文献翻译-超精密加工与超高速加工技术
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
附录
附录1:
英文原文
Ultraprecisio processing,andultra-high-speed processing
technologies
First, Technical overview
Sophisticated, ultra-precision processing is a relative concept but as a general increase in the level of craftsmanship, different divisions have different age limits, but no strict uniform standards. From the current level of mechanical processing technology and ultra precision processing usually processing precision<0.3μm ,Surface roughness Ra value<0.03μm.
Hypervelocity processing technology refers to the cutlery used paint materials through greatly increased cutting speed and chin to improve the material removal rate of speed, accuracy and Processing processing quality modern processing technology.
Hypervelocity scope for cutting speed processing different working materials, different ways and different machines. Currently, the general view, ultra high speed machining of the cutting speed range of materials : aluminum alloy over 1600m /min, cast iron for 1500m /min, ultra heat -300m /min nickel alloys, titanium alloys to 150 ~1000m /min, fibre reinforced plastics for 2000 ~9000m /min. The cutting speed range of alternative processes for Chexue 700 ~7000m /min, Xianxiao 300 ~6000m /min, drilling 200 ~1100m /min, grinding 250m /s above, and so on.
Ultra high speed processing technologies include : ultra high speed machining and grinding research mechanisms, hypervelocity main modules manufacturing technology, ultra high speed into the module manufacturing technology, ultra high-speed processing with cutlery and abrasive manufacturing technology, ultra high speed processing online automatic detection and control technologies.
Ultra precision processing refers to the current processing components size precision than 0.1μm, the surface roughness Ra <0.025 μm, and the machine tools used in the resolution positioning accuracy and repetitive than 0.01μm processing technology, also known as the Asian micrometres processing technology, and is to nano-class processing technology
development.
Ultra precision processing technology include : ultra precision processing experiment, ultra precision processing equipment manufacturing technology research, tools and Renmo super precision processing technology research, technology and ultra-precision measurement error compensation technology research, ultra precision processing work study environmental conditions.
Second, the current situation and development trend
1)Ultra high speed processing
Developed ultra-high-speed processing of industrial research earlier, the high level. In this technology, in a leading position in the country mainly Germany , Japan , the United States , Italy .
In hypervelocity processing technology, the frame material to achieve ultra high speed processing tool is the prerequisite and preconditions, ultra high speed grinding machine technology is a modern method of hypervelocity processing techniques, and high-speed digital machine tools and processing center is the key to achieving ultra-high-speed processing equipment. Currently, cutlery materials from carbon steel and alloy tool steel, the high-speed steel, hard alloy steel, ceramic materials, the development of artificial diamonds and Jujing diamond (PCD), and Ju Jing cubic feet Danhuapeng Danhuapeng (CBN). Cutting speed is as innovative materials and cutlery from the former 12m /min to 1200m /min above. Abrasive Wheels materials used in the past primarily corundum is, silicon carbide is, the United States G.
E companies in the 1950s, synthetic diamonds success, the 1960s was the first success CBN. 1990s ceramic or resin combination agents CBN grinding wheel, diamond grinding wheel speed up 125m /s lines, some up to 150m /s and single-level electroplating CBN grinding wheel to 250m /s. It was felt that with the new cutlery (Saint), the continuous development of materials, cutting speed to be doubled every decade, the emergence of subsonic and supersonic processing will not be too far off.
In hypervelocity cutting technology, developed in 1976 by a U.S. company Vought Taiwan hypervelocity milling machine, the maximum rotational speed of 20000rpm reached. Special attention is the Federal University of production engineering and machine tools industry Darmstadt Institute (PTW) from 1978 began a systematic study of hypervelocity alternative mechanisms for the various metals and non-metallic materials for high-speed machining tests Federal dozens of enterprises and organizations provided more than 2,000 million DM in support of the study, since the late 1980s, since the commercialization of emerging ultra-high-speed machining machine tools, super-high-speed machine tools from a single super high-speed milling machine into hypervelocity vehicles milling machine, drilling of high-speed milling
machine and processing centres. Switzerland , the United Kingdom , Japan has launched its ultra high speed machine tools. Japan Hitachi smart machines HG400III maximum rotational speed of the speech-processing center 36000 ~40000r/min, workstations rapid mobile speed 36 ~40m /min. Using linear electrical U.S.-based high-speed processing HVM800 Ingersoll companies to move into the center for 60m /min speed.
In high-speed and ultra-high-speed grinding technology, people developed high-speed, ultra high speed grinding, deep relief for grinding into, deep into the fast grinding (HEDG), multi-piece grinding wheel and multi-grinding wheel-grinding, and many other high-speed efficient grinding, high-speed efficient grinding technology in the past 20 years has been considerable development and application. Germany Guehring Automation Company in 1983 created the first time the world's most powerful 60kw Taiwan Firm CBN grinding wheel grinder, versus reach 140 ~160m /s. A German enjoy Industrial University, the University of Bremen in high-skills research achieved world-recognized achievements, and actively in the aluminum alloy, titanium alloys, nickel alloys, and other difficult for recreational materials for the efficient processing of deep research skills. German Bosch company processing applications CBN grinding wheel speed grinding wheel Chixing using hypervelocity grinding electroplating CBN grinding wheel to replace the original roll teeth and shaving teeth processing techniques, and materials processing 16MnCr5 gear Chixing, Vs= 155m /s its reach 811mm 3 /mm.s Q, German companies use high-speed Kapp deep processing lumber mill parts Shencao, working materials for 100Cr6 bearing steel, using electroplating CBN grinding wheel, reached 300m /s versus the Q`= 140mm 3 /mm.s, grinding processing, the leaves will quench pump rotors a Zhuangjia 10, a meticulous rotor shafts, grinding, her chin to speed 1.2m /min average processing time within 10 seconds of each rotor, Caokuan accuracy assured in two 16ug m, a grinding wheel chain 1,300 working. Currently, the Japanese industry has 200m /s practical grinding pace, the United States Conneticut University grinding Research Center , 1996 its intention Bamboo high-speed grinder, the grinding wheel grinding maximum speed of 250m /s.
2)Ultra precision processing
Ultra precision processing technology in the leading position internationally in the countries the United States , Britain and Japan . These countries not only ultra-precision processing technology sets the overall high level, but also a very high degree of commercialization.
The United States is conducting the first study ultra-precision processing technology, and so far its leading position in the world countries. Back in the 1950s, because of space needs in the development of sophisticated technology, the United States developed the first ultra-precision machining diamond cutlery technology called "SPDT technology" (Single Point Diamond Turning), or "micro-inch technology" (1 micro-inch =0.025μm) and the development of
corresponding ultra-precision air bearing spindle machine tools. For processing laser nuclear fusion reflection mirror, and tactical missiles and manned spacecraft with large spherical non-spherical parts, and so on. If the United States LLL Y-12 factories and laboratories in support of the United States Department of Energy in July 1983 successfully developed large ultra-precision diamond lathe DTM-3 type, the machine tool chain largest parts 2100mm , weight 4500kg laser nuclear fusion using a mirror reflection of the various metals, using infrared devices spare parts, large celestial telescopes (including X-ray celestial telescopes). The processing precision machine tools to shape error to reach 28nm (radius), Yuan degrees and horizontal degrees of 12.5nm, surface roughness for Ra4.2nm processing. The Machine Tool Laboratory in 1984 with the development of ultra-precision lathe, a large Lodtm is now recognized in the world the highest level of technology, precision highest-precision lathe large diamonds.
In ultra-precision processing technology, the British Cranfield Institute of Technology belongs Cranfield Precision Engineering Institute (short for CUPE) enjoy higher prestige, it is the world's precision engineering research centres, the British super-precision processing technology unique. If CUPE production Nanocentre (nanometer processing center) for ultra-sophisticated Chexue can also carry Motou can conduct ultra precision grinding, precision processing final shape up 0.1μm, the surface roughness Ra
Crystal Mirror processing methods usually used grinding, grinding pace of the V=25 ~35m /s, Cumo, t=0.02 ~0.07mm , Jingmo, t=3 ~10μm; When the oil stone, left, V=10 ~50m /min, material removal rate to 0.1μm ~1μm/min. Ultra-precision grinding may reach 0.01μm ~0.002μm Ra Yuan degrees and the surface roughness.
Spherical mirror research, and he requested a study be maintained in the processing of surface upward law, there are two guaranteed ways : First, through the Site (1) positioning itself since the body to reach; Second, through the use of digital systems for ground first (2) in favor of one Kok to achieve. Spherical mirror of himself behind in the use of laser processing law is the establishment of interference device (4) surface (3) measurement error basis. Measurement, laser interference device along the X and Y coordinates of movement in one direction or along X,Y movement and workstations (5) rotation, the mirror errors measurements were recorded in analog or digital volume of memory devices, and then proceed to deal with. According to the directive from digital systems Motou (the Site) was marked by the movement of a given face the greatest error and bias Department finds inter materials. After the surface was re-testing and duplication processes. It was so gradual convergence in the way of achieving the required face
precision. Graphic processing is the mirror of the main methods used for grinding and processing techniques behind the current bill could have reached the highest level degrees
3)Physical processing of France
There are many methods of physical processing, which was the most widespread application is Feb abrasive polishing and ion beams surface processing. The former is the essence of the electrolytic processes resulting from the oxidation and left by the abrasive material removed from the surface to be processed was the mirror; After firing on ion generator which is the ion beams on the surface.
In addition to the above methods, there are other ultra-sophisticated composite processing methods, such as electric spark shape processed and then used fluid polishing law, electrochemical polishing law, ultrasonic chemical polishing law, power equipment suspended law, law and the use of magnetic fluid grinding Elid grinding technology law. Elid technology used optical glass processing non-spherical lenses, face up to 0.2μm accuracy, surface roughness is reached Ra=20nm.
Thrid,Super-precision processing machine tool design and manufacture
Ultra precision processing machine tool design and manufacture of key and core issue is that super-precision machining and objectives. Thus, the super-precision processing machine tool design and manufacture of the basic principles and requirements are : to eliminate or reduce the sources of heat and Zhenyuan machine tools; Improve the structure of rigidity and geometric precision machine tools; Reduce the deformation machine tools (including temperature deformation and strength deformation) of the impact of precision machine tools for processing. To achieve these basic principles and requirements, ultra precision processing machine tool design, some of the principles often take measures :
The first is to be made or used friction heat large transmission devices (such as mechanical Mojitiaosu devices), and the process of heat large sources of heat (such as electrical, cooling lubricants boxes, etc.) and structural separation or machine tools identity insulation to avoid heat from the structure of the machine tool machine tools identity caused hot deformation.
Choice of hot and heat conduction rate coefficient alpha coefficient of the material for low value of machine tool λimportant parts materials. Meanwhile, it should be used as thermal physical properties to the same or similar materials in the manufacture of machine tool components and spare parts.
Components designed to heat symmetrical structure, but should consider forced air or liquid cooling and set aside corresponding coolant flow cycle routes. When cooling in the size range
200mm ~1500mm , wind flow should be (3 ~10) m 3 /s or liquid flux for (1 ~10) L/s, thereby maintaining separate temperature fluctuations ±0.05°C and ±0.02°C meridian east. Service to individual strong sources of heat (such as main bearings) arising from the heat and, if necessary, be devoted to the thermal control away.
Ultra precision processing machine tools not only to consider the installation and work in constant temperature room, but in a very high-precision requirements, should be considered in the temperature control machine tools ±0.01°C meridian east of the oil shower thermostatic box, the machine tool must be fully automated process or remotely, it was not at the scene, to avoid human activity and temperature conditions impact on the environment.
In order to avoid vibration impact processing accuracy, in addition to the installation of machine tools in the air supports, spring-loaded supports or other effective Gezhen device supports the foundations, the machine tool rotary movement of a motion to strictly, the volume of residual imbalance to be smaller than 0.5 ~1g .mm. At the same time, in order to eliminate and reduce machine tool itself Zhenyuan, a campaign to try to smooth the drivetrain system, such as non-contact pneumatic and liquid transmission, or to avoid using an impact on the transmission, if the gap for the institutions.
Zhenyuan vibration frequencies through adjustments (such as changes in rotational speed), or through the quality of machine tool technology systems and spring-loaded cut for the choice of parameters to the vibration frequencies and Zhenyuan machine tool technology systems inherent frequency away from each other, avoid resonance zone, and reduce the impact of vibration on the machine tool.
Choice of a high Zunijishuo materials such as natural marble, artificial marble, ceramic, or using the double wall unclear sand cast iron pieces as the structure of machine tools to ensure a high degree of internal decay and external from the vibration, because vibration decay results in direct ratio Zunijishuo (decay index). Under normal conditions, the decay index for 0.006 ~0.008 cast iron, and the degradation of natural marble and artificial marble index respectively 0.02 ~0.04 0.06 ~0.08; unclear sand and the double wall of the metal structure can greatly increase damping, and thus greatly enhance decay vibration effects.
The main components of the design is a key indicator of rotation accuracy and rigidity, for the priority use of a low noise temperature axis of electrical or electromagnetic torque and through the membrane and the couplings connected with the main axis of a driven, since the main bearings are used with the functional positioning liquid static pressure spherical bearings structures. The main structure in this precision (radial and axial beating) to 0.01μm. When the pressure of work for 0.3MPa ~0.6MPa, bearings average cut for 200N ~400N/μm, liquid static pressure bearings and 600N ~1000N/μm. But for the sake of not more than 0.05 μm
line beating, oil pressure fluctuations should not be greater than the value of 0.01 MPa, fluctuations should not be larger than 0.05°C
Into the design to the transmission main requirements are : to ensure effective compensation for the error dynamic precision; 5nm the minimum achievable pulse displacement; After the introduction of amendments to the system of 2nm high positioning accuracy. To this end, the choice to run into the following manner : Gunzhusigang deputy. Characterized by rigidity large, achievable incremental shift to 100nm (0.1μm).
Friction transmission. Transmission cut to 50N ~100N/μm, pull-100N, achievable incremental movement to 5nm. Deficiency is the low life expectancy, lack of flexibility.
(a) transmission. Only suitable for use in computerized bed.
Piezoelectric and magnetostrictive transmission. Movement of less than 5nm can, but the general itinerary of a small, only 100 ~200μm, the majority of cases it is with other transmission methods (such as Gunzhusigang Deputy) portfolio.
Since the positioning of static pressure Sigang deputy. Chixing Kok characterized as small (only 10 meridian east), the cut large (up to 100N ~1000N/μm) and can achieve modest incremental displacement. Youwen shortcomings is the guarantee of stability and hydraulic systems more complex.
Incremental-hydrauli ctransmission.Cut up 600N/μm,80nm displacement incremental, but oil complex systems.
Electromagnetic Sigang Deputy transmission. It is a rare material from the magnetic Tu Sigang mixture of the nut with a coil interaction to achieve transmission. Achievable modest incremental displacement, but cut too low, only 10N/μm.
Guide design. Guide is ultra precision processing machine tools, to ensure the realization of sophisticated trace into one of the important elements that have multiple choices, but is most widely used in liquid static pressure guide and guide. The former cut to 6KN ~8KN/μm and 0.02μm ~0.04μm accuracy guarantee displacement 1μm/ 400mm itinerary; For the latter cut 1KN ~2KN/μm, when gas membrane thickness for 4μm ~8μm, and liquid static pressure guide can guarantee the same displacement precision. Static pressure of the liquid and Qguide may be as high as 0.02μm/ 100mm linear.
In the overall layout design, ultra-precision machine tool processing structure shall be divided into parts and bearing measurement. At this time, the precision machine tools can achieve largely depends on the validity of measurement systems. Therefore, generally using laser interference devices such as high-precision, high-resolution instruments for measuring devices, and installed in separate supports the measurement framework, and not only the installation of measuring
devices, Abeche principles to be observed in a broader understanding, but also to comply with the principles of Abeche. Abeche principles, to be close to the knife point measurement axis, in order to eliminate the possibility of error by lever principles enlarged. From this standpoint, guide and measuring devices should be located at the same level ground, carrying system in the machine tool to cut and avoid the use of air-shen not constant element.
中文翻译
超精密加工与超高速加工技术
一.技术概述
精密、超精密加工是个相对概念,而且随着工艺水平的普遍提高,不同年代有着不同的划分界限,但并无严格统一的标准。
从目前机械加工的工艺水平来看,超精密加工一般指加工精度<0.3μm ,表面粗糙度Ra 值<0.03μm 的加工。
同时也包含加工尺寸在微米级的微细加工。
超高速加工技术是指采用超硬材料的刃具,通过极大地提高切削速度和进给速度来提高材料切除率、加工精度和加工质量的现代加工技术。
超高速加工的切削速度范围因不同的工件材料、不同的切削方式而异。
目前,一般认为,超高速切削各种材料的切速范围为:铝合金已超过1600m /min ,铸铁为1500m /min ,超耐热镍合金达300m/min ,钛合金150~1000m/min ,纤维增强塑料为2000~9000m/min 。
各种切削工艺的切速范围为:车削700 ~7000m/min ,铣削300~6000m/min ,钻削200~1100m/min ,磨削250m /s以上等等。
超高速加工技术主要包括:超高速切削与磨削机理研究,超高速主轴单元制造技术,超高速进给单元制造技术,超高速加工用刀具与磨具制造技术,超高速加工在线自动检测与控制技术等。
超精密加工当前是指被加工零件的尺寸精度高于0.1μm ,表面粗糙度Ra 小于0.025 μm ,以及所用机床定位精度的分辨率和重复性高于0.01μm 的加工技术,亦称之为亚微米级加工技术,且正在向纳米级加工技术发展。
超精密加工技术包括: 超精密加工试验, 超精密加工设备制造技术研究、工具和Renmo 超精密加工技术的研究、技术和超精密测量误差补偿技术研究, 超精密加工工作环境条件研究。
二.现状和发展趋势
1) 超高速处理
工业发达国家对超高速加工的研究起步早,水平高。
这种技术处于领先地位, 主要是德国、日本、美国、意大利等。
在超高速加工技术、超硬材料是实现超高速加工工具是前提和先决条件, 超高速研磨机技术是现代方式高速加工技术、高速数控机床、加工中心是实现超高速加工的关键设备. 目前, 刀具材料碳素钢和合金工具钢、高速钢、硬质合金钢、陶瓷材料、发展到人造金刚石及聚晶金刚石(PCD)、立方氮化硼及聚晶立方氮化硼(CBN)。
切削速度亦随着刀具材料创新而从以前的12m /min 提高到1200m /min 以上。
砂轮材料过去主要是采用刚玉系、碳化硅系等,美国G.E 公司在50 年代, 合成金刚石取得成功,1960首次研制成功CBN。
90 年代陶瓷或树脂结合剂CBN砂轮、金刚石砂轮线速度可达125m /s ,
有的达150m/s 、单层电镀CBN砂轮可达250m /s. 有人认为, 随着新刀具(磨具), 不断开发新材料、切割速度是每10 年增加一倍, 亚音速和超音速加工出现不会太遥远.
在高速切割技术方面, 于1976 年由美国一家Vought公司开发一台超高速铣床, 最高转速达20000rpm 的. 特别注意的是联邦大学生产工程和机床工业282 研究所(PTW) 从1978 年开始有系统地研究了超高速替代机制的各种金属和非金属材料进行高速切削试验联邦几十个企业和组织提供了2000 多万马克支持该项研究, 自80 年代末, 由于新兴商业超高速切削机床、超高速机床从单一的超高速铣床成为高速车铣床、钻高速铣床、加工中心. 瑞士、英国、日本推出其超高速机床. 日本日立智能机器Hg400iii 最高转速为主轴加工中心36000~40000r/min 、工作台快速移动速度36~40 m/min . 采用直线电机的美国Ingersoll 公司的HVM800 型高速加工中心进给移动速度为60m /min 。
在高速和超高速磨削技术、人们开发了高速、超高速磨削、深切减免碾磨削、深入的快速磨削(HEDG) 、多片砂轮和多砂轮磨削, 以及其他许多高速高效率磨削, 高速高效率磨削技术在近20 年来取得了巨大的发展和应用. 德国Guehring ,Automation 公司成立于1983 年制造出了当时世界第一台最具威力的60kw 强力CBN 砂轮磨床,Vs 达到140 ~160m/s ,德国阿享工业大学、Bremen 大学的高技能的研究取得了举世公认的成就, 并积极在铝合金、钛合金、镍合金等难加工材料方面进行高效深磨的研究,德国Bosch 公司应用CBN 砂轮高速磨削加工齿轮齿形,采用电镀CBN砂轮超高速磨削代替原须经滚齿及剃齿加工的工艺,加工16MnCr5材料的齿轮齿形,Vs =155m /s ,其Q 达到811mm 3 /mm.s ,,德国Kapp 公司应用高速深磨加工泵类零件深槽,工件材料为100Cr6 轴承钢,采用电镀CBN 砂轮,Vs 达到300m /s ,其Q` =140mm 3/mm.s ,磨削加工中,可将淬火后的叶片泵转子10个一次装夹,一次磨出转子槽,磨削时工件进给速度为1.2m /min ,平均每个转子加工工时只需10 秒钟,槽宽精度可保证在 2 μm ,一个砂轮可加工1300个工件。
目前, 日本工业实用磨削速度200m /s, 美国Conneticut 大学磨削研究中心,1996 年其其无心外圆高速磨床、砂轮机最大速度250 m /s.
2) 超精密加工
超精密加工技术在国际上的领先地位的国家美国、英国和日本. 这些国家不仅是超精密加工技术, 集整体水平, 而且商业化程度相当高.
美国是第一个进行研究超精密加工技术, 到目前为止, 处于世界领先地位的国家. 早在20 世纪50 年代, 由于地方发展的需要精密的技术, 美国研制首超精密机械钻石刀具技术称为\ 称为“SPDT 技术”(Single Point Diamond Turning )或“微英寸技术”( 1 微英寸=0.025 μm ),并发展了相应的空气轴承主轴的超精密机床。
加工激光核聚变反射镜、战术导弹、载人飞船大型球形非球形零件等. 如美国LLL 实验室和Y-12 工厂在美国能源部的支持下, 于1983 年7 月研制成功大型超精密金刚石车床DTM -3 型,该机床可加工最大零件2100mm 、重量4500kg 的激光核聚变用的各种金属反射
镜、红外装置用零件、大型天体望远镜(包括X 光天体望远镜)等。
该机床的加工精度可达到形状误差为28nm (半径),圆度和平面度为12.5nm ,加工表面粗糙度为Ra4.2nm 。
该机床与该实验室1984 年研制的LODTM 大型超精密车床一起仍是现在世界上公认的技术水平最高、精度最高的大型金刚石超精密车床。
在超精密加工技术方, 英国克兰菲尔德技术学院所属的克兰菲尔德精密工程研究所( 简称CUPE) 享有较高的声誉, 它是世界上的精密工程研究中心之一、英国超精密加工技术独特. 如CUPE 生产Nanocentre( 纳米加工中心) 超精密chexueMotou 也能进行超精密磨削、加工工件的形状精度可达0.1 μm , 表面粗糙度Ra<10nm 圆柱形镜面通常用磨削方法加工,磨削速度选V=25~35m /s ,粗磨时t=0.02~0.07mm ,精磨时t=3~10μm ;当用油石研、抛时,V=10~50m /min ,材料的去除速度为0.1μm~1μm/min 。
超精磨削可达到0.01μm 的圆度和Ra=0.002μm 的表面粗糙度。
球形镜面研、抛时要求研具保持在被加工表面的法向上,有两种保证方法:一是通过研具(1)本身的自定位机构来达到;二是通过采用数控系统使研磨头(2)倾斜一角来实现。
球形镜面的磨抛加工法是建立在借助激光干涉仪(4)进行表面(3)的误差测量的基础上。
测量时,激光干涉仪沿X 和Y 坐标移动,或沿X ,Y 中之一的方向移动和工作台(5)转动,镜面误差的测量结果被记录在模拟量或数字量的记忆装置中,然後进行处理。
根据来自数控系统的指令磨头(研具)被移动到标有对给定面形误差最大的偏差处并磨除材料。
之後表面被重新检测和重复加工工序。
就这样以逐步趋近的方法去达到所要求的面形精度。
3 )电物理加工法
电物理加工的方法有多种,其中获得最广泛应用的是电磨料抛光和离子束表面加工。
前者的实质是使电解加工过程中所产生并留下的氧化膜由磨料从被加工表面上去掉以获得镜面;後者则是借助离子发生器射出的离子束对表面进行研、抛。
除上述方法之外,还有其他的超精密复合加工方法,如电火花成形加工後继而采用的流体抛光法、电化学抛光法、超声化学抛光法、动力悬浮研磨法、磁流体研磨法以及采用ELID 技术的磨削法等。
采用ELID技术进行光学玻璃非球面透镜加工时面形精度可达0.2μm ,表面粗糙度则达Ra=20nm 。
三.超精密加工机床的设计与制造
超精密加工机床设计与制造的关键与核心问题是保证超精密加工工艺和目标的实现。
因此,超精密加工机床的设计和制造的基本原则和要求是:消除或减少机床上的热源和振源;提高机床的结构刚度和几何精度;减少机床的变形(含温度变形和力变形)对机床加工精度的影响等。
为了实现这些基本原则和要求,超精密加工机床设计时,经常采取的一些原则措施有:
首先是尽量不用或少用摩擦发热量大的传动装置(如机械无级调速器),并把工作过
程中发热量大的热源(如电机、冷却润滑油箱等)与机床本体结构分离或隔热,以避免热量落入机床本体引起机床结构的热变形。
选用热胀系数α和导热系数λ值低的材料作机床的重要零部件材料。
与此同时也要尽量采用热物理特性相同或相近的材料来制造机床的构件和零部件。
零部件的结构设计力求热对称,而且应考虑采取强迫的风冷或液体冷却并预留相应的冷却液循环流动通道。
当冷却的尺寸范围在200mm~1500mm 时,风的流量应为(3~10)m 3 /s 或液体的通量为(1~10)L/s ,从而可分别保持温度波动为±0.05 °C 和±0.02 °C 。
对个别强热源处(如主轴轴承)所产生的热量,必要时可采用专门的热管带走。
超精密加工机床不仅要考虑安装和工作在恒温室里,而且在极高精度要求的情况下,还应考虑控制机床工作在温度±0.01 ° C 的油淋浴的恒温箱中,因此,机床的工作过程必须是完全自动或遥控的,不能有人在现场,以免人的活动和体温对环境条件产生影响。
为了避免振动影响加工精度,除了机床必须安装在由空气支承、弹簧支承或其他有效的隔振器支承的地基上外,机床上的旋转运动件也要严格进行动平衡,残馀不平衡量应小于0.5~1g.mm 。
与此同时,为了消除和减少机床本身内部振源,要尽量采用运动平稳的传动系统,如非接触的气动和液体传动,禁止或避免采用带有冲击力的传动,如有间隙的换向机构等。
通过振源振动频率的调整(如改变转速)或通过对机床工艺系统的质量(m)和弹簧刚度(k)等动力参数的选择使振源的振动频率与机床工艺系统的固有频率相互远离,避开共振区,减少振动对机床工作的影响。
选用具有高内阻尼系数的材料,如天然大理石、人造大理石、陶瓷等或采用不清砂的双层壁铸铁件作为机床的结构件,以保证高度衰减内部产生和外部传来的振动,因为振动衰减的效果正比于阻尼系数(即衰减指数)。
正常情况下,铸铁的衰减指数为0.006~0.008 ,而天然大理石和人造大理石的衰减指数则分别为0.02~0.04 和0.06~0.08 ;不清砂的双层壁铸件可以大大增加结构的内阻尼,因而可大大提高衰减振动的效果。
主轴部件设计的关键指标是回转精度和刚度,为此优先采用带有温控的低噪音主轴电机并通过扭矩或各种电磁的和薄膜的联轴节与主轴联接进行驱动,主轴轴承则采用具有自定位功能的球面气浮或液体静压轴承结构。
用此结构的主轴精度(径向和轴向跳动)可达0.01μm 。
当工作压力为0.3MPa~0.6MPa 时,气浮轴承的平均刚度为200N~400N/μm ,液体静压轴承则为600N~1000N/μm 。
但为了主轴跳动不超过0.05μm ,供油压力的波动值不应大于0.01MPa ,油温波动也不应大于0.05 ° C 。
进给传动的设计主要要求是:保证能有效进行误差动态补偿的换向精度;可实现最小5nm的脉冲位移;采用修正系统後具有2nm的高定位精度。
为此,可供选择的进给传动方式有以下几种:
滚珠丝杠副。
特点是刚度大,可实现的增量位移为100nm (即0.1μm)。
摩擦
传动。
传动刚度为50N~100N/μm ,拉力达100N ,可实现的移动增量为5nm 。
缺点是寿命低,不够灵敏。
-条(带)传动。
仅适合在小型机床上用。
压电和磁致伸缩传动。
移动量可小于5nm ,但总的行程量很小,只有100 ~200μm ,故多数情况下它是与其它传动方式(如滚珠丝杠副)组合使用。
自定位静压丝杠副。
特点是由于齿形角小(只有10°),故刚度大(达100N ~1000N/μm )和可实现微小的增量位移。
缺点是保证油温和油压稳定的系统较复杂。
增量式液压传动。
刚度可达600N/μm ,位移增量80nm ,但供油系统复杂。
电磁丝杠副传动。
它是由涂有稀有材料的磁性混合物的丝杠与带有线圈的螺母相互作用来实现传动。
可实现微小的增量位移,但刚度过低,只有10N/μm 。
导轨设计。
导轨是超精密加工机床上保证实现精密微量进给的重要要素之一,虽有多种形式可供选择,但采用得最为广泛的是液体静压导轨和气浮导轨。
前者的刚度可达6KN~8KN/μm ,并能保证位移精度0.02μm~0.04μm/ 400mm 行程;後者的刚度为1KN~2KN/μm ,当气膜厚度为4μm~8μm 时,也能保证与液体静压导轨一样的位移精度。
液体静压和气浮导轨的直线性均可高达0.02μm/ 100mm 。
在总体布局设计、超精密加工机床的结构应分成承载部分和计量部分, 此时, 精密机床能够实现同时测量. 在很大程度上取决于测量系统的有效性. 因此, ,一般采用像激光干涉仪这样的高精度、高分辨率的仪器作测量装置,并将其单独安装在气浮支承的计量支架上,而且不仅安装测量装置时要遵守阿贝原理,在更广义理解上,也要遵守阿贝原理。
阿贝原理要求,测量轴要接近于刀尖,以便消除按杠杆原理放大误差的可能性。
从这个角度看, 引导和测量装置应设在同一水平面上,在机床的承载系统中要避开采用悬伸和刚度不恒定的构件。