计算机 自动化 外文翻译 外文文献 英文文献 原文

合集下载

自动化专业毕业论文外文文献翻译

自动化专业毕业论文外文文献翻译

目录Part 1 PID type fuzzy controller and parameters adaptive method (1)Part 2 Application of self adaptation fuzzy-PID control for main steam temperature control system in power station (7)Part 3 Neuro-fuzzy generalized predictive control of boiler steam temperature ..................................................................... (13)Part 4 为Part3译文:锅炉蒸汽温度模糊神经网络的广义预测控制21Part 1 PID type fuzzy controller and Parametersadaptive methodWu zhi QIAO, Masaharu MizumotoAbstract: The authors of this paper try to analyze the dynamic behavior of the product-sum crisp type fuzzy controller, revealing that this type of fuzzy controller behaves approximately like a PD controller that may yield steady-state error for the control system. By relating to the conventional PID control theory, we propose a new fuzzy controller structure, namely PID type fuzzy controller which retains the characteristics similar to the conventional PID controller. In order to improve further the performance of the fuzzy controller, we work out a method to tune the parameters of the PID type fuzzy controller on line, producing a parameter adaptive fuzzy controller. Simulation experiments are made to demonstrate the fine performance of these novel fuzzy controller structures.Keywords: Fuzzy controller; PID control; Adaptive control1. IntroductionAmong various inference methods used in the fuzzy controller found in literatures , the most widely used ones in practice are the Mamdani method proposed by Mamdani and his associates who adopted the Min-max compositional rule of inference based on an interpretation of a control rule as a conjunction of the antecedent and consequent, and the product-sum method proposed by Mizumoto who suggested to introduce the product and arithmetic mean aggregation operators to replace the logical AND (minimum) and OR (maximum) calculations in the Min-max compositional rule of inference.In the algorithm of a fuzzy controller, the fuzzy function calculation is also a complicated and time consuming task. Tagagi and Sugeno proposed a crisp type model in which the consequent parts of the fuzzy control rules are crisp functional representation or crisp real numbers in the simplified case instead of fuzzy sets . With this model of crisp real number output, the fuzzy set of the inference consequence willbe a discrete fuzzy set with a finite number of points, this can greatly simplify the fuzzy function algorithm.Both the Min-max method and the product-sum method are often applied with the crisp output model in a mixed manner. Especially the mixed product-sum crisp model has a fine performance and the simplest algorithm that is very easy to be implemented in hardware system and converted into a fuzzy neural network model. In this paper, we will take account of the product-sum crisp type fuzzy controller.2. PID type fuzzy controller structureAs illustrated in previous sections, the PD function approximately behaves like a parameter time-varying PD controller. Since the mathematical models of most industrial process systems are of type, obviously there would exist an steady-state error if they are controlled by this kind of fuzzy controller. This characteristic has been stated in the brief review of the PID controller in the previous section.If we want to eliminate the steady-state error of the control system, we can imagine to substitute the input (the change rate of error or the derivative of error) of the fuzzy controller with the integration of error. This will result the fuzzy controller behaving like a parameter time-varying PI controller, thus the steady-state error is expelled by the integration action. However, a PI type fuzzy controller will have a slow rise time if the P parameters are chosen small, and have a large overshoot if the P or I parameters are chosen large. So there may be the time when one wants to introduce not only the integration control but the derivative control to the fuzzy control system, because the derivative control can reduce the overshoot of the system's response so as to improve the control performance. Of course this can be realized by designing a fuzzy controller with three inputs, error, the change rate of error and the integration of error. However, these methods will be hard to implement in practice because of the difficulty in constructing fuzzy control rules. Usually fuzzy control rules are constructed by summarizing the manual control experience of an operator who has been controlling the industrial process skillfully and successfully. The operator intuitively regulates the executor to control the process by watching theerror and the change rate of the error between the system's output and the set-point value. It is not the practice for the operator to observe the integration of error. Moreover, adding one input variable will greatly increase the number of control rules, the constructing of fuzzy control rules are even more difficult task and it needs more computation efforts. Hence we may want to design a fuzzy controller that possesses the fine characteristics of the PID controller by using only the error and the change rate of error as its inputs.One way is to have an integrator serially connected to the output of the fuzzy controller as shown in Fig. 1. In Fig. 1,1K and 2K are scaling factors for e and ~ respectively, and fl is the integral constant. In the proceeding text, for convenience, we did not consider the scaling factors. Here in Fig. 2, when we look at the neighborhood of NODE point in the e - ~ plane, it follows from (1) that the control input to the plant can be approximated by(1)Hence the fuzzy controller becomes a parameter time-varying PI controller, itsequivalent proportional control and integral control components are BK2D and ilK1 P respectively. We call this fuzzy controller as the PI type fuzzy controller (PI fc). We can hope that in a PI type fuzzy control system, the steady-state error becomes zero.To verify the property of the PI type fuzzy controller, we carry out some simulation experiments. Before presenting the simulation, we give a description of the simulation model. In the fuzzy control system shown in Fig. 3, the plant model is a second-order and type system with the following transfer function:)1)(1()(21++=s T s T K s G (2) Where K = 16, 1T = 1, and 2T = 0.5. In our simulation experiments, we use thediscrete simulation method, the results would be slightly different from that of a continuous system, the sampling time of the system is set to be 0.1 s. For the fuzzy controller, the fuzzy subsets of e and d are defined as shown in Fig. 4. Their coresThe fuzzy control rules are represented as Table 1. Fig. 5 demonstrates the simulation result of step response of the fuzzy control system with a Pl fc. We can see that the steady-state error of the control system becomes zero, but when the integration factor fl is small, the system's response is slow, and when it is too large, there is a high overshoot and serious oscillation. Therefore, we may want to introduce the derivative control law into the fuzzy controller to overcome the overshoot and instability. We propose a controller structure that simply connects the PD type and the PI type fuzzy controller together in parallel. We have the equivalent structure of that by connecting a PI device with the basic fuzzy controller serially as shown in Fig.6. Where ~ is the weight on PD type fuzzy controller and fi is that on PI type fuzzy controller, the larger a/fi means more emphasis on the derivative control and less emphasis on the integration control, and vice versa. It follows from (7) that the output of the fuzzy controller is(3)3. The parameter adaptive methodThus the fuzzy controller behaves like a time-varying PID controller, its equivalent proportional control, integral control and derivative control components are respectively. We call this new controller structure a PID type fuzzy controller (PID fc). Figs. 7 and 8 are the simulation results of the system's step response of such control system. The influence of ~ and fl to the system performance is illustrated. When ~ > 0 and/3 = 0, meaning that the fuzzy controller behaves like PD fc, there exist a steady-state error. When ~ = 0 and fl > 0, meaning that the fuzzy controller behaves like a PI fc, the steady-state error of the system is eliminated but there is a large overshoot and serious oscillation.When ~ > 0 and 13 > 0 the fuzzy controller becomes a PID fc, the overshoot is substantially reduced. It is possible to get a comparatively good performance by carefully choosing the value of αandβ.4. ConclusionsWe have studied the input-output behavior of the product-sum crisp type fuzzy controller, revealing that this type of fuzzy controller behaves approximately like a parameter time-varying PD controller. Therefore, the analysis and designing of a fuzzy control system can take advantage of the conventional PID control theory. According to the coventional PID control theory, we have been able to propose some improvement methods for the crisp type fuzzy controller.It has been illustrated that the PD type fuzzy controller yields a steady-state error for the type system, the PI type fuzzy controller can eliminate the steady-state error. We proposed a controller structure, that combines the features of both PD type and PI type fuzzy controller, obtaining a PID type fuzzy controller which allows the control system to have a fast rise and a small overshoot as well as a short settling time.To improve further the performance of the proposed PID type fuzzy controller, the authors designed a parameter adaptive fuzzy controller. The PID type fuzzy controller can be decomposed into the equivalent proportional control, integral control and the derivative control components. The proposed parameter adaptive fuzzy controller decreases the equivalent integral control component of the fuzzy controller gradually with the system response process time, so as to increase the damping of the system when the system is about to settle down, meanwhile keeps the proportional control component unchanged so as to guarantee quick reaction against the system's error. With the parameter adaptive fuzzy controller, the oscillation of the system is strongly restrained and the settling time is shortened considerably.We have presented the simulation results to demonstrate the fine performance of the proposed PID type fuzzy controller and the parameter adaptive fuzzy controller structure.Part 2 Application of self adaptation fuzzy-PID control for main steam temperature control system inpower stationZHI-BIN LIAbstract: In light of the large delay, strong inertia, and uncertainty characteristics of main steam temperature process, a self adaptation fuzzy-PID serial control system is presented, which not only contains the anti-disturbance performance of serial control, but also combines the good dynamic performance of fuzzy control. The simulation results show that this control system has more quickly response, better precision and stronger anti-disturbance ability.Keywords:Main steam temperature;Self adaptation;Fuzzy control;Serial control1. IntroductionThe boiler superheaters of modem thermal power station run under the condition of high temperature and high pressure, and the superheater’s temperature is highest in the steam channels.so it has important effect to the running of the whole thermal power station.If the temperature is too high, it will be probably burnt out. If the temperature is too low ,the efficiency will be reduced So the main steam temperature mast be strictly controlled near the given value.Fig l shows the boiler main steam temperature system structure.Fig.1 boiler main steam temperature systemIt can be concluded from Fig l that a good main steam temperature controlsystem not only has adequately quickly response to flue disturbance and load fluctuation, but also has strong control ability to desuperheating water disturbance. The general control scheme is serial PID control or double loop control system with derivative. But when the work condition and external disturbance change large, the performance will become instable. This paper presents a self adaptation fuzzy-PID serial control system. which not only contains the anti-disturbance performance of serial control, but also combines the good dynamic character and quickly response of fuzzy control .1. Design of Control SystemThe general regulation adopts serial PID control system with load feed forward .which assures that the main steam temperature is near the given value 540℃in most condition .If parameter of PID control changeless and the work condition and external disturbance change large, the performance will become in stable .The fuzzy control is fit for controlling non-linear and uncertain process. The general fuzzy controller takes error E and error change ratio EC as input variables .actually it is a non-linear PD controller, so it has the good dynamic performance .But the steady error is still in existence. In linear system theory, integral can eliminate the steady error. So if fuzzy control is combined with PI control, not only contains the anti-disturbance performance of serial control, but also has the good dynamic performance and quickly response.In order to improve fuzzy control self adaptation ability, Prof .Long Sheng-Zhao and Wang Pei-zhuang take the located in bringing forward a new idea which can modify the control regulation online .This regulation is:]1,0[,)1(∈-+=αααEC E UThis control regulation depends on only one parameter α.Once αis fixed .the weight of E and EC will be fixed and the self adaptation ability will be very small .It was improved by Prof. Li Dong-hui and the new regulation is as follow;]1,0[,,,3,)1(2,)1(1,)1(0,)1({321033221100∈±=-+±=-+±=-+=-+=ααααααααααααE EC E E EC E E EC E E EC E UBecause it is very difficult to find a self of optimum parameter, a new method is presented by Prof .Zhou Xian-Lan, the regulation is as follow:)0(),ex p(12>--=k ke αBut this algorithm still can not eliminate the steady error .This paper combines this algorithm with PI control ,the performance is improved .2. Simulation of Control System3.1 Dynamic character of controlled objectPapers should be limited to 6 pages Papers longer than 6 pages will be subject to extra fees based on their length .Fig .2 main steam temperature control system structureFig 2 shows the main steam temperature control system structure ,)(),(21s W s W δδare main controller and auxiliary controller,)(),(21s W s W o o are characters of the leading and inertia sections,)(),(21s W s W H H are measure unit.3.2 Simulation of the general serial PID control systemThe simulation of the general serial PID control system is operated by MATLAB, the simulation modal is as Fig.3.Setp1 and Setp2 are the given value disturbance and superheating water disturb & rice .PID Controller1 and PID Controller2 are main controller and auxiliary controller .The parameter value which comes from references is as follow :667.37,074.0,33.31)(25)(111111122===++===D I p D I p p k k k s k sk k s W k s W δδFig.3. the general PID control system simulation modal3.3 Simulation of self adaptation fuzzy-PID control system SpacingThe simulation modal is as Fig 4.Auxiliary controller is:25)(22==p k s W δ.Main controller is Fuzzy-PI structure, and the PI controller is:074.0,33.31)(11111==+=I p I p k k s k k s W δFuzzy controller is realized by S-function, and the code is as fig.5.Fig.4. the fuzzy PID control system simulation modalFig 5 the S-function code of fuzzy control3.4 Comparison of the simulationGiven the same given value disturbance and the superheating water disturbance,we compare the response of fuzzy-PID control system with PID serial control system. The simulation results are as fig.6-7.From Fig6-7,we can conclude that the self adaptation fuzzy-PID control system has the more quickly response, smaller excess and stronger anti-disturbance.4. Conclusion(1)Because it combines the advantage of PID controller and fuzzy controller, theself adaptation fuzzy-PID control system has better performance than the general PID serial control system.(2)The parameter can self adjust according to the error E value. so this kind of controller can harmonize quickly response with system stability.Part 3 Neuro-fuzzy generalized predictive controlof boiler steam temperatureXiangjie LIU, Jizhen LIU, Ping GUANAbstract: Power plants are nonlinear and uncertain complex systems. Reliable control of superheated steam temperature is necessary to ensure high efficiency and high load-following capability in the operation of modern power plant. A nonlinear generalized predictive controller based on neuro-fuzzy network (NFGPC) is proposed in this paper. The proposed nonlinear controller is applied to control the superheated steam temperature of a 200MW power plant. From the experiments on the plant and the simulation of the plant, much better performance than the traditional controller is obtained.Keywords: Neuro-fuzzy networks; Generalized predictive control; Superheated steam temperature1. IntroductionContinuous process in power plant and power station are complex systems characterized by nonlinearity, uncertainty and load disturbance. The superheater is an important part of the steam generation process in the boiler-turbine system, where steam is superheated before entering the turbine that drives the generator. Controlling superheated steam temperature is not only technically challenging, but also economically important.From Fig.1,the steam generated from the boiler drum passes through the low-temperature superheater before it enters the radiant-type platen superheater. Water is sprayed onto the steam to control the superheated steam temperature in both the low and high temperature superheaters. Proper control of the superheated steam temperature is extremely important to ensure the overall efficiency and safety of the power plant. It is undesirable that the steam temperature is too high, as it can damage the superheater and the high pressure turbine, or too low, as it will lower the efficiency of the power plant. It is also important to reduce the temperaturefluctuations inside the superheater, as it helps to minimize mechanical stress that causes micro-cracks in the unit, in order to prolong the life of the unit and to reduce maintenance costs. As the GPC is derived by minimizing these fluctuations, it is amongst the controllers that are most suitable for achieving this goal.The multivariable multi-step adaptive regulator has been applied to control the superheated steam temperature in a 150 t/h boiler, and generalized predictive control was proposed to control the steam temperature. A nonlinear long-range predictive controller based on neural networks is developed into control the main steam temperature and pressure, and the reheated steam temperature at several operating levels. The control of the main steam pressure and temperature based on a nonlinear model that consists of nonlinear static constants and linear dynamics is presented in that.Fig.1 The boiler and superheater steam generation process Fuzzy logic is capable of incorporating human experiences via the fuzzy rules. Nevertheless, the design of fuzzy logic controllers is somehow time consuming, as the fuzzy rules are often obtained by trials and errors. In contrast, neural networks not only have the ability to approximate non-linear functions with arbitrary accuracy, they can also be trained from experimental data. The neuro-fuzzy networks developed recently have the advantages of model transparency of fuzzy logic and learning capability of neural networks. The NFN is have been used to develop self-tuning control, and is therefore a useful tool for developing nonlinear predictive control. Since NFN is can be considered as a network that consists of several local re-gions, each of which contains a local linear model, nonlinear predictive control based onNFN can be devised with the network incorporating all the local generalized predictive controllers (GPC) designed using the respective local linear models. Following this approach, the nonlinear generalized predictive controllers based on the NFN, or simply, the neuro-fuzzy generalized predictive controllers (NFG-PCs)are derived here. The proposed controller is then applied to control the superheated steam temperature of the 200MW power unit. Experimental data obtained from the plant are used to train the NFN model, and from which local GPC that form part of the NFGPC is then designed. The proposed controller is tested first on the simulation of the process, before applying it to control the power plant.2. Neuro-fuzzy network modellingConsider the following general single-input single-output nonlinear dynamic system:),1(),...,(),(),...,1([)(''+-----=uy n d t u d t u n t y t y f t y ∆+--/)()](),...,1('t e n t e t e e (1)where f[.]is a smooth nonlinear function such that a Taylor series expansion exists, e(t)is a zero mean white noise and Δis the differencing operator,''',,e u y n n n and d are respectively the known orders and time delay of the system. Let the local linear model of the nonlinear system (1) at the operating point )(t o be given by the following Controlled Auto-Regressive Integrated Moving Average (CARIMA) model:)()()()()()(111t e z C t u z B z t y z A d ----+∆= (2) Where )()(),()(1111----∆=z andC z B z A z A are polynomials in 1-z , the backward shift operator. Note that the coefficients of these polynomials are a function of the operating point )(t o .The nonlinear system (1) is partitioned into several operating regions, such that each region can be approximated by a local linear model. Since NFN is a class of associative memory networks with knowledge stored locally, they can be applied to model this class of nonlinear systems. A schematic diagram of the NFN is shown in Fig.2.B-spline functions are used as the membership functions in theNFN for the following reasons. First, B-spline functions can be readily specified by the order of the basis function and the number of inner knots. Second, they are defined on a bounded support, and the output of the basis function is always positive, i.e.,],[,0)(j k j j k x x λλμ-∉=and ],[,0)(j k j j k x x λλμ-∈>.Third, the basis functions form a partition of unity, i.e.,.][,1)(min,∑∈≡j mam j k x x x x μ(3)And fourth, the output of the basis functions can be obtained by a recurrence equation.Fig. 2 neuro-fuzzy network The membership functions of the fuzzy variables derived from the fuzzy rules can be obtained by the tensor product of the univariate basis functions. As an example, consider the NFN shown in Fig.2, which consists of the following fuzzy rules: IF operating condition i (1x is positive small, ... , and n x is negative large),THEN the output is given by the local CARIMA model i:...)()(ˆ...)1(ˆ)(ˆ01+-∆+-++-=d t u b n t y a t y a t yi i a i in i i i a )(...)()(c i in i b i in n t e c t e n d t u b c b -+++--∆+ (4)or )()()()()(ˆ)(111t e z C t u z B z t yz A i i i i d i i ----+∆= (5) Where )()(),(111---z andC z B z A i i i are polynomials in the backward shift operator 1-z , and d is the dead time of the plant,)(t u i is the control, and )(t e i is a zero mean independent random variable with a variance of 2δ. The multivariate basis function )(k i x a is obtained by the tensor products of the univariate basis functions,p i x A a nk k i k i ,...,2,1,)(1==∏=μ (6)where n is the dimension of the input vector x , and p , the total number of weights in the NFN, is given by,∏=+=nk i i k R p 1)( (7)Where i k and i R are the order of the basis function and the number of inner knots respectively. The properties of the univariate B-spline basis functions described previously also apply to the multivariate basis function, which is defined on the hyper-rectangles. The output of the NFN is,∑∑∑=====p i i i p i ip i i i a y aa yy 111ˆˆˆ (8) 3. Neuro-fuzzy modelling and predictive control of superheatedsteam temperatureLet θbe the superheated steam temperature, and θμ, the flow of spray water to the high temperature superheater. The response of θcan be approximated by a second order model:The linear models, however, only a local model for the selected operating point. Since load is the unique antecedent variable, it is used to select the division between the local regions in the NFN. Based on this approach, the load is divided into five regions as shown in Fig.3,using also the experience of the operators, who regard a load of 200MW as high,180MW as medium high,160MW as medium,140MW as medium low and 120MW as low. For a sampling interval of 30s , the estimated linear local models )(1-z A used in the NFN are shown in Table 1.Fig. 3 Membership function for local modelsTable 1 Local CARIMA models in neuro-fuzzy modelCascade control scheme is widely used to control the superheated steam temperature. Feed forward control, with the steam flow and the gas temperature as inputs, can be applied to provide a faster response to large variations in these two variables. In practice, the feed forward paths are activated only when there are significant changes in these variables. The control scheme also prevents the faster dynamics of the plant, i.e., the spray water valve and the water/steam mixing, from affecting the slower dynamics of the plant, i.e., the high temperature superheater. With the global nonlinear NFN model in Table 1, the proposed NFGPC scheme is shown in Fig.4.Fig. 4 NFGPC control of superheated steam temperature with feed-for-ward control.As a further illustration, the power plant is simulated using the NFN model given in Table 1,and is controlled respectively by the NFGPC, the conventional linear GPC controller, and the cascaded PI controller while the load changes from 160MW to 200MW.The conventional linear GPC controller is the local controller designed for the“medium”operating region. The results are shown in Fig.5,showing that, as expected, the best performance is obtained from the NFGPC as it is designed based on a more accurate process model. This is followed by the conventional linear GPC controller. The performance of the conventional cascade PI controller is the worst, indicating that it is unable to control satisfactory the superheated steam temperature under large load changes. This may be the reason for controlling the power plant manually when there are large load changes.Fig.5 comparison of the NFGPC, conventional linear GPC, and cascade PI controller.4. ConclusionsThe modeling and control of a 200 MW power plant using the neuro-fuzzy approach is presented in this paper. The NFN consists of five local CARIMA models.The out-put of the network is the interpolation of the local models using memberships given by the B-spline basis functions. The proposed NFGPC is similarly constructed, which is designed from the CARIMA models in the NFN. The NFGPC is most suitable for processes with smooth nonlinearity, such that its full operating range can be partitioned into several local linear operating regions. The proposed NFGPC therefore provides a useful alternative for controlling this class of nonlinear power plants, which are formerly difficult to be controlled using traditional methods.Part 4 为Part3译文:锅炉蒸汽温度模糊神经网络的广义预测控制Xiangjie LIU, Jizhen LIU, Ping GUAN摘要:发电厂是非线性和不确定性的复杂系统。

自动化专业可参考的外文文献

自动化专业可参考的外文文献

1外文原文A: Fundamentals of Single-chip MicrocomputerTh e si ng le-ch i p mi cr oc om pu ter is t he c ul mi nat i on o f bo th t h e d ev el op me nt o f th e d ig it al com p ut er an d t he int e gr at ed ci rc ui ta r gu ab ly th e t ow m os t s i gn if ic ant i nv en ti on s o f t h e 20t h c en tu ry[1].Th es e to w typ e s of a rc hi te ctu r e ar e fo un d i n s in gl e-ch ip m i cr oc om pu te r. So m e em pl oy t he sp l it p ro gr am/d ata me mo ry o f th e H a rv ar d ar ch it ect u re, sh ow n in Fi g.3-5A-1, o th ers fo ll ow t hep h il os op hy, wi del y a da pt ed f or ge n er al-p ur po se co m pu te rs a ndm i cr op ro ce ss o r s, of ma ki ng no lo gi c al di st in ct io n be tw ee n p ro gr am a n d da ta m em or y a s i n th e Pr in cet o n ar ch it ec tu re,sh ow n inF i g.3-5A-2.In g en er al te r ms a s in gl e-chi p m ic ro co mp ut er i sc h ar ac te ri zed b y the i nc or po ra tio n of al l t he uni t s o f a co mp ut er i n to a s in gl e d ev i ce, as s ho wn in Fi g3-5A-3.Fig.3-5A-1 A Harvard typeFig.3-5A-2. A conventional Princeton computerFig3-5A-3. Principal features of a microcomputerRead only memory (ROM).R OM i s u su al ly f or th e p er ma ne nt,n o n-vo la ti le s tor a ge o f an a pp lic a ti on s pr og ra m .M an ym i cr oc om pu te rs an d mi cr oc on tr ol le r s a re in t en de d fo r h ig h-v ol ume a p pl ic at i o ns a nd h en ce t he e co nom i ca l ma nu fa ct ure of t he d ev ic es r e qu ir es t ha t the co nt en ts o f the pr og ra m me mo ry b e co mm it te dp e rm an en tl y d ur in g th e m an uf ac tu re o f c hi ps . Cl ear l y, th is im pl ie sa ri g or ou s a pp roa c h t o R OM co de d e ve lo pm en t s in ce c ha ng es ca nn otb e m a d e af te r man u fa ct ur e .T hi s d e ve lo pm en t pr oce s s ma y in vo lv e e m ul at io n us in g a s op hi st ic at ed deve lo pm en t sy st em w i th a ha rd wa re e m ul at io n ca pa bil i ty a s we ll a s th e u se of po we rf ul so ft wa re t oo ls.So me m an uf act u re rs p ro vi de ad d it io na l RO M opt i on s byi n cl ud in g i n th ei r ra ng e de vi ce s wi th (or i nt en de d fo r us e wi th) u s er pr og ra mm ab le m em or y. Th e s im p le st of th es e i s us ua ll y d ev ice w h ic h ca n op er ate in a m ic ro pr oce s so r mo de b y usi n g so me o f th e i n pu t/ou tp ut li ne s as a n ad dr es s an d da ta b us f or acc e ss in g e xt er na l m e mo ry. T hi s t ype o f d ev ic e c an b e ha ve fu nc ti on al l y a s t he si ng le c h ip mi cr oc om pu te r fr om wh ic h i t i s de ri ve d a lb eit w it h r es tr ic ted I/O an d a mo di fie d e xt er na l ci rcu i t. T he u se o f t h es e RO Ml es sd e vi ce s is c om mo n e ve n in p ro du ct io n c ir cu it s wh er e t he v ol um e do es n o t ju st if y th e d e ve lo pm en t co sts of c us to m on-ch i p RO M[2];t he rec a n st il l b e a si g ni fi ca nt s a vi ng in I/O a nd ot he r c hi ps co mp ar ed t o a c on ve nt io nal mi cr op ro ce ss or b as ed c ir cu it. M o re e xa ctr e pl ac em en t fo r RO M d ev ic es c an b e o bt ai ne d in t he f o rm o f va ri an ts w i th 'pi gg y-ba ck'EP RO M(Er as ab le p ro gr am ma bl e ROM)s oc ke ts o rd e vi ce s w it h EP ROM i ns te ad o f R OM 。

计算机java外文翻译外文文献英文文献

计算机java外文翻译外文文献英文文献

英文原文:Title: Business Applications of Java. Author: Erbschloe, Michael, Business Applications of Java -- Research Starters Business, 2008DataBase: Research Starters - BusinessBusiness Applications of JavaThis article examines the growing use of Java technology in business applications. The history of Java is briefly reviewed along with the impact of open standards on the growth of the World Wide Web. Key components and concepts of the Java programming language are explained including the Java Virtual Machine. Examples of how Java is being used bye-commerce leaders is provided along with an explanation of how Java is used to develop data warehousing, data mining, and industrial automation applications. The concept of metadata modeling and the use of Extendable Markup Language (XML) are also explained.Keywords Application Programming Interfaces (API's); Enterprise JavaBeans (EJB); Extendable Markup Language (XML); HyperText Markup Language (HTML); HyperText Transfer Protocol (HTTP); Java Authentication and Authorization Service (JAAS); Java Cryptography Architecture (JCA); Java Cryptography Extension (JCE); Java Programming Language; Java Virtual Machine (JVM); Java2 Platform, Enterprise Edition (J2EE); Metadata Business Information Systems > Business Applications of JavaOverviewOpen standards have driven the e-business revolution. Networking protocol standards, such as Transmission Control Protocol/Internet Protocol (TCP/IP), HyperText Transfer Protocol (HTTP), and the HyperText Markup Language (HTML) Web standards have enabled universal communication via the Internet and the World Wide Web. As e-business continues to develop, various computing technologies help to drive its evolution.The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components across computing platforms. Sun Microsystems' Java Community Process continues to be a strong base for the growth of the Java infrastructure and language standards. This growth of open standards creates new opportunities for designers and developers of applications and services (Smith, 2001).Creation of Java TechnologyJava technology was created as a computer programming tool in a small, secret effort called "the Green Project" at Sun Microsystems in 1991. The Green Team, fully staffed at 13 people and led by James Gosling, locked themselves away in an anonymous office on Sand Hill Road in Menlo Park, cut off from all regular communications with Sun, and worked around the clock for18 months. Their initial conclusion was that at least one significant trend would be the convergence of digitally controlled consumer devices and computers. A device-independent programming language code-named "Oak" was the result.To demonstrate how this new language could power the future of digital devices, the Green Team developed an interactive, handheld home-entertainment device controller targeted at the digital cable television industry. But the idea was too far ahead of its time, and the digital cable television industry wasn't ready for the leap forward that Java technology offered them. As it turns out, the Internet was ready for Java technology, and just in time for its initial public introduction in 1995, the team was able to announce that the Netscape Navigator Internet browser would incorporate Java technology ("Learn about Java," 2007).Applications of JavaJava uses many familiar programming concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). A virtual machine is a self-contained operating environment, created by a software layer that behaves as if it were a separate computer. Benefits of creating virtual machines include better exploitation of powerful computing resources and isolation of applications to prevent cross-corruption and improve security (Matlis, 2006).The JVM allows computing devices with limited processors or memory to handle more advanced applications by calling up software instructions inside the JVM to perform most of the work. This also reduces the size and complexity of Java applications because many of the core functions and processing instructions were built into the JVM. As a result, software developersno longer need to re-create the same application for every operating system. Java also provides security by instructing the application to interact with the virtual machine, which served as a barrier between applications and the core system, effectively protecting systems from malicious code.Among other things, Java is tailor-made for the growing Internet because it makes it easy to develop new, dynamic applications that could make the most of the Internet's power and capabilities. Java is now an open standard, meaning that no single entity controls its development and the tools for writing programs in the language are available to everyone. The power of open standards like Java is the ability to break down barriers and speed up progress.Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards. There are over 3 million Java developers and now there are several versions of the code. Most large corporations have in-house Java developers. In addition, the majority of key software vendors use Java in their commercial applications (Lazaridis, 2003).ApplicationsJava on the World Wide WebJava has found a place on some of the most popular websites in the world and the uses of Java continues to grow. Java applications not only provide unique user interfaces, they also help to power the backend of websites. Two e-commerce giants that everybody is probably familiar with (eBay and Amazon) have been Java pioneers on the World Wide Web.eBayFounded in 1995, eBay enables e-commerce on a local, national and international basis with an array of Web sites-including the eBay marketplaces, PayPal, Skype, and -that bring together millions of buyers and sellers every day. You can find it on eBay, even if you didn't know it existed. On a typical day, more than 100 million items are listed on eBay in tens of thousands of categories. Recent listings have included a tunnel boring machine from the Chunnel project, a cup of water that once belonged to Elvis, and the Volkswagen that Pope Benedict XVI owned before he moved up to the Popemobile. More than one hundred million items are available at any given time, from the massive to the miniature, the magical to the mundane, on eBay; the world's largest online marketplace.eBay uses Java almost everywhere. To address some security issues, eBay chose Sun Microsystems' Java System Identity Manager as the platform for revamping its identity management system. The task at hand was to provide identity management for more than 12,000 eBay employees and contractors.Now more than a thousand eBay software developers work daily with Java applications. Java's inherent portability allows eBay to move to new hardware to take advantage of new technology, packaging, or pricing, without having to rewrite Java code ("eBay drives explosive growth," 2007).Amazon (a large seller of books, CDs, and other products) has created a Web Service application that enables users to browse their product catalog and place orders. uses a Java application that searches the Amazon catalog for books whose subject matches a user-selected topic. The application displays ten books that match the chosen topic, and shows the author name, book title, list price, Amazon discount price, and the cover icon. The user may optionally view one review per displayed title and make a buying decision (Stearns & Garishakurthi, 2003).Java in Data Warehousing & MiningAlthough many companies currently benefit from data warehousing to support corporate decision making, new business intelligence approaches continue to emerge that can be powered by Java technology. Applications such as data warehousing, data mining, Enterprise Information Portals (EIP's), and Knowledge Management Systems (which can all comprise a businessintelligence application) are able to provide insight into customer retention, purchasing patterns, and even future buying behavior.These applications can not only tell what has happened but why and what may happen given certain business conditions; allowing for "what if" scenarios to be explored. As a result of this information growth, people at all levels inside the enterprise, as well as suppliers, customers, and others in the value chain, are clamoring for subsets of the vast stores of information such as billing, shipping, and inventory information, to help them make business decisions. While collecting and storing vast amounts of data is one thing, utilizing and deploying that data throughout the organization is another.The technical challenges inherent in integrating disparate data formats, platforms, and applications are significant. However, emerging standards such as the Application Programming Interfaces (API's) that comprise the Java platform, as well as Extendable Markup Language (XML) technologies can facilitate the interchange of data and the development of next generation data warehousing and business intelligence applications. While Java technology has been used extensively for client side access and to presentation layer challenges, it is rapidly emerging as a significant tool for developing scaleable server side programs. The Java2 Platform, Enterprise Edition (J2EE) provides the object, transaction, and security support for building such systems.Metadata IssuesOne of the key issues that business intelligence developers must solve is that of incompatible metadata formats. Metadata can be defined as information about data or simply "data about data." In practice, metadata is what most tools, databases, applications, and other information processes use to define, relate, and manipulate data objects within their own environments. It defines the structure and meaning of data objects managed by an application so that the application knows how to process requests or jobs involving those data objects. Developers can use this schema to create views for users. Also, users can browse the schema to better understand the structure and function of the database tables before launching a query.To address the metadata issue, a group of companies (including Unisys, Oracle, IBM, SAS Institute, Hyperion, Inline Software and Sun) have joined to develop the Java Metadata Interface (JMI) API. The JMI API permits the access and manipulation of metadata in Java with standard metadata services. JMI is based on the Meta Object Facility (MOF) specification from the Object Management Group (OMG). The MOF provides a model and a set of interfaces for the creation, storage, access, and interchange of metadata and metamodels (higher-level abstractions of metadata). Metamodel and metadata interchange is done via XML and uses the XML Metadata Interchange (XMI) specification, also from the OMG. JMI leverages Java technology to create an end-to-end data warehousing and business intelligence solutions framework.Enterprise JavaBeansA key tool provided by J2EE is Enterprise JavaBeans (EJB), an architecture for the development of component-based distributed business applications. Applications written using the EJB architecture are scalable, transactional, secure, and multi-user aware. These applications may be written once and then deployed on any server platform that supports J2EE. The EJB architecture makes it easy for developers to write components, since they do not need to understand or deal with complex, system-level details such as thread management, resource pooling, and transaction and security management. This allows for role-based development where component assemblers, platform providers and application assemblers can focus on their area of responsibility further simplifying application development.EJB's in the Travel IndustryA case study from the travel industry helps to illustrate how such applications could function. A travel company amasses a great deal of information about its operations in various applications distributed throughout multiple departments. Flight, hotel, and automobile reservation information is located in a database being accessed by travel agents worldwide. Another application contains information that must be updated with credit and billing historyfrom a financial services company. Data is periodically extracted from the travel reservation system databases to spreadsheets for use in future sales and marketing analysis.Utilizing J2EE, the company could consolidate application development within an EJB container, which can run on a variety of hardware and software platforms allowing existing databases and applications to coexist with newly developed ones. EJBs can be developed to model various data sets important to the travel reservation business including information about customer, hotel, car rental agency, and other attributes.Data Storage & AccessData stored in existing applications can be accessed with specialized connectors. Integration and interoperability of these data sources is further enabled by the metadata repository that contains metamodels of the data contained in the sources, which then can be accessed and interchanged uniformly via the JMI API. These metamodels capture the essential structure and semantics of business components, allowing them to be accessed and queried via the JMI API or to be interchanged via XML. Through all of these processes, the J2EE infrastructure ensures the security and integrity of the data through transaction management and propagation and the underlying security architecture.To consolidate historical information for analysis of sales and marketing trends, a data warehouse is often the best solution. In this example, data can be extracted from the operational systems with a variety of Extract, Transform and Load tools (ETL). The metamodels allow EJBsdesigned for filtering, transformation, and consolidation of data to operate uniformly on datafrom diverse data sources as the bean is able to query the metamodel to identify and extract the pertinent fields. Queries and reports can be run against the data warehouse that contains information from numerous sources in a consistent, enterprise-wide fashion through the use of the JMI API (Mosher & Oh, 2007).Java in Industrial SettingsMany people know Java only as a tool on the World Wide Web that enables sites to perform some of their fancier functions such as interactivity and animation. However, the actual uses for Java are much more widespread. Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling.In addition, Java's automatic memory management and lack of pointers remove some leading causes of programming errors. Most importantly, application developers do not need to create different versions of the software for different platforms. The advantages available through Java have even found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.Benefits of JavaThe benefits of Java translate across many industries, and some are specific to the control and automation environment. For example, many plant-floor applications use relatively simple equipment; upgrading to PCs would be expensive and undesirable. Java's ability to run on any platform enables the organization to make use of the existing equipment while enhancing the application.IntegrationWith few exceptions, applications running on the factory floor were never intended to exchange information with systems in the executive office, but managers have recently discovered the need for that type of information. Before Java, that often meant bringing together data from systems written on different platforms in different languages at different times. Integration was usually done on a piecemeal basis, resulting in a system that, once it worked, was unique to the two applications it was tying together. Additional integration required developing a brand new system from scratch, raising the cost of integration.Java makes system integration relatively easy. Foxboro Controls Inc., for example, used Java to make its dynamic-performance-monitor software package Internet-ready. This software provides senior executives with strategic information about a plant's operation. The dynamic performance monitor takes data from instruments throughout the plant and performs variousmathematical and statistical calculations on them, resulting in information (usually financial) that a manager can more readily absorb and use.ScalabilityAnother benefit of Java in the industrial environment is its scalability. In a plant, embedded applications such as automated data collection and machine diagnostics provide critical data regarding production-line readiness or operation efficiency. These data form a critical ingredient for applications that examine the health of a production line or run. Users of these devices can take advantage of the benefits of Java without changing or upgrading hardware. For example, operations and maintenance personnel could carry a handheld, wireless, embedded-Java device anywhere in the plant to monitor production status or problems.Even when internal compatibility is not an issue, companies often face difficulties when suppliers with whom they share information have incompatible systems. This becomes more of a problem as supply-chain management takes on a more critical role which requires manufacturers to interact more with offshore suppliers and clients. The greatest efficiency comes when all systems can communicate with each other and share information seamlessly. Since Java is so ubiquitous, it often solves these problems (Paula, 1997).Dynamic Web Page DevelopmentJava has been used by both large and small organizations for a wide variety of applications beyond consumer oriented websites. Sandia, a multiprogram laboratory of the U.S. Department of Energy's National Nuclear Security Administration, has developed a unique Java application. The lab was tasked with developing an enterprise-wide inventory tracking and equipment maintenance system that provides dynamic Web pages. The developers selected Java Studio Enterprise 7 for the project because of its Application Framework technology and Web Graphical User Interface (GUI) components, which allow the system to be indexed by an expandable catalog. The flexibility, scalability, and portability of Java helped to reduce development timeand costs (Garcia, 2004)IssueJava Security for E-Business ApplicationsTo support the expansion of their computing boundaries, businesses have deployed Web application servers (WAS). A WAS differs from a traditional Web server because it provides a more flexible foundation for dynamic transactions and objects, partly through the exploitation of Java technology. Traditional Web servers remain constrained to servicing standard HTTP requests, returning the contents of static HTML pages and images or the output from executed Common Gateway Interface (CGI ) scripts.An administrator can configure a WAS with policies based on security specifications for Java servlets and manage authentication and authorization with Java Authentication andAuthorization Service (JAAS) modules. An authentication and authorization service can bewritten in Java code or interface to an existing authentication or authorization infrastructure. Fora cryptography-based security infrastructure, the security server may exploit the Java Cryptography Architecture (JCA) and Java Cryptography Extension (JCE). To present the user with a usable interaction with the WAS environment, the Web server can readily employ a formof "single sign-on" to avoid redundant authentication requests. A single sign-on preserves user authentication across multiple HTTP requests so that the user is not prompted many times for authentication data (i.e., user ID and password).Based on the security policies, JAAS can be employed to handle the authentication process with the identity of the Java client. After successful authentication, the WAS securitycollaborator consults with the security server. The WAS environment authentication requirements can be fairly complex. In a given deployment environment, all applications or solutions may not originate from the same vendor. In addition, these applications may be running on different operating systems. Although Java is often the language of choice for portability between platforms, it needs to marry its security features with those of the containing environment.Authentication & AuthorizationAuthentication and authorization are key elements in any secure information handling system. Since the inception of Java technology, much of the authentication and authorization issues have been with respect to downloadable code running in Web browsers. In many ways, this had been the correct set of issues to address, since the client's system needs to be protected from mobile code obtained from arbitrary sites on the Internet. As Java technology moved from a client-centric Web technology to a server-side scripting and integration technology, it required additional authentication and authorization technologies.The kind of proof required for authentication may depend on the security requirements of a particular computing resource or specific enterprise security policies. To provide such flexibility, the JAAS authentication framework is based on the concept of configurable authenticators. This architecture allows system administrators to configure, or plug in, the appropriate authenticatorsto meet the security requirements of the deployed application. The JAAS architecture also allows applications to remain independent from underlying authentication mechanisms. So, as new authenticators become available or as current authentication services are updated, system administrators can easily replace authenticators without having to modify or recompile existing applications.At the end of a successful authentication, a request is associated with a user in the WAS user registry. After a successful authentication, the WAS consults security policies to determine if the user has the required permissions to complete the requested action on the servlet. This policy canbe enforced using the WAS configuration (declarative security) or by the servlet itself (programmatic security), or a combination of both.The WAS environment pulls together many different technologies to service the enterprise. Because of the heterogeneous nature of the client and server entities, Java technology is a good choice for both administrators and developers. However, to service the diverse security needs of these entities and their tasks, many Java security technologies must be used, not only at a primary level between client and server entities, but also at a secondary level, from served objects. By using a synergistic mix of the various Java security technologies, administrators and developers can make not only their Web application servers secure, but their WAS environments secure as well (Koved, 2001).ConclusionOpen standards have driven the e-business revolution. As e-business continues to develop, various computing technologies help to drive its evolution. The Java programming language and platform have emerged as major technologies for performing e-business functions. Java programming standards have enabled portability of applications and the reuse of application components. Java uses many familiar concepts and constructs and allows portability by providing a common interface through an external Java Virtual Machine (JVM). Today, you can find Java technology in networks and devices that range from the Internet and scientific supercomputers to laptops and cell phones, from Wall Street market simulators to home game players and credit cards.Java has found a place on some of the most popular websites in the world. Java applications not only provide unique user interfaces, they also help to power the backend of websites. While Java technology has been used extensively for client side access and in the presentation layer, it is also emerging as a significant tool for developing scaleable server side programs.Since Java is an object-oriented language like C++, the time needed for application development is minimal. Java also encourages good software engineering practices with clear separation of interfaces and implementations as well as easy exception handling. Java's automatic memory management and lack of pointers remove some leading causes of programming errors. The advantages available through Java have also found their way into hardware. The emerging new Java devices are streamlined systems that exploit network servers for much of their processing power, storage, content, and administration.中文翻译:标题:Java的商业应用。

自动化专业相关英文文献加翻译(20000字符)

自动化专业相关英文文献加翻译(20000字符)

自动化专业相关英文文献加翻译(20000字符)This chapter continues from the previous chapters on programming and introduces internal relays. A variety of other terms are often used todescribe these elements, such as auxiliary relays, markers, flags, coils, and bit storage. These are one of the elements included among the special built-in functions with PLCs and are very widely used in programming. A small PLC might have a hundred or more internal relays, some of them battery backed so thatthey can be used in situations where it is necessary to ensure safe shutdownof a plant in the event of power failure. Later chapters consider other common built-in elements.7.1 Internal RelaysIn PLCs there are elements that are used to hold data, that is, bits, and behave like relays,being able to be switched on or off and to switch other devices on or off. Hence the term internal relay. Such internal relays do not exist as real-world switching devices but are merely bits in the storage memory that behave in the same way as relays. For programming, they can be treated in the same way as an external relay output and input. Thus inputs to external switches can be used to give an output from an internal relay. This then results in the internal relay contacts being used, in conjunction with other external input switches, to give an output, such as activating a motor. Thus we might have (Figure 7.1)On one rung of the program:Inputs to external inputs activate the internal relay output. On a later rung of the program:As a consequence of the internal relay output, internal relay contacts are activated and socontrol some output.In using an internal relay, it has to be activated on one rung of aprogram and then its output used to operate switching contacts on another rung, or rungs, of the program. Internal relays can be programmed with as many setsof associated contacts as desired.To distinguish internal relay outputs from external relay outputs, theyare given different types of addresses. Different manufacturers tend to use different terms for internal relays andhave different ways of expressing their addresses. For example, Mitsubishi uses the term auxiliary relay or marker and the notation M100, M101, and so on. Siemens uses the term flag and the notation F0.0, F0.1, and so on. Telemecanique uses the term bit and the notation B0, B1, and so on. Toshiba uses the term internal relay and the notation R000, R001, and so on. Allen-Bradley uses the term bit storage and notation in the PLC-5 of the formB3/001,B3/002, and so on. 7.2 Ladder ProgramsWith ladder programs, an internal relay output is represented using the symbol for an output device, namely , with an address that indicates that itis an internal relay. Thus, with a Mitsubishi PLC, we might have the addressM100, the M indicating that it is an internal relay or marker rather than an external device. The internal relay switching contacts are designated with the symbol for an input device, namely , and given the same address as theinternal relay output, such as M100.7.2.1 Programs with Multiple Input ConditionsAs an illustration of the use that can be made of internal relays,consider the following situation. A system is to be activated when twodifferent sets of input conditions are realized.We might just program this as an AND logic gate system; however, if a number of inputs have to be checked in order that each of the input conditions can be realized, it may be simpler to use an internal relay. The first input conditions then are used to give an output to an internal relay. This relay has associated contacts that then become part of the input conditions with the second inputFigure 7.2 shows a ladder program for such a task. For the first rung, wheninput In 1 or input In 3 is closed and input In 2 closed, internal relayIR 1 is activated. This results in the contacts for IR 1 closing. If input In4 is then activated, there is an output from output Out 1. Such a task mightbe involved in the automatic lifting of a barrier when someone approaches from either side. Input In 1 and input In 3 are inputs from photoelectric sensors that detect the presence of a personapproaching or leaving from either side of the barrier, input In 1 being activated from one side of it and input In 3 from the other. Input In 2 is an enabling switch to enable the system to be closed down. Thus when input In 1or input In 3, and input In 2, are activated, there is an output from internal relay 1. This will close the internal relay contacts. If input In 4, perhaps a limit switch,detects that the barrier is closed, then it is activated and closes. The result is then an output fromOut 1, a motor that lifts the barrier. If the limit switch detects thatthe barrier is already open, the person having passed through it, then itopens and so output Out 1 is no longer energized and a counterweight mightthen close the barrier. The internal relay has enabled two parts of theprogram to be linked, one part being the detection of the presence of a person and the second part the detection of whether the barrier is already up or down. Figure 7.3a shows how Figure 7.2 would appear in Mitsubishi notation andFigure 7.3b shows how it would appear in Siemens notation.Figure 7.4 is another example of a ladder program involving internal relays. Output 1 is controlled by two input arrangements. The first rung shows theinternal relay IR 1, which isenergized if input In 1 or In 2 is activated and closed. The second rung shows internal relay IR 2, which is energized if inputs In 3 and In 4 are both energized. The third rung shows that output Out 1 is energized if internalrelay IR 1 or IR 2 is activated. Thus there is an output from the system if either of two sets of input conditions is realized. 7.2.2 Latching ProgramsAnother use of internal relays is for resetting a latch circuit. Figure7.5 shows an example of such a ladder program.When the input In 1 contacts are momentarily closed, there is an output at Out 1. This closes the contacts for Out 1 and so maintains the output, evenwhen input In 1 opens. When input In 2 is closed, the internal relay IR 1 is energized and so opens the IR 1 contacts, which are normally closed. Thus the output Out 1 is switched off and so the output is unlatched.Consider a situation requiring latch circuits where there is an automatic machine that can be started or stopped using push-button switches. A latch circuit is used to start and stop the power being applied to the machine. The machine has several outputs that can be turned on if the power has been turned on and are off if the power is off. It would be possible to devise a ladder diagram that has individually latched controls for each such output. However, a simpler method is to use an internal relay. Figure 7.6 shows such a ladder diagram. The first rung has the latch for keeping the internal relay IR 1 on when the start switch gives a momentary input. The second rung will then switch the power on. The third rung will also switch on and give output Out 2 if the input 2 contacts are closed. The third rung will also switch on and give output Out 3 if the input 3 contacts are closed. Thus all the outputs can be switched on when the start push button is activated. All the outputs will be switched off if the stop switch is opened. Thus all the outputs are latched by IR 1.7.2.3 Response TimeThe time taken between an input occurring and an output changing depends on such factors as the electrical response time of the input circuit, the mechanical response of the output感谢您的阅读,祝您生活愉快。

计算机专业中英文文献翻译

计算机专业中英文文献翻译

1In the past decade the business environment has changed dramatically. The world has become a small and very dynamic marketplace. Organizations today confront new markets, new competition and increasing customer expectations. This has put a tremendous demand on manufacturers to; 1) Lower total costs in the complete supply chain 2) Shorten throughput times 3) Reduce stock to a minimum 4) Enlarge product assortment 5) Improve product quality 6) Provide more reliable delivery dates and higher service to the customer 7) Efficiently coordinate global demand, supply and production. Thus today's organization have to constantly re-engineer their business practices and procedures to be more and more responsive to customers and competition. In the 1990's information technology and business process re-engineering, used in conjunction with each other, have emerged as important tools which give organizations the leading edge.ERP Systems EvolutionThe focus of manufacturing systems in the 1960's was on inventory control. Most of the software packages then (usually customized) were designed to handle inventory based on traditional inventory concepts. In the 1970's the focus shifted to MRP (Material Requirement Planning) systems which translatedthe Master Schedule built for the end items into time-phased net requirements for the sub-assemblies, components and raw materials planning and procurement,In the 1980's the concept of MRP-II (Manufacturing Resources Planning) evolved which was an extension of MRP to shop floor and distribution management activities. In the early 1990's, MRP-II was further extended to cover areas like Engineering, Finance, Human Resources, Projects Management etc i.e. the complete gamut of activities within any business enterprise. Hence, the term ERP (Enterprise Resource Planning) was coined.In addition to system requirements, ERP addresses technology aspects like client/server distributedarchitecture, RDBMS, object oriented programming etc. ERP Systems-Bandwidth ERP solutions address broad areas within any business like Manufacturing, Distribution, Finance, Project Management, Service and Maintenance, Transportation etc. A seamless integration is essential to provide visibility and consistency across the enterprise.An ERP system should be sufficiently versatile to support different manufacturing environments like make-to-stock, assemble-to-order and engineer-to-order. The customer order decoupling point (CODP) should be flexible enough to allow the co-existence of these manufacturing environments within the same system. It is also very likely that the same product may migrate from one manufacturing environment to another during its produce life cycle.The system should be complete enough to support both Discrete as well as Process manufacturing scenario's. The efficiency of an enterprise depends on the quick flow of information across the complete supply chain i.e. from the customer to manufacturers to supplier. This places demands on the ERP system to have rich functionality across all areas like sales, accounts receivable, engineering, planning, inventory management, production, purchase, accounts payable, quality management, distribution planning and external transportation. EDI (Electronic Data Interchange) is an important tool in speeding up communications with trading partners.More and more companies are becoming global and focusing on down-sizing and decentralizing their business. ABB and Northern Telecom are examples of companies which have business spread around the globe. For these companies to manage their business efficiently, ERP systems need to have extensive multi-site management capabilities. The complete financial accounting and management accounting requirementsof the organization should be addressed. It is necessary to have centralized or de-centralized accounting functions with complete flexibility to consolidate corporate information.After-sales service should be streamlined and managed efficiently. A strong EIS (Enterprise Information System) with extensive drill down capabilities should be available for the top management to get a birds eye view of the health of their organization and help them to analyze performance in key areas.Evaluation CriteriaSome important points to be kept in mind while evaluating an ERP software include: 1) Functional fit with the Company's business processes 2) Degree of integration between the various components of the ERP system 3) Flexibility and scalability 4) Complexity; user friendliness 5) Quick implementation; shortened ROI period 6) Ability to support multi-site planning and control 7) Technology; client/server capabilities, database independence, security 8)Availability of regular upgrades 9) Amount of customization required 10) Local support infrastructure II) Availability of reference sites 12) Total costs,including cost of license, training, implementation, maintenance, customization and hardware requirements.ERP Systems-ImplementationThe success of an ERP solution depends on how quick the benefits can be reaped from it. This necessitates rapid implementations which lead to shortened ROI periods. Traditional approach to implementation has been to carry out a Business Process Re-engineering exercise and define a "TO BE"model before the ERP system implementation. This led to mismatches between the proposed model and the ERP functionality, the consequence of which was customizations, extended implementation time frames, higher costs and loss of user confidence.ERP Systems-The FutureThe Internet represents the next major technology enabler which allows rapid supply chain management between multiple operations and trading partners. Most ERP systems are enhancing their products to become "Internet Enabled" so that customers worldwide can have direct to the supplier's ERP system. ERP systems are building in the Workflow Management functionally which provides a mechanism to manage and controlthe flow of work by monitoring logistic aspects like workload, capacity, throughout times, work queue lengths and processing times.译文1在过去十年中,商业环境发生了巨大的变化。

自动化专业外文文献

自动化专业外文文献

自动化专业外文文献Development of Sensor New TechnologySensor is one kind component which can transform the physical quantity, chemistry quantity and the biomass into electrical signal、The output signal has the different forms like the voltage, the electric current, the frequency, the pulse and so on, which can satisfy the signal transmission, processing, recording, and demonstration and control demands、So it is the automatic detection system and in the automatic control industry 、If automatic Technology is used wider, then sensor is more important、Several key words of the sensor:1 Sensor ElementsAlthough there are exception ,most sensor consist of a sensing element and a conversion or control element、For example, diaphragms,bellows,strain tubes and rings, bourdon tubes, and cantilevers are sensing elements which respond to changes in pressure or force and convert these physical quantities into a displacement、This displacement may then be used to change an electrical parameter such as voltage, resistance, capacitance, or inductance、Such combination of mechanical and electrical elements form electromechanical transducing devices or sensor、Similar combination can be made for other energy input such as thermal、Photo, magnetic and chemical,giving thermoelectric, photoelectric,electromaanetic, and electrochemical sensor respectively、2 Sensor SensitivityThe relationship between the measured and the sensor output signal is usually obtained by calibration tests and isreferred to as the sensor sensitivity K1= output-signal increment / measured increment 、In practice, the sensor sensitivity is usually known, and, by measuring the output signal, the input quantity is determined from input= output-signal increment / K1、3 Characteristics of an Ideal SensorThe high sensor should exhibit the following characteristics、(a)high fidelity-the sensor output waveform shape be a faithful reproduction of the measured; there should be minimum distortion、(b)There should be minimum interference with the quantity being measured; the presence of the sensor should not alter the measured in any way、(c)Size、The sensor must be capable of being placed exactly where it is needed、(d)There should be a linear relationship between the measured and the sensor signal、(e)The sensor should have minimum sensitivity to external effects, pressure sensor,for example,are often subjected to external effects such vibration and temperature、(f)The natural frequency of the sensor should be well separated from the frequency and harmonics of the measurand、Sensors can be divided into the following categories:1 Electrical SensorElectrical sensor exhibit many of the ideal characteristics、In addition they offer high sensitivity as well as promoting the possible of remote indication or mesdurement、Electrical sensor can be divided into two distinct groups:(a)variable-control-parameter types,which include:(i)resistance(ii)capacitance(iii)inductance(iv)mutual-inductance typesThese sensor all rely on external excitation voltage for their operation、(b)self-generating types,which include(i)electromagnetic(ii)thermoelectric(iii)photoemissive(iv)piezo-electric typesThese all themselves produce an output voltage in response to the measurand input and their effects are reversible、For example, a piezo-electric sensor normally produces an output voltage in response to the deformation of a crystalline material; however, if an alternating voltage is applied across the material, the sensor exhibits the reversible effect by deforming or vibrating at the frequency of the alternating voltage、2 Resistance SensorResistance sensor may be divided into two groups, as follows:(i)Those which experience a large resistance change, measured by using potential-divider methods、Potentiometers are in this group、(ii)Those which experience a small resistance change, measured by bridge-circuit methods、Examples of this group include strain gauges and resistance thermometers、3 Capacitive SensorThe capacitance can thus made to vary by changing either the relative permittivity, the effective area, or the distance separating the plates、The characteristic curves indicate that variations of area and relative permittivity give a linear relationship only over a small range of spacings、Thus thesensitivity is high for small values of d、Unlike the potentionmeter, the variable-distance capacitive sensor has an infinite resolution making it most suitable for measuring small increments of displacement or quantities which may be changed to produce a displacement、4 Inductive SensorThe inductance can thus be made to vary by changing the reluctance of the inductive circuit、Measuring techniques used with capacitive and inductive sensor:(a)A、C、excited bridges using differential capacitors inductors、(b)A、C、potentiometer circuits for dynamic measurements、(c)D、C、circuits to give a voltage proportional to velocity for a capacitor、(d)Frequency-modulation methods, where the change of C or L varies the frequency of an oscillation circuit、Important features of capacitive and inductive sensor are as follows:(i)resolution infinite(ii)accuracy±0、1% of full scale is quoted(iii)displacement ranges 25*10-6 m to 10-3m(iv)rise time less than 50us possibleTypical measurands are displacement, pressure, vibration, sound, and liquid level、5 Linear Variable-differential Ttransformer6 Piezo-electric Sensor7 Electromagnetic Sensor8 Thermoelectric Sensor9 Photoelectric Cells10 Mechanical Sensor and Sensing ElementsIn information age, the information industry includes information gathering, transmission, process three parts, namely sensor technology, communication, computer technology、Because of ultra large scale integrated circuit’s rapid development after having been developed Modern computer technology and communication, not only requests sensor precision reliability, speed ofresponse and gain information content request more and more high but also requests its cost to be inexpensive、The obvious traditional sensor is eliminated gradually because of the function, the characteristic, the volume, the cost and so on、As world develop many countries are speeding up to the sensor new technology’s research and the development, and all has obtained the enormous breakthrough、Now the sensor new technology development mainly has following several aspects: Using the physical phenomenon, the chemical reaction, the biological effect as the sensor principle therefore the researches which discovered the new phenomenon and the new effect are the sensor technological improving ways 、it is important studies to developed ne w sensor’s the foundation、Japanese Sharp Corporation uses the superconductivity technology to develop successfully the high temperature superconductivity magnetic sensor and get the sensor technology significant breakthrough、Its sensitivity is so high and only inferior in the superconductivity quantum interference component、Its manufacture craft is far simpler than the superconductivity quantum interference component、May use in magnetism image formation technology、So it has the widespread promoted value、Using the immune body and the antigen meets one anothercompound when the electrode surface、It can cause the electrode potential change and use this phenomenon to be possible to generate the immunity sensor、The immunity sensor makes with this kind of immune body may to some organism in whether has this kind of ant original work inspection、Like may inspect somebody with the hepatitis virus immune body whether contracts the hepatitis, plays to is fast, the accurate role、The US UC sixth branch has developed this kind of sensor、The sensor material is the important foundation for sensor technology, because the materials science is progressive and the people may make each kind of new sensor For example making the temperature sensor with the high polymer thin film; The optical fiber can make the pressure, the current capacity, the temperature, the displacement and so on the many kinds of sensors; Making the pressure transmitter with the ceramics、The high polymer can become the proportion adsorption and the release hydrogen along with the environment relative humidity size、The high polymer electricity。

计算机专业毕业设计论文外文文献中英文翻译(Object)

计算机专业毕业设计论文外文文献中英文翻译(Object)

外文资料Object landscapes and lifetimesTechnically, OOP is just about abstract data typing, inheritance, and polymorphism, but other issues can be at least as important. The remainder of this section will cover these issues.One of the most important factors is the way objects are created and destroyed. Where is the data for an object and how is the lifetime of the object controlled? There are different philosophies at work here. C++ takes the approach that control of efficiency is the most important issue, so it gives the programmer a choice. For maximum run-time speed, the storage and lifetime can be determined while the program is being written, by placing the objects on the stack (these are sometimes called automatic or scoped variables) or in the static storage area. This places a priority on the speed of storage allocation and release, and control of these can be very valuable in some situations. However, you sacrifice flexibility because you must know the exact quantity, lifetime, and type of objects while you're writing the program. If you are trying to solve a more general problem such as computer-aided design, warehouse management, or air-traffic control, this is too restrictive.The second approach is to create objects dynamically in a pool of memory called the heap. In this approach, you don't know until run-time how many objects you need, what their lifetime is, or what their exact type is. Those are determined at the spur of the moment while the program is running. If you need a new object, you simply make it on the heap at the point that you need it. Because the storage is managed dynamically, at run-time, the amount of time required to allocate storage on the heap is significantly longer than the time to create storage on the stack. (Creating storage on the stack is often a single assembly instruction tomove the stack pointer down, and another to move it back up.) The dynamic approach makes the generally logical assumption that objects tend to be complicated, so the extra overhead of finding storage and releasing that storage will not have an important impact on the creation of an object. In addition, the greater flexibility is essential to solve the general programming problem.Java uses the second approach, exclusively]. Every time you want to create an object, you use the new keyword to build a dynamic instance of that object.There's another issue, however, and that's the lifetime of an object. With languages that allow objects to be created on the stack, the compiler determines how long the object lasts and can automatically destroy it. However, if you create it on the heap the compiler has no knowledge of its lifetime. In a language like C++, you must determine programmatically when to destroy the object, which can lead to memory leaks if you don’t do it correctly (and this is a common problem in C++ programs). Java provides a feature called a garbage collector that automatically discovers when an object is no longer in use and destroys it. A garbage collector is much more convenient because it reduces the number of issues that you must track and the code you must write. More important, the garbage collector provides a much higher level of insurance against the insidious problem of memory leaks (which has brought many a C++ project to its knees).The rest of this section looks at additional factors concerning object lifetimes and landscapes.1 Collections and iteratorsIf you don’t know how many objects you’re going to need to solve a particular problem, or how long they will last, you also don’t know how to store those objects. How can you know how much space to create for thoseobjects? You can’t, since that information isn’t known until run-time.The solution to most problems in object-oriented design seems flippant: you create another type of object. The new type of object that solves this particular problem holds references to other objects. Of course, you can do the same thing with an array, which is available in most languages. But there’s more. This new object, generally called a container(also called a collection, but the Java library uses that term in a different sense so this book will use “container”), will expand itself whenever necessary to accommodate everything you place inside it. So you don’t need to know how manyobjects you’re going to hold in a container. Just create a container object and let it take care of the details.Fortunately, a good OOP language comes with a set of containers as part of the package. In C++, it’s part of the Standard C++ Library and is sometimes called the Standard Template Library (STL). Object Pascal has containers in its Visual Component Library (VCL). Smalltalk has a very complete set of containers. Java also has containers in its standard library. In some libraries, a generic container is considered good enough for all needs, and in others (Java, for example) the library has different types of containers for different needs: a vector (called an ArrayListin Java) for consistent access to all elements, and a linked list for consistent insertion at all elements, for example, so you can choose the particular type that fits your needs. Container libraries may also include sets, queues, hash tables, trees, stacks, etc.All containers have some way to put things in and get things out; there are usually functions to add elements to a container, and others to fetch those elements back out. But fetching elements can be more problematic, because a single-selection function is restrictive. What if you want to manipulate or compare a set of elements in the container instead of just one?The solution is an iterator, which is an object whose job is to select the elements within a container and present them to the user of the iterator. As a class, it also provides a level of abstraction. This abstraction can be used to separate the details of the container from the code that’s accessing that container. The container, via the iterator, is abstracted to be simply a sequence. The iterator allows you to traverse that sequence without worrying about the underlying structure—that is, whether it’s an ArrayList, a LinkedList, a Stack, or something else. This gives you the flexibility to easily change the underlying data structure without disturbing the code in your program. Java began (in version 1.0 and 1.1) with a standard iterator, called Enumeration, for all of its container classes. Java 2 has added a much more complete container library that contains an iterator called Iterator that does more than the older Enumeration.From a design standpoint, all you really want is a sequence that can be manipulated to solve your problem. If a single type of sequence satisfied all of your needs, there’d be no reason to have different kinds. There are two reasons that you need a choice of containers. First, containers provide different types of interfaces and external behavior.A stack has a different interface and behavior than that of a queue, which is different from that of a set or a list. One of these might provide a more flexible solution to your problem than the other. Second, different containers have different efficiencies for certain operations. The best example is an ArrayList and a LinkedList. Both are simple sequences that can have identical interfaces and external behaviors. But certain operations can have radically different costs. Randomly accessing elements in an ArrayList is a constant-time operation; it takes the same amount of time regardless of the element you select. However, in a LinkedList it is expensive to move through the list to randomly selectan element, and it takes longer to find an element that is further down the list. On the other hand, if you want to insert an element in the middle of a sequence, it’s much cheaper in a LinkedList than in an ArrayList. These and other operations have different efficiencies depending on the underlying structure of the sequence. In the design phase, you might start with a LinkedList and, when tuning for performance, change to an ArrayList. Because of the abstraction via iterators, you can change from one to the other with minimal impact on your code.In the end, remember that a container is only a storage cabinet to put objects in. If that cabinet solves all of your needs, it doesn’t really matter how it is implemented (a basic concept with most types of objects). If you’re working in a programming environment that has built-in overhead due to other factors, then the cost difference between an ArrayList and a LinkedList might not matter. You might need only one type of sequence. You can even imagine the “perfect”container abstraction, which can automatically change its underlying implementation according to the way it is used.2 The singly rooted hierarchyOne of the issues in OOP that has become especially prominent since the introduction of C++ is whether all classes should ultimately be inherited from a single base class. In Java (as with virtually all other OOP languages) the answer is “yes”and the name of this ultimate base class is simply Object. It turns out that the benefits of the singly rooted hierarchy are many.All objects in a singly rooted hierarchy have an interface in common, so they are all ultimately the same type. The alternative (provided by C++) is that you don’t know that everything is the same fundamental type. From a backward-compatibility standpoint this fits the model of C better and can be thought of as less restrictive, but when you want to do full-onobject-oriented programming you must then build your own hierarchy to provide the same convenience that’s built into other OOP languages. And in any new class library you acquire, some other incompatible interface will be used. It requires effort (and possibly multiple inheritance) to work the new interface into your design. Is the extra “flexibility” of C++ worth it? If you need it—if you have a large investment in C—it’s quite valuable. If you’re starting from scratch, other alternatives such as Java can often be more productive.All objects in a singly rooted hierarchy (such as Java provides) can be guaranteed to have certain functionality. You know you can perform certain basic operations on every object in your system. A singly rooted hierarchy, along with creating all objects on the heap, greatly simplifies argument passing (one of the more complex topics in C++).A singly rooted hierarchy makes it much easier to implement a garbage collector (which is conveniently built into Java). The necessary support can be installed in the base class, and the garbage collector can thus send the appropriate messages to every object in the system. Without a singly rooted hierarchy and a system to manipulate an object via a reference, it is difficult to implement a garbage collector.Since run-time type information is guaranteed to be in all objects, you’ll never end up with an object whose type you cannot determine. This is especially important with system level operations, such as exception handling, and to allow greater flexibility in programming.3 Collection libraries and support for easy collection useBecause a container is a tool that you’ll use frequently, it makes sense to have a library of containers that are built in a reusable fashion, so you can take one off the shelf Because a container is a tool that you’ll use frequently, it makes sense to have a library of containers that are built in a reusable fashion, so you can take one off the shelf and plugit into your program. Java provides such a library, which should satisfy most needs.Downcasting vs. templates/genericsTo make these containers reusable, they hold the one universal type in Java that was previously mentioned: Object. The singly rooted hierarchy means that everything is an Object, so a container that holds Objects can hold anything. This makes containers easy to reuse.To use such a container, you simply add object references to it, and later ask for them back. But, since the container holds only Objects, when you add your object reference into the container it is upcast to Object, thus losing its identity. When you fetch it back, you get an Object reference, and not a reference to the type that you put in. So how do you turn it back into something that has the useful interface of the object that you put into the container?Here, the cast is used again, but this time you’re not casting up the inheritance hierarchy to a more general type, you cast down the hierarchy to a more specific type. This manner of casting is called downcasting. With upcasting, you know, for example, that a Circle is a type of Shape so it’s safe to upcast, but you don’t know that an Object is necessarily a Circle or a Shape so it’s hardly safe to downcast unless you know that’s what you’re dealing with.It’s not completely dangerous, however, because if you downcast to the wrong thing you’ll get a run-time error called an exception, which will be described shortly. When you fetch object references from a container, though, you must have some way to remember exactly what they are so you can perform a proper downcast.Downcasting and the run-time checks require extra time for the runningprogram, and extra effort from the programmer. Wouldn’t it make sense to somehow create the container so that it knows the types that it holds, eliminating the need for the downcast and a possible mistake? The solution is parameterized types, which are classes that the compiler can automatically customize to work with particular types. For example, with a parameterized container, the compiler could customize that container so that it would accept only Shapes and fetch only Shapes.Parameterized types are an important part of C++, partly because C++ has no singly rooted hierarchy. In C++, the keyword that implements parameterized types is “template.” Java currently has no parameterized types since it is possible for it to get by—however awkwardly—using the singly rooted hierarchy. However, a current proposal for parameterized types uses a syntax that is strikingly similar to C++ templates.译文对象的创建和存在时间从技术角度说,OOP(面向对象程序设计)只是涉及抽象的数据类型、继承以及多形性,但另一些问题也可能显得非常重要。

自动化英文文献

自动化英文文献

Classification of control systems there are three ways: by automatic classification methods in order to participate in the control mode classification, to adjust the law category.One way to control category1, the open-loop control system if the computer output of open loop control system to exercise control of the production process, but the control results --- the state of the production process does not affect the computer control systems, computer \ controller \ production and other sectors does not constitute a closed loop, is called open-loop control system computer. the production process of the state is no feedback to the computer, but by the operator to monitor the status of the production process, decision control program, and tell the computer to control the role of exercising control.2, closed loop control system computer to the production of an object or process control, the state can directly influence the production process computer control system, called the closed-loop control system computer. Control of the computer monitor in the operator, the automatic acceptance of the production process state test results, calculate and determine the control scheme, the direct command and control units (devices) of action, the role of exercising control of the production process. In such systems, aircraft control components under control of control information sent to control device operation, the other running equipment condition as the output, measured by the detection part, the feedback as input to the control computer; to make control Computer \ Control Components \ production \ test components form a closed loop. We will call this form of control computer control closed-loop control. Closed loop control system computer, using a mathematical model to set the value of the production process and test results of the best value of the deviation between the feedback and control the production process to run at their best.3, line control system as long as the computer controlled production of the controlled object or process, to exercise direct control, without human intervention are called the control computer on-line control, or on-line control system.4, offline control system control computer does not directly participate in the control object or the controlled production process. It only managed to complete the process of the controlled object or the status of testing, and testing of data processing; and then develop control programs, the output control instruction, operator reference control instructions manually controlled operation to control parts of the object orsubject control process control. This control form is called off-line computer control system.5, real-time control system control computer real-time control system is controlled by the control of the object or process, or request when the request processing control, the control function in a timely manner to address and control systems, commonly used in the production process is interrupted for the occasion. Such as steel, each one refining furnace steel is a process; and if the process rolling, rolling out each piece of steel considered a process, each process is repeated. Only enter the process only requires a computer control. Once control of the computer, it requires a computer from the production process information in the required time to respond to or control. Such systems often use sophisticated interrupt system and interrupt handling procedures to achieve. In summary, an online system is not necessarily a real-time system. But a real-time system must be an online system.Second, in order to participate in the control mode to Category1, direct digital control system by the control computer to replace conventional analog instruments and direct regulation to control the production process, as the computer as digital signals, so named after the DDC control. Actually controlled the production process control components, control signals received by the process controller input / output channels of D / (D / A) converter output of the digital control computer volume to be converted into analog; analog input control machine to go through the process of input / output channels of analog / digital (A / D) converter into a digital number into the computer. DDC control systems often use a small computer or microprocessor, the time-sharing system to achieve multiple points of control. Is in fact a discrete sampling with the controller, to achieve discrete multi-point control. DDC computer control system that has become the main control computer control system forms. DDC control of the advantage of flexibility, large, focused on high reliability and low cost. Can use several forms of digital computing circuits, or even dozens of loop production process, integral to proportional --- --- differential (PID) control to maintain the industrial state of the controlled object at a given value, the deviation small and stable. And as long as the change of control algorithms and applications can achieve more complex control. Such as feedforward control and the best control. Under normal circumstances, DDC-level control often more complex as the implementation of advanced control level.2, supervisory computer control system supervisory computer control system fora particular production process, according to the production process of various states, according to the production process of the mathematical model to calculate the best production equipment should be running a given value, and the best value automatically or manually on the DDC Executive-level computer or analog meter to align the regulation or control of the target set. By a DDC or adjust the instrument at various points on the production process (running equipment) to exercise control. SCC system is that it can guarantee the production process is always controlled the situation in the best condition to run, so get the most benefit. SCC results directly affect the merits of the first of its mathematical model, this should always improve the operation process model, and modify the control algorithm, and application control procedures.3, multi-level control systems in modern manufacturing enterprises in the production process not only the need to address the problem of online control, and Huan Zhi Li called for a solution of production problems, the daily product line, the number of arrangements for planning and scheduling, and Rose plans develop a long term planning, notice Xiaoshou prospects, there was multi-level control system. DDC class is mainly used for direct control of the production process, for PID, or feedforward control; SCC level is mainly used for optimal control or adaptive control or learning control calculation, and command and control the same DDC class report back to the MIS class. DDC level usually microcomputers, SCC-level general use of small computers or high-end microcomputers. MIS Workshop main function of governance is based on plant-level production of varieties issued, the number of orders and collect up the production process of the state of information, at any time reasonable schedule to achieve optimal control, command and SCC-level supervisory control. Factory management level MIS main function is to accept the company and factory production tasks assigned by the actual situation of optimized computing, Zhi Ding factory production plans and short-term (ten days or weeks or days) arrangements, and then issued to the plant-level production tasks. Corporate governance level MIS main function is to guess the market demand computing to develop strategic long-term development planning, and contract orders, raw material supply situation and the production conditions, comparison of the optimal production program selection and calculation, work out the entire company business a long time (months or ten days) of the production plan, sales plan, assigned to the task of the factory management level. MIS-level main function is to achieve real-timeinformation processing, decision-makers at all levels to provide useful information, make on the production planning \ scheduling and management programs to plan the coordination and management control in the optimal state. This one can control the size and scope of enterprise size divided into several levels. Each level has to be addressed according to the size of the amount of information to determine the type of computer used. MIS generally use small computer shop class or high-grade micro-computer, the factory management level of the MIS with a medium-sized computer, and corporate governance level MIS is to use large-scale computer, or use super computer. 4, distributed control or distributed control system distributed control or distributed control, the control system is divided into a number of independent local control subsystems to complete the controlled production process control task. Since the emergence of micro-computers and rapid development of distributed control to provide for the realization of the material and technical basis, in recent years, decentralized control can be different almost normal development, and has become an important trend in the development of computer control. Since the 70's, appeared focused on distributed control system, called DCS. It is a decentralized local control of the new computer control system.Three, classified according to the law regulating1, program control if the computer control system the division of a predetermined time function control, such control is called program control. Such as the furnace temperature-time curves Anzhao some control on the process control. Here the procedure is time-varying changes have to determine the corresponding value, rather than the computer running.2, sequence control in the process control based on the generated sequence control, computer, over time, as can be determined according to the corresponding control value and previous results at the moment both to exercise on the production process control system, called the order of the computer control .3, proportional - integral - differential analog PID control regulation of conventional PID control instrument can be completed. Micro-computer can also be achieved with PID control.4, feedforward control is usually the feedback control system, have certain effects on the interference in order to generate feedback over the role of inhibitory control of interference, and thus delay the control of undesirable consequences. In order to overcome the negative lag control, with the computer accepts the interferencesignal after the, did not produce effects in the Huan insert a feedforward control Zuoyong, it Ganghao interference point in the interference of the control to completely offset the effect on the variable, it was Ming Wei Yin Er disturbance compensation control.5, optimal control (optimal control) system control computer, such as to have controlled object is best known as the best run of the control system control system. Such as computer control system is limited in the existing conditions, select appropriate control law (mathematical model), the controlled object indicators in optimal running condition. Such as the largest output, consumption of the largest, highest quality standards, such as the least scrap rate. Best is determined by a set of mathematical models, sometimes several in a limited range of the best indicators of the pursuit of individual, sometimes the best indicators of comprehensive requirements.6, the adaptive control system, optimal control, when the working conditions or qualifications change, we can not get the best control effects. If the situation changes in working conditions, the control system can still be controlled in the best state of the object's control, such control system called the adaptive system. This requires mathematical model reflects the change in the conditions, how to achieve the best state. Control computer to detect changes in terms of the information given by the laws of mathematical models to calculate, to change the control variables, the controlled objects still in the best condition.7, self-learning control system if the computer can keep the results under the controlled object gain experience running their own change and improve the control law so that more and better control effect, this control system is called self-learning control system. Above mentioned optimal control, adaptive control and self-learning control are related to multi-parameter, multi-variable complex control systems, are all problems of modern control theory. Determine the stability of the system, many factors affect the control of complex mathematical models, have to be a production control, production technology, automation, instrumentation, programming, computer hardware, each with various personnel to be realized. Controlled object by the length of reaction time required to control the number of points and mathematical models to determine the complexity of the computer use scale. Generally speaking, a strong need to functionality (speed and computing power) of the computer can be achieved. The Zhuzhong control, can be a single type also is not single, you can combineseveral forms to achieve control of the production process. This should address the actual situation of the controlled object, the system analysis, system design determined at the time.。

自动化相关外文文献原文及译文资料

自动化相关外文文献原文及译文资料

Application, Design, and Manufacturing of Conical Involute Gears for Power TransmissionsDr. J. Börner,K. Humm,Dr. F. Joachim,Dr. H. Yakaria,ZF Friedrichshafen AG , 88038Friedrichshafen, Germany;[ABSTRACT] Conical involute gears (beveloids) are used in transmissions with intersecting or skew axes and for backlash-free transmissions with parallel axes. Conical gears are spur or helical gears with variable addendum modification (tooth thickness) across the face width. The geometry of such gears is generally known, but applications in power transmissions are more or less exceptional. ZF has implemented beveloid gear sets in various applications: 4WD gear units for passenger cars, marine transmissions (mostly used in yachts), gear boxes for robotics, and industrial drives. The module of these beveloids varies between 0.7 mm and 8 mm in size, and the crossed axes angle varies between 0°and 25°. These boundary conditions require a deep understanding of the design, manufacturing, and quality assurance of beveloid gears. Flank modifications, which are necessary for achieving a high load capacity and a low noise emission in the conical gears, can be produced with the continuous generation grinding process. In order to reduce the manufacturing costs, the machine settings as well as the flank deviations caused by the grinding process can be calculated in the design phase using a manufacturing simulation. This presentation gives an overview of the development of conical gears for power transmissions: Basic geometry, design of macro and micro geometry, simulation, manufacturing, gear measurement, and testing.1IntroductionIn transmissions with shafts that are not arranged parallel to the axis, torque transmission ispossible by means of various designs such as bevel or crown gears , universal shafts , or conical involute gears (beveloids). The use of conical involute gears is particularly ideal for small shaft angles (less than 15°), as they offer benefits with regard to ease of production, design features, and overall input. Conical involute gears can be used in transmissions with intersecting or skew axes or in transmissions with parallelaxes for backlash-free operation. Due to the fact that selection of the cone angle does not depend on the crossed axes angle, pairing is also possible with cylindrical gears. As beveloids can be produced as external and internal gears, a whole matrix of pairing options results and the designer is provided with a high degree of flexibility;Table 1.Conical gears are spur orhelical gears with variableaddendum correction (tooththickness)across the face width. Theycan mesh with all gears made witha tool with the same basic rack.The geometry of beveloids isgenerally known, but they have sofar rarely been used in powertransmissions. Neither the load capacity nor the noise behavior of beveloids has been examined to any great extent inthe past. Standards (such as ISO6336 for cylindrical gears ),calculation methods, and strengthvalues are not available. Therefore,it was necessary to develop thecalculation method, obtain theload capacity values, and calculatespecifications for production andquality assurance. In the last 15years, ZF has developed variousapplications with conical gears:® Marine transmissions with down-angle output shafts /1, 3/, Fig. 1® Steering transmissions /1/®Low-backlashplanetary gears (crossed axes angle 1…3°) for robots /2/® Transfer gears for commercial vehicles (dumper)®Automatic cartransmissions for AWD /4/, Fig. 22 GEAR GEOMETRY 2.1 MACRO GEOMETRYTo put it simply, a beveloid is a spur gear with continuously changing addendum modification across the face width, as shown in Fig. 3. To accomplish this, the tool is tilted towards the gear axis by the root cone angle ? /1/. This results in the basic gear dimensions:Helix angle, right/lefttanβLR ,=tan β·cos δβδασcos sin tan •n (1)Transverse pressure angle right/leftδββδαα•±•=tan cos cos tan tan ,no L tR(2)Base circle diameter right/leftLR LtR n L dR Zim d ,,,cos cos βα=(3)The differing base circlesfor the left and right flanks lead toasymmetrical tooth profiles at helicalgears, Fig. 3. Manufacturing with arack-type cutter results in a tooth rootcone with root cone angle δ. Theaddendum angle is designed so thattip edge interferences with the matinggear are avoided and a maximally large contact ratio is obtained. Thus, a differing tooth height results across the face width.Due to the geometric design limits for undercut andtip formation, the possible facewidth decreases as the cone angleincreases. Sufficientlywell-proportioned gearing is possibleup to a cone angle of approx. 15°.2.2MICRO GEOMETRYThe pairing of two conical gearsgenerally leads to a point-shaped toothcontact. Out-side this contact, there isgaping between the tooth flanks , Fig. 7.The goal of the gearing correctiondesign is to reduce this gaping inorder to create a flat and uniformcontact. An exact calculation of thetooth flank is possible with thestep-by-step application of thegearing law /5/, Fig. 4. To that end , apoint (P) with the radiusrP1and1normal vectorn1is generated on the original flank. This generates the speed vectorV 1P with⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'*'*•='0cos sin 1111γγωP P P r r v (4)For the point created on the mating flank, the radial vector rp 2:12P P r a r -= (5) and the speed vector 2PV '' apply ⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧'*'*•=''0cos sin 212122γγωP P Pr r V (6) The angular velocities are generated from the gear ratio:1221z z-=ωω (7)The angle γ is iterated until the gearing law in the form()0121=-⨯P P v v n (8)is fulfilled. The meshing point Pa found is then rotated through the angle 2φ2112z z •-=φφ (9) around the gear axis, and this results in the conjugate flank point P 2.3 GEARING DESIGN3.1 UNDERCUT AND TIP FORMA TIONThe usable face width on the beveloid gearing is limited by tip formation on the heel and undercut on the toe as shown in Fig. 3. The greater the selected tooth height (in order to obtain a larger addendum modification), the smaller the theoretically useable face width is. Undercut on the toe and tip formation on the heel result from changing the addendum modification along the face width. The maximum usable face width isachieved when the cone angle onboth gears of the pairing isselected to be approximately thesame size. With pairs having asignificantly smaller pinion, asmaller cone angle must be usedon this pinion. Tip formation onthe heel is less critical if the tipcone angle is smaller than theroot cone angle, which oftenprovides good use of theavailable involute on the toe andfor sufficient tip clearance in theheel.3.2FIELD OF ACTIONAND SLIDING VELOCITYThe field of action for thebeveloid gearing is distorted bythe radial conicity with atendency towards the shape of aparallelogram. In addition, thefield of action is twisted due to the working pressure angle change across the face width. Fig. 5 shows an example of this. There is a roll axis on the beveloid gearing with crossed axes; there is no sliding on this axis as there is on the roll point of cylindrical gear pairs. With a skewed axis arrangement, there is always yet another axial slide in the tooth engagement. Due to the working pressure angle that changes across the face width, there is varying distribution of the contact path to the tip and root contact. Thus, significantly differing sliding velocities can result on the tooth tip and the tooth root along the face width. In the center section, the selection of the addendum modification should be based on thespecifications for the cylindrical gear pairs; the root contact path at the driver should be smaller than the tip contact path. Fig. 6 shows the distribution of the sliding velocity on the driver of a beveloid gear pair.4CONTACT ANAL YSIS AND MODIFYCATIONS4.1POINT CONTACT AND EASE-OFFAt the uncorrected gearing, there is only one point in contact due to the tilting of the axes. The gaping that results along the potential contact line can be approximately described by helix crowning and flank line angle deviation. Crossed axes result in no difference between the gaps on the left and right flanks on spur gears. With helical gearing, the resulting gaping is almost equivalent when both beveloid gears show approximately the same cone angle. The difference between the gap values on the left and right flanks increases as the difference between the cone angles increases and as the helix angle increases. This process results in larger gap values on the flank with the smaller working pressure angle. Fig.7 shows the resulting gaping (ease-off) for a beveloid gear pair with crossed axes and beveloid gears with an identical cone angle. Fig.8 shows the differences in the gaping that results for the left and right flanks for the same crossed axes angle of 10°and a helical angle of approx. 30°. The mean gaping obtained from both flanks is, to a large extent, independent of the helix angle and the distribution of the cone angle to both gears.The selection of the helical and cone angles only determines the distribution of the mean gaping to the left and right flanks. A skewed axis arrangement results in additional influence on the contact gaping. There is a significant reduction in the effective helix crowning on one flank. If the axis perpendicular is identical to the total of the base radii and the difference in the base helix angle is equivalent to the (projected) crossed axes angle, then the gaping decreases to zero and line contact appears. However, significant gaping remains on the opposite flank. If the axis perpendicular is further enlarged up to the point at which a cylindrical crossed helical gear pair is obtained, this results in equivalent minor helix crowning in the ease-off on both flanks. In addition to helix crowning, a notable profile twist (see Fig. 8) is also characteristic of the ease-off of helical beveloids. This profile twist grows significantly as the helix angle increases.Fig.9 shows how the profile twist on the example gear set from Fig.7 is changed depending on the helix angle. In order to compensate for the existing gaping in the tooth engagement, topological flank corrections are necessary; these corrections greatly compensate for the effective helix crowning as well as the profile twist. Without the compensation of the profile twist, only a diagonally patterned contact strip is obtained in the field of action, as shown in Fig. 10.4.2FLANK MODIFICATIONSFor a given degree ofcompensation, the necessarytopography can be determined fromthe existing ease-off. Fig. 11 shows these types of typographies, which were produced on prototypes. The contact ratios have improved greatly with these corrections as can be seen in Fig.12. For use in series production, the target is always to manufacture such topographies on commonly used grinding machines. The options for this are described in Section 6. In addition to the gaping compensation, tip relief is also beneficial. This relief reduces the load at the startand at the end of meshing and can also provide lower noise excitation. However, tip relief manufactured at beveloid gears is not constant in amount and length across the face width. The problem primarily occurs on gearing with a large root cone angle and atip cone angle deviating from thisangle. The tip relief at the toe issignificantly larger than that at the heel.This uneven tip relief must be acceptedif relief of the start and end of meshingis required. The production of tip reliefusing another cone angle as the rootcone angle is possible; however, thisrequires an additional grinding steponly for the tip relief. Independently ofthe generating grinding process,targeted flank topography can bemanufactured by coroning or honing;the application of this method onbeveloids, however, is still in the earlystages of development.5LOAD CAPACITY AND NOISEEXCITATION5. 1APPLICATION OF THECALCULATION STANDARDSThe flank and root load capacity ofbeveloid gearing can onlyapproximately be deter-mined usingthe calculation standards (ISO6336,DIN3990,AGMA C95) for cylindricalgearing. A substitute cylindrical gearpair has to be used, whichis defined by the gearparameters at the centerof the face width. Theprofile of the beveloidtooth is asymmetrical;that can, however, beignored on the substitutegears. The substitutecenter distance isobtained by adding up the operating pitch radii at the center of the face width.When viewed across the face width, individual parameters will change, which significantly influence the load capacity. Table 2 shows the main influences on the root and flank load capacities. The larger notch effect due to the decrease in the tooth root fillet radius towards the heel is in opposition to the increase in the root thickness. In addition, there is a smaller tangential force on the larger operating pitch circle at the heel; at the same time, however, the addendum modification on the heel is smaller. The primary influences are nearly well-balanced so that the load capacity can be calculated sufficiently approximate with the substitute gear pair. The load distribution acrossthe face width can be considered with the width factors (e. g. KβH and KβFinDIN/ISO) and should be determined from additional load pattern analyses.5.2USE OF THE TOOTH CONTACT ANAL YSISA more precise calculation of the load capacity is possible with athree-dimensional tooth contact analysis, as used at cylindrical gear pairs. The substitute cylindrical gear pair can be used in this analysis and the contact conditions are considered very well with flank topography. This topography is obtained from thesuperimposition of the load-freecontact ease-off with the flankcorrections used on the gear. Inthis process, the contact lines aredetermined on the substitutecylindrical gear and they differslightly from the contact at thebeveloid gear. Fig. 13 shows theload distributions calculated inthis manner as compared to theload patterns recorded, and a very goodcorrelation can be seen.This tooth contact analysis also generates the transmission error resulting from the tooth mesh as vibrational excitation. It can, however, only be used as a rough guide. The impreciseness in the contact behavior calculated has a stronger effect on the transmissionerror than it does on the load distribution.5.3EXACT MODELING USING THE FINITE-ELEMENT METHODThe stress at the beveloid gearscan also be calculated using thefinite-element method. Fig. 14shows examples of the modelingof the transverse section on thegears. Fig. 15 shows thecomputer-generated model in thetooth mesh section and the stressdistribution calculated withPERMAS /7/ on the driven gear in a mesh position. The calculation was carried out for multiple mesh positions and the transmission error can be determined from the rotation of the gears.5.4TESTS REGARDING LOAD CAPACITY AND NOISEA back-to-back test bench with crossed axes, upon which gear pairs from AWD transmissions were tested, was used to determine the load capacity, Fig.16. Different corrections were produced on the test gears in order to ascertain their influence on the load capacity. There was good correlation between the load capacity in the test and the FE (finite element) results. Particularly noteworthy is an additional shift of the load pattern towards the heel due to the increased stiffness in this area. This shift is not discernable in the calculation with the substitute cylindrical gear pair. Simultaneous to the load capacity tests, measurements of the transmission error and rotational acceleration were conducted in a universal noise test box, Fig. 17. In addition to the load influence, the influence of additional axis tilt on the noise excitation was also examined in these tests. With regard to this axis tilt, no large amount of sensitivity in the tested gear sets was found.6MANUFACTURING SIMULATIONWith the assistance of the manufacturingsimulation, machine settings and movements withcontinuous generation grinding as well as theproduced profile twist can be obtained. Production-constrained profile twist can be considered as early as the design phase of a transmission and can be incorporated into the load capacity and noise analyses. Simulation software for the manufacturing of beveloids was specially developed at ZF, which is comparable to /9/.6.1PRODUCTION METHODSTHAT CAN BE USED FORBEVELOIDSOnly generating methods canbe used to produce the beveloidgearing, because the shape of thetooth profile changes significantlyalong the face width. Only veryslightly conical beveloids can be manufactured with the acknowledgment that there is profile angle deviation even with the shaping process. Hobs are the easiest to use for pre-cutting. Gear planning would theoretically be useable as well; however, the kinematics required makes this not really feasible on existing machines. Internal conical gears can then only be precisely manufactured with pinion-type cutters if the cutter axis is parallel to the tool axis and the cone is created by changing the center distance. If the internal gear is manufactured with a tilted pinion cutter axis such as used for crown gears, this results in a hollow crowning and a profile twist without corrective movements. These deviations are small enough to be ignored for minor cone angles. For final processing, continuous generation grinding with a grinding worm appears to be the best option. If the workpiece or tool fixture can be additionally tilted,then partial generation methods are also applicable. Processing in a topological grinding process is also possible (e.g. 5-axis machines), but with great effort, when the cone angle of the gearing can be considered in the machine control. In principle, honing and coroning can also be used for the processing; however, the application of these methods in beveloids still needs extensive development. The targeted hollow crowning can be created in the generation grinding process in the dual-flank grinding process via a bowshaped reduction in the center distance. Thismethod results in a profile twist, that is the reverse of the profile twist from the contact gaping. Thus, this method provides extensive compensation for the profile twist and a significantly more voluminous load pattern as is typical on cylindrical gears.6.2WORKPIECE GEOMETRYThe following workpiece descriptions are used in the simulation:® initial gear (with stock allowance for the grind processing)® ideal gear (from the gear data, without flank corrections)® finished gear (with production-constrained deviations and flank corrections).动力传动圆锥渐开线齿轮的设计、制造和应用Dr. J. Börner,K. Humm,Dr. F. Joachim,Dr. H. akaria,ZF Friedrichshafen AG , 88038Friedrichshafen, Germany;摘要:圆锥渐开线齿轮(斜面体齿轮)被用于交叉或倾斜轴变速器和平行轴自由侧隙变速器中。

计算机专业毕业设计--英文文献(含译文)

计算机专业毕业设计--英文文献(含译文)

外文文献原文THE TECHNIQUE DEVELOPMENT HISTORY OF JSPThe Java Server Pages( JSP) is a kind of according to web of the script plait distance technique, similar carries the script language of Java in the server of the Netscape company of server- side JavaScript( SSJS) and the Active Server Pages(ASP) of the Microsoft. JSP compares the SSJS and ASP to have better can expand sex, and it is no more exclusive than any factory or some one particular server of Web. Though the norm of JSP is to be draw up by the Sun company of, any factory can carry out the JSP on own system.The After Sun release the JSP( the Java Server Pages) formally, the this kind of new Web application development technique very quickly caused the people's concern. JSP provided a special development environment for the Web application that establishes the high dynamic state. According to the Sun parlance, the JSP can adapt to include the Apache WebServer, IIS4.0 on the market at inside of 85% server product.This chapter will introduce the related knowledge of JSP and Databases, and JavaBean related contents, is all certainly rougher introduction among them basic contents, say perhaps to is a Guide only, if the reader needs the more detailed information, pleasing the book of consult the homologous JSP.1.1 GENERALIZEThe JSP(Java Server Pages) is from the company of Sun Microsystems initiate, the many companies the participate to the build up the together of the a kind the of dynamic the state web the page technique standard, the it have the it in the construction the of the dynamic state the web page the strong but the do not the especially of the function. JSP and the technique of ASP of the Microsoft is very alike. Both all provide the ability that mixes with a certain procedure code and is explain by the language engine to carry out the procedure code in the code of HTML. Underneath we are simple of carry on the introduction to it.JSP pages are translated into servlets. So, fundamentally, any task JSP pages can perform could also be accomplished by servlets. However, this underlying equivalence does not mean that servlets and JSP pages are equally appropriate in all scenarios. The issue is not the power of the technology, it is the convenience, productivity, and maintainability of one or the other. After all, anything you can do on a particular computer platform in the Java programming language you could also do in assembly language. But it still matters which you choose.JSP provides the following benefits over servlets alone:• It is easier to write and maintain the HTML. Your static code is ordinary HTML: no extra backslashes, no double quotes, and no lurking Java syntax.• You can use standard Web-site development tools. Even HTML tools that know nothing about JSP can be used because they simply ignore the JSP tags.• You can divide up your development team. The Java programmers can work on the dynamic code. The Web developers can concentrate on the presentation layer. On large projects, this division is very important. Depending on the size of your team and the complexity of your project, you can enforce a weaker or stronger separation between the static HTML and the dynamic content.Now, this discussion is not to say that you should stop using servlets and use only JSP instead. By no means. Almost all projects will use both. For some requests in your project, you will use servlets. For others, you will use JSP. For still others, you will combine them with the MVC architecture . You want the appropriate tool for the job, and servlets, by themselves, do not complete your toolkit.1.2 SOURCE OF JSPThe technique of JSP of the company of Sun, making the page of Web develop the personnel can use the HTML perhaps marking of XML to design to turn the end page with format. Use the perhaps small script future life of marking of JSP becomes the dynamic state on the page contents.( the contents changes according to the claim of)The Java Servlet is a technical foundation of JSP, and the large Web applies the development of the procedure to need the Java Servlet to match with with the JSP and then can complete, this name of Servlet comes from the Applet, the local translation method of now is a lot of, this book in order not to misconstruction, decide the direct adoption Servlet but don't do any translation, if reader would like to, can call it as" small service procedure". The Servlet is similar to traditional CGI, ISAPI, NSAPI etc. Web procedure development the function of the tool in fact, at use the Java Servlet hereafter, the customer need not use again the lowly method of CGI of efficiency, also need not use only the ability come to born page of Web of dynamic state in the method of API that a certain fixed Web server terrace circulate. Many servers of Web all support the Servlet, even not support the Servlet server of Web directly and can also pass the additional applied server and the mold pieces to support the Servlet. Receive benefit in the characteristic of the Java cross-platform, the Servlet is also a terrace irrelevant, actually, as long as match the norm of Java Servlet, the Servlet is complete to have nothing to do with terrace and is to have nothing to do with server of Web. Because the Java Servlet is internal to provide the service by the line distance, need not start a progress to the each claimses, and make use of the multi-threadingmechanism can at the same time for several claim service, therefore the efficiency of Java Servlet is very high.But the Java Servlet also is not to has no weakness, similar to traditional CGI, ISAPI, the NSAPI method, the Java Servlet is to make use of to output the HTML language sentence to carry out the dynamic state web page of, if develop the whole website with the Java Servlet, the integration process of the dynamic state part and the static state page is an evil-foreboding dream simply. For solving this kind of weakness of the Java Servlet, the SUN released the JSP.A number of years ago, Marty was invited to attend a small 20-person industry roundtable discussion on software technology. Sitting in the seat next to Marty was James Gosling, inventor of the Java programming language. Sitting several seats away was a high-level manager from a very large software company in Redmond, Washington. During the discussion, the moderator brought up the subject of Jini, which at that time was a new Java technology. The moderator asked the manager what he thought of it, and the manager responded that it was too early to tell, but that it seemed to be an excellent idea. He went on to say that they would keep an eye on it, and if it seemed to be catching on, they would follow his company's usual "embrace and extend" strategy. At this point, Gosling lightheartedly interjected "You mean disgrace and distend."Now, the grievance that Gosling was airing was that he felt that this company would take technology from other companies and suborn it for their own purposes. But guess what? The shoe is on the other foot here. The Java community did not invent the idea of designing pages as a mixture of static HTML and dynamic code marked with special tags. For example, Cold Fusion did it years earlier. Even ASP (a product from the very software company of the aforementioned manager) popularized this approach before JSP came along and decided to jump on the bandwagon. In fact, JSP not only adopted the general idea, it even used many of the same special tags as ASP did.The JSP is an establishment at the model of Java servlets on of the expression layer technique, it makes the plait write the HTML to become more simple.Be like the SSJS, it also allows you carry the static state HTML contents and servers the script mix to put together the born dynamic state exportation. JSP the script language that the Java is the tacit approval, however, be like the ASP and can use other languages( such as JavaScript and VBScript), the norm of JSP also allows to use other languages.1.3 JSP CHARACTERISTICSIs a service according to the script language in some one language of the statures system this kind of discuss, the JSP should be see make is a kind of script language.However, be a kind of script language, the JSP seemed to be too strong again, almost can use all Javas in the JSP.Be a kind of according to text originally of, take manifestation as the central development technique, the JSP provided all advantages of the Java Servlet, and, when combine with a JavaBeans together, providing a kind of make contents and manifestation that simple way that logic separate. Separate the contents and advantage of logical manifestations is, the personnel who renews the page external appearance need not know the code of Java, and renew the JavaBeans personnel also need not be design the web page of expert in hand, can use to take the page of JavaBeans JSP to define the template of Web, to build up a from have the alike external appearance of the website that page constitute. JavaBeans completes the data to provide, having no code of Java in the template thus, this means that these templates can be written the personnel by a HTML plait to support. Certainly, can also make use of the Java Servlet to control the logic of the website, adjust through the Java Servlet to use the way of the document of JSP to separate website of logic and contents.Generally speaking, in actual engine of JSP, the page of JSP is the edit and translate type while carry out, not explain the type of. Explain the dynamic state web page development tool of the type, such as ASP, PHP3 etc., because speed etc. reason, have already can't satisfy current the large electronic commerce needs appliedly, traditional development techniques are all at to edit and translate the executive way change, such as the ASP → ASP+;PHP3 → PHP4.In the JSP norm book, did not request the procedure in the JSP code part( be called the Scriptlet) and must write with the Java definitely. Actually, have some engines of JSP are adoptive other script languages such as the EMAC- Script, etc., but actually this a few script languages also are to set up on the Java, edit and translate for the Servlet to carry out of. Write according to the norm of JSP, have no Scriptlet of relation with Java also is can of, however, mainly lie in the ability and JavaBeans, the Enterprise JavaBeanses because of the JSP strong function to work together, so even is the Scriptlet part not to use the Java, edit and translate of performance code also should is related with Java.1.4 JSP MECHANISMTo comprehend the JSP how unite the technical advantage that above various speak of, come to carry out various result easily, the customer must understand the differentiation of" the module develops for the web page of the center" and" the page develops for the web page of the center" first.The SSJS and ASP are all in several year ago to release, the network of that time is still very young, no one knows to still have in addition to making all business, datas and the expression logic enter the original web page entirely heap what better solvethe method. This kind of model that take page as the center studies and gets the very fast development easily. However, along with change of time, the people know that this kind of method is unwell in set up large, the Web that can upgrade applies the procedure. The expression logic write in the script environment was lock in the page, only passing to shear to slice and glue to stick then can drive heavy use. Express the logic to usually mix together with business and the data logics, when this makes be the procedure member to try to change an external appearance that applies the procedure but do not want to break with its llied business logic, apply the procedure of maintenance be like to walk the similar difficulty on the eggshell. In fact in the business enterprise, heavy use the application of the module already through very mature, no one would like to rewrite those logics for their applied procedure.HTML and sketch the designer handed over to the implement work of their design the Web plait the one who write, make they have to double work-Usually is the handicraft plait to write, because have no fit tool and can carry the script and the HTML contents knot to the server to put together. Chien but speech, apply the complexity of the procedure along with the Web to promote continuously, the development method that take page as the center limits sex to become to get up obviously.At the same time, the people always at look for the better method of build up the Web application procedure, the module spreads in customer's machine/ server the realm. JavaBeans and ActiveX were published the company to expand to apply the procedure developer for Java and Windows to use to come to develop the complicated procedure quickly by" the fast application procedure development"( RAD) tool. These techniques make the expert in the some realm be able to write the module for the perpendicular application plait in the skill area, but the developer can go fetch the usage directly but need not control the expertise of this realm.Be a kind of take module as the central development terrace, the JSP appeared. It with the JavaBeans and Enterprise JavaBeans( EJB) module includes the model of the business and the data logic for foundation, provide a great deal of label and a script terraces to use to come to show in the HTML page from the contents of JavaBeans creation or send a present in return. Because of the property that regards the module as the center of the JSP, it can drive Java and not the developer of Java uses equally. Not the developer of Java can pass the JSP label( Tags) to use the JavaBeans that the deluxe developer of Java establish. The developer of Java not only can establish and use the JavaBeans, but also can use the language of Java to come to control more accurately in the JSP page according to the expression logic of the first floor JavaBeans.See now how JSP is handle claim of HTTP. In basic claim model, a claimdirectly was send to JSP page in. The code of JSP controls to carry on hour of the logic processing and module of JavaBeanses' hand over with each other, and the manifestation result in dynamic state bornly, mixing with the HTML page of the static state HTML code. The Beans can be JavaBeans or module of EJBs. Moreover, the more complicated claim model can see make from is request other JSP pages of the page call sign or Java Servlets.The engine of JSP wants to chase the code of Java that the label of JSP, code of Java in the JSP page even all converts into the big piece together with the static state HTML contents actually. These codes piece was organized the Java Servlet that customer can not see to go to by the engine of JSP, then the Servlet edits and translate them automatically byte code of Java.Thus, the visitant that is the website requests a JSP page, under the condition of it is not knowing, an already born, the Servlet actual full general that prepared to edit and translate completes all works, very concealment but again and efficiently. The Servlet is to edit and translate of, so the code of JSP in the web page does not need when the every time requests that page is explain. The engine of JSP need to be edit and translate after Servlet the code end is modify only once, then this Servlet that editted and translate can be carry out. The in view of the fact JSP engine auto is born to edit and translate the Servlet also, need not procedure member begins to edit and translate the code, so the JSP can bring vivid sex that function and fast developments need that you are efficiently.Compared with the traditional CGI, the JSP has the equal advantage. First, on the speed, the traditional procedure of CGI needs to use the standard importation of the system to output the equipments to carry out the dynamic state web page born, but the JSP is direct is mutually the connection with server. And say for the CGI, each interview needs to add to add a progress to handle, the progress build up and destroy by burning constantly and will be a not small burden for calculator of be the server of Web. The next in order, the JSP is specialized to develop but design for the Web of, its purpose is for building up according to the Web applied procedure, included the norm and the tool of a the whole set. Use the technique of JSP can combine a lot of JSP pages to become a Web application procedure very expediently.JSP six built-in objectsrequest for:The object of the package of information submitted by users, by calling the object corresponding way to access the information package, namely the use of the target users can access the information.response object:The customer's request dynamic response to the client sent the data.session object1. What is the session: session object is a built-in objects JSP, it in the first JSP pages loaded automatically create, complete the conversation of management.From a customer to open a browser and connect to the server, to close the browser, leaving the end of this server, known as a conversation.When a customer visits a server, the server may be a few pages link between repeatedly, repeatedly refresh a page, the server should bethrough some kind of way to know this is the same client, which requires session object.2. session object ID: When a customer's first visit to a server on the JSP pages, JSP engines produce a session object, and assigned aString type of ID number, JSP engine at the same time, the ID number sent to the client, stored in Cookie, this session objects, and customers on the establishment of a one-to-one relationship. When a customer to connect to the server of the other pages, customers no longer allocated to the new session object, until, close your browser, the client-server object to cancel the session, and the conversation, and customer relationship disappeared. When a customer re-open the browser to connect to the server, the server for the customer to create a new session object.aplication target1. What is the application:Servers have launched after the application object, when a customer to visit the site between the various pages here, this application objects are the same, until the server is down. But with the session difference is that all customers of the application objects are the same, that is, all customers share this built-in application objects.2. application objects commonly used methods:(1) public void setAttribute (String key, Object obj): Object specified parameters will be the object obj added to the application object, and to add the subject of the designation of a keyword index.(2) public Object getAttribute (String key): access to application objects containing keywords for.out targetsout as a target output flow, used to client output data. out targets for the output data.Cookie1. What is Cookie:Cookie is stored in Web server on the user's hard drive section of the text. Cookie allow a Web site on the user's computer to store information on and then get back to it.For example, a Web site may be generated for each visitor a unique ID, and then to Cookie in the form of documents stored in each user's machine.If you use IE browser to visit Web, you will see all stored on your hard drive on the Cookie. They are most often stored in places: c: \ windows \ cookies (in Window2000 is in the C: \ Documents and Settings \ your user name \ Cookies).Cookie is "keyword key = value value" to preserve the format of the record.2. Targets the creation of a Cookie, Cookie object called the constructor can create a Cookie. Cookie object constructor has two string .parameters: Cookie Cookie name and value.Cookie c = new Cookie ( "username", "john");3. If the JSP in the package good Cookie object to send to the client, the use of the response addCookie () method.Format: response.addCookie (c)4. Save to read the client's Cookie, the use of the object request getCookies () method will be implemented in all client came to an array of Cookie objects in the form of order, to meet the need to remove the Cookie object, it is necessary to compare an array cycle Each target keywords.JSP的技术发展历史Java Server Pages(JSP)是一种基于web的脚本编程技术,类似于网景公司的服务器端Java脚本语言—— server-side JavaScript(SSJS)和微软的Active Server Pages(ASP)。

自动化专业中英文对照外文翻译文献

自动化专业中英文对照外文翻译文献

中英文对照外文翻译Automation of professional developmentAutomation in the history of professional development, "industrial automation" professional and "control" professional development of the two main line, "industrial automation" professional from the first "industrial enterprises electrified" professional.In the 1950s, the New China was just founded, the 100-waste question, study the Soviet Union established system of higher education, Subdivision professional. Corresponding to the country in the construction of industrial automation and defense, military construction in automatic control, successively set up the "electrification of industrial enterprises" professional and "control" professional (at that time in many schools, "Control" professional secrecy is professional) . After several former professional name of evolution (see below), and gradually develop into a "biased towards applications, biased towards strong," Automation, and the latter to maintain professional name of "control" basically unchanged (in the early days also known as the "automatic learning And remote learning, "" Automatic Control System "professional), and gradually develop into a" biased towards theory, biased towards weak, "the automation professional, and come together in 1995, merged into aunified" automatic "professional . In 1998, according to the Ministry of Education announced the latest professional undergraduate colleges and universities directory, adjusted, the merger of the new "automated" professional include not only the original "automatic" professional (including "industrial automation" professional and "control" professional ), Also increased the "hydraulic transmission and control of" professional (part), "electrical technology" professional (part) and "aircraft guidance and control of" professional (part).Clearly, one of China's automation professional history of the development of China's higher education actually is a new development of the cause of a microcosm of the history, but also the history of New China industrial development of a miniature. Below "industrial automation" professional development of the main line of this example, a detailed review of its development process in the many professional name change (in real terms in the professional content changes) and its industrial building at the time of the close relationship.First a brief look at the world and China's professional division history. We know that now use the professional division is largely from the 19th century to the beginning of the second half of the first half of the 20th century stereotypes of the engineering, is basically industry (products) for the objects to the division, they have been the image of people Known as the "industry professionals" or "trade associations." At present the international education system in two categories, with Britain and the United States as the representative of the education system not yet out of "industry professionals" system, but has taken the "generalist" the road of education and the former Soviet Union for Europe (close to the Soviet Union) as the representative The education system, at the beginning of theimplementation of "professionals" education, professional-very small, although reforms repeatedly, but to the current "industry professionals" are still very obvious characteristics.In the 1950s, just after the founding of New China, a comprehensive study and the Soviet Union and sub-professional very small; Since reform and opening up, only to Britain and the United States to gradually as the representative of the education system to move closer, and gradually reduce the professional, the implementation of "generalist" education through a number of professional Restructuring and merger (the total number of professionals from the maximum of 1,343 kinds of gradually reducing the current 249 kinds), although not out of "industry professionals" and "Mei Ming," but many of the colleges and universities, mostly only one of a Professional, rather than the past more than a professional.Before that, China's first professional automation from the National University in 1952 when the first major readjustment of the establishment of professional - electrified professional industrial enterprises. At that time, the Soviet Union assistance to the construction of China's 156 large industrial enterprises, automation of much-needed electrical engineering and technical personnel, and such professional and technical personnel training, and then was very consistent with China's industrial construction. By the 1960s, professional name changed to "industrial electric and automation," the late 1970s when to resume enrollment "Electric Industrial Automation" professional. This is not only professional name changes, but has its profound meaning, it reflects China's industries from "electrified" step by step to the "automatic" into the real history and that part of the development trend of China's automation professional reflects how urgent countries Urgent for the country'seconomic construction services that period of history and development of real direction.1993, after four years of the third revision of the undergraduate professional directories, the State Education Commission issued a call "system integrity, more scientific and reasonable, the harmonization of norms," the "ordinary professional directory of undergraduate colleges and universities." "Electric Industrial Automation" and "production process automation" merger of the two professional electrician to set up a kind of "industrial automation" professional, by the then Ministry of Industry Machinery centralized management colleges and universities to set up industrial automation teaching guide at the Commission, responsible for the "Industrial Automation "professional teaching and guiding work at the same time," Control "was attributable to the professional category of electronic information, the then Ministry of Industry of electronic centralized management control to set up colleges and universities teaching guide at the Commission, responsible for the" control " Professional teaching guide our work. After the professional adjustment, further defined the "industrial automation" professional and "control" professional "- both strong and weak, hardware and software into consideration and control theory and practical system integration, and the movement control, process control and other targets of control "The common characteristics with the training objectives, but also the basic set of" industrial automation "biased towards strong, professional, biased towards applications," Control "professional biased towards weak, biased towards the theory of professional characteristics and pattern of division of labor. 1995, the State Education Commission promulgated the "(University) undergraduate engineering leading professional directory", the electrical category "industrialautomation" professional and the original electronic information such as "control" of professional electronic information into a new category of "automatic" professional . As this is the leading professional directory, are not enforced, coupled with general "industrial automation" strong or weak, both professional "into" a weak professional category of electronic information is not conducive to professional development and thus many Schools remain "industrial automation" professional and "control" the situation of professional co-exist. Since 1996 more, again commissioned by the Ministry of National Education Ministry of Industry and electronic machinery industries of other parts of the establishment of the new session (second session) centralized management guidance at the University Teaching Commission, making the leading professionals have not been effective Implemented.1998, to meet the country's economic construction of Kuan Koujing personnel training needs, further consolidation of professional and international "generalist" education track by the Ministry of Education announced a fourth revision of the latest "Universities Undergraduate Catalog." So far in the use of the directory, the total number of professionals from the third amendments to the 504 kinds of substantially reduced to 249 species, the original directory is strong, professional electrician and a weak professional category such as electronics and information into categories Electric power, the unity of Information, a former electrician at the same time kind of "industrial automation" professional and the type of electronic information "control" professional formal merger, together with the "hydraulic transmission and control of" professional (part) , "Electric technology" professional (part) and "aircraft guidance and controlof" professional (part), the composition of the new (enforcement) are electrical information such as "automatic" professional. According to statistics, so far the country has more than 200 colleges and universities set up this kind of "automatic" professional. If the name of automation as part of their professional expertise (such as "electrical engineering and automation," "mechanical design and manufacturing automation," "agricultural mechanization and automation" and other professionals) included Automation has undoubtedly is the largest in China A professional.Of the characteristics of China's automation professional:Recalling China's professional history of the development of automation, combined with the corresponding period of the construction of China's national economy to the demand for automation and automated the development of the cause, it is not difficult to sum up following professional characteristics:(1) China's automation professional is not only a relatively long history (since 1952 have been more than 50 years), and from the first day of the establishment of professional automation, has been a professional one of the countries in urgent need, therefore the number of students has also been The largest and most employers welcome the allocation of the professional one.(2) China's automation is accompanied by a professional from the electrification of China's industrial automation step by step to the development of stable development, professional direction and the main content from the first prominent electrified "the electrification of industrial enterprises" step by step for the development of both the electric and automation " Industrial electric and automation ", highlighting the electrical automation" Electric Industrial Automation "and prominent automation" industrial automation ", then the merger of professional education reform in1995 and" control "of professional content into a broader" automated " Professional. From which we can see that China's automation professional Although the initial study in the Soviet education system established under the general environment, but in their development and the Soviet Union or the United States and Britain did not copy the mode, but with China's national conditions (to meet national needs for The main goal) from the innovation and development of "cross-industry professionals," features the professional.自动化专业的发展自动化专业的发展历史中,有“工业自动化”专业与“自动控制”专业两条发展主线,其中“工业自动化”专业最早源于“工业企业电气化”专业。

计算机专业中英文翻译外文翻译文献翻译

计算机专业中英文翻译外文翻译文献翻译

英文参考文献及翻译Linux - Operating system of cybertimes Though for a lot of people , regard Linux as the main operating system to make up huge work station group, finish special effects of " Titanic " make , already can be regarded as and show talent fully. But for Linux, this only numerous news one of. Recently, the manufacturers concerned have announced that support the news of Linux to increase day by day, users' enthusiasm to Linux runs high unprecedentedly too. Then, Linux only have operating system not free more than on earth on 7 year this piece what glamour, get the favors of such numerous important software and hardware manufacturers as the masses of users and Orac le , Informix , HP , Sybase , Corel , Intel , Netscape , Dell ,etc. , OK?1.The background of Linux and characteristicLinux is a kind of " free (Free ) software ": What is called free,mean users can obtain the procedure and source code freely , and can use them freely , including revise or copy etc.. It is a result of cybertimes, numerous technical staff finish its research and development together through Inte rnet, countless user is it test and except fault , can add user expansion function that oneself make conveniently to participate in. As the most outstanding one in free software, Linux has characteristic of the following:(1)Totally follow POSLX standard, expand the network operatingsystem of supporting all AT&T and BSD Unix characteristic. Because of inheritting Unix outstanding design philosophy , and there are clean , stalwart , high-efficient and steady kernels, their all key codes are finished by Li nus Torvalds and other outstanding programmers, without any Unix code of AT&T or Berkeley, so Linu x is not Unix, but Linux and Unix are totally compatible.(2)Real many tasks, multi-user's system, the built-in networksupports, can be with such seamless links as NetWare , Windows NT , OS/2 ,Unix ,etc.. Network in various kinds of Unix it tests to be fastest in comparing and assess efficiency. Support such many kinds of files systems as FAT16 , FAT32 , NTFS , Ex t2FS , ISO9600 ,etc. at the same time .(3) Can operate it in many kinds of hardwares platform , including such processors as Alpha , SunSparc , PowerPC , MIPS ,etc., to various kinds of new-type peripheral hardwares, can from distribute on global numerous programmer there getting support rapidly too.(4) To that the hardware requires lower, can obtain very good performance on more low-grade machine , what deserves particular mention is Linux outstanding stability , permitted " year " count often its running times.2.Main application of Linux At present,Now, the application of Linux mainly includes:(1) Internet/Intranet: This is one that Linux was used most at present, it can offer and include Web server , all such Inter net services as Ftp server , Gopher server , SMTP/POP3 mail server , Proxy/Cache server , DNS server ,etc.. Linux kernel supports IPalias , PPP and IPtunneling, these functions can be used for setting up fictitious host computer , fictitious service , VPN (fictitious special-purpose network ) ,etc.. Operating Apache Web server on Linux mainly, the occupation rate of market in 1998 is 49%, far exceeds the sum of such several big companies as Microsoft , Netscape ,etc..(2) Because Linux has outstanding networking ability , it can be usedin calculating distributedly large-scaly, for instance cartoon making , scientific caculation , database and file server ,etc..(3) As realization that is can under low platform fullness of Unix that operate , apply at all levels teaching and research work of universities and colleges extensively, if Mexico government announce middle and primary schools in the whole country dispose Linux and offer Internet service for student already.(4) Tabletop and handling official business appliedly. Application number of people of in this respect at present not so good as Windows of Microsoft far also, reason its lie in Lin ux quantity , desk-top of application software not so good as Windows application far not merely, because the characteristic of the freedom software makes it not almost have advertisement thatsupport (though the function of Star Office is not second to MS Office at the same time, but there are actually few people knowing).3.Can Linux become a kind of major operating system?In the face of the pressure of coming from users that is strengthened day by day, more and more commercial companies transplant its application to Linux platform, comparatively important incident was as follows, in 1998 ①Compaq and HP determine to put forward user of requirement truss up Linux at their servers , IBM and Dell promise to offer customized Linux system to user too. ②Lotus announce, Notes the next edition include one special-purpose edition in Linux. ③Corel Company transplants its famous WordPerfect to on Linux, and free issue. Corel also plans to move the other figure pattern process products to Linux platform completely.④Main database producer: Sybase , Informix , Oracle , CA , IBM have already been transplanted one's own database products to on Linux, or has finished Beta edition, among them Oracle and Informix also offer technical support to their products.4.The gratifying one is, some farsighted domestic corporations have begun to try hard to change this kind of current situation already. Stone Co. not long ago is it invest a huge sum of money to claim , regard Linux as platform develop a Internet/Intranet solution, regard this as the core and launch Stone's system integration business , plan to set up nationwide Linux technical support organization at the same time , take the lead to promote the freedom software application and development in China. In addition domestic computer Company , person who win of China , devoted to Linux relevant software and hardware application of system popularize too. Is it to intensification that Linux know , will have more and more enterprises accede to the ranks that Linux will be used with domestic every enterprise to believe, more software will be planted in Linux platform. Meanwhile, the domestic university should regard Linux as the original version and upgrade already existing Unix content of courses , start with analysing the source code and revising the kernel and train a large number of senior Linux talents, improve our country's own operating system. Having only really grasped the operating system, the software industry of our country could be got rid of and aped sedulously at present, the passive state led by the nose by others, create conditions for revitalizing the software industry of our country fundamentally.中文翻译Linux—网络时代的操作系统虽然对许多人来说,以Linux作为主要的操作系统组成庞大的工作站群,完成了《泰坦尼克号》的特技制作,已经算是出尽了风头。

自动化 外文翻译 外文文献 英文文献 PLC技术的讨论和未来的发展

自动化 外文翻译 外文文献 英文文献 PLC技术的讨论和未来的发展

自动化外文翻译外文文献英文文献 PLC技术的讨论和未来的发展作者 T.J.byers出处:Electronic Test Equipment-principles and Applications.Princeton University.America.PLC技术的讨论和未来的发展PLC technique discussion and future developmentAlong with the development of the ages, the technique that is nowadays is also gradually perfect, the competition plays more more strong; the operation that list depends the artificial has already can't satisfied with the current manufacturing industry foreground, also can't guarantee the request of the higher quantity and high new the image of the technique business enterprise.The people see in produce practice, automate brought the tremendous convenience and the product quantities for people up of assurance, also eased the personnel's labor strength, reduce the establishment on the personnel. The target control of the hard realization in many complicated production lines, whole and excellent turn, the best decision etc., well-trained operation work, technical personnel or expert, governor but can judge and operate easily, can acquire the satisfied result. The research target of the artificial intelligence makes use of the calculator exactly to carry out, imitate these intelligences behavior, moderating the work through person's brain andcalculators, with the mode that person's machine combine, for resolve the very complicated problem to look for the best pathWe come in sight of the control that links after the electric appliances in various situation, that is already the that time generation past, now of after use in the mold a perhaps simple equipments of grass-roots control that the electric appliances can dofor the low level only;And the PLC emergence also became the epoch-making topic, adding the vivid software control through a very and stable hardware, making the automation head for the new high tide.The PLC biggest characteristics lie in: The electrical engineering teacher already no longer electric hardware up too many calculationses of cost, as long as order the importation that the button switch or the importation of the sensors order to link the PLC up can solve problem, pass to output to order the conjunction contact machine or control the start equipments of the big power after the electric appliances, but the exportation equipments direct conjunction of the small power can.PLC internal containment have the CPU of the CPU, and take to havean I/ O for expand of exterior to connect a people's address and saving machine three big pieces to constitute, CPU core is from an or many is tired to add the machine to constitute, mathematics that they have the logicoperation ability, and can read the procedure save the contents of the machine to drive the homologous saving machine and I/ Os to connect after pass the calculation; The I/ O add inner part is tired the inputand output system of the machine and exterior link, and deposit the related data into the procedure saving machine or data saving machine; The saving machine can deposit the data that the I/ O input in the saving machine, and in work adjusting to become tired to add the machine and I/ Os to connect, saving machine separately saving machine RAM of the procedure saving machine ROM and datas, the ROM can can do deposit of the data permanence in the saving machine, but RAM only for the CPU computes the temporary calculation usage of hour of buffer space.The PLC anti- interference is very and excellent, our root need not concern its service life and the work situation bad, these all problems have already no longer become the topic that we fail, but stay to our is a concern to come to internal resources of make use of the PLC to strengthen the control ability of the equipments for us, make our equipments more gentle.PLC language is not we imagine of edit collected materials the language or language of Cs to carry on weaving the distance, but the trapezoid diagram that the adoption is original after the electric appliances to control, make the electrical engineering teacher while weaving to write the procedure very easy comprehended the PLC language, and a lot of non- electricity professional also very quickly know and go deep into to the PLC.Is PLC one of the advantage above and only, this is also one part that the people comprehend more and easily, in a lot of equipmentses, the people have already no longer hoped to see too many control buttons,they damage not only and easily and produce the artificial error easiest, small is not a main error perhaps you can still accept; But lead even is a fatal error greatly is what we can't is tolerant of. New technique always for bringing more safe and convenient operation for us, make we a lot of problems for face on sweep but light, do you understand the HMI? Says the HMI here you basically not clear what it is, also have no interest understanding, change one inside text explains it into thetouch to hold or man-machine interface you knew, it combines with the PLC to our larger space.HMI the control not only only is reduced the control press button, increase the vivid of the control, more main of it is can sequence of, and at can the change data input to output the feedback with data,control in the temperature curve of imitate but also can keep the manifestation of view to come out. And can write the function help procedure through a plait to provide the help of various what lies inone's power, the one who make operate reduces the otiose error.Currently the HMI factory is also more and more, the function is also more and more strong, the price is also more and more low, the noodlesof the usage are wide more and more. The HMI foreground can say that think to be good very.At a lot of situations, the list is is a smooth movement that can't guarantee the equipments by the control of the single machine, but pass the information exchanges of the equipments and equipments to attain the result that we want. For example fore pack and the examination of theempress work preface, we will arrive wrapping information feedback to examine the place, and examine the information of the place to also want the feedback to packing. Pass the information share thus to make boththe chain connect, becoming a total body, the match of your that thus make is more close, at each other attain to reflect the result that mutually flick.The PLC correspondence has already come more more body now its value, at the PLC and correspondence between PLCs, can pass the communicationof the information and the share of the datas to guarantee that of the equipments moderates mutually, the result that arrive already to repair with each other. Data conversion the adoption RS232 between PLC connect to come to the transmission data, but the RS232 pick up a people and can guarantee 10 meters only of deliver the distance, if in the distance of 1000 meters we can pass the RS485 to carry on the correspondence, the longer distance can pass the MODEL only to carry on deliver.The PLC data transmission is just to be called a form to it in apiece of and continuous address that the data of the inner part delivers the other party, we, the PLC of the other party passes to read data in the watch to carry on the operation. If the data that data in the watch is a to establish generally, that is just the general data transmission, for example today of oil price rise, I want to deliver the price of the oil price to lose the oil ally on board, that is the share of the data; But take data in the watch for an instruction procedure that controlsthe PLC, that had the difficulty very much, for example you have tocontrol one pedestal robot to press the action work that you imagine, you will draw up for it the form that a procedure combine with the data sends out to pass by.The form that information transport contain single work, the half a work and the difference of a workses .The meaning of the single work also is to say both, a can send out only, but a can receive only, for example a spy he can receive the designation of the superior only, but can't give the superior reply; A work of half is also 2 and can can send out similar to accept the data, but can't send out and accept at the same time, for example when you make a phone call is to can't answer the phone, the other party also; But whole pair works is both can send out and accept the data, and can send out and accept at the same time. Be like the Internet is a typical example.The process that information transport also has synchronous and different step cent: The data line and the clock lines are synchronous when synchronous meaning lie in sending out the data, is also the data signal and the clock signals to be carry on by the CPU to send out at the same time,this needs to all want the specialized clock signal each other to carry on the transmission and connect to send, and is constrained, the characteristics of this kind of method lies in its speed very quick, but correspond work time of take up the CPU and also want to be long oppositely, at the same time the technique difficulty also very big. Its request lies in can'ting have an error margins in a datas deliver,otherwise the whole piece according to compare the occurrence mistake, this on the hardware is a bigger difficulty. Applied more and more extensive in some appropriative equipmentses, be like the appropriative medical treatment equipments, the numerical signal equipments...etc., in compare the one data deliver, its result is very good.And the different step is an application the most extensive, this receive benefit in it of technique difficulty is opposite and want to be small, at the same time not need to prepare the specialized clock signal, its characteristics to lie in, its data is partition, the long-lost send out and accept, be the CPU is too busy of time can grind to a stop sexto work, also reduced the difficulty on the hardware, the data throw to lose at the same time opposite want to be little, we can pass the examination of the data to observe whether the data that we send out has the mistake or not, be like strange accidentally the method, tired addition and eight efficacies method etc., can use to helps whether the data that we examine to send out have or not the mistake occurrence,pass the feedback to carry on the discriminator.A line of transmission of the information contain a string of and combine the cent of: The usual PLC is 8 machines, certainly also having 16 machines. We can be an at the time of sending out the data a send out to the other party, also can be 88 send out the data to the other party, an and 8 differentiationses are also the as that we say to send out the data and combine sends out the data. A speed is more and slowly, but as long as 2 or three lines can solve problem, and can use the telephoneline to carry on the long range control. But combine the oscular transmission speed is very quick of, it is a string of oscular of 25600%, occupy the advantage in the short distance, the in view of the fact TTL electricity is even, being limited by the scope of one meter generally, it combine unwell used for the data transmission of the long pull, thus the cost is too expensive.Under a lot of circumstances we are total to like to adopt thestring to combine the conversion chip to carry on deliver, under this kind of circumstance not need us to carry on to depositted the machineto establish too and complicatedly, but carry on the data exchanges through the data transmission instruction directly, but is not a very viable way in the correspondence, because the PLC of the other party must has been wait for your data exportation at the time of sending out the data, it can't do other works.When you are reading the book, you hear someone knock on door, you stop to start up of affair, open the door and combine to continue with the one who knock on door a dialogue, thetelephone of this time rang, you signal hint to connect a telephone, after connecting the telephone through, return overdo come together knock on door to have a conversation, after dialogue complete, you continue again to see your book, this kind of circumstance we are called the interruption to it, it has the authority, also having sex of havethe initiative, the PLC had such function .Its characteristics lie in us and may meet the urgently abrupt affairs in the operation process of theequipments, we want to stop to start immediately up of work, the whereabouts manages the more important affair, this kind of circumstance is we usually meet of, PLC while carry out urgent mission, total will keep the current appearance first, for example the address of the procedure, CPU of tired add the machine data etc., be like to to stick down which the book that we see is when we open the door the page or simply make a mark, because we treat and would still need to continue immediately after book of see the behind. The CPU always does the affair that should do according to our will, but your mistake of give it an affair, it also would be same to do, this we must notice.The interruption is not only a, sometimes existing jointly with the hour several inside break, break off to have the preferred Class, they will carry out the interruption of the higher Class according toperson's request. This kind of breaks off the medium interruption to also became to break off the set. The Class that certainly break off is relevant according to various resources of CPU with internal PLC, also following a heap of capacity size of also relevant fasten.The contents that break off has a lot of kinds, for example the exterior break off, correspondence in of send out and accept the interruption and settle and the clock that count break off, still have the WDT to reset the interruption etc., they enriched the CPU to respond to the category while handle various business. Speak thus perhaps you can't comprehend the internal structure and operation orders of the interruption completely also, we do a very small example to explain.Each equipments always will not forget a button, it also is at we meet the urgent circumstance use of, that is nasty to stop the button. When we meet the Human body trouble and surprised circumstances we as long as press it, the machine stops all operations immediately, and wait for processing the over surprised empress recover the operationagain.Nasty stop the internal I/ O of the internal CPU of the button conjunction PLC to connect up, be to press button an exterior to trigger signal for CPU, the CPU carries on to the I/ O to examine again, being to confirm to have the exterior to trigger the signal, CPU protection the spot breaks off procedure counts the machine turn the homologous exterior I/ O automatically in the procedure to go to also, be exterior interruption procedure processing complete, the procedure counts the machine to return the main procedure to continue to work.Have 1:00 can what to explain is we generally would nasty stop thebutton of exterior break off to rise to the tallest Class, thus guarantee the safety.When we are work a work piece, giving the PLC a signal, counting PLC inner part the machine add 1 to compute us for a day of workload, a count the machine and can solve problem in brief, certainly they also can keep the data under the condition of dropping the electricity, urging the data not to throw to lose, this is also what we hope earnestly.The PLC still has the function that the high class counts the machine, being us while accept some datas of high speed, the high speedthat here say is the data of the in all aspects tiny second class, for example the bar code scanner is scanning the data continuously, calculating high-speed signal of the data processor DSP etc., we will adopt the high class to count the machine to help we carry on count. It at the PLC carries out the procedure once discover that the high class counts the machine to should of interruption, will let go of the work on the hand immediately. The trapezoid diagram procedure that passes by to weave the distance again explains the high class for us to carry out procedure to count machine would automatic performance to should of work, thus rise the Class that the high class counts the machine to high one Class.You heard too many this phrases perhaps:" crash", the meaning thatis mostly is a workload of CPU to lead greatly, the internal resources shortage etc. the circumstance can't result in procedure circulate. The PLC also has the similar circumstance, there is a watchdog WDT in the inner part of PLC, we can establish time that a procedure of WDT circulate, being to appear the procedure to jump to turn the mistake in the procedure movement process or the procedure is busy, movement timeof the procedure exceeds WDT constitution time, the CPU turn but the WDT reset the appearance. The procedure restarts the movement, but will not carry on the breakage to the interruption.The PLC development has already entered for network ages of correspondence from the mode of the one, and together other workscontrol the net plank and I/ O card planks to carry on the share easily.A state software can pass all se hardwares link, more animation picture of keep the view to carries on the control, and cans pass the Internet to carry on the control in the foreign land, the blast-off that is like the absolute being boat No.5 is to adopt this kind of way to makeairship go up the sky.The development of the higher layer needs our continuous effort to obtain.The PLC emergence has already affected a few persons fully, we also obtained more knowledge and precepts from the top one experience of the generation, coming to the continuous development PLC technique, push it toward higher wave tide.PLC技术的讨论和未来发展随着时代的发展,时下的技术也日趋完善,竞争更扮演着越来越强;该列表依赖人工操作早已不能满足当前制造业的前景,也不能保证的技术企业较高的数量和较高的新形象的要求。

英文文献及翻译(计算机专业)

英文文献及翻译(计算机专业)

英文文献及翻译(计算机专业)NET-BASED TASK MANAGEMENT SYSTEMHector Garcia-Molina, Jeffrey D. Ullman, Jennifer WisdomABSTRACTIn net-based collaborative design environment, design resources become more and more varied and complex. Besides com mon in formatio n man ageme nt systems, desig n resources can be orga ni zed in connection with desig n activities.A set of activities and resources linked by logic relations can form a task. A task has at least one objective and can be broken down into smaller ones. So a design project can be separated in to many subtasks formi ng a hierarchical structure.Task Management System (TMS) is designed to break down these tasks and assig n certa in resources to its task no des. As a result of decompositi on. al1 desig n resources and activities could be man aged via this system.KEY WORDS : Collaborative Design, Task Management System (TMS), Task Decompositi on, In formati on Man ageme nt System1 IntroductionAlong with the rapid upgrade of request for adva need desig n methods, more and more desig n tool appeared to support new desig n methods and forms. Desig n in a web en vir onment with multi-part ners being invo Ived requires a more powerful and efficie nt man ageme ntsystem .Desig n part ners can be located everywhere over the n et with their own organizations. They could be mutually independent experts or teams of tens of employees. This article discussesa task man ageme nt system (TMS) which man agesdesig n activities and resources by break ing dow n desig n objectives and re-orga nizing desig n resources in conn ecti on with the activities. Compari ng with com mon information management systems (IMS) like product data management system and docume nt man ageme nt system, TMS can man age the whole desig n process. It has two tiers which make it much more flexible in structure.The lower tier con sists of traditi onal com mon IMSS and the upper one fulfillslogic activity management through controlling a tree-like structure, allocating design resources andmaking decisions about how to carry out a design project. Its functioning paradigm varies in differe nt projects depending on the project ' s scale and purpose. As a result of this structure, TMS can separate its data model from its logic mode1.lt could bring about structure optimization and efficiency improvement, especially in a large scale project.2 Task Management in Net-Based Collaborative Design Environment 2.1 Evolution of the Design Environment During a net-based collaborative design process, designers transform their working environment from a single PC desktop to LAN, and even extend to WAN. Each desig n part ner can be a sin gle expert or a comb in ati on of many teams of several subjects, even if they are far away from each other geographically. In the net-based collaborative desig n environment, people from every term inal of the net can excha nge their information interactively with each other and send data to authorized roles via their desig n tools. The Co Desig n Space is such an environment which provides a set of these tools to help desig n part ners com muni cate and obta in desig n in formatio n. Codesign Space aims at improving the efficiency of collaborative work, making en terprises in crease its sen sitivity to markets and optimize the con figurati on of resource.2.2 Management of Resources and Activities in Net-Based Collaborative EnvironmentThe expansion of design environment also caused a new problem of how to organize the resources and design activities in that environment. As the number of desig n part ners in creases, resources also in crease in direct proporti on. But relatio ns betwee n resources in crease in square ratio. To orga nize these resources and their relations needs an integrated management system which can recognize them and provide to desig ners in case of they are n eeded.One soluti on is to use special in formatio n man ageme nt system (IMS).A n IMS can provide database,file systems and in/out in terfaces to man age a give n resource. For example there are several IMS tools in Co Design Space such as Product Data Man ageme nt System, Docume nt Man ageme nt System and so on. These systemsca n provide its special information which design users want.But the structure of design activities is much more complicated than these IM S could man age, because eve n a simple desig n project may invo Ive differe nt desig n resources such asdocuments, drafts and equipments. Not only product data or documents, design activities also need the support of organizations in design processes. This article puts forward a new design system which attempts to integrate different resources into the related desig n activities. That is task man ageme nt system (TMS).3 Task Breakdown Model3.1 Basis of Task BreakdownWhen people set out to accomplish a project, they usually separate it into a seque nee of tasks and finish them one by one. Each desig n project can be regarded as an aggregate of activities, roles and data. Here we define a task as a set of activities and resources and also having at least one objective. Because large tasks can be separated into small ones, if we separate a project target into several lower—level objectives, we defi ne that the project is broke n dow n into subtasks and each objective maps to a subtask. Obviously if each subtask is accomplished, the project is surely finished. So TMS integrates design activities and resources through planning these tasks.Net-based collaborative design mostly aims at products development. Project man agers (PM) assig n subtasks to desig ners or desig n teams who may locate in other cities. The designers and teams execute their own tasks under the constraints which are defined by the PM and negotiated with each other via the collaborative design en vir onment. So the desig ners and teams are in depe ndent collaborative part ners and have in compact coupli ng relati on ships. They are drive n together only by theft desig n tasks. After the PM have finished decomposing the project, each designer or team leader who has bee n assig ned with a subtask become a low-class PM of his own task. And he can do the same thing as his PM done to him, re-breaking down and re-assig ning tasks.So we put forward two rules for Task Breakdown in a net-based environment, in compact coupli ng and object-drive n. In compact coupli ng mea ns the less relati on ship betwee n two tasks. Whe n two subtasks were coupled too tightly, therequireme nt for com muni cati on betwee n their desig ners will in crease a lot. Too much com muni cati on wil1 not only waste time and reduce efficiency, but also bring errors. It will become much more difficult to man age project process tha n usually in this situati on. On the other hand every task has its own objective. From the view point of PM of a superior task each subtask could be a black box and how to execute these subtasks is unknown. The PM concerns only the results and constraints of these subtasks, and may never concern what will happe n in side it.3.2 Task Breakdown MethodAccord ing to the above basis, a project can be separated into several subtasks. And whe n this separati ng con ti nu es, it will fin ally be decomposed into a task tree. Except the root of the tree is a project, all eaves and branches are subtasks. Since a design project can be separatedinto a task tree, all its resources can be added to it depe nding on their relati on ship. For example, a Small-Sized-Satellite.Desig n (3SD) project can be broke n dow n into two desig n objectives as Satellite Hardware. Design (SHD) and Satellite-Software-Exploit (SSE). And it also has two teams. Desig n team A and desig n team B which we regard as desig n resources. Whe n A is assig ned to SSE and B to SHD. We break dow n the project as show n in Fig 1.It is alike to man age other resources in a project in this way. So whe n we defi ne a collaborative design project ' s task m od e lshould first claim the project ' s targets These targets in clude fun cti onal goals, performa nee goals, and quality goals and so on. Then we could confirm how to execute this project. Next we can go on to break dow n it. The project can be separated into two or more subtasks since there are at least two part ners in acollaborative project. Either we could separate the project into stepwise tasks, which have time seque nee relati on ships in case of some more complex projects and the n break dow n the stepwise tasks accord ing to their phase-to-phase goals.There is also another trouble in executing a task breakdown. When a task is broke n into several subtasks; it is not merely “ a simple sum motioof other tasks. In most cases their subtasks could have more complex relati ons.To solve this problem we use constraints. There are time sequenee constraint (TSC) and logic constraint (LC). The time sequence constraint defines the time relati on ships among subtasks. The TSC has four differe nt types, FF, FS, SF and SS. F means finish and S presents start. If we say Tabb is FS and lag four days, it means Tb should start no later tha n four days after Ta is fini shed.The logic constraint is much more complicated. It defines logic relationship among multiple tasks.Here is give n an example:Task TA is separated into three subtasks, Ta, T b and Tc. But there are two more rules.Tb and Tc can not be executed until T a is finished.Tb and T c can not be executed both that means if Tb was executed, Tc should not be executed, and vice versa. This depe nds on the result of Ta.So we say Tb and Tc have a logic con stra int. After finishing break ing dow n the tasks, we can get a task tree as Fig, 2 illustrates.4 TMS Realization4.1 TMS StructureAccord ing to our discussi on about task tree model and taskbreakdow n basis, we can develop a Task Man ageme nt System (TMS) based on Co Desig n Space using Java Ian guage, JSP tech no logy and Microsoft SQL 2000. The task man ageme nt system ' s structure is shown in Fig. 3.TMS has four main modules namely Task Breakdown, Role Management, Statistics and Query and Data In tegrati on. The Task Breakdow n module helps users to work out task tree. Role Management module performs authentication and authorization of access control. Statistics and Query module is an extra tool for users to find more information about their task. The last Data Integration Module provides in/out in terface for TMS with its peripheral en vir onment.4.2 Key Points in System Realization4.2.1 Integration with Co Design SpaceCo Desig n Space is an in tegrated in formatio n man ageme nt system which stores, shares and processes desig n data and provides a series of tools to support users. These tools can share all information in the database because they have a universal DataModel. Which is defined in an XML (extensible Markup Language) file, and has a hierarchical structure. Based on this XML structure the TMS h data mode1 definition is orga ni zed as follow ing.Notes: Element “Pros” a task node object, and “Processis a task set object which contains subtask objects and is bel ongs to a higher class task object. One task object can have no more than one “ Presseso b jects. According to this definition,“ Prcs o bjects are organized in a tree-formation process. The other objects are resources, such as task link object ( “ Presage ”sk notes ( “ ProNotes ”, )and task documents( “Attachments ” ) .These resources are shared in Co Design d atabase文章出处:计算机智能研究[J],47 卷,2007: 647-703基于网络的任务管理系统摘要在网络与设计协同化的环境下,设计资源变得越来越多样化和复杂化。

计算机专业外文文献翻译

计算机专业外文文献翻译

毕业设计(论文)外文文献翻译(本科学生用)题目:Plc based control system for the music fountain 学生姓名:_ ___学号:060108011117 学部(系): 信息学部专业年级: _06自动化(1)班_指导教师: ___职称或学位:助教__20 年月日外文文献翻译(译成中文1000字左右):【主要阅读文献不少于5篇,译文后附注文献信息,包括:作者、书名(或论文题目)、出版社(或刊物名称)、出版时间(或刊号)、页码。

提供所译外文资料附件(印刷类含封面、封底、目录、翻译部分的复印件等,网站类的请附网址及原文】英文节选原文:Central Processing Unit (CPU) is the brain of a PLC controller. CPU itself is usually one of the microcontrollers. Aforetime these were 8-bit microcontrollers such as 8051, and now these are 16-and 32-bit microcontrollers. Unspoken rule is that you’ll find mostly Hitachi and Fujicu microcontrollers in PLC controllers by Japanese makers, Siemens in European controllers, and Motorola microcontrollers in American ones. CPU also takes care of communication, interconnectedness among other parts of PLC controllers, program execution, memory operation, overseeing input and setting up of an output. PLC controllers have complex routines for memory checkup in order to ensure that PLC memory was not damaged (memory checkup is done for safety reasons).Generally speaking, CPU unit makes a great number of check-ups of the PLC controller itself so eventual errors would be discovered early. You can simply look at any PLC controller and see that there are several indicators in the form. of light diodes for error signalization.System memory (today mostly implemented in FLASH technology) is used by a PLC for a process control system. Aside form. this operating system it also contains a user program translated forma ladder diagram to a binary form. FLASH memory contents can be changed only in case where user program is being changed. PLC controllers were used earlier instead of PLASH memory and have had EPROM memory instead of FLASH memory which had to be erased with UV lamp and programmed on programmers. With the use of FLASH technology this process was greatly shortened. Reprogramming a program memory is done through a serial cable in a program for application development.User memory is divided into blocks having special functions. Some parts of a memory are used for storing input and output status. The real status of an input is stored either as “1”or as “0”in a specific memory bit/ each input or output has one corresponding bit in memory. Other parts of memory are used to store variable contents for variables used in used program. For example, time value, or counter value would be stored in this part of the memory.PLC controller can be reprogrammed through a computer (usual way), but also through manual programmers (consoles). This practically means that each PLC controller can programmed through a computer if you have the software needed for programming. Today’s transmission computers are ideal for reprogramming a PLC controller in factory itself. This is of great importance to industry. Once the system is corrected, it is also important to read the right program into a PLC again. It is also good to check from time to time whether program in a PLC has not changed. This helps to avoid hazardous situations in factory rooms (some automakers have established communication networks which regularly check programs in PLC controllers to ensure execution only of good programs). Almost every program for programming a PLC controller possesses various useful options such as: forced switching on and off of the system input/outputs (I/O lines),program follow up in real time as well as documenting a diagram. This documenting is necessary to understand and define failures and malfunctions. Programmer can add remarks, names of input or output devices, and comments that can be useful when finding errors, or with system maintenance. Adding comments and remarks enables any technician (and not just a person who developed the system) to understand a ladder diagram right away. Comments and remarks can even quote precisely part numbers if replacements would be needed. This would speed up a repair of any problems that come up due to bad parts. The old way was such that a person who developed a system had protection on the program, so nobody aside from this person could understand how it was done. Correctly documented ladder diagram allows any technician to understand thoroughly how system functions.Electrical supply is used in bringing electrical energy to central processing unit. Most PLC controllers work either at 24 VDC or 220 VAC. On some PLC controllers you’ll find electrical supply as a separate module. Those are usually bigger PLC controllers, while small and medium series already contain the supply module. User has to determine how much current to take from I/O module to ensure that electrical supply provides appropriate amount of current. Different types of modules use different amounts of electrical current. This electrical supply is usually not used to start external input or output. User has to provide separate supplies in starting PLC controller inputs because then you can ensure so called “pure” supply for the PLC controller. With pure supply we mean supply where industrial environment can not affect it damagingly. Some of the smaller PLC controllers supply their inputs with voltage from a small supply source already incorporated into a PLC.中文翻译:从结构上分,PLC分为固定式和组合式(模块式)两种。

计算机专业b-s模式 外文翻译 外文文献 英文文献 中英对照

计算机专业b-s模式  外文翻译 外文文献 英文文献 中英对照

外文翻译ENGLISHE:Develop Web application program using ASP the architecture that must first establish Web application. Now in application frequently with to have two: The architecture of C/S and the architecture of B/S.Client/server and customer end / server hold the architecture of C/S.The customer / server structure of two floor.Customer / server ( Client/Server ) model is a kind of good software architecture, it is the one of best application pattern of network. From technology, see that it is a logic concept, denote will a application many tasks of decomposing difference carry out , common completion is entire to apply the function of task. On each network main computer of web site, resource ( hardware, software and data ) divide into step, is not balanced, under customer / server structure, without the client computer of resource through sending request to the server that has resource , get resource request, so meet the resource distribution in network not balancedness. With this kind of structure, can synthesize various computers to cooperate with work, let it each can, realize the scale for the system of computer optimization ( Rightsizing ) with scale reduce to melt ( Downsizing ). Picture is as follows:It is most of to divide into computer network application into two, in which the resource and function that part supports many users to share , it is realized by server; Another part faces every user , is realized by client computer, also namely, client computer is usual to carry out proscenium function , realizes man-machine interaction through user interface , or is the application program of specific conducted user. And server usually carries out the function of backstage supporter , manages the outside request concerning seting up, accepting and replying user that shared. For a computer, it can have double function , is being certain and momentary to carve to act as server , and again becomes client computer in another time.Customer / server type computer divide into two kinds, one side who offers service is called as server , asks one side of service to be called as customer. To be able to offer service, server one side must have certain hardware and corresponding server software; Also, customer one side mustalso have certain hardware and corresponding customer software.There must be a agreement between server and customer, both sides communicate according to this agreement.Apply customer / server model in Internet service , the relation between customer and server is not immutable. Some Internet node offers service on the one hand , also gets service on the other hand from other node; It is even in one time dialogue course, mutual role also exchanges probably. As in carry out file transmission , if be called as one side who offers file server, is called as one side who gets file customer, when using get or mget order since another node takes file, can think that what self use and it is client computer , is using put or mput order to another node dispatch file can again think the machine that used self is server.Multilayer customer / server structureAlong with the development of enterprise application, recently, have again arisen a kind of new multilayer architecture, it applies customer end to divide into two minutes: Customer application and server apply. Customer application is the part of original customer application , is another and partial to have been transfered to server to apply. New customer application takes the responsibility for user interface and simple regular business logic and new server application resident core , changeable business logic. Therefore its structure has become new ( Client application + Server application )/Server structure. Following picture shows:This kind of structure has solved traditional Client/Server can expand problem, have reduced customer end business logic , and have reduced the requirement of customer end for hardware. At the same time because of a lot of business logic concentrations have gone to unitary application server on, the maintenance work of application system had been also concentrated together, have eliminated the problem in the traditional structure of Client/Server that software distributes. This kind of structure is called as the architecture of B/S.Browser/Server and browser / server hold the architecture of B/S. Onessence, Browser/Server is also a kind of structure of Client/Server, it is a kind of from the traditional two levels of structural development of Client/Server come to the three-layer structural special case of Client/Server that applied on Web.In the system of Browser/Server, user can pass through browser to a lot of servers that spread on network to send request. The structure of Browser/Server is maximum to have simplified the work of client computer, on client computer, need to install and deploy few customer end software only , server will bear more work, for database visit and apply program carry out will in server finish.Under the three-layer architecture of Browser/Server, express layer ( Presentatioon ) , function layer ( Business Logic ) , data layer ( Data Service ) have been cut the unit of 3 relative independences: It is the first layer of to express layer: Web browser.In expressing layer contain system show logic, locate in customer end. It's task is to suggest by Web browser to the certain a Web server on network that service is asked , after verifying for user identity, Web server delivers needed homepage with HTTP agreement to customer end, client computer accept the homepage file that passed , and show it in Web browser on.Second layer function layer: Have the Web server of the application function of program extension.In function layer contain the systematic handling of general affairs logic, locate in Web server end. It's task is the request concerning accepting user , need to be first conducted and corresponding to expand application program and database to carry out connection , passes through the waies such as SQL to database server to put forward data handling to apply for, then etc. database server the result of handling data submit to Web server, deliver again by Web server to return customer end.The number of plies of 3th according to layer: Database server.In data layer contain systematic data handling logic, locate in database server end. It's task is to accept the request that Web server controls for database, realization is inquired and modified for database , update etc. function, submit operation result to Web server.Careful analysis is been easy to see , the architecture of Browser/Server of three-layer is the handling of general affairs of the two levels of structure of Client/Server logic modular from the task of client computer in split , from the first floor of individual composition bear the pressure of its task and such client computer have alleviated greatly, distribute load balancedly and have given Web server, so from the structural change of Client/server of original two floor the structure of Browser/Server of three-layer. This kind of three-layer architecture following picture shows.This kind of structure not only client computer from heavy burden andthe requirement of performance that rises continuously for it in liberation come out , also defend technology people from heavy maintenance upgrading work in free oneself. Since client computer handles general affairs , logic partial minutes have given function server, make client computer right off " slender " a lot of, do not take the responsibility for handling complex calculation and data again visit etc. crucial general affairs, is responsible to show part, so, maintenance people do not rush about again for the maintenance work of program between every client computer, and put major energy in the program on function server update work. Between this kind of three-layer structural layer and layer, the mutually independent change of any first floor does not affect the function of other layer. It has changed the defect of the two levels of architecture of Client/Server of tradition from foundation, it is the transform with deep once in application systematic architecture.The contrast of two architecturesThe architecture of Browser/Server and the architecture ofClient/Server compare with all advantages that not only have the architecture of Client/Server and also have the architecture ofClinet/Server the unique advantage that place does not have: Open standard: The standard adopted by Client/Server only in department unification for but, it's application is often for special purpose.It is lower to develop and defend cost: It need to be implemented on all client computers that the application of Client/Server must develop the customer end software for special purpose, no matter installation and disposition escalate still, have wasted manpower and material resources maximumly. The application of Browser/Server need in customer end have general browser , defend and escalate to work in server end go on , need not carry out any change as customer holds , have reduced the cost of development and maintenance so greatly.It is simple to use , interface friendly: The interface of the user of Client/Server is decided by customer end software, interface and the method of its use are not identical each, per popularize a system of Client/Server ask user study from the beginning, is hard to use. The interface of the user of Browser/Server is unified on browser, browser is easy to use , interface friendly, must not study use again other software, the use of a Lao Yong Yi that has solved user problem.Customer end detumescence: The customer end of Client/Server has the function that shows and handles data , as the requirement of customer end is a client computer " it is fat " very high. The customer of Browser/Server holds the access that not takes the responsibility for database again and the etc. task of complex data calculation, need it only show , the powerful role that has played server fully is so large to have reduced the requirement for customer end, customer end become very " thin ".System is flexible: The 3 minutes of the system of Client/Server, in modular, have the part that need to change to want relation to the change of other modular, make system very difficult upgrading. The 3 minutes of the system of Browser/Server modular relative independence, in which a part of modular change, other modular does not get influence, it is very easy that system improve to become, and can form the system with much better performance with the product of different manufacturer.Ensure systematic safety: In the system of Client/Server, directly join with database server because of client computer, user can very easily change the data on server, can not guarantee systematic safety. The system of Browser/Server has increased a level of Web server between client computer and database server , makes two not to be directly linked again, client computer can not be directly controled for database, prevent user efficiently invade illegally.The architecture of Browser/Server of three-layer has the advantage that a lot of traditional architectures of Client/Server does not have , and is close to have combined the technology of Internet/Intranet, is that the tendency of technical development tends to , it application system tape into one brand-new develop times. From this us option the configuration of B/S the architecture that develops as system.what are C/S with B/SFor " C/S " with the technology of " B/S " develop change know , first,must make it clear that 3 problems.( 1 ) What is the structure of C/S.C/S ( Client/Server ) structure, the server structure and client computer that all know well. It is software systematic architecture, through it can hold hardware environment fully using two advantage, realize task reasonable distribution to Client end and Server end , have reduced systematic communication expense. Now, the most systems of application software are the two levels of structure of the form of Client/Server , are developing to the Web application of distribution type since current software application is systematic, Web and the application of Client/Server can carry out same business handling , apply different modular to share logic assembly; Therefore it is systematic that built-in and external user can visit new and existing application , through the logic in existing application system, can expand new application system. This is also present application system develop direction. Traditional C /S architecture though adopting is open pattern, but this is the openness that system develops a level , in specific application no matter Client end orServer end the software that need to still specify support. Because of the software software that need to develop different edition according to the different system of operating system that can not offer the structure of C/S and the open environment of user genuine expectation , besides, the renovation of product is very rapid, is nearly impossible to already meet the 100 computer above users of local area network at the same time use. Price has low efficiency high. If my courtyard uses , Shanghai exceed the orchid company's management software " statistics of law case" is typical C /S architecture management software.( 2 ) What is the structure of B/S.B/S ( Browser/Server ) structure browser and server structure. It is along with the technology of Internet spring up , it is for the structure of improvement or a kind of change of the structure of C/S. Under this kind of structure, user working interface is to realize through WWW browser, lose the logic of general affairs very much in front( Browser) realization, but the major logic of general affairs in server end( Server) realization, form the three-layer claimed 3-tier structure. So, have simplified customer end computer load greatly , have alleviated system to defend workload and the cost with upgrading , have reduced the overall cost of user ( TCO ). With present technology see , local area network the network application that establishes the structure of B/S , and under the pattern of Internet/Intranet, database application is easy to hold relatively , cost also is lower. It is that oneness goes to the development of position , can realize different people, never same place, with difference receive the way of entering ( for example LAN, WAN, Internet/Intranet etc.) visit and operate common database; It can protect data platform efficiently with management visit limits of authority, server database is also safe. Now in my courtyard, net ( Intranet ) , outer net ( Internet ) with Beijing eastern clear big company " law case and the management software of official business " is the structural management software of B/S , policemen each working station in local area network pass through WWW browser can realize working business. Especially in JAVA step platform language appearance after, the configuration management software of B/S is more facilitated , is shortcut, efficient.( 3 ) The management software technology of main stream.The technology of main stream of management software technology is as management thought , have also gone through 3 develop period. First, interface technology goes to Windows graph interface ( or graph user interface GUI ) from last century DOS character interface, till Browser browser interface 3 differences develop period. Secondly, today own the browser interface of computer, is not only visual and is easy to use , what is more major is that any its style of application software based on browser platform is as, make the requirement of choosing a person for the job for operating training not high and software operability is strong , is easy to distinguish; Moreover platform architecture the file that also goes to today from past single user development /server ( F /S ) system and client computer /server ( C /S ) system and browser /server ( B /S ) system.The comparison of C/S and B/SC/S and B/S is the now world two technologies of main stream of developing pattern technical configuration. C/S is that American Borland company researches and develop most early, B/S is that American Microsoft researches and develop. Now this two technologies with quilt world countries grasp , it is many that domestic company produce article with C/S and the technical development of B/S. This two technologies have the certain market share of self , is with customer crowd , each domestic enterprise says that own management software configuration technical function is powerful, advanced, convenient , the customer group that can lift , have a crowd scholar ink guest to shake flag self cry out , advertisement flies all over the sky , may be called benevolent to see kernel, sage sees wisdomC/S configures inferior position and the advantage of software( 1 ) Application server operation data load is lightcomparatively.The database application of the most simple architecture of C/S is become by two partial groups, customer applies program and database server program. Both can be called as proscenium program and the program of backstage supporter respectively. The machine of operation database server program is also called as application server. Once server program had been started , waits the request concerning responding customer program hair at any time; Customer application program operation can becalled as customer computer on the own computer of user, in correspondence with database server, when needs carry out any operation for the data in database, customer program seeks server program voluntarily , and sends request to it, server program is regular as basis intends to make to reply, send to return result, application server operation data load is lighter.( 2 ) Data store management function relatively transparent.In database application data store management function, is carried out respectively independently by server program and customer application program , is regular as proscenium application can violate , and usually those different( no matter is have known still unknown ) operations data, in server program, do not concentrate realization, for instance visit limits of authority, serial number can be repeated , must have customer talent establishment the rule order. It is these to own , for the last user that works on proscenium program is " transparent ", they need not be interest in ( can not usually also interfere ) the course of behind, can complete own all work. In the application of customer server configuration proscenium program not is very " thin ", troublesome matter is delivered to server and network. In the system of C/S take off , database can not become public really , professionally more competent storehouse, it gets independent special management.( 3 ) The inferior position of the configuration of C/S is high maintenance cost make investment just big.First, with the configuration of C/S, will select proper database platform to realize the genuine "unification" of database data, make the data synchronism that spreads in two lands complete deliver by database system go to manage, but the logically two operators of land will directly visit a same database to realize efficiently , have so some problems, if needs establishment the data synchronism of " real time ", the database server that must establish real time communication connection between two places and maintains two lands is online to run , network management staff will again want to defend and manage for customer end as server defends management , maintenance and complex tech support and the investment of this high needs have very high cost, maintenance task is measured.Secondly, the software of the structure of C/S of tradition need to develop thesoftware of different edition according to the different system of operating system , is very rapid because of the renovation of product, price is working needs high with inefficient already do not meet. In JAVA step platform language appearance after, the configuration of B/S is more vigorous impact C/S , and forms threat and challenge for it. .The advantage of B/S configuration software( 1 ) The Maintenance of inferior position and upgrading way are simple.Now upgrading and the improvement of software system more and more frequently, the product of the configuration of B/S embodies more convenient property obviously. For one a little a little bit big unit , if systematic administrator needs , between hundreds of 1000 even last computers round trip run , efficiency and workload is to can imagine, but the configuration of B/S software needs management server have been all right , all customer ends are browser only, need not do any maintenance at all. No matter the scale of user has , is what , has how many branch will not increase any workload of maintenance upgrading , is all to operate needs to aim at server to go on; If need differently only, net server connection specially , realize long-range maintenance and upgrading and share. So client computer more and more " thin ", and server more and more " fat " is the direction of main stream of future informative development. In the future, software upgrading and maintenance will be more and more easy , and use can more and more simple, this is for user manpower , material resources, time and cost save is obvious , it is astonishing. Therefore defend and escalate revolutionary way is the client computer " it is thin ", " is fat " server.( 2 ) Cost reduction, it is more to select.All know windows in the computer of top of a table on nearly one Tong world, browser has become standard disposition, but on server operating system, windows is in absolute dominance position not. Current tendency is the application management software that uses the configuration of B/S all , need to install only in Linux server on , and safety is high. The so server option of operating system is many, no matter choosing those operating system, can let the most of ones use windows in order to the computer of top of a table of operating system does not get influence, this for make most popular free Linux operating system develop fast, Linux except operatingsystem is free besides, it is also free to link database, this kind of option is very pupular.Say, many persons on daily, "Sina website" nets , so long as having installed browser for can , and what need not know the server of " Sina website " to use is that what operating system, and in fact the most of websites do not use windows operating system really, but the computer of user is most of as installing to be windows operating system.( 3 ) Application server operation data load value comparatively.Since B/S configures management, software installation in server end ( Server ) on, it is been all right that network administrator need to manage server only, the user interface major logic of general affairs in server ( Server ) end pass through WWW browser completely realization, lose the logic of general affairs very much in front( Browser) realization, all customer ends has only browser, network administrator need to do hardware maintenance only. But application server operation data load is heavier, once occuring " server collapse " to wait for problem, consequence is unimaginable. Therefore a lot of units have database to stock server , are ready for any eventuality.原文翻译:利用ASP开发Web应用程序首先必须确立Web应用的体系结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

The Application of Visualization Technology in ElectricPower Automation SystemWang Chuanqi, Zou QuanxiElectric Power Automation System Department of Yantai Dongfang Electronics Information IndustryCo., Ltd.Abstract: Isoline chart is widely used chart. The authors have improved the existing isoline formation method, proposed a simple and practical isoline formation method, studied how to fill the isoline chart, brought about a feasible method of filling the isoline chart and discussed the application of isoline chart in electric power automation system.Key words: Visualization; Isoline; Electric power automation systemIn the electric power system industry, the dispatching of electric network becomes increasingly important along with the expansion of electric power system and the increasing demands of people towards electric power. At present, electric network dispatching automation system is relatively advanced and relieves the boring and heavy work for operation staff. However, there is a large amount or even oceans of information. Especially when there is any fault, a large amount of alarm information and fault information will flood in the dispatching center. Faced with massive data, operation staff shall rely on some simple and effective tool to quickly locate the interested part in order to grasp the operation state of the system as soon as possible and to predict, identify and remove fault.Meanwhile, the operation of electric power system needs engineers and analysts in the system to analyze a lot of data. The main challenge that a system with thousands of buses poses for electric power automation system is that it needs to supply a lot of data to users in a proper way and make users master and estimate the state of the system instinctively and quickly. This is the case especially in electric network analyzing software. For example, the displaying way of data is more important in analyzing the relations between the actual trend, planned trend of electric network and the transmission capacity of the system. The application of new computer technology and visualization technology in the electric power automation system can greatly satisfy new development and new demands of electric power automation system.The word “Visualization” originates from English “Visual” and itsoriginal meaning is visual and vivid. In fact, the transformation of any abstract things and processes into graphs and images can be regarded as visualization. But as a subject term, the word “Visualization” officially appeared in a seminar held by National Science Foundation (shortened as NSF) of the USA in February 1987. The official report published after the seminar defined visualization, its covered fields and its recent and long-term research direction, which symbolized that “Visualization” became mature as a subject at the international level.The basic implication of visualization is to apply the principles and methods of computer graphics and general graphics to transforming large amounts of data produced by scientific and engineering computation into graphs and images and displaying them in a visual way. It refers to multi research fields such as computer graphics, image processing, computer vision, computer-aided design (CAD) and graphical user interface (GUI), etc. and has become an important direction for the current research of computer graphics.There are a lot of methods to realize visualization and each method has its unique features and applies to different occasions. Isoline and isosurface is an important method in visualization and can be applied to many occasions. The realization of isoline (isosurface) and its application in the electric power automation system will be explained below in detail.1、 Isoline (Isosurface)Isoline is defined with all such points (x i, y i), in which F(x i, y i)=F i (F i is a set value), and these points connected in certain order form the isoline of F(x,y) whose value is F i…Common isolines such as contour line and isotherm, etc.are based on the measurement of certain height and temperature.Regular isoline drawing usually adopts grid method and the steps are as follows:gridingdiscrete data;converting grid points into numerical value;calculating isoline points; tracing isoline; smoothing and marking isoline; displaying isoline or filling the isoline chart. Recently, some people have brought about the method of introducing triangle grid to solve the problems of quadrilateral grid. What the two methods have in common is to use grid and isoline points on the grid for traveling tracing, which results in the following defects in the drawing process:(1) The two methods use the grid structure, first find out isoline pointson each side of certain quadrilateral grid or triangle grid, and then continue to find out isoline points from all the grids, during which a lot of judgment are involved, increasing the difficulty of program realization. When grid nodes become isoline points, they shall be treated as singular nodes, which not only reduces the graph accuracy but also increases the complexity of drawing.(2) The two methods produce drawn graphs with inadequate accuracy and intersection may appear during traveling tracing. The above methods deal with off-grid points using certain curve-fitting method. That is, the methods make two approximations and produce larger tolerance.(3) The methods are not universal and they can only deal with data of grid structure. If certain data is transformed into the grid structure, interpolation is needed in the process, which will definitely reduce the accuracy of graphs.To solve the problems, we adopt the method of raster graph in drawing isoline when realizing the system function, and it is referred to as non-grid method here. This method needs no grid structures and has the following advantages compared to regular methods:(1) Simple programming and easily realized, with no singular nodes involved and no traveling tracing of isoline. All these advantages greatly reduce the complexity of program design.(2)Higher accuracy. It needs one approximation while regular methods need two or more.(3) More universal and with no limits of grid1.1 Isoline Formation Method of Raster GraphThe drawing of raster graph has the following features: the area of drawing isoline is limited and is composed of non-continuous points. In fact, raster graph is limited by computer screen and what people can see is just a chart formed by thousands of or over ten thousand discrete picture elements. For example, a straight line has limited length on computers and is displayed with lots of discrete points. Due to the limitations of human eyes, it seemscontinuous. Based on the above features, this paper proposes isoline formation method of raster graph. The basic idea of this method is: as computer graphs are composed of discrete points, one just needs to find out all the picture element points on the same isoline, which will definitely form thisisoline.Take the isoline of rectangular mountain area for example to discuss detailed calculation method. Data required in calculation is the coordinates and altitude of each measuring point, i.e., (x i ,y i ,z i ), among which z i represents the altitude of No.i measuring point and there are M measuring points in total. Meanwhile, the height of isoline which is to be drawn is provided. For example, starting from h 0 , an isoline is drawn with every height difference of ∆h0 and total m isolines are drawn. Besides, the size of the screen area to be displayed is known and here (StartX,StartY) represents the top left corner of this area while (EndX ,EndY)represents the low right corner of this area. The calculation method for drawing its isoline is as follows:(1) Find out the value of x i and y i of the top left corner and low right corner points in the drawing area, which are represented by X max ,X min ,Y max ,Y min ;(2)Transform the coordinate (x i ,y i ) into screen coordinate (SX i ,SY i ) and the required transformation formula is as follows:sx i =x i -X min /X max -X min (EndX-StartX)sy i =y i -Y min /Y max -Y min (EndY-StartY)Fig. 1 Height computation sketch(3) i =startX,j=StartY; Suppose i =startX,j=StartY;(4) Use the method of calculating height (such as distance weighting method and least square method, etc.) to calculate out the height h 1, h 2, h 3 of points (i,j), (i+1,j) and (i,j+1), i.e., the height of the three points P 1, P 2 and P 3 in Fig. 1;(5) Check the value of h 1, h 2, h 3 and determine whether there is any isoline crossing according to the following methods:①k=1,h=h 0;①k=1,h=h 0;②Judge whether (P 1-h)*(P 2-h)≤0 is justified. If justified, continue the next step; otherwise, perform ⑤;③Judge whether |P1-h|=|P2-h| is justified. If justified, it indicates that there is an isoline crossing P1, P2, dot the two points and jumpto (6); otherwise, continue next step;④Judge whether |P1-h|<|P2-h|is justified. If justified, it indicates that there is an isoline crossing P1, dot this point; otherwise, dot P2;⑤Judge whether (P1-h)*(P3-h)≤0 is justified. If justified, continue next step; otherwise, perform ⑧.⑥Judge whether|P1-h|=|P3-h|is justified. If justified, dot the twopoints P1\,P3 and jump to (6);otherwise, jump to ⑤;⑦Judge whether|P1-h|<|P3-h|is justified. If justified, dot P1; otherwise, dot P3;⑧Suppose k:=k+1 and judge whether k<m+1 I is justified. If unjustified, continue next step; otherwise, suppose h:=h+∆h0 and return to ②.(6) Suppose j:j+1 and judge whether j<EndY is justified. If unjustified,continue next step; otherwise, return to (4);(7) Suppose i:=i+1 and judge whether i<EndX is justified. If unjustified,continue next step; otherwise, return to (4);(8) The end.In specific program design, in order to avoid repeated calculation, an array can be used to keep all the value of P2 in Column i+1 and another variable is used to keep the value of P3.From the above calculation method, it can be seen th at this method doesn’tinvolve the traveling of isoline, the judgment of grid singular nodes and theconnection of isoline, etc., which greatly simplifies the programming and iseasily realized, producing no intersection lines in the drawn chart.1.2 Griding and Determining NodesTime consumption of a calculation method is of great concern. Whencalculating the height of (i,j), all the contributing points to the height ofthis point need to be found out. If one searches through the whole array, it is very time consuming. Therefore, the following regularized grid method is introduced to accelerate the speed.First, two concepts, i.e., influence domain and influence point set, are provided and defined as follows: Definition 1: influence domain O(P) of node P refers to the largest area in which this nodes has some influence on other nodes. In this paper, it can refer to the closed disc with radius as r (predetermined) or the square with side length as a (predetermined).Definition 2: influence point set S(P)of node P refers to the collection of all the nodes which can influence node P. In this paper, it refers to the point set with the number of elements as n (predetermined), i.e., the number of all the known contributing nodes to the height of node (i,j) can only be n and these nodes are generally n nodes closet to node P.According to the above definition, in order to calculate out the height of any node (i,j), one just needs to find out all the nodes influencing the height of this node and then uses the interpolation method according totwo-dimensional surface fitting. Here, we will explain in detail how to calculate out the height of node (i,j) with Definition 1, i.e., the method of influence domain, and make similar calculation with Definition 2.Grid structure is used to determine other nodes in the influence domainof node (i,j). Irregular area is covered with regular grid, in which the grids have the same size and the side of grid is parallel with X axis and Y axis. The grid is described as follows:(x min,x max,NCX)(y min,y max,NCY)In the formula, x min, y max and x max, y max are respectively the minimum and maximum coordinates of x, y direction of the area; NCX is the number of grids in X direction; NCY is the number of grids in Y direction.Determining which grid a node belongs to is performed in the following two steps. Suppose the coordinate of this node is (x,y). First, respectively calculate its grid No. in x direction and y direction, and the formula is as follows:IX=NCX*(x-x min)/(xmax-x min)+1;IY=NCY(y-y min)/(y max-y min)+1。

相关文档
最新文档