三次样条曲线
三次样条曲线推导过程
三次样条曲线推导过程三次样条曲线是一种常用的曲线插值方法,可以通过一系列已知控制点来生成平滑的曲线。
下面是推导三次样条曲线的基本过程:1.整理控制点:给定一组已知控制点P0, P1, P2, ..., Pn,其中每个点Pi的坐标为(xi, yi)。
我们的目标是找到一个曲线函数C(t),其中t的范围在[0, 1]之间。
2.定义曲线段:将整个插值范围[0, 1]划分为一系列曲线段,每个曲线段由相邻的两个控制点构成。
我们有n个控制点,则会有n个曲线段。
3.插值求解:对于每个曲线段,我们希望找到一条插值曲线,使得该曲线通过两个相邻控制点,并且在相邻曲线段的连接处保持平滑。
4.建立方程:为了推导每个曲线段的曲线方程,我们需要定义一些参数。
引入参数t,其中t的范围为[0, 1]。
假设我们有一个曲线段的控制点Pi和Pi+1。
我们需要定义两个参数h和u,其中h = xi+1 - xi,u = (t - xi) / h。
5.插值方程:通过插值方法,我们可以得到曲线段的插值方程。
一个典型的三次样条曲线方程为: C(t) = (1 - u)^3 * P_i+ 3 * (1 - u)^2 * u * P_i+1 + 3 * (1 - u) * u^2 * P_i+2 + u^3 *P_i+3这个方程表示了在t范围内从Pi到Pi+3的曲线。
对每个相邻的控制点对应的曲线段都应用相同的方法,然后将它们拼接在一起,就可以得到整个三次样条曲线。
请注意,以上是三次样条曲线的简化推导过程,实际的推导可能会涉及更多的数学推导和符号表示。
样条函数(三次样条)
样条插值是一种工业设计中常用的、得到平滑曲线的一种插值方法,三次样条又是其中用的较为广泛的一种。
1. 三次样条曲线原理假设有以下节点1.1 定义样条曲线是一个分段定义的公式。
给定n+1个数据点,共有n个区间,三次样条方程满足以下条件:a. 在每个分段区间(i = 0, 1, …, n-1,x递增),都是一个三次多项式。
b. 满足(i = 0, 1, …, n )c. ,导数,二阶导数在[a, b]区间都是连续的,即曲线是光滑的。
所以n个三次多项式分段可以写作:,i = 0, 1, …, n-1其中ai, bi, ci, di代表4n个未知系数。
1.2 求解已知:a. n+1个数据点[xi, yi], i = 0, 1, …, nb. 每一分段都是三次多项式函数曲线c. 节点达到二阶连续d. 左右两端点处特性(自然边界,固定边界,非节点边界)根据定点,求出每段样条曲线方程中的系数,即可得到每段曲线的具体表达式。
插值和连续性:, 其中i = 0, 1, …, n-1微分连续性:, 其中i = 0, 1, …, n-2样条曲线的微分式:将步长带入样条曲线的条件:a. 由(i = 0, 1, …, n-1)推出b. 由(i = 0, 1, …, n-1)推出c. 由(i = 0, 1, …, n-2)推出由此可得:d. 由(i = 0, 1, …, n-2)推出设,则a. 可写为:,推出b. 将ci, di带入可得:c. 将bi, ci, di带入(i = 0, 1, …, n-2)可得:端点条件由i的取值范围可知,共有n-1个公式,但却有n+1个未知量m 。
要想求解该方程组,还需另外两个式子。
所以需要对两端点x0和xn的微分加些限制。
选择不是唯一的,3种比较常用的限制如下。
a. 自由边界(Natural)首尾两端没有受到任何让它们弯曲的力,即。
具体表示为和则要求解的方程组可写为:b. 固定边界(Clamped)首尾两端点的微分值是被指定的,这里分别定为A和B。
三次样条的s曲线加减速算法 verilog
《三次样条的s曲线加减速算法 verilog》1. 引言在近年来的工程实践中,对于加减速算法的需求越来越迫切。
特别是在Verilog领域,随着数字逻辑设计的复杂度不断提升,对于运动控制的要求也日益严格。
三次样条的s曲线加减速算法成为现代Verilog设计中的一个热门话题。
本文将从深度和广度两个方面进行全面评估,并据此撰写有价值的文章。
2. 三次样条的s曲线加减速算法2.1 三次样条曲线简介三次样条曲线是一种用于模拟和逼真地描述曲线轨迹的方法。
它通过一系列的插值点来构建平滑的曲线,具有良好的光滑性和连续性。
在Verilog设计中,三次样条曲线常常被用于描述运动轨迹,实现精确的加减速控制。
2.2 S曲线加减速算法S曲线是一种具有平滑加减速过程的曲线形状。
其特点是起始和结束的加减速过程较为平滑,可以有效减少机械系统的冲击和损耗。
在Verilog设计中,S曲线加减速算法常常被应用于运动控制系统,以实现高效、精准的运动控制。
3. 从简到繁,由浅入深地探讨三次样条的s曲线加减速算法3.1 算法基础在Verilog中,实现S曲线加减速算法的关键是理解三次样条曲线的原理和计算方法。
通过插值和数学建模,可以得到在Verilog中实现S曲线加减速的数学表达式和计算方法。
3.2 Verilog实现通过Verilog HDL语言,可以将S曲线加减速算法实现为硬件逻辑。
利用FPGA或ASIC等数字逻辑芯片,可以将S曲线加减速算法应用于实际的运动控制系统中。
3.3 实际应用结合实际的机械系统和运动控制需求,可以将S曲线加减速算法应用于各种场景中,实现高效、精准的运动控制。
机械臂、CNC数控机床、自动化生产线等领域都可以受益于S曲线加减速算法的应用。
4. 主题文字的多次提及在上述内容中,我们多次提到了“三次样条的s曲线加减速算法”,这是我们在本文中关注的核心主题。
其在Verilog设计中的应用对于实现精准、高效的运动控制具有重要意义。
三次样条曲线
主要内容
1. 插值问题和样条函数 2. 三次样条的理论基础
1. 插值问题和样条函数
1.1 插值问题 1.2 样条函数的工程背景 1.3 三次样条函数的数学定义
1.1 插值问题
• 插值
… 给定一组有序的数据点(xi,yi,zi),i=0,1, ,n,要求构造一条曲线顺序
通过这些数据点,称为对这些数据点进行插值(interpolation),所 构造的曲线称为插值曲线。
bx
2. 三次样条的理论基础
2.1 Hermite 基 函 数 2.2 三切矢方程 2.3 三次样条插值的局限性
• Charles Hermite(1822-1901)
• 法国洛林(Lorraine )
• 巴黎综合工科技术学院
• 曾任法兰西学院、巴黎高等师 范学校、巴黎大学教授。法兰 西科学院院士。
y1 y2 o x1 x2
(b)
y3 x3 x
图3.1.线4 性线插性值插与值抛和物抛线物插插值
1.1 插值问题
已知 n+1个节点 (xj,yj)(j0,1 , n,其中 x j
互不相同,不妨设 ax0x1 xnb ),
求任一插值点 x*( xj )处的插值 y * .
y*
y1
y0 •
• •
x0 x1 x*
(1)在每一个子区间(xi,xi+1)(i=0,1,…,n-1) 上s(x)是三次多项式; (2) s(x)在区间[a,b]上具有二阶连续导数; (3)s(xi)=yi(i=0,1,…,n), s'(x0)=y'0, s′(xn)=y'n。 我们就称s(x)为三次样条函数。
y
yi-1 yi
三次样条曲线光栅显示的中点算法
三次样条曲线光栅显示的中点算法1.算法介绍三次样条曲线是一种平滑的曲线插值方法,它通过在数据点之间插入分段二次或三次函数来逼近原始数据。
在光栅显示中,三次样条曲线被广泛用于绘制平滑的曲线和边界。
中点算法是一种使用递归方式计算线段与光栅线相交点的算法。
本文将介绍如何使用中点算法实现三次样条曲线的绘制。
2.算法步骤2.1绘制样条曲线首先,我们需要使用三次样条曲线算法计算出所有数据点之间的样条曲线。
三次样条曲线算法将需要连接的数据点称为关键点,通过计算每个关键点之间的控制点来生成曲线。
曲线的平滑度取决于控制点的位置。
一般来说,控制点应该处于关键点之间,并且应该与相邻的控制点保持一定的平滑度。
2.2计算与光栅线相交点计算曲线与光栅线的交点是本算法的核心。
我们需要找到曲线与光栅线的交点,然后将其添加到像素缓冲区中。
中点算法是一种递归计算直线与光栅线相交点的算法,可以应用于三次样条曲线的计算中。
具体地,我们将样条曲线划分成若干小段,然后逐一计算每一段与光栅线的相交点。
对于每一段曲线,我们可以在其起始点处计算出切线与光栅线的交点,并将其作为起始点。
然后,我们可以在每个像素的位置上计算出曲线的坐标,并使用中点算法计算曲线与光栅线之间的交点。
计算时,我们需要记录相邻交点的坐标,以便将它们连接成一条线段。
2.3绘制像素一旦找到相交点,我们可以将其添加到像素缓冲区中。
我们需要将相邻的像素与交点之间的区域填充,以绘制一条平滑的曲线。
在像素缓冲区中,每个像素都有一个颜色值。
我们可以使用插值方法计算每个像素的颜色值,以便实现平滑的渐变效果。
3.总结在光栅显示中,三次样条曲线是一种广泛使用的绘图方法。
中点算法是一种递归方式计算曲线与光栅线相交点的算法,可用于实现三次样条曲线的绘制。
我们可以使用中点算法计算曲线与光栅线的相交点,并将相邻的点连接成一条平滑的曲线。
最后,我们可以将相交点添加到像素缓冲区中,并使用插值方法绘制一条平滑的曲线。
三次b样条插值曲线的节点矢量
三次b样条插值曲线的节点矢量B样条曲线是一种用于插值和逼近的数学工具,其优点在于能够产生光滑的曲线,并且对原始数据的变化具有较好的适应性。
节点矢量是B样条插值曲线中的一个重要概念,本文将介绍三次B样条插值曲线的节点矢量,并对其原理和应用进行详细讲解。
首先,我们先来了解一下什么是B样条曲线。
B样条曲线是一种参数曲线,它是由一些称为控制点的点来定义的。
通过调整控制点的位置和权重,我们可以改变曲线的形状和特性。
其中,节点矢量是B样条曲线中的一个关键概念,它确定了控制多项式的分段区间。
在三次B样条插值曲线中,我们通常将曲线分成一些小的片段,每个片段由四个控制点来定义。
节点矢量可以看作是一个有序的数列,其中的元素决定了每个片段的长度。
具体而言,节点矢量中的每个元素代表一个节点值,节点值决定了一个控制多项式的作用范围。
节点值的个数通常比控制点的个数多一个,这是为了保证曲线的连续性和光滑性。
节点矢量的构造方法有多种,其中一种常用的方法是等间距节点矢量。
在等间距节点矢量中,节点值之间的间隔是均匀的,即每个节点值的差值相等。
例如,如果有n个控制点,则等间距节点矢量可以表示为:[t0, t1, t2, ..., tn] = [0, 1, 2, ..., n]另一种常用的节点矢量是端点重复节点矢量。
在端点重复节点矢量中,首尾的节点值重复出现,而中间的节点值则是等间距分布的。
这种节点矢量的好处是可以保证曲线在端点处的光滑性。
例如,如果有n个控制点,则端点重复节点矢量可以表示为:[t0, t1, t2, ..., tn] = [0, 0, 1, 2, ..., n-1, n, n]除了等间距节点矢量和端点重复节点矢量之外,还有一些其他的节点矢量构造方法,如强度矢量和均匀紧急矢量等。
这些方法基本上都是为了满足不同的曲线需求和控制点配置。
在实际应用中,节点矢量的选择对于曲线的形状和特性有着重要的影响。
较小的节点间隔可以产生更精细的曲线,但是也会增加计算量;较大的节点间隔可以提高计算效率,但是会导致曲线的精度下降。
三次样条曲线表达式
三次样条曲线表达式:灵活优美的曲线绘制方式在计算机图形学、数值计算和信号处理等领域中,数字化的连续函数是非常重要的一种形式。
而曲线是这种函数形式中的一个最基本的形式,可以被广泛地应用在计算机图形学、几何建模、视觉处理等方面。
而三次样条曲线就是其中一种非常灵活优美的曲线绘制方式。
三次样条曲线是将一段数据区间上的数据点插值得到的平滑曲线,其中“三次样条”的名称来自于插值函数的阶数和一种类似于自然样条函数的方式。
插值函数在每个插值点上都有一个有限的导数,因此在这些点之间不能出现任何角或拐点。
而且,由于样条插值函数比全局多项式插值函数具有更低的阶数,因此这种方法能够防止烦人的振荡现象。
三次样条曲线曲线绘制的基本思想是利用一个三次多项式来连接相邻的数据点。
该多项式的系数由这些点的值和导数决定,且利用相邻点间的差分来解出这些系数。
这样,曲线就可以平滑地穿过数据点,同时保持足够的灵活性,以便能够在不同的数据点之间呈现出各种优美的曲线。
一个三次样条曲线可以写成如下形式:S(x) = Si(x), xi ≤ x ≤ xi+1其中,i表示插值点之间的段数,xi是第i个插值点的x坐标,Si是第i个样条段的函数。
在插值点处,三次样条曲线具有相同的函数值和导数,即:Si(xi) = y[i],即第i个段的起点函数值等于第i个插值点的函数值Si(xi+1) = y[i+1],即第i个段的终点函数值等于第i+1个插值点的函数值Si'(xi) = d[i],即第i个段的起点导数等于第i个插值点的导数Si'(xi+1) = d[i+1],即第i个段的终点导数等于第i+1个插值点的导数而在插值点之间的点处,三次样条曲线的函数值和导数是由相邻两个插值点之间的三次多项式决定的。
也就是说,插值点之间的段数越多,函数值和导数的变化就越平滑,曲线就越优美。
利用三次样条曲线的灵活性,我们可以将其应用于如下场景中:1.计算机图形学:三次样条曲线在计算机图形学方面的应用非常广泛,它可以被用于绘制三维曲面的边缘、建立多边形曲线、创建复杂的动画效果等。
三次样条拟合算法
三次样条拟合算法
三次样条拟合算法是一种常用的曲线拟合方法,其基本思想是利用三次多项式连接数据点,构造出一条光滑的曲线来拟合给定的数据。
具体算法步骤如下:
1. 根据给定的数据点,构造出一个三次多项式曲线,对数据点进行拟合。
2. 利用三次样条插值的方法,将拟合曲线分成多个小段,每个小段内均匀分布着一些样本点。
将每个小段的三次多项式分别写成标准形:
s(x)=a+bx+cx^2+dx^3。
3. 选定初始点,设置边界条件。
一般常用的边界条件有“自然边界”和“固定边界”:自然边界所表达的是函数的一阶导数值相等;固定边界将所选定的端点函数值设定为已知值。
4. 利用样条函数的连续性和光滑性,得到关于系数a,b,c,d 的线性方程组,然后进行求解。
5. 通过求解系数,得到每个小段内的三次多项式,将这些小段拼接起来,得到最终的三次样条拟合曲线。
三次样条拟合算法适用于平滑曲线拟合、数据平滑处理、信号平滑处理等方面,具有一定的实用性和广泛性。
贝塞尔曲线三次样条曲线
贝塞尔曲线三次样条曲线
答:贝塞尔曲线和三次样条曲线都是用于描述曲线或曲面形状的方法,但它们有一些不同之处。
贝塞尔曲线是一种由法国工程师皮埃尔·贝塞尔发明的数学曲线。
它是一系列线段的组合,这些线段在给定的控制点之间以一种特定的方式连接。
贝塞尔曲线最初被用于描述船舶和航空器的流线型设计,但后来被广泛应用于计算机图形学、CAD/CAM等领域。
三次样条曲线则是一种数学曲线,它由三个参数定义:起点、终点和两个控制点。
三次样条曲线的形状由这三个点和两个控制点决定,可以用于平滑地连接两个已知点之间的曲线。
在计算机图形学中,三次样条曲线通常用于创建更复杂的形状和动画效果。
总的来说,贝塞尔曲线和三次样条曲线都是通过控制点来定义曲线的形状,但它们的具体实现方式和应用场景有所不同。
python 三次样条曲线拟合
python 三次样条曲线拟合三次样条曲线拟合是一种利用三次多项式来逼近一组数据的方法。
它在数据不光滑或不连续的情况下能够产生一个平滑的曲线。
在Python中,有多种方法可以实现三次样条曲线拟合,例如利用SciPy库中的interpolate模块或使用numpy.polyfit函数。
下面将介绍这两种方法的基本原理和具体实现过程。
一、基本原理三次样条曲线拟合的基本原理是通过使用多个三次多项式来逼近一组数据,使得拟合的曲线在每个数据点处与原始数据相切且平滑。
这意味着在每个数据点的一阶导数值相等,从而保证了曲线的平滑特性。
为了实现这一点,我们可以将原始数据分成多个小段,每一段对应一个三次多项式。
这样,我们只需确定每一段的系数,即可拟合出整个曲线。
二、SciPy库的interpolate模块SciPy是一个强大的科学计算库,其中的interpolate模块提供了许多插值和拟合的函数。
在进行三次样条曲线拟合时,我们可以使用interp1d函数来实现。
具体步骤如下:1.导入必要的库```pythonimport numpy as npfrom scipy.interpolate import interp1dimport matplotlib.pyplot as plt```2.准备数据```pythonx = np.array([0, 1, 2, 3, 4, 5]) #自变量数据y = np.array([1, 2, 1, 0, 1, 2]) #因变量数据```3.使用interp1d函数进行拟合```pythonf = interp1d(x, y, kind='cubic') # cubic表示三次样条插值```4.生成插值点```pythonx_new = np.linspace(0, 5, num=100) #生成100个均匀分布的插值点y_new = f(x_new) #计算插值点的纵坐标值```5.绘制拟合曲线和原始数据```pythonplt.plot(x, y, 'o', label='原始数据') #绘制原始数据点plt.plot(x_new, y_new, '-', label='拟合曲线') #绘制拟合曲线plt.legend() #显示图例plt.show() #显示图像```通过上述步骤,我们就能够得到拟合曲线,并将其与原始数据绘制在一张图上。
origin里利用三次次样条曲线插值的方法
origin里利用三次次样条曲线插值的方法
原点(origin)是数学中的一个概念,表示一个坐标轴上的起点或者一个坐标
系的原点。
使用三次样条曲线插值的方法可以用于近似计算原点的位置。
三次样条曲线插值是一种在给定数据点之间创建光滑曲线的方法。
它通过在每
个数据点之间插入三次多项式,以使得曲线在这些点上具有连续的一阶和二阶导数。
这样可以得到一条平滑的曲线,可以用来近似原点。
三次样条曲线插值的方法可以应用于各种领域,如数学建模、计算机图形学和
信号处理等。
在数值计算中,三次样条插值可以通过插值函数的性质来保持数据的平滑性,并能够以较高的精度逼近原点的位置。
要使用三次样条曲线插值的方法来计算原点,首先需要确定要插值的数据点。
然后,使用插值算法计算出三次样条曲线的解析表达式或数值近似。
最后,通过对解析表达式或数值近似进行求解,可以获得原点的位置。
需要注意的是,三次样条曲线插值是一种近似方法,得到的原点位置可能会存
在一定的误差。
因此,在实际应用中,需要综合考虑误差范围和计算复杂度等因素。
总之,利用三次样条曲线插值的方法可以近似计算原点的位置。
这种方法在数
学和计算领域有广泛应用,并且可以通过合适的数据点和插值算法来提高近似的精度。
三次样条曲线的定义
三次样条曲线的定义嘿,咱们今天来聊聊三次样条曲线这个有趣的玩意儿!先给您说个事儿哈,就前几天,我去商场买东西,路过一家珠宝店。
那店里的橱窗展示着一串珍珠项链,那珍珠的排列可不一般,仔细一瞧,居然有点像三次样条曲线的形状!一颗颗珍珠错落有致,顺滑又自然,仿佛是按照某种神秘的规律排列着。
要说这三次样条曲线啊,它其实就是一种数学上特别有用的曲线表示方法。
简单来讲,就是通过一系列给定的点,构建出一条既平滑又连续的曲线。
您想想,假如您要画一条曲线来表示一辆汽车在一段时间内的速度变化。
如果只是随便画,那曲线可能会歪歪扭扭,看起来乱糟糟的。
但如果用三次样条曲线,就能把这个速度变化表现得特别流畅和自然。
三次样条曲线有几个重要的特点。
首先,它在每个小段内都是一个三次多项式。
这意味着它有一定的灵活性,可以很好地适应各种复杂的形状。
其次,它在连接点处不仅函数值相等,一阶导数和二阶导数也相等。
这就保证了曲线的平滑过渡,没有突然的拐弯或者抖动。
比如说,在设计桥梁的时候,工程师们就会用到三次样条曲线。
桥梁的形状得既要美观,又要能承受各种力的作用。
通过使用三次样条曲线来设计桥梁的轮廓,就能让桥梁看起来线条优美,而且受力均匀,更加稳固可靠。
再比如,在计算机图形学中,绘制各种曲线图形的时候,三次样条曲线就大显身手啦。
它能让画面中的曲线更加逼真、自然,给人一种赏心悦目的感觉。
回到开始说的那串珍珠项链,其实它的排列就近似于三次样条曲线。
每个珍珠的位置就像是给定的点,而串起来的整体就形成了一条优美的曲线。
总之,三次样条曲线在我们的生活和各种领域中都有着广泛的应用。
它就像是一位神奇的“曲线魔法师”,能够把那些看似杂乱无章的点变成一条优美、流畅的曲线。
怎么样,这下您对三次样条曲线是不是有了更清晰的认识啦?希望今天的讲解能让您有所收获!。
三次参数样条曲线
目 录
• 参数样条曲线简介 • 三次参数样条曲线的数学模型 • 三次参数样条曲线的构建过程 • 三次参数样条曲线的应用实例 • 三次参数样条曲线的优缺点分析 • 三次参数样条曲线与其他插值方法的比较
01
CATALOGUE
参数样条曲线简介
定义与特性
定义
三次参数样条曲线是一种数学函 数,通过给定的数据点,使用参 数化方法拟合出一条光滑的曲线 。
与多项式插值的比较
1
多项式插值适用于已知数据点之间存在某种特定 关系的情况,而三次参数样条曲线则不需要事先 知道这种关系。
2
多项式插值在处理高阶数据时可能会遇到计算量 大和稳定性差的问题,而三次参数样条曲线则相 对较稳定。
3
多项式插值在处理非线性数据时可能会产生较大 的误差,而三次参数样条曲线能够更好地适应非 线性数据的处理。
算法实现
可以使用数值计算方法和编程语言来实现三次参数 样条曲线的计算,例如Python、MATLAB等。
优化方法
为了提高计算效率和精度,可以采用一些优 化方法,如共轭梯度法、牛顿法等。
03
CATALOGUE
三次参数样条曲线的构建过程
数据准备
数据收集
01
收集用于拟合曲线的离散数据点,确保数据具有代表性且分布
易于理解和实现
三次参数样条曲线具有直观的几 何意义,易于理解和实现,不需 要复杂的数学背景。
缺点分析
01
对异常值敏感
三次参数样条曲线对异常值比较 敏感,如果数据中存在异常值, 可能会导致拟合结果偏差。
02
对初始程可 能会陷入局部最优解,影响拟合 效果,需要合理设置初始值。
合理。
数据清洗
三次B样条曲线
0
1
PP32
t 0, 1
三次B样条曲线
➢ 性质1:端点位置
P0,3
(0)
1 6
( P0 4 P1 P2 )
1 3
P0
2
P2
2 3
P1 ,
P0,3
(1)
1 6
( P1 4 P2 P3 )
1 3
P1
2
P3
2 3
P2 ,
➢ 性质2:端点切矢及二阶导数
P
0,3(0)
其中,基函数 Gi,n (t) 定义为:
Gi,n (t)
1 n!
ni j 0
(1)
j
Cnj1 (t
n i
j)n
t [0,1], i 0数,字1,图.像..处,n理
B 样条曲线示例
二次B 样条曲线示例
数字图像处理
B 样条曲线示例
二次B 样条曲线示例
数字图像处理
B 样条曲线示例
三次B 样条曲线示例
样条基函数:
1 , Bi,1(t) 0 ,
ti t ti1 otherwise
Bi,k (t)
t ti tik 1 ti
Bi,k 1(t)
tik t tik ti1
Bi1,k 1(t)
t
数字图像处理
非均匀 B 样条曲线
➢ 设P1, P2 ,...Pn (n k)为给定空间的n个点,称下列参 数曲线
0)
S
(k
)
(
x i
1
0),
k 0,1,
2
2
(3)满足插值条件 yi S ( xi ), i 0,1,..., n.
数字图像处理
三次B样条曲线
数字图像处理
B 样条曲线示例
三次B 三次 样条曲线示例
数字图像处理
B 样条曲线示例
三次B 三次 样条曲线示例
数字图像处理
B 样条曲线示例
四次B 样条曲线示例 四次
数字图像处理
B 样条曲线示例
五次B 五次 样条曲线示例
数字图像处理
2.2 B 样条曲线基函数的性质
B样条函数基函数为:
1 n−i G i ,n (t ) = ( − 1 ) j C nj+ 1 ( t + n − i − j ) n ∑ n! j = 0 t ∈ [ 0 ,1 ], i = 0 ,1 ,..., n
如左图所示,六个 控制顶点控制的三 次B样条曲线由三 段B样条曲线段组 成。其中,每一条 曲线段由四个顶点 控制。
数字图像处理
B 样条曲线的性质
2.几何不变性
由于定义式所表示的B样条曲线是参数形式,因此,和 Bezier曲线一样,B样条曲线的形状和位置与坐标系选 择无关。
3. 连续性
当给定的m+n+1个控制顶点Pi (i=0,1,…,m+n)互不 相重,则所控制的整条B样条曲线具有n-1阶几何连续 (G n-1)。当给定的控制顶点相邻最大重顶点数为h(即h 个控制顶点重合在一起),则整条B样条曲线具有n-h1阶几何连续(G n-h-1)。
数字图像处理
B 样条曲线的性质
4. 对称性
根据B样条曲线的基函数的对称性可推导
Pk , n (1 − t ) = =
∑
n
n
i=0
Pi + k G i , n (1 − t ) Pi + k G n − i , n ( t ) ( t ∈ [ 0 ,1 ])
[机械仪表]第3章31三次样条曲线与参数样条曲线
上课内容3/61一、背景知识1.放样与设计设计放样6/61几种典型的设计方法7/619/61打点:按给定的数据将型值点准确地点在图板上描线:用“压子”使“样条”通过型值点三次样条函数及其力学背景三次样条函数及其力学背景模线绘制的一般过程分段:两个“压子”之间可以认为是一段。
数学本质是每两个“压子”之间曲线的表达式不同模线的形状特征具体地:给出一张函数表选择一个函数φ(x)使得φ(x i)=yi i=0,1…n作为f(x)的近似,这样函数逼近为满足上述关系式的函数φ(x)为f(x)的插值函数12/61对于寻求一个n次的代数多项式插值,必须给出n+1互异的插值基点P n (x)=a+a1x+a2x2+…+anx nPn(xi )=yii=0,1…n压铁(型值点)由于在各小段上M(x)是线性函数,因此可知,在各小段上函数y(x)18/61由样条函数构成的曲线称为样条曲线。
当要求在每个数据点处三阶或更高阶的导数也连续时,就要用高次样条,例如,五次样条有四阶导数连续。
条件:两个端点处的值与一阶导数值,a,a21/61解:设三次插值函数,对y(u)求一阶导数,即,根据端点条件,u=0,y 0,y 0’u=1, y 1,y 1’代入端点条件即二、三次样条曲线(用型值点处的一阶导数表示的三次样条曲线)例题:曲线段方程y(u)=y 0F 0(u)+ y 1F 1(u) + y ’0G 0(u) + y ’1G 1(u),式中F 0(u)、F 1(u) 、G 0(u)、G 1(u)称为埃尔米特基函数或三次混合函数。
试描述一下上述四个混合函数对曲线形状的影响。
0001231'10'123123a y a a a a y a y a a a y =+++==++=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡'1'01032103210001011110001y y y y a a a a 0011'20'311000001033212211a y a y a y a y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥−−−⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦[]00112323'20'31010101'0'110000010()1133212211()()()()a y a y y u uu u u u u a y a y y y F u F u G u G u y y ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎡⎤==⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥−−−⎢⎥⎢⎥⎢⎥−⎣⎦⎣⎦⎣⎦⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦22/61function hermit()%画出Hermit基函数close all;u=linspace(0,1,20);F0=2*u.^3-3*u.^2+1;F1=-2*u.^3+3*u.^2;G0=u.*(u-1).^2;G1=u.^2.*(u-1);F0c=6*u.^2-6*u; %F0的一阶导数F1c=-6*u.^2+6*u; %F1的一阶导数G0c=3*u.^2-4*u+1; %G0的一阶导数G1c=3*u.^2-2*u; %G1的一阶导数subplot(121);plot(u,F0,'-r','LineWidth',2);title('埃尔米特基函数');hold all;plot(u,F1,'--r','LineWidth',2);plot(u,G0,'-b','LineWidth',2);plot(u,G1,'--b','LineWidth',2);subplot(122);plot(u,F0c,'-r','LineWidth',2);title('埃尔米特基函数的导数');hold all;plot(u,F1c,'--r','LineWidth',2);plot(u,G0c,'-b','LineWidth',2);plot(u,G1c,'--b','LineWidth',2);23/61 Ferguson曲线Bézier曲线B样条曲线25/61 4. Step3:进行拼接26/61二、三次样条曲线(用型值点处的一阶导数表示的三次样条曲线)5. 结论:m-关系式注意端点条件27/6129/61一个问题z给定一批型值点,如何构造处二阶连续的曲线?三次样条函数的理论基础三次样条函数的理论基础xy x i-1x iaby iy i-1(1)按照m 关系式构造出方程组,称该方程组为三切矢方程(组),计算出各型值点处的切矢量;(2)各型值点之间的曲线段表示为:]u G m h u G m [h u F y u F y x y 1i i 01-i i 1i 01-i )()()()()(+++=30/61i1i ii1-i iC mμ2m m λ=+++三切矢方程的普通表达形式121101C m μ2m m λ=++……1-n 1-n 1-n 21-n C m μ2m m λ=++−n n如何求解:(n -1)个线性方程,内节点的m 1、m 2、…、m n -1未知三次样条函数的理论基础三次样条函数的理论基础31/61用型值点处的二阶导数表示的三次样条曲线这样处理,保证了在Pi-1Pi两点间严格为直线,且在直线和曲线的衔接处不会产生波动等现象,同时包括直线段在内的整条曲线有一个统一的表达式。
origin三次样条曲线拟合系数
origin三次样条曲线拟合系数
三次样条曲线是一种常用的插值方法,它可以通过一系列给定的数据点来拟合出一条光滑的曲线。
在三次样条曲线拟合中,需要计算出一组系数来定义每个数据点之间的曲线段。
下面我将从多个角度来解释三次样条曲线拟合系数的计算方法。
首先,三次样条曲线拟合系数的计算涉及到两个主要步骤,构造三次样条曲线和求解系数。
在构造三次样条曲线时,通常采用分段函数的形式,每个数据点之间的曲线段由一组系数来定义。
这些系数包括曲线段的端点坐标、一阶导数和二阶导数,它们的计算需要满足一定的插值条件和光滑条件。
其次,求解三次样条曲线的系数通常可以通过线性方程组的求解来实现。
具体来说,可以根据插值条件和光滑条件建立关于系数的线性方程组,然后利用线性代数的方法求解这个方程组,得到每个数据点之间曲线段的系数。
另外,三次样条曲线的系数计算也可以通过矩阵运算来实现。
将插值条件和光滑条件转化为矩阵形式,然后利用矩阵的求逆或者分解等方法来求解系数矩阵,从而得到每个数据点之间曲线段的系
数。
总的来说,三次样条曲线拟合系数的计算是一个复杂的过程,涉及到插值条件、光滑条件、线性方程组的求解以及矩阵运算等多个方面的知识。
在实际应用中,可以根据具体的数据和需求选择合适的计算方法来求解三次样条曲线的系数,从而得到满足要求的曲线拟合结果。
三次样条曲线表达式
三次样条曲线表达式三次样条曲线是一种常用的插值方法,用于在给定的数据点之间进行平滑插值。
三次样条曲线由一组三次多项式组成,在每个相邻数据点之间使用不同的三次多项式来实现平滑曲线的连接。
这些三次多项式在相邻数据点处具有连续的一阶和二阶导数,以确保曲线的平滑性和连续性。
要表示三次样条曲线的表达式,首先需要确定数据点的坐标和插值方法。
假设我们有n个数据点 (x_0, y_0), (x_1, y_1), ..., (x_n, y_n),我们可以使用三次样条插值方法来计算出每个相邻数据点之间的三次多项式表达式。
具体而言,三次样条曲线由n-1个三次多项式组成,每个三次多项式在相邻数据点之间定义。
假设第i个三次多项式在区间[x_{i-1}, x_i] 上的表达式为 S_i(x),其中 i = 1, 2, ..., n-1。
在每个区间 [x_{i-1}, x_i] 上,三次样条曲线的表达式为:S_i(x) = a_i(x x_i)^3 + b_i(x x_i)^2 + c_i(x x_i) + d_i.其中 a_i, b_i, c_i, d_i 是待定系数。
为了确定这些系数,我们需要满足一些插值条件,例如在每个数据点处函数值相等,以及相邻区间的三次多项式在相邻数据点处的一阶和二阶导数相等。
通过解这些条件,可以得到每个区间上的三次多项式的系数,从而得到整个三次样条曲线的表达式。
最终的三次样条曲线表达式将是所有区间上三次多项式的组合。
总之,三次样条曲线的表达式包括了每个相邻数据点之间的三次多项式表达式,通过满足插值条件来确定每个区间上的系数,从而得到整个曲线的表达式。
这样的表达式能够实现对给定数据点之间的平滑插值,从而得到连续且平滑的曲线。
三次样条曲线的定义
三次样条曲线的定义《说说三次样条曲线那些事儿》嘿,大家好呀!今天咱来唠唠三次样条曲线的定义。
啥是三次样条曲线呢?简单来说,就是一条超级光滑、超级厉害的曲线!它就像是一个有着完美身材的模特,曲线玲珑有致,每一处都过渡得那么自然。
想象一下哈,你在画一条曲线,要是随随便便画,那可能就歪歪扭扭跟蚯蚓似的。
但三次样条曲线可不一样,它那是精益求精,绝不允许自己有一点不和谐的地方。
它就像是一条神奇的魔法线,把一个个点巧妙地连接起来。
这些点就好像是散落在地上的珍珠,而三次样条曲线就是那根线,把珍珠串成了一条美丽的项链。
为啥咱要这么在意这条曲线呢?那是因为在好多实际情况里,咱都需要它呀!比如说汽车设计,那车身的线条得漂亮吧,得流畅吧,不然开出去多没面子。
这时候三次样条曲线就派上用场了,设计师们用它勾勒出最帅气的车身形状。
再比如,咱手机上的那些漂亮图标、界面,说不定背后就有三次样条曲线的功劳呢!它能让那些图案看起来特别舒服,特别自然,一点儿也不生硬。
我记得我第一次了解到三次样条曲线的时候,就觉得好神奇啊!怎么可以有这么厉害的东西,能把零散的点变成如此美妙的曲线。
当时我就想,这玩意儿就像是一个隐藏的高手,默默发挥着巨大的作用。
而且哈,它还特别靠谱。
你给它一些条件,它就能乖乖地按照你的要求来生成曲线。
就像一个听话的小朋友,你让它干啥它就干啥。
总之,三次样条曲线这东西,真的是让我又爱又佩服。
它那流畅的线条,就像生活中那些美好的瞬间,顺顺利利,没有一点儿波折。
每次想到它,我都忍不住感叹,数学的世界真是奇妙无穷啊!说不定哪天又会冒出一个像三次样条曲线这样厉害的东西,让我们大开眼界呢!我已经迫不及待地想要继续探索这个神奇的领域啦!。
三次b样条曲线rrt算法详解
三次b样条曲线rrt算法详解三次B样条曲线是一种重要的曲线表示方法,在计算机图形学等领域被广泛应用。
其中rrt算法是一种基于三次B样条曲线的曲线拟合算法。
下面将详细介绍rrt算法的原理和实现过程。
1. 三次B样条曲线三次B样条曲线是由一系列控制点构成的曲线,它是通过插值和逼近方法进行构造的。
三次B样条曲线的定义如下:$$C(t) = \sum_{i=0}^n P_iB_{i,3}(t)$$其中,$P_i$为控制点,$B_{i,3}(t)$为三次B样条曲线基函数。
三次B样条曲线基函数的定义如下:$$B_{i,3}(t) =\frac{1}{6}(\delta_{i,3}(t)+3\delta_{i,2}(t)+3\delta_{i,1}(t)+\delta_{i,0}(t))$$其中,$\delta_{i,j}(t)$为Kronecker delta函数,定义如下:$$\delta_{i,j}(t) = \begin{cases} 1, & \text{if } t = j \\ 0, & \text{otherwise} \end{cases}$$三次B样条曲线在$t\in[0,n-2]$的区间上是具有两个连续二阶导数的光顺曲线,可以拟合各种形状的曲线,包括圆弧、椭圆、三角形、四边形等。
2. RRT算法RRT(Rapidly-exploring Random Tree)算法是一种用于路径规划的随机采样算法。
该算法将搜索空间分为两个区域:障碍区域和自由区域。
通过随机采样的方式,将自由区域逐渐探索并建立一个尽可能大的树形结构。
RRT算法的基本步骤如下:- 初始化RRT树,将起点作为树的根节点。
- 随机采样一个点,判断是否在自由区域内。
- 查找树上距离最近的节点,将其连接到采样点。
- 重复步骤2和3,直到找到终点为止。
3. RRT算法在三次B样条曲线拟合中的应用在三次B样条曲线拟合的问题中,我们需要找到一条曲线,使得曲线能够穿过一系列给定的控制点,并且在这些控制点间具有平滑的连续性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同理可得,当 t=1 时
P (1) n( Pn Pn1 )
'
这两个式子说明:Bezier曲线在两端 点处的切矢方向与特征多边形的第一 条边和最后一条边相一致。
2.二次和三次Bezier曲线 (1) 三个顶点:P0,P1,P2 可定义一条 二次(n=2) Bezier曲线: 其相应的混合函数为:
法国的 Bezier 为此提出了一种新的 参数曲线表示方法,因此称为Bezier 曲线。后来又经过 Gordon、Forrest 和 Riesenfeld等人的拓广、发展, 提出了B样条曲线。 这两种曲线都因能较好地适用于 外形设计的特殊要求而获得了广泛的 应用。
一、Bezier曲线 Bezier曲线的形状是通过一组多边折 线(特征多边形)的各顶点唯一地定 义出来的。在这组顶点中: (1) 只有第一个顶点和最后一个顶点 在曲线上; (2) 其余的顶点则用于定义曲线的导 数、阶次和形状; (3) 第一条边和最后一条边则表示了 曲线在两端点处的切线方向。
t=1: i=n ,Bi,n(t)=1 in ,Bi,n(t)=0 P(1)=Pn
n! n 0 P(1) 1 (1 1) Pn Pn n!1
所以说,“只有第一个顶点和最后一个 顶点在曲线上”。即 Bezier曲线只通过多边折线的起点 和终点。
下面我们通过对基函数求导,来分析 两端切矢的情况。
3.1.2 B样条曲线和曲面
在我们工程中应用的拟合曲线,一般 地说可以分为两种类型:一种是最终 生成的曲线通过所有的给定型值点, 比如抛物样条曲线和三次参数样条曲 线等,这样的曲线适用于插值放样; 另一种曲线是,它的最终结果并不一 定通过给定的型值点,而只是比较好 地接近这些点,这类曲线(或曲面) 比较适合于外形设计。
3.二次B样条曲线 在二次B样条曲线中,n=2,k=0,1,2 故其基函数形式为:
1 2 F0 , 2 (t ) ( 1) j C 3j (t 2 j ) 2 2! j 0 1 3! 3! 3! 2 1 2 2 2 [ (t 2) (t 1) t ] (t 1) 2 3! 2! 2! 2 1 F1, 2 (t ) ( 2t 2 2t 1) 2 1 2 F2 , 2 (t ) t 2
P P 在数学上,可以很容易将参数曲线段 P P 拓张为参数曲面片。因为无论是前面 P P P P 的 Bezier 曲线还是B样条曲线,它 P P v P v P P P 们都是由特征多边形控制的。而曲面 P P 是由两个方向(比如 u 和 v )的特征 u u P P 多边形来决定,这两个方向的特征多 双二次Bezier曲面和B样条曲面 边形构成特征网格。
B (t ) n[Bi 1,n1 (t ) Bi,n1 (t )]
' i ,n
得:
P ' (t ) n P i [ Bi 1, n 1 (t ) Bi , n 1 (t )]
i 0 n 1
讨论:
(n 1)! Bi 1, n 1 (t ) t i 1 (1 t ) n 1i (i 1)! ( n i )! (n 1)! Bi , n 1 (t ) t i (1 t ) n 1i i!( n 1 i )!
有了基函数,因此可写出二次B样条 曲线的分段表达式为:
Pi (t ) F0,2 (t ) Pi F1,2 (t ) Pi 1 F2,2 (t ) Pi 2
( i= 0,1,2,…,m )
m+1段
写成一般的矩阵形式为:
P (t ) Fk , 2 (t ) Bk t 2
P3 P1
P2 P0
P4
4.三次B样条曲线 分段三次B样条曲线由相邻四个顶点 定义,其表达式为: P( t )=F0,3(t)•B0+F1,3(t)•B1+F2,3(t)•B2 +F3,3(t)•B3 (0 t 1) 可见,由 n 个顶点定义的完整的三次 B样条曲线是由 n-3 段分段曲线连接 而成的。很容易证明,三次B样条曲 线在连接处达到二阶连续。 ***
2! B0, 2 (t ) t 0 (1 t ) 20 (1 t ) 2 0!2! 2! 1 2 1 B1, 2 (t ) t (1 t ) 2t (1 t ) 1 !1 ! 2! B2, 2 (t ) t 2 (1 t ) 2 2 t 2 2!0!
缺乏灵活性 一旦确定了特征多 边形的顶点数(m个),也就决定了曲 线的阶次(m-1次),无法更改; 控制性差 当顶点数较多时,曲 线的阶次将较高,此时,特征多边形 对曲线形状的控制将明显减弱;
不易修改 由曲线的混合函数可 看出,其值在开区间 ( 0 , 1 ) 内均不为 零。因此,所定义之曲线在 ( 0 < t < 1) 的区间内的任何一点均要受到全部顶 点的影响,这使得对曲线进行局部修 改成为不可能。
(而在外形设计中,局部修改是随时要进行的)
为了克服 Bezier 曲线存在的问题, Gordon 等人拓展了 Bezier曲线,就 外形设计的需求出发,希望新的曲线 要: 易于进行局部修改; 更逼近特征多边形; 是低阶次曲线。 于是,用 n次B样条基函数替换了伯 恩斯坦基函数,构造了称之为B样条 曲线的新型曲线。
i 0 j 0 n m
式中:(0 ≤ u,v ≤ 1) ; Bi,n(u) 为 n 次 Bernstein 基函数;连接点列 bi,j 中相 邻两点组成特征网格。
t=0: i=0: Bi-1,n-1(t)=0; Bi,n-1(t)=1。 i=1: Bi-1,n-1(t)=1; Bi,n-1(t)=0。 i2: Bi-1,n-1(t)=0; Bi,n-1(t)=0。
(均出现 0 的非 0 次幂)
t=0
P (0) P (t 0) n( P 1P 0)
因为在外形设计中(比如汽车、船舶), 初始给出的数据点往往并不精确;并 且有的地方在外观上考虑是主要的, 因为不是功能的要求,所以为了美观 而宁可放弃个别数据点。因此不须最 终生成的曲线都通过这些数据点。 另一方面,考虑到在进行外形设计时 应易于实时局部修改,反映直观,以 便于设计者交互操作。第一类曲线在 这方面就不能适应。
k 0 2
1 2 1 B0 1 B t 1 2 2 0 1 2 1 0 1 B2
式中,Bk为分段曲线的B特征多边形 的顶点:B0,B1,B2。对于第i段曲线的 Bk 即为:Pi,Pi+1,Pi+2 连续的三个顶 点。 (见下图)
B0 1 B 1 0 B2
与以上这些式子所表达的性质相符的 曲线是何种形状:(见下图)
B1 P(1/2) P(0) P'(1/2) P(1)
M
B0
是什么曲线? 与Bezier曲线有 何差别?
B2
结论:分段二次B样条曲线是一条抛 物线;有n个顶点定义的二次B样条曲 线,其实质上是n-2段抛物线(相邻三 点定义)的连接,并在接点处达到一 阶连续。(见下图)
B样条曲线是一种非常灵活的曲线, 曲线的局部形状受相应顶点的控制很 直观。这些顶点控制技术如果运用得 好,可以使整个B样条曲线在某些部 位满足一些特殊的技术要求。如: 可以在曲线中构造一段直线; 使曲线与特征多边形相切; 使曲线通过指定点; 指定曲线的端点; 指定曲线端点的约束条件。
三、B样条曲面
12 12 22 22 02 02 01 11 21 01 11 21 10 10 00 20 00 20
1.Bezier 曲面
给定了(m+1)(n+1)个空间点列 bi,j (i=0, 1,2,…,n; j=0,1,2,…,m)后,可以定义m n次 Bezier 曲面如下式所示:
P(u, v) Bi ,n (u ) B j ,m (v) bi , j
伯恩斯坦基函数的表达式为:
n! Bi , n (t ) t i (1 t ) n i i!(n i )!
假如规定:0=1,0!=1,则 t=0: i=0 ,Bi,n(t)=1 i0 ,Bi,n(t)=0 P(0)=P0
n! 0 n P(0) 0 (1 0) P0 P0 1 n!
B: P1,P2,P3 P1
i=1 P1,2(t)
P3
n=2,二次B样条曲线 m+n+1个顶点,三 点一段,共m+1段。
i=0 P0,2(t)
P2
P4
P0 B: P0,P1,P2
二次B样条曲线的性质
先对 P(t)求导得:
P (t ) t 1 1 1
2 1
然后分别将 t=0,t=0.5,t=1 代入 P(t) 和 P’(t),可得: P(0)=1/2(B0+B1), P(1)=1/2(B1+B2); P’(0)=B1-B0, P’(1)=B2-B1; P(1/2)=1/2{1/2[P(0)+P(1)]+B1} P’(1/2)=1/2(B2-B0)=P(1)- P(0)
P(1/2) P'(1/2) P0 Pm P2 P1
二次 Bezier 曲 线是一条抛物线
(2) 四个顶点 P0、P1、P2、P3 可 定义一条三次 Bezier 曲线:
P(t ) (1 t ) P0 3t (1 t ) P1 3t (1 t ) P2 t P3
3 2 2 3
在以上表达式中: F k,n ( t ) 为 n 次B样条基函数,也称B 样条分段混合函数。其表达式为:
1 nk j j n Fk ,n (t ) (1) C n1 (t n k j ) n! j 0
式中: 0 ≤ t ≤1 k = 0, 1, 2, …, n