单相交流调压电路的设计
单相斩控式交流调压电路设计
单相斩控式交流调压电路设计概述单相斩控式交流调压电路的设计用于对交流电源进行调压控制,使输出电压能够稳定在需求范围内。
本文将对该调压电路的设计原理、电路构成、工作原理以及参数选取等进行全面详细的探讨。
设计原理单相斩控式交流调压电路的设计原理基于斩波调压技术,通过控制晶闸管的导通时间来改变输出电压的大小。
其基本思想是在每个交流周期的一定时刻截止半导体器件的导通,从而将源电压锯齿状的波形转换为脉宽调制形式,通过改变脉宽来调节输出电压。
电路构成单相斩控式交流调压电路主要由以下几个部分构成:输入滤波电路输入滤波电路主要用于对输入电压进行平滑滤波,降低谐波成分,获得稳定的直流电压。
常用的输入滤波电路包括电容滤波电路和电感滤波电路。
斩波电路斩波电路是单相斩控式交流调压电路的核心部分,用于将交流电压转换为可调的脉冲电压。
斩波电路一般由晶闸管、二极管以及继电器等组成。
控制电路控制电路用于生成脉宽调制信号,对晶闸管的导通时间进行控制,从而实现输出电压的调节。
一般采用微处理器或者模拟控制电路来生成控制信号。
输出滤波电路输出滤波电路主要用于对输出脉冲进行滤波平滑,得到稳定的直流输出电压。
常用的输出滤波电路包括电感滤波电路和电容滤波电路。
工作原理单相斩控式交流调压电路的工作原理如下:1.输入电压经过输入滤波电路进行滤波后,进入斩波电路。
2.斩波电路将交流电压转换为可调的脉冲电压,通过控制电路的控制信号对晶闸管进行导通和截止控制,改变输出脉冲的脉宽。
3.输出脉冲经过输出滤波电路进行滤波平滑后,得到稳定的直流输出电压。
参数选取在设计单相斩控式交流调压电路时,需要选取合适的参数来保证电路的稳定性和性能。
主要包括以下几个方面:输入电压范围根据实际应用情况选择合适的输入电压范围,通常是根据供电网络的标准电压范围来确定。
输出电压范围根据需求确定输出电压的范围,确保设计的电路可以满足实际需求。
控制信号频率控制信号频率越高,调压速度越快,但也会增加电路的复杂度和功耗。
单相交流调压及调功电路课程设计方案
姓名学号年级专业系(院)指导教师一、引言较流-交流变流电路,即把一种形式的交流变成另一种形式交流的电路。
在进行交流-交流变流时,可以改变相关的电压(电流)、频率和相数等。
交流-交流变流电路可以分为直接方式(无中间直流环节方式)和间接方式(有中间直流环节方式)两种。
而间接方式可以看做交流-直流变换电路和直流-交流变换电路的组合,故交-交变流主要指直接方式。
其中,只改变电压、电流或对电路的通断进行控制,而不改变频率的电路称为交流电力控制电路,改变频率的电路称为变频电路。
采用相位控制的交流电力控制电路,即交流调压电路;采用通断控制的交流电力控制电路,即交流调功电路和交流无触点开关。
交流调压电路广泛用于灯光控制(如调光台灯和舞台灯光控制)及异步电动机的软启动也用于异步电动机调速。
在电力系统中,这种电路还常用于对无功功率的连续调节。
此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。
在这些电源中如果采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联,低电压大电流直流电源需要很多晶闸管并联,十分不合理。
采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。
这样的电路体积小、成本低、易于设计制造。
其分为单相和三相交流调压电路,前者是后者基础,这里只讨论单相问题。
交流调功电路常用于电炉的温度控制,其直接调节对象是电路的平均输出功率。
像电炉温度这样的控制对象,其时间常数往往很大,没有必要对交流电源的每个周期进行频繁的控制,只要以周波数为单位进行控制就足够了。
通常控制晶闸管导通的时刻都是在电源电压过零的时刻,这样,在交流电源接通期间,负载电压电源都是正弦波,不对电网电压电流造成通常意义的谐波污染。
RO图4-1u 1u oi o VT 1VT 2u 1u o i o u V TωtO ωtO ωtO ωt三、设计方案选择及论证3.1 带电阻性负载 3.1.1 原理图1为电阻负载单相交流调压电路图及其波形。
单相交流调压电路仿真设计
单相交流调压电路仿真设计一、单相交流调压电路原理变压器是单相交流调压电路的核心部件,其主要作用是改变输入交流电压的大小。
变压器由两个或多个线圈组成,其中一个线圈称为初级线圈,另一个线圈称为次级线圈。
交流电压作用在初级线圈上,通过磁耦合作用,可以在次级线圈上产生与输入电压不同的输出电压。
通过调整初级线圈与次级线圈的匝数比,可以实现不同的输出电压。
整流电路主要由二极管构成,用于将交流电压转换为直流电压。
二极管具有单向导电性,可以将交流电压中的正半周或者负半周导通,将其它方向的电压截断。
通过适当选择二极管的导通方向和数量,可以实现不同的整流方式,如半波整流、全波整流等。
滤波电路主要由电容器构成,用于去除整流电路输出电压中的纹波。
在整流电路中,由于二极管导通和截断的不完全性,输出电压中会带有交流成分,称为纹波。
通过选择合适的电容器容值和电阻负载,可以将输出电压中的纹波减小到很小的水平。
在进行单相交流调压电路的仿真设计时,首先需要确定输入电压、输出电压和负载电流等参数。
根据需要的输出电压大小和负载电流大小,可以选择合适的变压器匝数比、二极管种类和数量、电容器容值等。
接下来,可以利用电路仿真软件进行电路图设计,如Proteus、Multisim等。
首先,根据变压器匝数比和输入电压确定初级线圈和次级线圈的参数。
然后,设计整流电路,选择合适的二极管种类和数量,以及电容器和电阻负载参数。
最后,连接电路图中的各个元件,形成完整的单相交流调压电路。
完成电路图设计后,可以对电路进行仿真分析。
通过设置输入电压、输出电压和负载电流等参数,可以模拟电路工作情况。
仿真分析可以得到电路的输入电流、输出电流、纹波大小等参数,以及不同工作条件下的性能指标。
仿真结果可以用于评估电路性能和优化设计。
根据仿真结果,可以调整电路参数,以达到更好的性能要求。
比如,可以尝试不同的变压器匝数比、二极管种类和数量、电容器容值等,看看它们对电路性能的影响。
单相交流调压电路设计(Design of single phase AC voltage regulator circuit)
单相交流调压电路设计(Design of single phase AC voltageregulator circuit)DOC documents may experience poor browsing on the WAP side. It is recommended that you first select TXT, or download the source file to the local view.Design of single phase AC voltage regulating circuit, design of single-phase AC voltage regulating circuit, AC voltage regulating circuit1 design objectives and requirements analysisThe design of a single-phase AC voltage regulator circuit requires a trigger angle of 45 degrees. The back EMF load is E=40 volts and the input is AC U2=210 volts. There are no LB and LB two of.L is large enough, C analysis of large enough requirements: 1. single-phase AC voltage design, main circuit principle; 2. trigger circuit design, analysis of sequence and phase of each switch trigger; 3. protection circuit, overcurrent protection, overvoltage protection principle and setting analysis; the calculation of 4. parameters (including the trigger angle, average output voltage, average output current, output active power calculation, output waveform analysis, determine the rated parameters of the device can add their own analysis parameters); from the above design requirements of the system can be divided into four parts: the AC voltage main circuit, trigger circuit design protection circuit design and related calculation and waveform analysis part. Here are a detailed introduction.2 the design selection adopts two common thyristor reverse parallel design single-phase AC voltage regulating circuit3 single-phase AC voltage regulation main circuit design and analysisAC voltage regulation means that the two thyristors are connected in series in an AC circuit after they are connected in parallel. In each half cycle, the effective value of the output voltage can be adjusted conveniently by controlling the phase of the thyristor. AC voltage regulating circuit is widely used in light control and asynchronous motor soft start, also used in asynchronous motor speed regulation. In addition, in the high voltage, small current or low voltage, high current power supply, AC voltage regulation circuit is often used to adjust the primary voltage of the transformer. The course design is mainly to study the design of single-phase AC voltage regulation circuit. Because the working condition of AC voltage regulating circuit is closely related to the nature of the load, the anti EMF and resistance load are discussed below.OneFigure 1 and Figure 2 are respectively the back EMF, the resistance load, the single-phase AC voltage regulation circuit and the waveform. The thyristors VT1 and VT2 in the picture can also be replaced by a bidirectional thyristor. The output voltage can be adjusted by controlling the phase shift control angle of the VT1 and VT2 in the positive half and half half cycles of the AC power U2.Fig. 1 single phase AC voltage regulation circuit with back EMFresistance loadFig. 2 waveform of input and output voltage and currentThe positive and negative half cycle alpha start times (alpha =0) are voltage zero crossing times. At t = Alpha Omega, applying trigger pulse to VT1, when VT1 positive bias is turned on, the load voltage waveform and power supply voltage waveform in the same; omega = Pi T, power supply voltage zero, due to a resistive load, current is zero, VT1 turned off. stayWhen Omega t = Pi + alpha, a trigger pulse is applied to the VT2, and the waveform of the load voltage is shifted when the VT2 is biased forwardThe same as the supply voltage waveform; at Omega t = 2 pi, the power supply voltage is zero, and the VT2 is turned off naturally. When the power supply voltage reverse zero, because of the back EMF load prevents current changes, so the current can not be immediately to zero, the thyristor conduction angle size, not only related to the control angle, but also related with the load impedance angle. The initial control points of gate gates of two thyristors are set at the starting point of each half of the supply voltage respectively. When the steady-state is equal to the positive and negative half weeks, the load voltage waveform is part of the supply voltage waveform, and the waveform of the load current (the supply current) is similar to that of the load voltage.4 trigger circuit designTwoThe thyristor trigger circuit is used to generate gate trigger pulses that meet the requirements and to ensure that the thyristor is switched off to conduction at the desired time. Broadly speaking, thyristor trigger circuit often includes a phase control circuit of the trigger time of the control, but here refers to pulse amplification and output. The thyristor trigger circuit shall meet the following requirements: 1) the width of pulse should ensure reliable thyristor conduction of the converter, back EMF load should be used in pulse width or pulse trigger; 2) trigger sufficient amplitude, on cold outdoor occasions, amplitude of pulse current should be increased to 3-5 times the maximum trigger current, pulse steepness may increase, the general should be 1-2A/us; 3) provided the trigger pulse voltage, current and power should not exceed the thyristor gate and the gate of the quota, the volt ampere characteristics of reliable trigger area; 4) electrical isolation of anti-jamming, stability and temperature the main circuit and the. According to the above requirements analysis, the KC05 phase shift trigger is used to design the trigger circuit.KCO5 silicon controlled phase shift trigger is suitable for AC phase control of bidirectional thyristor or two reverse parallel thyristor. The KC05 pin diagram is shown in figure 3:Figure 3 KC05 pin diagramKC05 trigger chip has the advantages of good sawtooth waveform, wide range of phase shift, simple control mode, easycentralized control, loss of protection, high output current and so on. It is an ideal circuit for AC dimming and voltage regulation. The KC05 circuit is also suitable for phase control of semi controlled or fully controlled bridge lines. Synchronous voltage from 15, 16 feet KC05 input, TP1 can be observed in the sawtooth wave, RP1 potentiometer to adjust the slope of the sawtooth, Rp2 potentiometer to adjust the phase angle, the trigger pulses from the pulse transformer output of ninth feet. Adjust potentiometer RP1, observe sawtooth slope change, adjust RP2, can observe the output pulse phase shift range, how to change the single-phase AC voltage trigger circuit diagram, as shown in figure 4:ThreeFig. 4 Schematic diagram of single phase AC voltage regulating trigger circuit5 protection circuit designIn the power electronic circuit, besides the choice of the parameters of the power electronic device and the design of the drive circuit, proper overvoltage, overcurrent, du/dt protection and di/dt protection are also necessary. 1 over voltage generation and over-voltage protection, the possible overvoltage in power electronic devices is divided into two categories: external factor, over voltage and internal overvoltage. Be mainly from overvoltage reasons, external lightning in the system operation process includes: 1) operating voltage: the overvoltage caused by separate switch, switching operation, fast switch off DC electromagneticprocess often caused by overvoltage in operation.Four2) lightning overvoltage: overvoltage caused by lightning stroke. The switching process, Internal Overvoltage mainly from internal devices of power electronic device includes: 1) commutation overvoltage due to thyristor full controlled devices or anti parallel after not immediately restore blocking diode in phase change after the end of the reverse current flow through the larger, so that the residual carrier recovery, when the restore the blocking capability, reverse current decreases sharply, so the current mutation due to inductance in the two ends of the thyristor full controlled devices or between anode and cathode with diode anti parallel overvoltage. 2) turn off overvoltage: the full controlled device works at higher frequencies. When the device is turned off, the voltage across the device is induced by the inductance of the line inductance due to the rapid decrease of the forward current. According to the different parts of the overvoltage protection circuit overvoltage protection circuit is generated, adding different, when reaching certain voltage, automatically open circuit protection, overvoltage protection circuit formed by the pathway of electromagnetic energy consumption, overvoltage storage, so that the energy is not added to the main switching device Overvoltage on protection of power electronic devices. In order to achieve the protection effect, the resistance capacitance protection circuit can be used. When the capacitor is connected in the loop, when the voltage spike voltage occurs in the circuit, the voltage at both ends of the capacitor can not be mutated, and the overvoltage in the circuit can beeffectively suppressed. A resistor connected in series with the capacitor can consume part of the overvoltage energy, while suppressing the inductance and capacitance in the circuit to oscillate. The overvoltage protection circuit is shown in figure 5.Figure 5 RC resistance capacitance overvoltage protection circuit2 over current protection. Excessive current may occur when the power electronics circuit is not operating properly or when a fault occurs. When the device breakdown or short circuit, trigger circuit or control circuit failure, overload, short circuit, reversible DC transmission system produces circulation or inverter failure, and AC power supply voltage is too high or too low, the lack of equal, can cause the flow. Since the current overload capacity of power electronic devices is relatively poor, it is necessary to carry out over-current protection for converters. Fast fuse is the most effective and widely used over-current protection method in power electronic devices.FiveFig. 6 overcurrent protection circuitThe overcurrent protection circuit as shown in Figure 6, the AC side connected fast fuse tube protection short circuit element short circuit and DC side of thyristor, but normal operation, fast fuse current rating is greater than the current of the thyristor protection effect of this poor quota, thecomponents of the short circuit fault. The DC side quick fuse only protects the short circuit from the load and has no protective effect on the component. Only thyristor directly connected to a fast fuse is the best protection for components because they flow through the same current and are widely used. As the first electronic circuit protection fuse protection only as part of the section of short circuit, DC fast circuit breaker setting protection in electronic circuit, overcurrent relay operating in overload.Parameter setting and calculation of 6 phase AC voltage regulation circuit1) parameter setting of single-phase AC voltage regulator: the trigger angle is 45 degrees, the back EMF load is E=40 volts, and the input is AC U2=210 volts. There are two cases of LB and no LB. The L is large enough and the C is large enough. 2) single-phase AC voltage regulator converter circuit analysis: in the single-phase AC voltage regulator circuit diagram, thyristor VT1 and VT2 can also be replaced by a bidirectional thyristor. The output voltage can be adjusted by controlling the turn-on angle of VT1 and VT2 in the positive half and negative half cycles of the AC power U2. The starting time (=0) of positive and negative half cycles is zero crossing time. In the steady state, it should be equal to the positive and negative half weeks. It can be seen that the load voltage waveform is part of the voltage waveform of the power supply, and the waveform of the load current is the same as the load voltage. 3) output average voltage, current and output active power calculation, first set resistance value R = 100, divided into LB and no LB two cases analysis. When there is no leakagesense LB, when the opening angle is set as alpha, the effective value of the load voltage is U0, the effective current value of the load current is I0, the RMS current of the thyristor current is IVT, and the power factor of the circuit is lambda. According to the formula, the following results are obtained:= U01 PI + alpha formula (2U2 sin T 2 D (omega) = Alpha PI Omega T) =201.87VI0 = U0, =2.02A, R(1)(2)SixIVT=1 PI + alpha 2U2 sin WT (2) d (WT) = 2 pi alpha 1.43A formula RLambda = P, U0I0, =0.961 = S, U 2, I0(3)(4)When the leakage inductance is considered, there is alwaysleakage in the transformer windings LB. Because the inductance is a hindrance to the current change, the inductance current can not be mutated, so the commutation process can not be completed instantaneously, but will last for some time. The influence of leakage inductance LB on the related parameters in the commutation process is analyzed below. In the commutation process, the instantaneous value of the output voltage isUd = Ua + LBDik, Dik, Ua + Ub = Ub = LB = DT DT 2(5)It can be seen that in commutation process, the rectifier voltage U D is the average value of the two thyristors with the corresponding two phase voltages simultaneously. Compared with the transformer leakage inductance, the U D is reduced by one piece each time, which leads to the average reduction of U D, and reduces the number of U D. This is called the phase change voltage drop. (6)Ud = X, B, IdPIWhere XB=w LB. XB converts the leakage inductance of the LB transformer to the two term leakage reactance. At the same time, we can obtain the change of overlap angle gamma, which can be obtained by the lower form.Cos alpha cos (alpha + lambda) =IdXB 2U 2(7)The change law of the change phase overlap angle with other parameters is as follows: when Id is bigger, the gamma is bigger; when XB is bigger, the gamma is bigger; when alpha <=90 degrees, the alpha is smaller, then the gamma is bigger. The influence of leakage inductance on the circuit is analyzed as follows: (1) the phase change overlap angle and the average output voltage of rectifier Ud are decreased. (2) the working state of the rectifier circuit is increased (3) the di/dt of the thyristor is reduced, which is beneficial to the safe opening of the thyristor. Sometimes artificial input line reactors are used to suppress the thyristor di/d t. (4) when the commutation occurs, the thyristor voltage gap occurs, resulting in a positive du/dt, which may cause the thyristor to mislead. Therefore, an absorption circuit must be added.Seven(5) commutation causes the voltage of the grid to become a source of interference.Harmonic analysis of 7 single-phase AC voltage regulating circuitThe load voltage and load current of single phase AC voltageregulating circuit are not sinusoidal wave, and contain a large amount of harmonic. Taking the resistive load as an example, the harmonic analysis of the load voltage U0 is made. Since the positive and negative half wave of the wave is symmetrical, there is no DC component or even harmonic.8 design summary and experienceThe power electronic technology curriculum design, so that we have the opportunity to learn the theoretical knowledge used in the classroom in practice. And through the comprehensive utilization of knowledge, the necessary analysis, comparison. And further verify the theoretical knowledge. At the same time, the curriculum design for our future study to lay the foundation. Guide us in the future study, many brains at the same time, should be good at finding and solving problems. The curriculum design, but also let me know, the most important thing is mentality, you get the title will feel difficult, but as long as full of confidence, will certainly be completed. Through the power electronic technology curriculum design, textbook for me to deepen the understanding of professional knowledge, usually is the theory of knowledge, in the curriculum design, truly design their own access to information, to complete a basic assembler. In the design process,I am more familiar with the principle of single-phase AC voltage regulator circuit and the design of trigger circuit. Of course, in this process, I also encountered difficulties, discuss each other through access to information, I accurately identify the errors and corrected in time, this is my biggest harvest, so that their practical ability has been further improved, let mehave more confidence in the future study and work. Through this curriculum design that I only theoretical knowledge is not enough to understand, only the theory knowledge and practice combined, draw conclusions from theory, the ability to improve their practical ability and independent thinking. In the design process will inevitably encounter various problems, and found his shortcomings in the design process, the previously learned knowledge to understand deeply enough, enough to grasp firmly, through the curriculum design, the previously learned knowledge of the new review and consolidate what they have learned knowledge.Eight7 referencesWang Yunliang [1]. The power electronic technology. Beijing: Electronic Industry Press, 2004. [2] Zhao Liangbing modern power electronics technology. Beijing: Tsinghua University press, 1999 [3] Huang Jun, Wang Zhaoan. Power electronic converter technology. Beijing: Mechanical Industry Press, 2001.[4] Wang Zhaoan, Huang Jun of power electronic technology. Beijing: Mechanical Industry Press, 2000.. Zhou Kening [5] power electronic technology. Beijing: Mechanical Industry Press, 2004NineOne。
斩控式单相交流调压电路设计
斩控式单相交流调压电路设计一、电路结构1.调压变压器:调压变压器用于将输入电压调整为需要的输出电压。
其一次侧连接到交流电源,二次侧连接到斩波电路。
2.斩波电路:斩波电路由开关管和与之配套的电路组成。
开关管负责控制电源的通断,电路则根据开关管的导通状态,控制输出电压。
3.滤波电路:滤波电路用于对输出电压进行平滑处理,减小其峰值值波动。
4.负载:负载是电路的输出部分,可以是电阻、电感或电容等元件。
二、电路原理1.斩波原理斩波电路采用开关管控制输出电源通断,实现对交流电压的控制。
在正半周,开关管导通,电源输出;在负半周,开关管关断,电源不输出。
通过控制开关管的导通时间,可以实现对输出电压的控制。
2.滤波原理滤波电路主要通过电感、电容等元件,对输出电压进行平滑处理,减小其峰值值波动。
电感对交流信号有滤波作用,而电容则具有存储电荷的特性,可以增大负载电流。
三、设计步骤1.确定输出电压根据实际需求,确定所需的输出电压。
2.选择调压变压器根据所需的输出电压和电流,选择合适的调压变压器。
3.选择开关管根据输出电压和负载要求,选择合适的开关管。
常用的开关管有MOSFET和IGBT等。
4.设计斩波电路根据开关管的参数和工作原理,设计和优化斩波电路。
可以使用各种控制技术,如脉冲宽度调制(PWM)等。
5.设计滤波电路根据输出电压的波动情况,选择合适的滤波电路设计。
可以使用RC 滤波电路、LCL滤波电路等。
6.验证电路设计使用仿真软件对电路进行仿真验证,检查输出电压波形是否稳定、峰值值是否满足要求。
根据仿真结果进行优化调整。
7.电路实现与调试根据设计结果,搭建电路原型并进行实际调试。
检查输出电压是否符合要求,观察电路工作是否稳定。
8.性能评估与改进对实际搭建的电路进行性能评估,并进行必要的优化改进。
通过以上步骤,可以设计出符合实际要求的斩控式单相交流调压电路。
在实际应用中,还需要考虑电压变化范围、功率损耗、开关管和滤波元件的选取等问题。
单相交流调压电路课程设计
设计收获:对单相交流调压电路有了更深入的理解和掌握
电路设计:考虑电路的稳定性和可靠性
控制策略:优化控制策略,提高系统的响应速度和稳定性
仿真验证:增加仿真验证的准确性和可靠性
实验验证:加强实验验证,提高设计的实用性和可靠性
创新性:提高设计的创新性和实用性,增加设计的竞争力
团队合作:加强团队合作,提高设计的效率和质量
单相交流调压电路可以调节电压,满足不同设备的需求。
单相交流调压电路可以降低电力系统的损耗,提高能源利用效率。
单相交流调压电路在电机控制中的应用广泛,如家用电器、工业设备等。
单相交流调压电路可以实现对电机的转速、转矩、功率等参数的精确控制。
单相交流调压电路可以提高电机的工作效率,降低能耗。
单相交流调压电路可以延长电机的使用寿命,提高设备的可靠性。
电路设计问题:确保电路设计正确,避免短路、断路等问题
电源问题:确保电源稳定,避免电压波动、电源故障等问题
调试问题:确保调试步骤正确,避免误操作、参数设置错误等问题
故障排除:遇到故障时,根据故障现象进行排查,找出问题所在并解决
单相交流调压电路可以提高电力系统的稳定性和可靠性。
单相交流调压电路在电力系统中的应用广泛,如家用电器、工业设备等。
确定设计目标:实现单相交流调压电路的功能
确定设计要求:满足性能指标、安全性、可靠性等要求
确定设计方法:选择合适的电路拓扑、元器件、控制策略等
确定设计步骤:需求分析、方案设计、仿真验证、硬件实现等
单相交流调压电路的拓扑结构设计实例
单相交流调压电路的拓扑结构选择原则
单相交流调压电路的常见拓扑结构
单相交流调压电路的基本结构
电源提供交流电,变压器将交流电转换为所需的电压,整流器将交流电转换为直流电,滤波器滤除直流电中的交流成分,稳压器稳定直流电的电压。
单相交流调压电路2000W--电力电子技术-课程设计论文
各部分电路的作用 (2)电路与变压器变比的设计参数计算2.8 设计总结1、按课程设计指导书提供的课题, 根据第下表给出的基本要求及参数独立完成设计, 方案的经济技术论证。
2、主电路设计。
3、通过计算选择整流器件的具体型号。
4、确定变压器变比及容量。
5、确定平波电抗器。
7、触发电路设计或选择。
第1章课程设计内容将一种交流电能转换为另一种交流电能的过程称为交流-交流变换过程, 凡能实现这种变换的电路为交流变换电路。
对单相交流电的电压进行调节的电路。
用在电热控制、交流电动机速度控制、灯光控制和交流稳压器等场合。
与自耦变压器调压方法相比, 交流调压电路控制方便, 调节速度快, 装置的重量轻、体积小, 有色金属消耗也少。
结构原理简单。
该方案是由变压器、触发电路、整流器、以及一些电路构成的, 为一台电阻炉提供电源。
输入的电压为单相交流220V, 经电路变换后, 为连续可调的交流电。
2.2 各部分电路作用220V交流输入部分作用: 为电路提供电源, 主要是市电输入。
调压环节的作用: 将交流220V电源经过变压器、整流器等电路转换为连续可调的交流电输出。
触发电路部分作用: 为主电路提供触发信号。
输出连续可调的交流电源部分作用: 为电阻炉提供电源。
发电路与变压器变比的设计闸管触发电路的作用是产生符合要求的门极触发脉冲, 保证晶闸管在需要的时刻由阻断转为导通。
晶闸管触发电路应满足下列要求:1) 触发脉冲的宽度应保证晶闸管可靠导通, 对感性和反电动势负载的变流器应采用宽脉冲或脉冲列触发, 对变流器的起动、双星形带平衡电抗器电路的触发脉冲应宽于30o, 三相全控桥式电路应采用宽于60o 或采用相隔60o 的双窄脉冲。
2) 触发脉冲应有足够的幅度, 对户外寒冷场合, 脉冲电流的幅度应增大为器件最大触发电流的3~5倍, 脉冲前沿的陡度也需增加, 一般需达1~2A/μs 。
3) 所提供的触发脉冲应不超过晶闸管门极的电压、电流和功率定额, 且在门极伏安特性的可靠触发区域之内。
单相交流调压电路(阻感性负载)
1.单相交流调压电路(阻-感性负载)1.1单相交流调压电路电路结构(阻-感性负载)单相交流调压电路,它用两只反并联的普通晶闸管或一只双向晶闸管与负载电阻R电感L串联组成主电路。
单相交流调压电路(阻-感性负载)电路图如图1所示。
图1.单相交流调压电路(阻-感性负载)电路图1.2单相交流调压电路工作原理(阻-感性负载)当电源电压U2在正半周时,晶闸管VT1承受正向电压,但是没有触发脉冲晶闸管VT1没有导通,在α时刻来了一个触发脉冲,晶闸管VT1导通,晶闸管VT2在电源电压是正半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT1关断。
当电源电压U2在负半周时,晶闸管VT2承受正向电压,但是没有触发脉冲晶闸管VT2没有导通,在π+α时刻来了一个触发脉冲,晶闸管VT2导通,晶闸管VT1在电源电压是负半周时承受反向电压截止,当电源电压反向过零时,由于负载电感产生感应电动势阻止电流变化,故电流不能马上为零,随着电源电流下降过零进入负半周,电路中的电感储存的能量释放完毕,电流到零,晶闸管VT2关断。
1.3单相交流调压电路仿真模型(阻-感性负载)单相交流调压电路(阻-感性负载)仿真电路图如图2所示:图2.单相交流调压电路(阻-感性负载)仿真电路图电源参数,频率50hz,电压100v,如图3图3.单相交流调压电路(阻-感性负载)电源参数VT1脉冲参数设置,振幅3V,周期0.02,占空比10%,时相延迟α/360*0.02,如图4图4.单相交流调压电路(阻-感性负载)脉冲参数设置VT2脉冲参数设置,振幅3V,周期0.02,占空比10%,时相延迟(α+π)/360*0.02,如图5图5.单相交流调压电路(阻-感性负载)脉冲参数设置1.4单相交流调压电路仿真参数设置(阻-感性负载)设置触发脉冲α分别为30°、60°、90°、120°。
单项交流调压电路课程设计
单项交流调压电路课程设计一、课程目标知识目标:1. 学生能够理解并掌握单项交流调压电路的基本原理和电路构成;2. 学生能够描述并解释调压电路中各元件的作用及其工作原理;3. 学生能够掌握并运用相关的物理公式和电路分析方法,对单项交流调压电路进行计算和分析。
技能目标:1. 学生能够运用所学知识,设计并搭建简单的单项交流调压电路;2. 学生能够运用电路测试仪器,对单项交流调压电路进行性能测试和参数调整;3. 学生能够通过实际操作,培养动手能力和问题解决能力。
情感态度价值观目标:1. 学生通过学习单项交流调压电路,培养对电子技术的兴趣和热情;2. 学生在学习过程中,培养合作意识、团队精神和创新思维;3. 学生能够认识到电子技术在日常生活中的应用和重要性,提高社会责任感和环保意识。
课程性质:本课程为电子技术基础课程,旨在让学生掌握单项交流调压电路的基本知识和技能。
学生特点:本课程面向初中年级学生,他们对电子技术有一定的好奇心,动手能力强,但理论知识相对薄弱。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和问题解决能力。
通过分解课程目标,确保学生能够达到预期学习成果,为后续教学和评估提供依据。
二、教学内容1. 理论知识:- 电路基础知识:电流、电压、电阻的概念及其相互关系;- 单项交流电特点:正弦波、频率、周期、峰值、有效值等;- 调压电路原理:自耦变压器、串联电容、并联电容的调压原理。
2. 实践操作:- 电路元件识别:电阻、电容、电感、二极管、晶体管等;- 单项交流调压电路搭建:自耦变压器调压电路、电容滤波电路;- 性能测试:使用万用表、示波器等设备测试电路参数。
3. 教学大纲安排:- 第一课时:电路基础知识回顾,单项交流电特点介绍;- 第二课时:调压电路原理讲解,分析各元件作用;- 第三课时:电路元件识别,实践操作指导;- 第四课时:单项交流调压电路搭建,性能测试与参数调整;- 第五课时:总结与评价,拓展知识介绍。
晶闸管单相交流调压与调功电路设计
晶闸管单相交流调压与调功电路设计晶闸管(thyristor)是一种常用的电子元件,可用于单相交流调压和调功电路的设计。
下面将详细介绍晶闸管单相交流调压与调功电路的设计过程。
一、晶闸管单相交流调压电路设计1.电路组成2.电路原理电路的原理是将交流电压输入到变压器的一侧,然后通过晶闸管控制电路的导通角度来改变输出电压。
3.电路设计步骤(1)选择合适的晶闸管和变压器,根据负载的要求确定需要的输出电压范围。
(2)根据输出电压范围选择合适的电阻和电容元件,用于过滤电路中的谐波。
(3)利用适当的控制电路来控制晶闸管的导通,以达到对输出电压的调节和控制。
4.电路设计要点(1)选择合适的晶闸管和变压器,要考虑其额定电流和功率,以及负载要求的输出电压范围。
(2)合理选择电阻和电容元件,以滤除谐波,确保输出电压质量。
(3)合理设计控制电路,使其能够准确控制晶闸管的导通角度。
1.电路组成2.电路原理电路的原理是将交流电输入到变压器的一侧,然后通过晶闸管控制电路的导通角度来改变输出电功率。
3.电路设计步骤(1)选择合适的晶闸管和变压器,根据负载的要求确定需要的输出功率范围。
(2)合理设计控制电路,使其能够准确控制晶闸管的导通角度。
4.电路设计要点(1)选择合适的晶闸管和变压器,要考虑其额定电流和功率,以及负载要求的输出功率范围。
(2)合理设计控制电路,使其能够准确控制晶闸管的导通角度,以实现对负载电功率的调节和控制。
以上是晶闸管单相交流调压与调功电路的设计过程。
根据具体的应用需求和负载要求,可以选择合适的晶闸管和变压器,并合理设计控制电路,以实现对交流电压和功率的调节和控制。
单相交流调压电路课程设计
单相交流调压电路的设计学院专业姓名学号指导老师目录一、设计任务 (3)二、所用器件 (3)三、设计方案 (3)1.单相交流调压主电路及触发电路图 (3)2.设计指标 (3)3.单相交流调压主电路 (4)4.单相交流调压电路谐波分析 (5)5.单相交流调压触发电路 (5)6.单相交流调压的计算 (10)四、结果分析 (11)五、设计体会 (12)一、设计任务设计一个单相交流调压电路。
输入电压为24V交流,输出交流电压可变,带纯电阻性负载。
二、所用的器件电烙铁焊锡导线万用表双刀单掷开关电路板芯片座电阻:10KΩ---×415KΩ---×21KΩ---×130KΩ---×2510Ω---×2电容:0.0473μF---×2变阻器:6.8KΩ---×2 2.2KΩ---×1晶闸管---×2二极管IN4001---×2三极管s9014c NPN型----×2脉冲变压器变比2:1 ---×2三、设计方案1.单相交流调压主电路及触发电路图如下:2.设计指标(1)输入电压:单相交流24V,50Hz(2)负载性质:电阻3.单相交流调压主电路在上图中晶闸管VT1 VT2 也可以用双向晶闸管代替在电源U的正半周内,晶闸管V承受正向电压,当ωt=α时触发V使其导通则负载上得到缺α角的正弦半波电压,当电源电压过0时,V管电流下降为0而关断,在电源电压U的负半周,V晶闸管承受正向电压,当ωt=α+π时,触发V使其导通,则负载上得到缺α角的正弦负半波电压,改变α角大小,就改变了输出电压有效值大小,负载电压电压有效值为()()παπαπωωππα-+==⎰2sin21dsin21121oUttUU负载电流有效值παπαπ-+==2sin21RURUI oo晶闸管电流有效值())22sin1(21sin221121παπαωωππα+-=⎪⎪⎭⎫⎝⎛=⎰R UtdRtUIT电路功率因数παπαπλ-+====2sin211oo1ooUUIUIUSP由图和公式可以看出α移项范围从0到π,α=0时,相当于晶闸管一直接通,输出电压为最大值,Uo=UI,随着α的增大,Uo降低,直到α=π时,Uo=0,此外,α=0时,功率因数λ=1,随着α的增大,输入电流落后于电压并且发生畸变,λ也随之降低。
单相交流调压电路纯电阻负载
1 设计方案及选择由于题目要求输出电压范围为0~100V,所以方案可选电阻性负载或阻感性负载。
本电路采用单相交流调压器带阻感负载时的电路图如图1所示,在负载和交流电源间用两个反并联的晶闸管VT1,VT2相连。
2 单相交流调压电路的设计2.1 主电路的设计所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。
交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。
此外,在高电压小电流或低电压流之流电源中,也常采用交流调压电路调节变压器一次电压。
本次课程设计主要是研究单相交流调压电路的设计。
由于交流调压电路的工作情况与负载的性质有很大的关系,因此下面就反电势电阻负载予以重点讨论。
图1、图2分别为反电势电阻负载单相交流调压电路图及其波形。
图中的晶闸管VT1和VT2也可以用一个双向晶闸管代替。
在交流电源U2的正半周和负半周,分别对VT1和VT2的移相控制角进行控制就可以调节输出电压图1 电阻负载单相交流调压电路图2 单相交流电压电路波形正、负半周α起始时刻(α=0),均为电压过零时刻。
在t ωα=时,对VT 1施加触发脉冲,当VT1正向偏置而导通时,负载电压波形与电源电压波形相同;在t ωπ=时,电源电压过零,因电阻性负载,电流也为零,VT1自然关断。
在t ωπα=+时,对VT2施加触发脉冲,当VT2正向偏置而导通时,负载电压波形与电源电压波形相同;在2t ωπ=时,电源电压过零,VT2自然关断。
当电源电压反向过零时,由于反电动势负载阻止电流变化,故电流不能立即为零,此时晶闸管导通角θ的大小,不但与控制角α有关,而且与负载阻抗角φ有关。
两只晶闸管门极的起始控制点分别定在电源电压每个半周的起始点。
稳态时,正负半周的相等,负载电压波形是电源电压波形的一部分,负载电流(电源电流)和负载电压的波形相似。
2.2 控制电路的设计2.2.1 触发信号的种类晶闸管由关断到开通,必须具备两个外部条件:第一是承受足够的正向电压;第二是门极与阴极之间加一适当正向电压、电流信号(触发信号)。
(完整word版)单相交流调压电路课程设计
单相交流调压电路的设计1 单相交流调压电路设计任务及设计目的 (2)1。
1电路设计任务 (2)1.2电路设计目的 (2)1。
3主电路的原理分析 (3)1。
4主电路器件的选择 (4)2 设计方案及选择 (7)3 单相交流调压电路的设计 (7)3.1主电路的设计 (7)3.2控制电路的设计 (8)3。
2。
1触发信号的种类 (8)3。
2.2触发电路设计 (9)3。
2.3总的电路图 (10)4单相交流调压电路仿真结果及结果分析 (11)4.1仿真结果 (11)4。
2结果分析 (13)5 单相交流电压电路设计总电路图 (14)总结 (15)参考文献 (17)1 单相交流调压电路设计任务及设计目的1。
1 电路设计任务1 进行设计方案的比较,并选定设计方案。
2 完成单元电路的设计和主要元器件的说明。
3 完成主电路的原理分析,各主要元器件的选择。
4 驱动电路的设计。
5 电路的仿真。
1.2 电路设计目的电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料,选择方案,设计电路,撰写报告,制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。
1.3电阻性负载的交流调压器的原理分析其晶闸管VT1和VT2反并联连接,与负载电阻R串联接到交流电源上。
当电源电压U2正半周开始时刻触发VT1,负半周开始时刻触发VT2,形同一个无触点开关。
若正、负半周以同样的移相角α触发VT1和VT2,则负载电压有效值随α角而改变,实现了交流调压。
移相角为α时的输出电压u的波形,如图1-1所示.图1-1A 电阻性负载单相交流调压电路及波形图1.4 主电路的原理分析所谓交流调压就是将两个晶闸管反并联后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位,可以方便的调节输出电压的有效值。
交流调压电路广泛用于灯光控制及异步电动机的软启动,也用于异步电动机调速。
单相交流调压电路的设计
摘要交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。
在电力系统中,这种电路还常用于对无功功率的连续调节。
此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。
在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。
这都是十分不合理的。
采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就这样的电路体积小、成本低、易于设计制造。
单相交流调压电路是对单相交流电的电压进行调节的电路。
用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。
与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少关键词:交流;调压;电动机调速;电力系统;变压器;ABSTRACTAc voltage circuit is widely used in lighting control (such as dimmer and stage lighting control) and asynchronous motor, also used in the soft start-up induction motor drive. In the power system, the circuit is also often used to reactive power of continuous adjustment. In addition, in high voltage and low voltage, current, or small current dc power supply, often also adopt ac voltage transformer voltage regulating circuit. In these power such as using thyristor rectifier circuit control of high voltage, low current controlled dc power needs many thyristor series, Similarly, low voltage dc current needs many thyristor parallel. This is very reasonable. Adopt ac voltage transformer voltage circuit in the side, the voltage and current are moderate, as in transformer with diode rectifier side. This circuit, small volume, low cost, easy to design and manufacture.Single-phase ac voltage circuit of single-phase ac voltage is to adjust the circuit. Used in electric heating system, ac motor speed control, lighting control and ac stabilizer etc. Since the voltage transformer with decoupling method, exchange regulating circuit control and speed regulation, the device, light weight, small size, non-ferrous metal consumption is lessKey words: communication; Voltage regulation; Motor drive; Power system; Transformer;目录1 单相交流调压电路设计目的及务 (5)1.1设计目的 (5)1.2设计要求及分析 (5)1.3 设计方案选择 (5)2 单相交流调压主电路设计及分析 (5)2.1电阻负载 (6)2.1.1建立模型仿真 (6)2.1.2仿真参数设置 (6)2.1.3结果分析 (10)2.2阻负载感 (11)3 触发电路 (16)4 保护电路 (18)4.1保护电路设计 (18)4.2过电压的产生及过电压保护 (18)4.3晶闸管过电流保护 (19)5 总电路图 (21)6 单相交流调压电路参数设定与计算 (21)6.1单相交流调压变流器参数设定 (21)6.2单相交流调压变流器电路分析 (21)6.3输出平均电压、电流及输出有功功率 (22)7 总结与体会 (24)参考文献 (25)致谢 (26)附录 (27)1单相交流调压电路设计目的及任务1.1设计目的电力电子技术是专业技术基础课,做课程设计是为了让我们运用学过的电路原理的知识,独立进行查找资料、选择方案、设计电路、撰写报告、制作电路等,进一步加深对变流电路基本原理的理解,提高运用基本技能的能力,为今后的学习和工作打下良好的基础,同时也锻炼了自己的实践能力。
单相交流调压电路的设计
单相交流调压电路的设计单相交流调压电路是一种用于将交流电转换为可控的直流电的电路。
它通常被应用在一些需要稳定的直流电源的场合,如电子设备、通信设备等。
本文将介绍单相交流调压电路的设计原理和步骤,并且具体以整流电路、滤波电路和稳压电路为例进行讲解。
首先,我们需要了解一些关键的基础知识。
在交流电中,电压的大小和方向会随时间的推移而不断变化,通常表示为正弦波形状。
而直流电则是电压和电流一直保持不变的。
单相交流调压电路的任务就是将输入的交流电转换成稳定的直流电,其中关键的步骤包括整流、滤波和稳压。
整流器是单相交流调压电路的第一步。
它通过将交流电中的部分波形进行剪切,只保留正半周或负半周的波形。
最常见的整流电路是单相半波整流电路和单相全波整流电路。
在单相半波整流电路中,只有交流电的正半周波形被保留下来,而负半周波形则被消除。
而在单相全波整流电路中,整个正弦波形都被保留下来。
接下来是滤波电路的设计。
滤波电路用于将整流后的电流进行平滑,以去除剩余的交流成分,得到更稳定的直流电。
滤波电路通常由电容器和电感组成。
电容器将电流平滑化,而电感则可帮助去除电压中的高频成分。
不同滤波电路的特点和应用需求有所不同,常用的滤波电路有LC滤波电路和LCL滤波电路。
最后一步是稳压电路的设计。
稳压电路用于保持输出电压在一个设定的范围内,即使输入电压和负载的变化。
常用的稳压电路包括电压稳定器和开关稳压电路。
电压稳定器是通过调整输出电压中的电流来实现的,开关稳压电路则是通过快速开关电流来调整电压并保持其稳定。
在进行单相交流调压电路的设计时,需要根据实际的应用需求来选择合适的整流电路、滤波电路和稳压电路。
在设计过程中,还需要考虑到输入电压的范围、负载变化、输出电压的稳定性等因素。
此外,还需要进行电路参数的计算和分析,以确保电路可以正常工作。
总结起来,单相交流调压电路的设计包括整流、滤波和稳压三个关键步骤。
通过合理选择和设计这些电路,可以将交流电转换为稳定的直流电,并满足特定应用的需求。
单相交流调压电路设计
单相交流调压电路设计稳压二极管电路是最简单和常见的单相交流调压电路。
它由稳压二极管、电阻和电容组成。
稳压二极管是一种特殊的二极管,具有稳定的电压特性。
通过选择适当的稳压二极管,可以实现不同的输出电压。
稳压二极管将高压输入电压降低到稳定的输出电压,并且在电压波动时能够保持输出电压不变。
电阻和电容则用于过滤输入电压的噪声和脉动。
变压器调压电路是另一种常见的单相交流调压电路。
它由变压器、开关元件、控制电路和滤波电路组成。
变压器通过改变输入电压的变比来调节输出电压。
开关元件根据控制电路的信号周期性地开关,通过改变开关时间比例来控制输出电压的大小。
滤波电路用于过滤电压中的脉动和噪声,以获得稳定的输出电压。
电子管调压电路是一种通过调节电子管工作状态来控制输出电压的调压电路。
它通常由电子管、电源电路和控制电路组成。
电子管通过调整灯丝电流、阳极电压或阴极电流等参数,改变电子管内部的工作状态,从而实现输出电压的调节。
控制电路用于检测输出电压,并根据需要调节电子管的工作状态。
电子管调压电路具有调节范围广、反应速度快等优点,适用于对输出电压要求较高的应用场合。
单相交流调压电路的设计需要考虑多个因素,包括负载要求、电源电压范围、输出电压精度、稳定性要求等。
在设计过程中,需要根据具体的需求选择合适的调压电路,并合理选择元器件,进行电路分析和仿真,确保电路的稳定性和可靠性。
同时,还需要进行电路的标定和校准,以确保输出电压的准确性和稳定性。
在实际应用中,单相交流调压电路广泛应用于电子设备、仪器仪表、通信设备等领域。
它可以提供稳定可靠的电源,为这些设备的正常运行提供保障。
同时,它还可以提供精确控制的电源,满足不同设备对电压的要求,提高设备的性能和可靠性。
总之,单相交流调压电路是一种重要的电气设备,用于将交流电压进行调节,以满足特定的需求。
它通过选择适当的调压电路和合理设计电路参数,可以实现稳定可靠的输出电压。
在实际应用中,需要根据具体需求选择合适的调压电路,并对电路进行分析和仿真,以确保电路的稳定性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五.设计总结 这次电力电子技术课程设计, 让我们有机会将课堂上所学的理论 知识运用到实际中。并通过对知识的综合利用,进行必要的分析,比 较。从而进一步验证了所学的理论知识。同时,这次课程设计也为我 们以后的学习打下基础。指导我们在以后的学习,多动脑的同时,要 善于自己去发现并解决问题。这次的课程设计,还让我知道了最重要 的是心态,在你拿到题目时会觉得困难,但是只要充满信心,就肯定 会完成的。 六.参考资料 1. 王云亮 《电力电子技术》 北京:电子工业出版社
180, 时最大有效电流标幺值 I TN 的上限值,即
ITN =
1 2π
1
α +θ α
sin2 ωt − ϕ d(ωt)
1 2
1 2
=
ϕ +π 2π ϕ
sin ωt − ϕ d(ωt) =0.5 A
2
即可求得流过晶闸管的最大电流有效值IT 为: IT = ITN × 2 2 × U1 = 0.5 × × 220 A = 14.81 A Z 10.5
图5
单相交流调压电路主电路
所谓交流调压就是将两个晶闸管反并联后串联在交流电路中, 在 每半个周波内通过控制晶闸管开通相位, 可以方便的调节输出电压的 有效值。用晶闸管组成的交流电压控制电路,可以方便的调节输出电 压有效值。 可用于电炉温控、 灯光调节、 异步电动机的启动和调速等, 也可用作调节整流变压器一次侧电压, 其二次侧为低压大电流或高压 小电流负载常用这种方法。交流调压器的 输出仍是交流电压,它不 是正弦波,其谐波分量较大,功率因数也较低。
V 的晶闸 综上可知,应选取额定电流为 I N 20A ,额定电压为 U N 800
管。
三.晶闸管触发电路的设计 单相交流调压电路触发电路电路图:
图 3 单相交流调压触发电路
单相交流触发电路波形如下:
图4
单相交流调压触发电路波形
该设计的主回路为单相交流调压电路,根据设计条件,对于单 结晶体管取分压比 0.8 。为了使 VT1 和 VT2 每次导通后的控制角 相同并稳定, 触发脉冲须在电源电压过零后滞后 角后出现。 采用变
为了避免过电流造成的影响,其额定电流要留有一定的余量,通常取 其正常电流值的 1.5~2 倍,此处取 1.7,可得该晶闸管的额定电流 为: IN = 1.7 ×
14.8 1.57
≈ 16 A
即取晶闸管的额定电流IN = 20 A 。 对于晶闸管的额定电压,要先求晶闸管可能承受到的最大正、 反向电压。 由晶闸管的控制角移相范围17.4° ≤ α ≤ π 及图 2 可知, 在该电路中,晶闸管可能承受的最大正、反压均为 2 U 1 。 同样为防止晶闸管因过流而被损坏,其额定电压要留有一定的余量, 通常取正常电压值的 2~3 倍,此处取 2.8 倍,即晶闸管的额定电压 为: UN = 2.8 × 2 × U1 = 2.5 × 2 × 220 ≈ 778V 即可取晶闸管的额定电压U N 800 V。
2.黄俊、王兆安《电力电子交流技术》北京:机械工业出版社 3.赵良炳 《现代电力电子技术基础》北京:清华大学
t 2ft 可知:
T= 据f
1 T
1 1 =t= s f 600
1
1 R C ln( ) e 1
及 0.8 可得:
R e C = 1.04 × 10−3 选择稳压二极管 VS 的额定电压为 5V,由于二极管D1 、D2 的削峰 使得触发电路波形均为梯形波,即同步信号波形。将电源同步变压器 变比定为22 ∶ 1,则同步变压器二次测电压U2 = 10V,经过二级管及 电阻作用,可使稳压二极管两端电压变为 5V,满足触发电路需要。 四.主电路图的设计 单相交流调压电路主电路图如下:
于是在一个晶闸管导电时,电路工作情况和单相半波整流时相同,其 波形如图 2。 另一晶闸管导通时, 情况完全相同, 只是 i 0 相位相差 1800 。 控制角 ,导通角 与负载阻抗角 之间的关系为
sin( ) sin( ) e
tg
2、 当 时,由上式可以算出每个晶闸管的导通角 180 ,此时 每个晶闸管轮流导通 180 ,相当于两个晶闸管轮流被短接,负载电流 处于连续状态,输出完整的正弦波,不具有调压效果。 当 时, 180 ,正负半波电流断续, 越大, 越小,波形断续 越严重,选择合适的 角,可以实现调压效果。 当 时, 180 ,电路中会形成单相半波整流现象,会形成很大 的直流分量,无法维持电路的正常工作。 3、综上可知,当 并采用宽脉冲触发时,负载电压电流总是完整 的正弦波,改变控制角 ,负载电流电压的有效值不会随之改变,故 电路失去交流调压的作用, 所以在阻感性负载时要想达到交流调压的 目的控制角 的实际移相范围为 即17.4° ≤ α ≤ 180°。 (3)关于晶闸管的选型 要想对晶闸管进行选型, 须先知道晶闸管的额定电压和额定电 流。 要想求得额定电流需先计算计算晶闸管可能流过的最大有效 电流,即用标么值形式求晶闸管可能流过的最大有效电流,即取
图1
电阻电感性负载
单相交流调压阻感性负载个参数波形如下:
图 2 阻感性负载波形
根据设计条件阻抗角ϕ的范围是10°~30°之间, 所以令 R=10 , L = 10mH,据tan ϕ = ωL R知,ϕ = 17.4°。据所取电阻电抗参数值 及式Z = 负载阻抗Z = ωL
2
+ R2 ,可得:
2
压器一次侧接主电路电源,二次侧经处理作为触发电路电源,即为同 步信号。当主电路的电压过零点时,保证触发电路的电压,单结晶管 保持同步,使电容 C 放电完毕,在下一个半波从零开始充电以起到同 步作用。 改变R e 即可改变电容充电速度,达到改变 角的目的。由于控 制角的移相范围 ,即17.4° ≤ α ≤ π 。此处取α = 30° ,据
一. 设计任务书简介
设计题目:单相交流调压电路的设计 设计条件: (1) 电网:220V,50Hz (2) 负载:阻感负载,电阻和电感参数自定,阻抗角不要太大, 可在 10~30 度之间 (3) 采用两个晶闸管反向并联结构 (4) 采 用 单 节 晶 体 管 简 易 触 发 电 路 , 单 节 晶 体 管 分 压 比 η =0.5~0.8 之间自选 (5) 同步变压器的参数自定 设计任务: (1) 晶闸管的选型。 (2) 控制角移相范围的计算。 (3) 触发电路自振荡频率的选择:电位器 Re 及电容 C 的参数选择 (4) 主电路图的设计:包括触发电路及主电路 设计要求: (1) 根据设计条件计算晶闸管可能流过的最大有效电流,选择晶 闸管的额定电流。 (2) 分析晶闸管可能承受到的最大正向、反向电压,选择晶闸管 的额定电压。 (3) 计算负载阻抗角,得到控制角的实际移相范围。 (4) 为了保证调压装置能够正常工作,应使得控制角大于负载阻
ωL
+ R2 = 102 + 2 × 3.14 × 50 × 0.010 2 =10.5Ω
(2)关于控制角移相范围的计算 1、 将两只晶闸管门极的,正、负半周有相同的 角。在 一个晶闸管导电时, 它的压降成为另一晶闸管的反向电压而使其截止。
抗角,根据这个条件合理选择触发电路的自振荡参数(电位 器 Re 及电容 C) 。 (5) 画出完整的主电路图。
二. 设计内容 本次课程设计主要是研究单相交流调压电路的设计。根据本 设计任务书的设计条件,所谓交流调压就是将两个晶闸管反并联 后串联在交流电路中,在每半个周波内通过控制晶闸管开通相位, 可以方便的调节输出电压的有效值。交流调压电路广泛用于灯光 控制及异步电动机的软启动,也用于异步电动机调速。此外,在 高电压小电流或低电压大电流之流电源中,也常采用交流调压电 路调节变压器一次电压。 (1)关于负载 的计算 根据设计条件及要求,本课程设计所连负载为电阻电感性 负载如下图所示: