑门和常用组合逻辑电路 第三节逻辑代数的基本运算规则及定理

电工电子技术 第十二章逻辑门和常用组合逻辑电路 第三节逻辑代数的基本运算规则及定理

例:证明A+AB=A+B 解: A+AB=(A+A)(A+B)
=(A+B)
反演定理:A • B = A+B A+B = A • B
例:证明:若 F=AB+AB 则 F=AB+A B
解:F=AB+AB =AB•AB =(A+B)•(A+B)
=AA+AB+A B+BB =AB+A B
2. 利用逻辑代数公式化简
(1)并项法 A+A=1 (2)吸收法 A+AB=A(1+B)=A (3)消去法 A+AB=A+B (4)配项法 A=A(B+B)
例 :证明AB+AC+BC=AB+AC 配项法
解:AB+AC+BC=AB+AC+(A+A)BC =AB+AC+ABC+ABC =AB+ABC+AC+ABC
吸收法
=AB(1+C)+A(1+B) =AB+AC
例;:0• 0=0 • 1=1 • 0 1 • 1=1
0+1=1+0=1+1
0+0=0
0=1 1=0
(2)基本定律
交换律:A+B=B+A
A • B=B • A
结合律:A+(B+C)=(A+B)+C A • (B • C)=(A • B) • C
分配律:A(B+C)=A • B+A • C A+B • C=(A+B) • (A+C)

理论三 逻辑门电路

理论三 逻辑门电路
逻辑门电路
1
课前预备
熟练数制间的转换
重、难点
基本逻辑运算及基本逻辑门电路
1.基本逻辑运算及基本逻辑门电路
概念
在数字电路中往往用输入信号表示“条件”,用输出信号表示“结果”,而
条件与结果之间的因果关系称为逻辑关系,能实现某种逻辑关系的数字电
子电路称为逻辑门电路。
基本的逻辑关系有:与逻辑、或逻辑、非逻辑;
能实现非逻辑功能的电路称为非门电路,又称 反相器 ,简称非

非门电路的电路图形符号
非逻辑函数表达式: =

非逻辑功能为:“有0出1,有1出0”
2.复合逻辑运算
几种常用的复合逻辑运算
• 与非
或非
与或非
几种常用的复合逻辑运算
• 异或
• Y= A B
A
B
Y
0
0
0
0
1
1
1
0
1
1
1
0
几种常用的复合逻辑运算
与之相应的基本逻辑门电路有:与门、或门、非门。来自逻辑代数中的三种基本运算
与(AND)
或(OR)
非(NOT)
以A=1表示开关A合上,A=0表示开关A断开;
以Y=1表示灯亮,Y=0表示灯不亮;
三种电路的因果关系不同:
一、与逻辑和与门电路
1.与逻辑关系
当一件事情的几个条件全部具备之后,这件事情才能发生,否则不
三极管、MOS管和电阻等分立元件组成,也可以由集成电路组成。
与逻辑的真值表
与逻辑功能为:
“有0出0,全1出1”
与门电路的电路图形符号
逻辑表达式Y=A·B或
Y=AB
二、或逻辑和或门电路

数字电路中最基本的三种逻辑运算

数字电路中最基本的三种逻辑运算

数字电路是一种用来处理数字信号的电路,它由逻辑门组成,可以实现各种逻辑运算。

在数字电路中,最基本的三种逻辑运算分别是与运算、或运算和非运算。

本文将对这三种逻辑运算进行详细介绍,以帮助读者更好地理解数字电路的基本原理和运作方式。

1. 与运算与运算是指在两个信号同时为高电平时,输出为高电平;否则输出为低电平。

在数字电路中,与运算通常由与门来实现。

与门有两个输入端和一个输出端,只有在两个输入端同时为高电平时,输出端才会输出高电平。

与门的逻辑符号通常表示为“∧”。

2. 或运算或运算是指在两个信号中至少有一个为高电平时,输出为高电平;只有在两个输入端同时为低电平时,输出端才会输出低电平。

在数字电路中,或运算通常由或门来实现。

或门同样有两个输入端和一个输出端,只要两个输入端中至少有一个为高电平,输出端就会输出高电平。

或门的逻辑符号通常表示为“∨”。

3. 非运算非运算是指将输入信号取反,即如果输入信号为低电平,则输出为高电平;如果输入信号为高电平,则输出为低电平。

在数字电路中,非运算通常由非门来实现。

非门只有一个输入端和一个输出端,其输出信号与输入信号相反。

非门的逻辑符号通常表示为“¬”。

通过这三种最基本的逻辑运算,数字电路可以实现各种复杂的逻辑功能。

通过组合多个与门、或门和非门,可以构建出加法器、减法器、乘法器、除法器等各种算术逻辑单元,从而实现数字信号的加减乘除运算。

这三种逻辑运算的组合还可以实现逻辑判断、比较、选择等功能,为数字系统的设计和实现提供了基础。

数字电路中的与运算、或运算和非运算是最基本的逻辑运算,它们是数字电路的基石。

通过这三种逻辑运算,我们可以实现各种复杂的数字逻辑功能,从而构建出功能强大的数字系统。

希望本文对读者理解数字电路和逻辑运算有所帮助,谢谢阅读!上文中我们已经介绍了数字电路中最基本的三种逻辑运算,接下来我们将继续探讨这些逻辑运算在数字电路中的应用以及它们的扩展。

4. 异或运算异或运算是指在两个信号不输出为高电平;两个输入端相同时输出为低电平。

数字逻辑试题及答案

数字逻辑试题及答案

数字逻辑试题及答案一、选择题(每题2分,共20分)1. 以下哪个是数字逻辑电路中的基本逻辑运算?A. 加法B. 减法C. 乘法D. 与运算2. 一个3输入的与门,当所有输入都为高电平时,输出为:A. 低电平B. 高电平C. 浮空D. 不确定3. 一个D触发器的Q端在时钟信号上升沿触发时,其状态变化为:A. 保持不变B. 从0变到1C. 从1变到0D. 从D输入端状态变化4. 在数字电路中,以下哪个不是布尔代数的基本定理?A. 幂等律B. 交换律C. 反演律D. 分配律5. 一个4位二进制计数器在计数到31后,下一个状态是:A. 00000B. 00001C. 11111D. 不能确定6. 以下哪个不是数字逻辑电路设计中的优化方法?A. 布尔代数简化B. 逻辑门替换C. 增加冗余D. 逻辑划分7. 一个异或门的真值表中,当输入相同,输出为:A. 0B. 1C. 无法确定D. 无输出8. 在数字电路中,同步计数器与异步计数器的主要区别在于:A. 计数范围B. 计数速度C. 电路复杂度D. 计数精度9. 以下哪个不是数字逻辑电路中的存储元件?A. 触发器B. 寄存器C. 计数器D. 逻辑门10. 一个简单的数字逻辑电路设计中,如果需要实现一个2输入的或门,至少需要几个与门?A. 1B. 2C. 3D. 4答案:1. D2. B3. D4. C5. B6. C7. A8. B9. D10. A二、填空题(每空2分,共20分)1. 数字逻辑电路中最基本的逻辑运算包括______、或运算、非运算。

2. 一个2输入的与门,当输入都为高电平时,输出为______。

3. 布尔代数的基本定理包括______、结合律、分配律等。

4. 一个D触发器的Q端在时钟信号上升沿触发时,Q端状态与______相同。

5. 4位二进制计数器的计数范围是从______到1111。

6. 数字逻辑电路设计中的优化方法包括布尔代数简化、逻辑门替换、______等。

数字电路的基本知识3

数字电路的基本知识3
与运算 A • 0 0 A •1 A A • A 0 A • A A
或运算 A 0 A A 1 1 A A 1 A A A
非运算 A A
(2) 逻辑代数的基本定律 交换律:A B B A A• B B• A 结合律:(A B) C A (B C) ( AB)C A(BC) 分配律: A(B C) AB AC A BC (A B)(A C) 反演律: A B A • B AB A B
提取公因子A
ABC A(B C ) 利用反演律
ABC ABC A(BC BC)
消去互为 反变量的因子
A
2) 吸收法 利用公式 A AB A 将多余项AB吸收掉 化简逻辑函数 F AB AC ABC
F AB AC ABC …提取公因子AC
AB AC(1 B) …应用或运算规律,括号内为1
最简与或式的一般标准是:表达式中的与项最少,每个与 项中的变量个数最少。代数化简法最常用的方法有: 1) 并项法
利用公式 AB AB A 提取两项公因子后,互非变量消去。 化简逻辑函数 F AB AC ABC
F AB AC ABC
A(B C BC) …提取公因子A
A(B C B C) …应用反演律将非与变换为或非 A …消去互非变量后,保留公因子A,实现并项。
AB AC 3) 消去法
利用公式 A AB A B 消去与项AB中的多余因子A 化简逻辑函数 F AB AC BC F AB AC BC …提取公因子C
AB C(A B)
AB C AB …应用反演律将非或变换为与非
AB C …消去多余因子AB,实现化简。
4) 配项法 利用公式A=A(B+B),为某一项配上所缺变量。
(3) 逻辑代数的常用公式 吸收律:A AB A A(A B) A A (AB) A B

数字电路 第1章 逻辑代数基础

数字电路 第1章 逻辑代数基础

二、基本公式
① 0-1律 A· 0=0 ; A+1=1
②自等律
③重迭律 ④互补律 ⑤交换律 ⑥结合律 ⑦分配律 ⑧反演律 ⑨还原律
A· 1=A
A· A=A A· A=0 A· B· B= A A(BC)=(AB)C ;
;
; ; ;
A+0=A
A+A=A A+A=1 A+B=B+A A+(B+C)=(A+B)+C A+BC=(A+B)(A+C) ; AB=A + B
特点: (1)便于运算; (2)便于用逻辑图实现; (3)缺乏直观。
3、逻辑图:由各种逻辑门符号所构成的电路图.
A B C &
≥1
Y
特点: 接近工程实际。
4、不同表示方法之间的相互转换
(1)已知逻辑函数式求真值表: A B C Y
把输入逻辑变量所有可能的取 值组合代入对应函数式,算出其 函数值。
由“或”运算的真值表可知 “或”运算法则为: 0+0 = 0 1+0 = 1 0+1 = 1 1+1 = 1
有1出 1 全0为 0
⒊ 表达式 逻辑代数中“或”逻辑关系用“或”运算 描述。“或”运算又称逻辑加,其运算符为 “+”或“ ”。两变量的“或”运算可表示 为:Y=A+B 或者 Y=A B 读作:Y等于 A 或 B
A+AB=A+B
A+AB=(A+A)(A+B)=1•(A+B) =A+B
(4)包含律 证明:
对偶关系
A(A+B)=AB
AB+AC+BC=AB+AC

三种基本的逻辑运算

三种基本的逻辑运算

11
也可以用图2.2.2表示与 逻辑,称为逻辑门或逻 辑符号,实现与逻辑运 算的门电路称为与门。
A B

Y
A B
Y
图2.2.2 与门逻辑符号
若有n个逻辑变量做与运算,其逻辑式可表示为
Y A1A2An
2.2.2 或运算
或运算也叫逻辑加或逻辑或,即当其中一个条 件满足时,事件就会发生,即“有一即可
如图2.2.3所示电路,两个 并联的开关控制一盏灯就是或 逻辑事例,只要开关A、B有 一个闭合时灯就会亮。
6.与或非运算 与或非运算是“先与后或再非”三种运算的组合。
以四变量为例,逻辑表达式为:
Y ( AB CD)
上式说明:当输入变量A、B A
同时为1或C、D同时为1时, B
Y
输出Y才等于0。与或非运算 C 是先或运算后非运算的组合。 D
在工程应用中,与或非运算 由与或非门电路来实现,其
A B C
& 1 Y
真值表见书P22表2.2.6所示, D
逻辑符号如图2.2.9所示
图 2.2.9 与 或 非 门 逻 辑 符 号
7. 异或运算 其布尔表达式(逻辑函数式)为
Y A B AB AB
符号“⊕”表示异或运算,即两个输入逻辑变量取值
不同时Y=1,即不同为“1”相同为“0”,异或运算
用异或门电路来实现
其真值表如表2.2.6所示 其门电路的逻辑符号如图2.2.10
表2.2.6 异或逻辑真值

输入
输出
A
BY
所示
0
00
A B
=1 YA B
Y
0
11
1
01
1
10
图2.2.10 异或门逻辑符号

电子技术(数电部分-第2章 逻辑代数和逻辑函数

电子技术(数电部分-第2章  逻辑代数和逻辑函数

A B C ( A B) ( A C )
证明: 右边 =(A+B)(A+C)
A B C ( A B) ( A C )
; 分配律 ; 结合律 , AA=A ; 结合律
=AA+AB+AC+BC =A +A(B+C)+BC =A(1+B+C)+BC =A • 1+BC =A+BC
33 MHz
• 以三变量的逻辑函数为例分析最小项表示及特点
变量 赋值 为1时 用该 变量 表示; 赋0时 用该 变量 的反 来表 示。
33 MHz
最小项
使最小项为1的变量取值 A B C
对应的十 进制数
编号 m0 m1 m2 m3 m4 m5 m6 m7
ABC ABC A BC A BC AB C AB C ABC ABC
例1: F1 A B C D 0
F1 A B C D 0
注意 括号
注意括号
F1 ( A B) (C D) 1
F1 AC BC AD BD
与或式
33 MHz
例2: F2 A B C D E
F2 A B C D E
“+” 换成 “· ”,0 换成 1,1 换成 0,
则得到一个新的逻辑式 Y´,
则 Y´ 叫做 Y 的对偶式
A AB A
33 MHz
Y AB CD
对偶式
A( A B) A
Y ( A B)(C D)
2.2 逻辑函数的变换和化简
2.2.1 逻辑函数表示方法:四种,并可相互转换 真值表:将逻辑函数输入变量取值的不同组合 与所对应的输出变量值用列表的方式 一一对应列出的表格。 四 种 表 示 方 法

数字电路中加法器和减法器逻辑图分析

数字电路中加法器和减法器逻辑图分析

数字电路中加法器和减法器逻辑图分析1.加法器,减法器都是从一位的二进制数开始进行例题讲解,逐渐扩展到多位二进制位数之间的运算。

在设计逻辑电路的过程中,根据所描述的功能构建好真值表。

出题者喜欢要求读者用与或门,与或非门构建函数表达式。

它的原因在于依据真值表写函数表达式,最标准的就是最小项表达式。

以下小图的逻辑图来看与或门,我们的头脑中不能老是思维定势,认为输入就是两个,在实际生活中,输入应该非常多,远非两个,在逻辑符号中,要清楚地认识与非门的多输入的画法,将与门分成了好几格,每一格代表一个与门电路。

下小图可以写成AB+CD+EF(不认真考虑前面的输入),由细小的门集成为更大的门,将某一部分单独来看,它们就是一个整体,如(AB+CD+EF),体现在逻辑图中就是一个角。

如果从全图的角度看,在最后一级门电路中,每一个小整体代表着输出。

最后一级的与门中,有两个输入,有三个输入,这都是可以的,最多输入的个数是依照初始的输入的个数来定,不可能超过这个数,只可能少于这个数,因为对于某一输出而言,并非所有的输入对它都是有效的。

从最左边的所有输入,经过逻辑电路图,在最右边得到了所有的输出。

还有一点,这是与或表达式的逻辑图,如果在写逻辑表达式,包括化简变化函数式时,采用了不同于与或形式的表达式,那么最终得到的逻辑图就和下面的与或形式的逻辑图完全不一样。

2.一位的全减器是指,两个一位的二进制数之间进行减法运算。

全减器的特例就是半减器。

多位二进制减法器,是由加法电路构成的;在加法电路的基础上,减法与加法采用同一套电路,实现加减法共用。

3.这里的多位二进制数的减法,是指无符号数,为什么?将减法运算转换为加法运算,采用的是补数的方法完成的。

这就解释了为什么两者能共用一套电路,是不是减法在转换时,我们需要在加法电路的基础上进行一些小的扩展,来进行减法的补码转换?N反是每一位都取反,没有符号位,下式当中,A-B是减法,通过形式转化,将-B化为B反+1-2n,B是正数,A和B均为无符号数,通过补码的转变,我们成功的将-B变为了固定的-2n,但是这还是有减号,该怎么解决?仔细观察下面这张图,A和B是两个四位二进制数相减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重叠律: A A A
A A A
还原律(双重否定律): ( A) A
亦称 非非律
3.基本定理
A B B A 交换律: A B B A
利用真值表很容易证 明这些公式的正确性。 如证明A· B=B· A:
A 0 0 1 1 B AB BA 0 0 0 1 0 0 0 0 0 1 1 1
就发生。表达式为: Y=A+B+C+… 真值表 功能表
A
A A 开关 0 断开 0 断开 1 闭合
闭合 1
B 开关 B
B E 电路图
0 断开 1 闭合 0 断开
闭合 1
Y
Y 灯Y 0 灭 1 亮 1 亮 亮 1
L=AB 两个开关只要有一个接通,灯 就会亮。逻辑表达式为:
Y=A+B
实现或逻辑的电路称为或门。
证明: A(A+B )=A· A+A· B =A+A· B
功能表
开关 A 开关 B 断开 断开 闭合 闭合 断开 闭合 断开 闭合 灯Y 灭 灭 灭 亮
0 0 0 1
真 值 表
两个开关均接通时,灯才会 亮。逻辑表达式为:
Y=A•B
实现与逻辑的电路称为与门。
与门的逻辑符号:
A B
&
Y
Y=A•B
二、或逻辑(或运算) 或逻辑:当决定事件(Y)发生的各种条件A,B, C,…)中,只要有一个或多个条件具备,事件(Y)
求证: (17式)
A+BC=(A+B)(A+C)
课 本 上 用 真 值 表 证 明
证明: 右边 =(A+B)(A+C) =AA+AB+AC +BC =A +A(B+C)+BC =A(1+B+C)+B C =A • 1+BC =A+B =左边 C
二、常用公式
1. A+AB = A 2. A+A′B= A+B A′+AB= A(A′+B)= AB
A ⊙ 1= A A ⊙ A′= A ⊙ A= 1 0
5、 与或非运算:逻辑表达式为:
Y ( A B C D)
A B C D
& ≥1 Y
与或非门的逻辑符号
§2.3
逻辑代数的基本公式和常用公式
一、基本公式
1.常量之间的关系
与运算:0 0 0
或运算: 0 0 0
0 1 0
A
1
Y
Y=A′
常用的逻辑运算
1、与非运算: 逻辑表达式为: Y ( A B)
A 0 0 1 1 B Y 0 1 1 1 0 1 1 0 真值表
A B
&
Y
与非门的逻辑符号
2、或非运算: 逻辑表达式为:Y ( A B)
A 0 0 1 1 B Y 0 1 1 0 0 0 1 0 真值表
或门的逻辑符号:
A B
≥1
Y=A+B
三、非逻辑(非运算) 非逻辑:指的是逻辑的否定。当决定事件(Y)发生的 条件(A)满足时,事件不发生;条件不满足,事件反
而发生。表达式为:Y=A′
真值表 功能表
R E 电路图 A
Y
A开关 A 0 断开 1 闭合
灯Y Y 1亮 0灭
实现非逻辑的电路称为非门。
非门的逻辑符号:
A′+B
A′(A+B)= A′B
注: 红色变量被吸收 掉!统称 吸收律
证明:
A+A′B =(A+A′) •(A+B) ;分配律
=1•(A+B) A+BC=(A+B)(A+C)
=A+B
3. AB+AB ′= 4. A(A+B )= A
A
(A+B ) (A+B′ )= A
注: 红色变量被吸收 掉!也称 吸收律
4、同或运算:逻辑表达式为:
Y AB AB =A⊙B
A 0 0 1 1 B Y 0 1 1 0 0 0 1 1 真值表
A B
=
Y
同或门的逻辑符号
L=A+B
异或和同或互为反运算
同或逻辑的运算规则: 0 ⊙ 0= 1 0 ⊙ 1= 0 1 ⊙ 0= 0 1 ⊙ 1= 1 A ⊙ 0= A′
间的逻辑关系,因此数字电路又称逻辑电路,其研究
工具是逻辑代数(布尔代数或开关代数)。
逻辑变量:用字母表示,取值只有0和1。 此时,0和1不再表示数量的大小, 只代表两种不同的状态。
§2.2
逻辑代数中的三种基本运算
一、与逻辑(与运算) 与逻辑:仅当决定事件(Y)发生的所有条件(A,
B,C,…)均满足时,事件(Y)才能发生。表达
( A B) C A ( B C ) 结合律: ( A B) C A ( B C )
A (B C) A B A C 分配律: A B C ( A B) ( A C )
( A B) A B 反演律(摩根定律): ( A B) A B
1 0 0
11 1
0 11
1 0 1
111
非运算: 1 0
0 1
请特别注意与普 通代数不同之处
2.基本公式
A 0 A 0-1 律: A 1 A
A 1 1 A 0 0
互补律: A A 1
分别令A=0及 A=1代入这些 A A 0 公式,即可证 明它们的正确 性。
式为: Y=ABC…
例:开关A,B串联控制灯泡Y
A A A A E E E E
电路图
BB B B YY Y Y
A、B都断开,灯不亮。 、B都接通,灯亮。 AA 接通、 B断开,灯不亮。 A断开、B接通,灯不亮。
将开关接通记作1,断开记作0;灯亮记作1,灯
灭记作0。可以作出如下表格来描述与逻辑关系:
考核方式:期末考试时间为120分钟,闭卷, 具体考试时间至少提前1周通知学生。 成绩评定:平时10%,实验30%,期末考 试60%
逻辑代数基础
§2.1
数字电路的基础知识
§2.2 §2.3
§2.4
逻辑代数及其运算规则 逻辑函数表示方法
逻辑函数的化简
§2.1
概述
在数字电路中,主要研究的是电路的输入输出之
A B
≥1
Y
或非门的逻辑符号
L=A+B
3、异或运算:逻辑表达式为:
Y A B AB A B
A 0 0 1 1 B Y 0 0 1 1 0 1 1 0 真值表
A B
=1
Y
异或门的逻辑符号
异或逻辑的运算规则: 0⊕0= 0⊕1= 1⊕0= 1⊕1= 0 1 1 0 A⊕0= A A⊕1= A⊕A′= A⊕A= 0 A′ 1
相关文档
最新文档