Multisim数字电子技术仿真实验解析

合集下载

Multisim 数字电路仿真实验(计数器)

Multisim 数字电路仿真实验(计数器)

Multisim 数字电路仿真实验1.实验目的用Multisim 的仿真软件对数字电路进行仿真研究。

2.实验内容实验19.1 交通灯报警电路仿真交通灯故障报警电路工作要求如下:红、黄、绿三种颜色的指示灯在下列情况下属正常工作,即单独的红灯指示、黄灯指示、绿灯指示及黄、绿灯同时指示,而其他情况下均属于故障状态。

出故障时报警灯亮。

设字母R、Y、G 分别表示红、黄、绿三个交通灯,高电平表示灯亮,低电平表示灯灭。

字母Z 表示报警灯,高电平表示报警。

则真值表如表19.1 所示。

逻辑表达式为:Z = R Y G + RG + RY若用与非门实现,则表达式可化为:Z = R Y G ⋅RG ⋅RYMultisim 仿真设计图如图19.1 所示:图19.1 的电路图中分别用开关A、B、C 模拟控制红、黄、绿灯的亮暗,开关接向高电平时表示灯亮,接向低电平时表示灯灭。

用发光二极管LED1 的亮暗模拟报警灯的亮暗。

另外用了一个5V直流电源、一个7400 四2 输入与非门、一个7404 六反相器、一个7420 双4 输入与非门、一个500欧姆电阻。

图19.1 交通灯报警电路原理图在仿真实验中可以看出,当开关A、B、C 中只有一个拨向高电平,以及B、C 同时拨向高电平而A 拨向低电平时报警灯不亮,其余情况下报警灯均亮。

实验19.2 数字频率计电路仿真数字频率计电路的工作要求如下:能测出某一未知数字信号的频率,并用数码管显示测量结果。

如果用2 位数码管,则测量的最大频率是99Hz。

数字频率计电路Multisim 仿真设计图如图19.2 所示。

其电路结构是:用二片74LS90(U1 和U2)组成BCD 码100 进制计数器,二个数码管U3 和U4 分别显示十位数和个位数。

四D 触发器74LS175(U5)与三输入与非门7410(U6B)组成可自启动的环形计数器,产生闸门控制信号和计数器清0 信号。

信号发生器XFG1 产生频率为1Hz、占空比为50%的连续脉冲信号,信号发生器XFG2 产生频率为1-99Hz(人为设置)、占空比为50%的连续脉冲信号作为被测脉冲。

数字电子技术Multisim仿真试验73编码器仿真试验

数字电子技术Multisim仿真试验73编码器仿真试验

仿真结果展示及分析
01
02
03
波形图
展示输入信号和73编码器 输出信号的波形图,通过 对比可以明显看出编码器 的编码效果。
电压表
记录输入信号和输出信号 的电压值,分析编码器的 电压转换特性。
逻辑分析仪
使用逻辑分析仪对73编码 器的输出信号进行逻辑分 析,验证编码器的逻辑功 能是否正确。
问题诊断与改进措施
应用领域拓展
可以将73编码器应用于更广泛的领域, 如通信、控制、数据处理等,以满足 不同应用场景的需求。
THANKS FOR WATCHING
感谢您的观看
推动数字电子技术领域发展
1 2 3
技术创新
Multisim软件不断更新和升级,为数字电子技术 的创新提供了强大的技术支持和实验平台。
学术交流
Multisim已经成为数字电子技术领域的重要学术 交流工具,促进了不同学术团队之间的合作和交 流。
产业应用
Multisim仿真实验可以缩短电路设计周期,降低 开发成本,提高产品质量,因此在电子产业中具 有广泛的应用前景。
输出信号观测
连接合适的观测设备(如示波器)到73编码器的输出端,以便观测输 出信号的波形和编码结果。
使能端控制
通过合适的信号源控制73编码器的使能端,以实现对编码器工作状态 的控制。
参数调整与优化
根据实验结果和实际需求,对仿真模型的参数进行调整和优化,以提 高仿真的准确性和效率。
04 73编码器仿真试验过程与 结果分析
培养学生创新能力和实践能力
创新能力
Multisim提供了丰富的元件库和 灵活的电路搭建方式,鼓励学生 自由探索和创新,设计出具有独 特功能的电路系统。
实践能力

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验

Multisim模拟电路仿真实验电路仿真是电子工程领域中重要的实验方法,它通过计算机软件模拟电路的工作原理和性能,可以在电路设计阶段进行测试和验证。

其中,Multisim作为常用的电路设计与仿真工具,具有强大的功能和用户友好的界面,被广泛应用于电子工程教学和实践中。

本文将对Multisim模拟电路仿真实验进行探讨和介绍,包括电路仿真的基本原理、Multisim的使用方法以及实验设计与实施等方面。

通过本文的阅读,读者将能够了解到Multisim模拟电路仿真实验的基本概念和操作方法,掌握电路仿真实验的设计和实施技巧。

一、Multisim模拟电路仿真的基本原理Multisim模拟电路仿真实验基于电路分析和计算机仿真技术,通过建立电路模型和参数设置,使用数值计算方法求解电路的节点电压、电流以及功率等相关参数,从而模拟电路的工作情况。

Multisim模拟电路仿真的基本原理包括以下几个方面:1. 电路模型建立:首先,需要根据电路的实际连接和元件参数建立相应的电路模型。

Multisim提供了丰富的元件库和连接方式,可以通过简单的拖拽操作和参数设置来搭建电路模型。

2. 参数设置:在建立电路模型的基础上,需要为每个元件设置合适的参数值。

例如,电阻器的阻值、电容器的容值、电源的电压等。

这些参数值将直接影响到电路的仿真结果。

3. 仿真方法选择:Multisim提供了多种仿真方法,如直流分析、交流分析、暂态分析等。

根据不同的仿真目的和需求,选择适当的仿真方法来进行仿真计算。

4. 仿真结果分析:仿真计算完成后,Multisim会给出电路的仿真结果,包括节点电压、电流、功率等参数。

通过分析这些仿真结果,可以评估电路的性能和工作情况。

二、Multisim的使用方法Multisim作为一款功能强大的电路设计与仿真工具,具有直观的操作界面和丰富的功能模块,使得电路仿真实验变得简单而高效。

以下是Multisim的使用方法的基本流程:1. 新建电路文件:启动Multisim软件,点击“新建”按钮创建一个新的电路文件。

实验十、基于multisim数字电路仿真实验

实验十、基于multisim数字电路仿真实验

南昌大学实验报告学生姓名:罗族学号: 6103413001 专业班级:生医131班实验类型:□验证□综合□设计□创新实验日期:实验成绩:实验十、基于Multisim数字电路仿真实验一、实验目的1、掌握虚拟仪器库中关于测试数字电路仪器的使用方法,如数字信号发生器和逻辑分析仪的使用。

2、进一步了解Multisim仿真软件基本操作和分析方法。

二、实验原理从逻辑分析仪中可以得出74LS138的八个输出端每次输出时,只有一个为低电平,其余为高电平。

字发生器三个输出端信号以‘000-111’二进制循环输入到138的三个输入端ABC。

通过74LS138的真值表可以得出每次八个输出端只有一个低电平,其余七个输出高电平,该结果与逻辑分析仪的显示结果一致,从而通过数字信号发生器与逻辑分析仪可测试得出74LS138译码器逻辑功能三、实验设备Multisim虚拟仪器中的74Ls138,字发生器,逻辑分析仪。

四、实验内容用数字信号发生器和逻辑分析仪测试仪74LS138译码器逻辑功能自拟实验步骤,记录实验结果并进行整理分析。

五、实验步骤1.按设计好的电路连接电路,如图1所示图 12.在Multisim工作区中点击‘字发生器’,在字生器中选择‘循环‘控制,设置中选用上数序计数器,显示类型为二进制,频率为1kHz.图 23.运行仿真电路,点击‘逻辑分析仪’观察74LS138输出的信号变化,运行仿真后,在逻辑分析仪中可观察到输出信号的变化波形以及输入信号波形变化。

六、实验结果及数据分析图 3七、实验总结:通过这次实验了解了虚拟仪器库中关于测试数字电路仪器的使用方法,如数字信号发生器和逻辑分析仪的使用。

进一步了解Multisim仿真软件基本操作和分析方法。

Multisim数字电路仿真实验报告

Multisim数字电路仿真实验报告

基于Multisim数字电路仿真实验一、实验目的1.掌握虚拟仪器库中关于测试数字电路仪器的使用方法,入网数字信号发生器和逻辑分析仪的使用。

2.进一步了解Multisim仿真软件基本操作和分析方法。

二、实验内容用数字信号发生器和逻辑分析仪测试74LS138译码器逻辑功能。

三、实验原理实验原理图如图所示:四、实验步骤1.在Multisim软件中选择逻辑分析仪,字发生器和74LS138译码器;2.数字信号发生器接138译码器地址端,逻辑分析仪接138译码器输出端。

并按规定连好译码器的其他端口。

3.点击字发生器,控制方式为循环,设置为加计数,频率设为1KHz,并设置显示为二进制;点击逻辑分析仪设置频率为1KHz。

相关设置如下图五、实验数据及结果逻辑分析仪显示图下图实验结果分析:由逻辑分析仪可以看到在同一个时序74LS138译码器的八个输出端口只有一个输出为低电平,其余为高电平.结合字发生器的输入,可知.在译码器的G1=1,G2A=0,G2B=0的情况下,输出与输入的关系如下表所示当G1=1,G2A=0,G2B=0中任何一个输入不满足时,八个输出都为1六、实验总结通过本次实验,对Multisim的基本操作方法有了一个简单的了解。

同时分析了38译码器的功能,结果与我们在数字电路中学到的结论完全一致。

实验二基于Multisim的仪器放大器设计一、实验目的1.掌握仪器放大器的实际方法;2.理解仪器放大器对共模信号的抑制能力;3.熟悉仪器放大器的调试方法;4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表、信号发生器等虚拟仪器的使用方法。

二、实验内容1.采用运算放大器设计并构建仪器放大器,具体指标为:(1)输入信号Ui=2mv时,要求输出电压信号Uo=0.4V,Avd=200,f=1KHz;(2)输入阻抗要求Ri》1MΩ2.用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试;3.测量所构建的测量放大器的共模抑制比(选做)4.记录实验数据进行整理分析。

Multisim仿真软件在数字电子技术教学中的应用与实践

Multisim仿真软件在数字电子技术教学中的应用与实践

Multisim仿真软件在数字电子技术教学中的应用与实践Multisim仿真软件在数字电子技术教学中的应用与实践随着数字电子技术的快速发展和普及,教育界对于数字电子技术教学的要求也越来越高。

如何提高学生的实践能力和动手能力成为了一个亟待解决的问题。

而Multisim仿真软件作为一款功能强大且易于使用的电子电路仿真工具,成为了数字电子技术教学中的利器。

本文将介绍Multisim仿真软件在数字电子技术教学中的应用与实践,并探讨其优势与不足。

Multisim仿真软件采用了直观的用户界面,使得学生可以轻松地进行电路设计与仿真。

在数字电子技术教学中,学生需要了解各种逻辑门电路的原理和特性,并能够设计出复杂的数字系统。

传统的学习方式仅限于书本上的理论知识,学生们通常很难形象地理解电路的工作原理。

而通过Multisim仿真软件,学生可以在计算机上进行电路设计和仿真,直观地观察电路的工作过程,更好地理解和掌握数字电子技术的原理。

在数字电子技术教学中,Multisim仿真软件还能为学生提供更多的实验机会。

通过搭建电路和改变电路参数,学生可以模拟不同的实验条件,并观察实验结果。

这种虚拟的实验环境不仅节省了实验材料和设备,降低了实验成本,还能让学生随时随地进行实验,避免了实验时间的限制。

此外,Multisim 仿真软件还可以提供详细的实验数据和分析结果,方便学生进行实验报告的撰写和结论的总结。

通过这样的实验模拟,学生能够更加深入地理解数字电子技术的原理,培养分析和解决问题的能力。

与传统的电路实验相比,Multisim仿真软件还具有一些独有的特点。

首先,学生可以通过仿真软件观察到电路中电压、电流、功率等各种参数的变化情况,更加全面地了解电路的工作状态。

其次,软件提供了各种实验工具和元件,方便学生进行电路的设计和调试。

学生可以根据自己的需要选择不同的元器件,并将其连接在一起进行实验。

这种灵活性和可定制性大大拓宽了学生的设计空间,激发了他们的创造力和想象力。

电子电路multisim仿真实验报告

电子电路multisim仿真实验报告

电子电路multisim仿真实
验报告
班级:XXX
姓名:XXX
学号:XXX
班内序号:XXX
一:实验目的
1:熟悉Multisim软件的使用方法。

2:掌握放大器静态工作点的仿真方法及其对放大器性能的影响。

3:掌握放大电路频率特性的仿真方法。

二:虚拟实验仪器及器材
基本电路元件(电阻,电容,三极管)双踪示波器波特图示仪直流电源
三:仿真结果
(1)电路图
其中探针分别为:
探针一探针二
(2)直流工作点分析。

(3)输入输出波形
A通道为输入波形B通道为输出波形
四:实验流程图
开始
选取实验所需电路元件
及测量工具
合理摆放元件位置并连
接电路图
直流特性分析
结束
五:仿真结果分析
(1)直流工作点
电流仿真结果中,基极电流Ib为7.13u,远小于发射极和集电极,而发射极和集电极电流Ie和Ic近似相等,与理论结果相吻合。

电压仿真结果中,基极与发射极的电位差Vbe经过计算约为0.625V,符合三极管的实际阈值电压,而Vce约为5.65V。

以上数据均满足放大电路的需求,所以电路工作在放大区。

(2)示波器图像分析
示波器显示图像中,A路与B路反相,与共射放大电路符合。

六:总结与心得
这次的仿真花费了大量时间,主要是模块的建立。

经过本次的电子电路仿真实验,使我对计算机在电路实验中的应用有了更为深刻的认识,对计算机仿真的好处有了进一步的了解。

仿真可以大大的减轻实验人员的工作负担,同时更可以极大的提升工作效率,事半功倍,所以对仿真的学习是极为必要的。

Multisim数字电子技术仿真实验

Multisim数字电子技术仿真实验
用户可以根据个人习惯和 喜好定制软件界面,包括 元件库、工具栏、菜单等, 提高工作效率。
多语言支持
软件支持多种语言界面, 方便不同国家和地区的用 户使用。
02
数字电子技术基础
逻辑门电路
总结词
逻辑门电路是数字电子技术中的 基本单元,用于实现逻辑运算和 信号转换。
详细描述
逻辑门电路由输入和输出端组成 ,根据输入信号的组合,输出端 产生相应的信号。常见的逻辑门 电路有与门、或门、非门等。
交互性强
用户可以在软件中直接对 电路进行搭建、修改和测 试,实时观察电路的行为 和性能。
实验环境灵活
软件提供了多种实验模板 和电路图符号,方便用户 快速搭建各种数字电子技 术实验。
软件功能
元件库丰富
Multisim软件拥有庞大的元件库,包含了各种类型的电子元件和 集成电路,方便用户选择和使用。
电路分析工具
寄存器实验结果分析
总结词
寄存器实验结果分析主要关注寄存器是否能够正确存储和读取数据,以及寄存器的功能 是否正常实现。
详细描述
首先观察实验中使用的寄存器的数据存储和读取过程,记录下实际得到的数据存储和读 取结果。接着,将实际得到的数据存储和读取结果与理论预期的数据存储和读取结果进 行对比,检查是否存在差异。如果有差异,需要分析可能的原因,如电路连接错误、元
触发器
总结词
触发器是一种双稳态电路,能够在外 部信号的作用下实现状态的翻转。
详细描述
触发器有两个稳定状态,根据输入信 号的组合,触发器可以在两个状态之 间进行切换。常见的触发器有RS触发 器、D触发器据的基本单元,用于存储二进制数据。
详细描述
寄存器由多个触发器组成,可以存储一定数量的二进制数据 。寄存器在数字电路中用于存储数据和控制信号。

第7章数字电子技术MULTISIM仿真实验2.

第7章数字电子技术MULTISIM仿真实验2.

第7章 数字电子技术Multisim仿真实验
(1) 设计要求:设计一个火灾报警控制电路。该报警系 统设有烟感、温感和紫外线感三种不同类型的火灾探测器。 为了防止误报警,只有当其中两种或两种以上的探测器发出 火灾探测信号时,报警系统才产生控制信号。
(2) 探测器发出的火灾探测信号有两种可能:一种是高 电平(1),表示有火灾报警;一种是低电平(0),表示无火灾 报警。设A、B、C分别表示烟感、温感和紫外线感三种探 测器的探测信号,为报警电路的输入信号;设Y为报警电路 的输出。在逻辑转换仪面板上根据设计要求列出真值表,如 图7-8所示。
第7章 数字电子技术Multisim仿真实验
2.实验原理 译码是编码的逆过程。译码器就是将输入的二进制代码 翻译成输出端的高、低电平信号。3线-8线译码器74LS138有 3个代码输入端和8个信号输出端。此外还有G1、G2A、G2B使 能控制端,只有当G1 = 1、G2A = 0、G2B = 0时,译码器才 能正常工作。 7段LED数码管俗称数码管,其工作原理是将要显示的十 进制数分成7段,每段为一个发光二极管,利用不同发光段 的组合来显示不同的数字。74LS48是显示译码器,可驱动共 阴极的7段LED数码管。
第7章 数字电子技术Multisim仿真实验
4.实验步骤 (1) 按图7-12连接电路。双击字信号发生器图标,打开 字信号发生器面板,按图7-14所示的内容设置字信号发生器 的各项内容。 (2) 打开仿真开关,不断单击字信号发生器面板上的单 步输出Step按钮,观察输出信号与输入代码的对应关系,并 记录下来。 (3) 按图7-13连接电路。双击字信号发生器图标,打开 字信号发生器面板,按图7-15所示的内容设置字信号发生器 的各项内容。
第7章 数字电子技术Multisim仿真实验

Multisim数字电子技术仿真实验

Multisim数字电子技术仿真实验

10.4 异或门与同或门
图10-19 逻辑分析仪面板屏幕显示的异或门时序波形
(3)逻辑电路测试同或门功能的仿真分析
10.4 异或门与同或门
1)搭建图10-17所示的逻辑电路测试同或门功能仿真电路。 2)单击仿真开关,激活电路。
表10-������ 6 同或门真值表
(4)虚拟仪器测试同或门输入/输出信号的仿真分析 1)搭建图10-18a所示的虚拟仪器测试同或门输入/输出信号仿真电 路,数字信号发生器按图10-18b设置。
2.元器件选取 1)电源:Place Source→POWER_SOURCES→DC_POWER,选取电 源并设置电压为5V。 2)接地:Place Source→POWER_SOURCES→GROUND,选取电 路中的接地。
图10-21
74LS148D仿真电路
10.5 编码器功能仿真实验
3)逻辑开关:Place Elector_Mechanical→SUPPLEMENTARY_CON TACTS,选取SPDT_SB开关。 4)编码器:Place TTL→74LS,选取74LS148D。
10.11 计数器仿真实验
第10章 数字电子技术仿真实验13 555多谐振荡器仿真实验 10.14 数-模转换器仿真实验 10.15 模-数转换器仿真实验
10.1 数字电子技术仿真概述
图10-1
Digital Simulation Settings对话框
1)进行数字电路仿真设置,即执行Simulate\\Digital Simulation Setti ngs...命令,打开Digital Simulation Settings对话框,
8)逻辑转换仪:从虚拟仪器工具栏调取XLC1。 9)数字信号发生器:从虚拟仪器工具栏调取XWG1。 10)逻辑分析仪:从虚拟仪器工具栏调取XLA1。

multisim 实验报告

multisim 实验报告

multisim 实验报告Multisim实验报告引言:Multisim是一款功能强大的电子电路仿真软件,广泛应用于电子工程领域。

本实验报告将介绍使用Multisim进行的一系列实验,包括电路设计、仿真和分析。

实验一:简单电路设计与仿真在本实验中,我们设计了一个简单的直流电路,包括电源、电阻和LED灯。

通过Multisim的电路设计功能,我们成功搭建了电路原型,并进行了仿真。

仿真结果显示,当电源施加电压时,电流通过电阻和LED灯,使其发光。

这个实验让我们熟悉了Multisim的基本操作,并理解了电路中电流和电压的关系。

实验二:交流电路分析在本实验中,我们研究了交流电路的特性。

通过Multisim的交流分析功能,我们可以观察到交流电路中电压和电流的变化规律。

我们设计了一个RC电路,并改变电源频率,观察电压相位差和电流大小的变化。

实验结果表明,随着频率的增加,电压相位差逐渐减小,电流也逐渐增大。

这个实验帮助我们理解了交流电路中频率对电压和电流的影响。

实验三:放大电路设计与分析在本实验中,我们设计了一个简单的放大电路,用于放大输入信号。

通过Multisim的放大器设计功能,我们选择了合适的电阻和电容值,并进行了仿真。

实验结果显示,输入信号经过放大电路后,输出信号的幅度得到了显著的增加。

这个实验使我们深入了解了放大电路的工作原理,并学会了如何设计和优化放大器。

实验四:数字电路设计与仿真在本实验中,我们探索了数字电路的设计和仿真。

通过Multisim的数字电路设计功能,我们设计了一个简单的计数器电路,并进行了仿真。

实验结果显示,计数器能够按照预定的规律进行计数,并输出相应的二进制码。

这个实验让我们了解了数字电路的基本原理和设计方法,并培养了我们的逻辑思维能力。

实验五:滤波电路设计与分析在本实验中,我们研究了滤波电路的设计和分析。

通过Multisim的滤波器设计功能,我们设计了一个低通滤波器,并进行了仿真。

multisim仿真数电实验报告

multisim仿真数电实验报告

实验报告课程名称:数字电子技术实验姓名:学号:专业:开课学期:指导教师:实验课安全知识须知1.须知1:规范着装。

为保证实验操作过程安全、避免实验过程中意外发生,学生禁止穿拖鞋进入实验室,女生尽量避免穿裙子参加实验。

2.须知2:实验前必须熟悉实验设备参数、掌握设备的技术性能以及操作规程。

3.须知3:实验时人体不可接触带电线路,接线或拆线都必须在切断电源的情况下进行。

4.须知4:学生独立完成接线或改接线路后必须经指导教师检查和允许,并使组内其他同学引起注意后方可接通电源。

实验中如设备发生故障,应立即切断电源,经查清问题和妥善处理故障后,才能继续进行实验。

5.须知5:接通电源前应先检查功率表及电流表的电流量程是否符合要求,有否短路回路存在,以免损坏仪表或电源。

特别提醒:实验过程中违反以上任一须知,需再次进行预习后方可再来参加实验;课程中违反三次及以上,直接重修。

实验报告撰写要求1.要求1:预习报告部分列出该次实验使用组件名称或者设备额定参数;绘制实验线路图,并注明仪表量程、电阻器阻值、电源端编号等。

绘制数据记录表格,并注明相关的实验环境参数与要求。

2.要求2:分析报告部分一方面参考思考题要求,对实验数据进行分析和整理,说明实验结果与理论是否符合;另一方面根据实测数据和在实验中观察和发现的问题,经过自己研究或分析讨论后写出的心得体会。

3.要求3:在数据处理中,曲线的绘制必须用坐标纸画出曲线,曲线要用曲线尺或曲线板连成光滑曲线,不在曲线上的点仍按实际数据标出其具体坐标。

4.要求4:本课程实验结束后,将各次的实验报告按要求装订,并在首页写上序号(实验课上签到表对应的序号)。

请班长按照序号排序,并在课程结束后按要求上交实验报告。

温馨提示:实验报告撰写过程中如遇预留空白不足,请在该页背面空白接续。

实验报告课程名称:数字电子技术实验实验 5 : multisim多位计数器仿真实验日期:年月日地点:实验台号:专业班级:学号:姓名:评分:教师评语:教师签字:日期:一、实验目的二、实验设备及元器件Multisim仿真洁面三、实验原理(简述实验原理,画出原理图)这一部分的实验主要涉及改变计数进制的问题,我分为以下几个部分预习一、首先需要明确各个芯片的计数最大进制 161系列为16进制,160系列的为10进制。

数电仿真实验报告Multism

数电仿真实验报告Multism

实验一组合逻辑电路设计与分析1实验目的(1)学习掌握组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。

2实验内容:实验电路及步骤:(1)利用逻辑转换仪对逻辑电路进行分析:按下图所示连接电路。

图表1 待分析的逻辑电路A经分析得到真值表和表达式:逻辑功能说明:观察真值表,我们发现当四个输入变量A、B、C、D中1的个数为奇数是,输出为0;当四个变量中的个数为偶数时,输出为1.该电路是一个四位输入信号的奇偶校验电路。

(2)根据要求利用逻辑转换仪进行逻辑电路的设计。

问题提出:有一火灾报警系统,设有烟感、温感、紫外线三种类型不同的火灾探测器。

为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警信号,试设计报警控制信号的电路在逻辑转换仪面板上根据下列分析出真值表如下图所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高端平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。

因此,令A、B、C分别表示烟感、温感、紫外线三种探测器输出的信号,为报警控制电路的输入、令F为报警控制电路的输出。

(3)在逻辑转换仪面板上单击按钮(由真值表导出简化表达式)后得到下图所示的最简化表达式。

(4)在上图的基础上单击(由逻辑表达式得到逻辑电路)后得到如下图所示的逻辑电路思考题(1)设计一个4人表决电路。

如果3人或3人以上同意,则通过;反之,则被否决。

用与非门实现。

记A、B、C、D四个变量表示一个人是否同意,若同意输出1,反之输出0。

在逻辑转换仪面板上分析出真值表如下图所示:化简逻辑表达式后并转化成与非门电路如下图所示(2)利用逻辑转换仪对下图所示电路进行分析。

得出真值表如下逻辑功能分析:当A、B不同时为1时,输出为C非;当A、B同时为1时,输出为C。

A B端作为控制信号控制输出与C的关系。

实验二编码器、译码器电路仿真实验一、实验要求(1)掌握编码器、编译器的工作原理。

数字电子技术实验4.4 数据选择器及其应用的Multisim仿真实验

数字电子技术实验4.4 数据选择器及其应用的Multisim仿真实验

2.5 V 2.5 V
U1
4 3 2 1 15 14 13 12
D0 D1 D2 D3 D4 D5 D6 D7
11 10 9
A B C
7 ~G
Y5 ~W 6
74LS151D
G Key = G
图4-36 八选一数据选择器74LS151逻辑功能仿真电路图 2. 仿照例3,用双4选1数据选择器74LS153实现函数全加器。
实验4.4 数据选择器及其应用
一、实验目的
1.掌握中规模集成数据选择器的逻辑功能的测试方法。 2.掌握数据选择器构成的组合逻辑电路测试方法。
实验4.4 数据选择器及其应用
二、实验设备及材料
1.装有Multisim 14的计算机。 2.数字电路实验箱。 3.数字万用表。 4.74LS151、74LS153、74LS00。
实验4.4 数据选择器及其应用
三、实验原理
图4-30 4选1数据选择器示意图
图4-31 74LS151引脚排列
实验4.4 数据选择器及其应用
三、实验原理
图4-32 74LS153引脚功能
实验4.4 数据选择器及其应用
三、实验原理
图4-33 74LS151实现函数 F AB' A'C BC'
图4-34 74LS151实现函数 F AB'A' B
实验4.4 数据选择器及其应用
三、实验原理
图4-35 用4选1数据选择器实现函数 F A B Ci
实验4.4 数据选择器及其应用
四、计算机仿真实验内容
1.8选1数据选择器74LS151的逻辑功能
YWLeabharlann VCC 5VA0 Key = A A1 Key = B A2 Key = C

multisim 仿真实验报告

multisim 仿真实验报告

multisim 仿真实验报告Multisim 仿真实验报告引言:Multisim是一款功能强大的电子电路仿真软件,它为工程师和学生提供了一个方便、直观的平台,用于设计、分析和测试各种电路。

本文将介绍我在使用Multisim进行仿真实验时的经验和结果。

1. 实验目的本次实验的目的是通过Multisim软件仿真,验证电路设计的正确性和性能。

具体来说,我们将设计一个简单的放大器电路,并使用Multisim进行仿真,以验证电路的增益、频率响应和稳定性。

2. 实验设计我们设计的放大器电路采用了共射极放大器的基本结构。

电路由一个NPN晶体管、输入电阻、输出电阻和耦合电容组成。

我们选择了适当的电阻和电容值,以实现所需的放大倍数和频率响应。

3. 仿真过程在Multisim中,我们首先选择合适的元件并进行连接,然后设置元件的参数。

在本实验中,我们需要设置晶体管的参数,例如其直流放大倍数和频率响应。

接下来,我们将输入信号源连接到电路的输入端,并设置输入信号的幅度和频率。

在仿真过程中,我们可以观察电路的各种性能指标,如电压增益、相位差和输出功率。

我们还可以通过改变电路中的元件值,来分析它们对电路性能的影响。

通过多次仿真实验,我们可以逐步优化电路设计,以达到所需的性能要求。

4. 仿真结果通过Multisim的仿真,我们得到了放大器电路的性能曲线。

我们可以观察到电路的增益随频率的变化情况,以及输出信号的波形和频谱。

通过对比仿真结果和理论预期,我们可以评估电路设计的准确性和可行性。

此外,Multisim还提供了一些实用工具,如示波器和频谱分析仪,用于更详细地分析电路性能。

通过这些工具,我们可以观察到电路中各个节点的电压和电流变化情况,以及信号的频谱特性。

5. 实验总结通过本次实验,我们深入了解了Multisim软件的功能和应用。

它为我们提供了一个方便、直观的平台,用于设计和分析各种电路。

通过仿真实验,我们可以快速评估电路设计的性能,并进行必要的优化和改进。

第7章 数字电子技术Multisim仿真实验

第7章  数字电子技术Multisim仿真实验
(1) 设计一个四变量一致电路,要求用与非门来实现。 (2) 利用逻辑转换仪对图7-10所示逻辑电路进行分析。
第7章 数字电子技术Multisim仿真实验
图7-10 待分析的组合逻辑电路
第7章 数字电子技术Multisim仿真实验
7.3
1.实验要求与目的
编码器仿真实验
(1) 构建编码器实验电路。 (2) 分析8线-3线优先编码器74LS148的逻辑功能。
图7-5 异或门逻辑功能验证电路
第7章 数字电子技术Multisim仿真实验
4.思考题
(1) 自己构建电路,对其他集成电路的逻辑功能进行仿 真验证。 (2) 对CMOS集成门电路进行仿真验证。
第7章 数字电子技术Multisim仿真实验
7.2
组合逻辑电路的分析与设计
1.实验要求与目的
(1) 利用逻辑转换仪对组合逻辑电路进行分析与设计。 (2) 掌握组合逻辑电路的分析与设计方法。
第7章 数字电子技术Multisim仿真实验
(4) 打开仿真开关,按A键控制~BI/RBO接高电平或低
电平,观察输出信号和数码管的显示;当BI/RBO接高电平时, 按C键使~LT接低电平,观察输出信号和数码管的显示。 (5) ~LT、~RBI和~BI/RBO都接高电平时,按字信号 发生器面板上的单步输出按钮Step,观察输出信号与输入代 码的对应关系,并记录下来。
第7章 数字电子技术Multisim仿真实验
3.实验电路
由74LS138构成的实验电路如图7-12所示。调用字信号 发生器产生数字信号,作为译码器的输入信号。输出端连接 8个逻辑探测器,观察8路输出信号的高低电平状态。使能端 G1接高电平,G2A和G2B接低电平。
第7章 数字电子技术Multisim仿真实验

Multisim模拟电子技术仿真实验

Multisim模拟电子技术仿真实验

Multisim模拟电子技术仿真实验Multisim是一款著名的电子电路仿真软件,广泛用于电子工程师和学生进行电子电路的设计和验证。

通过Multisim,用户可以方便地搭建电路并进行仿真,实现理论与实际的结合。

本文将介绍Multisim的基本操作和常见的电子技术仿真实验。

一、Multisim基本操作1. 下载与安装首先,需要从官方网站上下载Multisim软件,并按照提示完成安装。

安装完成后,打开软件即可开始使用。

2. 绘制电路图在Multisim软件中,用户可以通过拖拽组件来绘制电路图。

不同的电子组件如电阻、电容、二极管等都可以在Multisim软件中找到并加入电路图中。

用户只需将组件拖放到绘图区域即可。

3. 连接元件在绘制电路图时,还需要连接各个元件。

通过点击元件的引脚,然后拖动鼠标连接到其他元件的引脚上,即可建立连接线。

4. 设置元件的属性在建立电路连接后,还需要设置各个元件的属性。

比如,电阻的阻值、电容的容值等等。

用户可以双击元件,进入属性设置界面,对元件进行参数调整。

5. 添加仪器和测量在Multisim中,用户还可以添加各种仪器和测量设备,如示波器、函数发生器等。

这样可以帮助我们对电路进行更加深入的分析和测试。

二、常见的电子技术仿真实验1. RC电路响应实验RC电路响应实验是电子电路实验中最基础的实验之一。

它用于研究RC电路对输入信号的响应情况。

通过在Multisim中搭建RC电路,可以模拟分析电路的充放电过程,并观察输出电压对时间的响应曲线。

2. 放大器设计实验放大器是电子电路中常见的功能电路之一。

通过在Multisim中搭建放大器电路,可以模拟放大器的工作过程,并对放大器的增益、频率等特性进行分析和调整。

这对于学习和理解放大器的原理和工作方式非常有帮助。

3. 数字电路实验数字电路是现代电子技术中不可或缺的一部分。

通过在Multisim中搭建数字电路,可以模拟数字电路的逻辑运算、时序控制等功能,并对电路的工作波形进行分析和优化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8)逻辑转换仪:从虚拟仪器工具栏调取XLC1。 9)数字信号发生器:从虚拟仪器工具栏调取XWG1。 10)逻辑分析仪:从虚拟仪器工具栏调取XLA1。
3.仿真电路
图10-������ 4
逻辑转换仪测试与门功能仿真电路及逻辑转换仪面板图
10.2 与门非门功能仿真电路
10.2 与门和与非门
10.11 计数器仿真实验
第10章 数字电子技术仿真实验
10.12 单稳态触发器仿真实验
10.13 555多谐振荡器仿真实验 10.14 数-模转换器仿真实验 10.15 模-数转换器仿真实验
10.1 数字电子技术仿真概述
图10-1
Digital Simulation Settings对话框
1)进行数字电路仿真设置,即执行Simulate\\Digital Simulation Setti ngs...命令,打开Digital Simulation Settings对话框,
表10-1 与门真值表
(2)逻辑转换仪测试与门功能仿真分析 1)搭建图10-������ 4a所示的逻辑转换仪测试与门功能仿真电路。 2)双击逻辑转换仪图标,打开逻辑转换仪面板,再分别单击面板 上部的A、B输入端,在下面窗口即出现输入信号组合,这时单击 右侧的按钮,则可出现完整的真值表。
10.2 与门和与非门
2.元器件选取 1)电源:Place Source→POWER_SOURCES→DC_POWER,选取电 源并设置电压为5V。 2)接地:Place Source→POWER_SOURCES→GROUND,选取电 路中的接地。 3)电阻:Place Basic→RESISTOR,选取阻值为1kΩ、10kΩ的电阻。 4)或门:Place Misc Digital→TIL,选取OR2或门。 5)或非门:Place Misc Digital→TIL,选取NOR2或非门。
10.3 或门和或非门
6)逻辑开关:Place Elector_Mechanical→SUPPLEMENTARY_CON TACTS,选取SPDT_SB开关。 7)逻辑探头:Place Indicators→PROBE,选取逻辑探头。
上部的A、B输入端,在下面窗口即出现输入信号组合,这时单击 右侧的按钮,则可出现完整的真值表。 (5)虚拟仪器测试与非门输入/输出信号波形仿真分析
10.2 与门和与非门
1)搭建图10-7a所示的虚拟仪器测试与非门输入/输出信号波形仿真 电路,数字信号发生器面板按图10-7b设置。 2)单击仿真开关,激活电路。
2.元器件选取 1)电源:Place Source→POWER_SOURCES→DC_POWER,选取电 源并设置电源电压为5V。 2)接地:Place Source→POWER_SOURCES→GROUND,选取电 路中的接地。 3)电阻:Place Basic→RESISTOR,选取阻值为1kΩ、10kΩ的电阻。 4)与门:Place Misc Digital→TIL,选取AND2与门。 5)与非门:Place Misc Digital→TIL,选取NAND2与非门。
10.2 与门和与非门
6)逻辑开关:Place Elector_Mechanical→SUPPLEMENTARY_CON TACTS,选取SPDT_SB逻辑开关。 7)逻辑探头:Place Indicators→PROBE,选取逻辑探头。
图10-3
逻辑电路测试与门功能仿真电路
10.2 与门和与非门
第10章 数字电子技术仿真实验
10.1 数字电子技术仿真概述
10.2 与门和与非门 10.3 或门和或非门 10.4 异或门与同或门 10.5 编码器功能仿真实验 10.6 译码器功能仿真实验 10.7 基本RS触发器仿真实验
10.8 集成D触发器仿真实验
10.9 JK触发器仿真实验 10.10 移位寄存器仿真实验
(3)逻辑电路测试与非门功能仿真分析 1)搭建图10-5所示的逻辑电路测试与非门功能仿真电路。 2)单击仿真开关激活电路。
表10-2 与非门真值表
(4)逻辑转换仪测试与非门功能仿真分析 1)搭建图10-������ 6a所示的逻辑转换仪测试与非门功能仿真电路。 2)双击逻辑转换仪图标,打开逻辑转换仪面板,再分别单击面板
10.1 数字电子技术仿真概述
如图10-1所示。 2)在运行仿真时,如果数字电路中没有电源和数字地,选择Real往 往会出现错误,这是因为Multisim 10中的现实器件模型与实际器
件相对应,在使用时需要为器件本身提供电能。
图10-2
放置数字接地端的电路
10.1 数字电子技术仿真概述
3)在进行Ideal数字器件仿真时,VCC、VDD和直流电压源以及接 地端和数字接地端可任意调用,彼此对数字电路仿真结果没有影 响。
图10-������ 8
逻辑分析仪面板屏幕显示的与非门时序波形
10.2 与门和与非门
5.思考题 1)与门真值表和与非门真值表有什么差别? 2)与非门输出低电平的条件是什么?
3)与非门的时序波形图与真值表有什么关系?
10.3 或门和或非门
1.仿真实验目的 1)通过逻辑电路测试或门、或非门的功能,得到其真值表。 2)学会用逻辑分析仪测试或非门的时序波形图。
4)在进行Real数字器件仿真时,VCC、VDD和直流电压源以及接 地端和数字接地端不能相互替换。 5)TTL和TIL中的器件常用VCC提供电能。 6)提供电能给CMOS器件的正常工作电压VDD由各个器件箱所需 电压来决定。
10.2 与门和与非门
1.仿真实验目的 1)通过逻辑电路测试与门、与非门的功能,得到其真值表。 2)学会用逻辑分析仪测试与非门的时序波形图。
图10-������ 6
逻辑转换仪测试与非门功能仿真电路及逻辑转换仪面板图
10.2 与门和与非门
图10-7
虚拟仪器测试与非门输入/输出信号波形仿真电路及数字信号发生器面板图
4.仿真分析
10.2 与门和与非门
(1)逻辑电路测试与门功能仿真分析 1)搭建图10-3所示的逻辑电路测试与门功能仿真电路。 2)单击仿真开关,激活电路。
相关文档
最新文档