经济数学基础(微积分)讲义

合集下载

经济数学基础(微积分)讲义全

经济数学基础(微积分)讲义全

经济数学微积分学习讲义合川电大兰冬生知识点一:5个基本函数1,常数函数,c y = (c 是常数)例如:3=y ,1-=y ,这些函数可以看成是x 隐含,例如3=y 可看成30+=x y 。

2,幂函数,αx y =(α是一个数) 形如2x y =,3x y =,5x y =是幂函数,注意:仅仅是这种形式是幂函数,其他的任何一点形式变化都不是,2x y =是幂函数,22x y =就不是幂函数,只能是下面x ,上面(指数)是一个数!以下基本函数均如此3,指数函数,x a y =,(a 是一个数) 例如:x y 2=,x y 23⋅=不是指数函数。

4,对数函数x y a log =,这里要求x 必须大于零,我们的考试常常拿来考“求定义域”这里我们只认识两个特殊的对数函数,一个是x y ln =,他是x y e log =的简写,e 是一个数,718.2=e ,和我们知道的14.3=π一样,另一个是x y lg =,他是x y 10log =的简写。

5,三角函数x y sin =,x y cos =,特别注意的是x y sin 2=,x y 2sin =,都不是三角函数。

● 这5个基本函数是我们要学习的函数的主要构成细胞。

● 例如:12sin 232+++=x x e y x ,二次函数,由幂函数,常数函数构成632-+=x x y 。

知识点二:极限1,什么是数列?数列就是按照“一定规律排列的一组数”,我们常见的是无限数列。

数学符号记为:}{n a例如:数列:1,2,4,8,16,32,……,发展规律依n 2 变化,,4,3,2,1,0=n …… 1,21,41,81,……,发展规律依n 21变化,,4,3,2,1,0=n …… 2,极限学习极限,一个非常重要的认识就是“分母越大,分数越小” 数列的极限,就是指数列的一个趋近值,(即是指一串数的趋近值)例如:1,21,31,41,……,分母由1,2,3,4,……变化,当分母无限大时,1000001,1000000001,……,最后,这个无限数列趋近于0,这里,我们简单描述这个变化,∞→n01→n分母越大,分数越小 →是趋近,∞是无穷大的意思,无穷大是指非常非常大,无法计量。

经济数学基础精品课件

经济数学基础精品课件
对(x, f (x))在平面直角坐标系中所对应的点集,称为该函数的 图形。函数的图形一般是一条曲线或一些散点。 5.函数的表示法
(1)解析法(又称公式法)① 需要在定义域的不同部分用不 同的式子来表示,这样的函数称为分段函数。 ②如果因变量y可 以表示成一个只包含自变量x的式子,那么我们将这样的函数称 为显函数。③由方程F(x, y) = 0确定的函数y=f (x)称为隐函数。
经济数学基础
郑必平
2003.02 浙江广播电视大学淳安分校欢迎您
第一编 一元函数微积分学
主要内容 1 .函数
函数概念,几内基本初等函数,函数的运算,
经济分析中常见的函数 2.极限与连续
极限概念,极限的运算,函数的连续性 3.导数与微分
导数与微分的概念,导数的计算 4.导数的应用
函数的单调性,函数极值, 导数在经济分析中的应用
(n为自然数)称为多项式函数.
1.2.3 指数函数 函数 y=ax(a>0, a≠1)称为指数函数
函数 y=ex 的底数, (其中 e=2.718 28 )
浙江广播电视大学淳安分校欢迎您
1.2.4 对数函数
函数 y loga x (a>0,a≠1) 称为对数函数
其中以e为底的对数函数 y loge x称为自然对数,
通过u有唯一的y与之对应,即y是x的函数, 记为 y=f [(x)] 这种函数称为复合函数,其中u称为中间变量。 1.3.2初等函数
函数之间除复合运算之外,还有加、减、乘、除等几 种运算,由基本初等函数经过有限次加、减、乘、除或 复合而得到的函数,称为初等函数。
浙江广播电视大学淳安分校欢迎您
微积分所研究的函数主要是初等函数 例6.将下列初等函数分解为基本初等函数的运算:

经济数学基础--微积分第八章

经济数学基础--微积分第八章

(1
1 n
)n
,
因为
lim
n
un
lim
n
1
1
n
1
n
1 e
0, 所以级数发散.
例8.1.7 讨论级数 cos n 的敛散性.
n 1
2
解 因为数列{cos n }就是0, 1, 0,1, 0, 1,, 这个数列发散, 所以级数也发散.
2
第 12 页
经济应用数学基础——微积分
第八章 第二节 第 13 页
8 1
简记为 un , 称上式为数项无穷级数, 简称无穷级数.其中, 第n项un 称为级数的一般项, n 1
级数的前n项和
n
Sn uk u1 u2 un k 1
称为级数的前n项部分和, 简称部分和.
8 2
第4 页
经济应用数学基础——微积分

第八章 第一节




定义8.1.2
若数项级数的部分和数列{Sn
lim
n
Sn
1
S.由于an
Sn
Sn1 ,
所以
lim
n
an
lnim(Sn
Sn1 )
S
S
0.
注意 本性质说明如果级数 an收敛, 则通项的极限等于0.反之不成立, 如调和级数
1, 虽然 lim 1 0, 但此级数发散.另外, 如果通项的极限不等于0, 级数一定是发散的, 这
n1 n
n n
就是下面的推论.
n
1
n 2 3 1 5 1 2
n3/2
n 1
n3/2
n n2
n6
n
1

《经济数学基础》课件第1章

《经济数学基础》课件第1章

表 1-1
存期 年利率%
三个月 2.60
六个月 2.80
一年 3.0
二年 3.75
三年 4.25
五年 4.75
4. 某城市电话局规定的市话收费标准如下:当月所打电话 次数不超过30次时,只收月租费10元,超过30次时,每次加 收0.20元, 则电话费y和用户当月所打电话次数x的关系可表 示如下:
10,
x 30,
y 10 0.20(x 30), x 30.
像这种在自变量的不同取值范围内,函数关系用不同的 式子来表示的函数,通常称为分段函数.分段函数是微积分中 常见的一种函数.例如,符号函数(如图1-4所示)可以表示成
1, x 0
sgn
x
0,
x0
1, x 0
注 (1) 分段函数是用几个不同解析式表示一个函数,而
(2) 图像法: 把函数关系用平面上的点集反映出来,一般 情况下,它是一条平面曲线.如图1-3所示的是气象站的自动 温度记录仪所记录的某地当天的气温变化曲线,该曲线将气 温T与时间x的函数关系清晰直观地表示出来,如x=12时, T=10℃.
图 1-3
(3) 表格法: 把变量间的函数关系通过表格形式反映出来. 如表1-1给出了2014年3月开始执行的中国银行的人民币定期 储蓄存期与年利率的函数关系.
复杂. 例如,企业的产品收入R是产量Q的函数,而产量Q又 是时间t的函数,于是时间t通过产量Q间接影响收入R,则收 入R构成时间t的函数,这种函数就是复合函数.
定义1.11 设函数y=f(u)、u=φ(x),如果u=φ(x)的值域或 其部分包含在y=f(u)的定义域中,则y通过中间变量u构成x的 函数,称为x的复合函数,记作
例2 设f(x+1)=x2-3x,求f(x).

08春经济数学基础微积分部分概要

08春经济数学基础微积分部分概要

08春经济数学基础微积分部分第一部 微分学第1章 函数1.理解函数概念。

理解函数概念时,要掌握函数的两要素−−定义域和对应关系,这要解决下面四个方面的问题:(1)掌握求函数定义域的方法,会求初等函数的定义域和函数值。

要掌握常见函数的自变量的变化范围,如分式的分母不为0,对数的真数大于0,偶次根式下表达式大于0。

例1 求函数xx y --=2)1ln(的定义域。

解 : )1ln(-x 的定义域是1>x ,x -2的定义域是2≤x ,但由于x -2在分母上,因此2≠x 。

故函数xx y --=2)1ln(的定义域就是上述函数定义域的公共部分,即1<x <2。

(2)理解函数的对应关系f 的含义:f 表示当自变量取值为x 时,因变量y 的取值为)(x f 。

例如,对于函数x x x x f y 2ln )(2++==,f 表示运算:)(22)ln()(++例2 设1)(+=x x f ,求)1)((+x f f 。

解: 由于1)(+=x x f ,说明f 表示运算:1)(+,因此)1)((+x f f 1)1)((++=x f =2)(+x f再将1)(+=x x f 代入,得)1)((+x f f =32)1(+=++x x 2.掌握函数奇偶性的判别,知道它的几何特点; 判断函数是奇函数或是偶函数,可以用定义去判断,即(1)若)()(x f x f =-,则)(x f 偶函数;(2)若)()(x f x f -=-,则)(x f 奇函数。

也可以根据一些已知的函数的奇偶性,再利用“奇函数±奇函数、奇函数×偶函数仍为奇函数;偶函数±偶函数、偶函数×偶函数、奇函数×奇函数仍为偶函数”的性质来判断。

例3 下列函数中,( )是偶函数。

A. x x x f sin )(3= B. 1)(3+=x x f C. xxaa x f --=)(D. x x x f sin )(2=解: 根据偶函数的定义以及奇函数×奇函数是偶函数的原则,可以验证A 中3x 和x sin 都是奇函数,故它们的乘积x x x f sin )(3=是偶函数,因此A 正确。

经济数学——微积分PPT课件

经济数学——微积分PPT课件
隐函数求导法则: 直接对方程两边求导; 对数求导法: 对方程两边取对数,按隐函数的求导 法则求导; ※参数方程求导: 实质上是利用复合函数求导法则;
第15页/共27页
思考题
一工厂有x名技术工人和 y 名非技术工人每天 可生产的产品产量为
f ( x, y) x2 y (件)
现有16名技术工人和32名非技术工人, 而厂长计划 再雇用一名技术工人. 试求厂长如何调整非技术工 人的人数, 可保持产品产量不变?
第16页/共27页
解 现在产品产量为f (16,32)=8192件, 保持
这种产量的函数曲线为
f ( x, y)= x 2 y =8192 (1)
对于任一给定值 x 每增加一名技术工人时 y 的变化量即为这函数曲线切线的斜率dy .
dx
(1)式两端对x求导,整理得:
2 xy x 2 y 0;
dy 2 y .
3. x y 0;
2
2
4.sin t cos t ,2 cos t sin t
3;
5. e x y y . x e x y
二、1. e 2 y (3 y); (2 y)3
2.-2csc2 ( x y)c tan3 ( x y);
3. y(ln y 1)2 x(ln x 1)2 . xy(ln y 1)3
d dx
( dy dx
)
d dt
( (t )) (t )
dt dx
(t)(t) (t)(t) 1
2(t)
(t )

d2y dx 2
(t )
(t) (t) (t) 3(t)
.
第11页/共27页
例6
求摆线
x y
a(t a(1

《经济数学基础》课件第3章

《经济数学基础》课件第3章
f(x2)-f(x1)=0 即
f(x2)=f(x1) 由于x1、x2是(a,b)内的任意两点,故证得在(a,b)内f(x)是常 函数.
推论2 如果函数f(x)和g(x)在区间(a,b)内的导数处处相 等,即f′(x)=g′(x),则f(x)和g(x)在区间(a,b)内只相差一个常 数,即
f(x)=g(x)+C 例2 求证:在(-∞,+∞)内,arctanx+arccotx=(π/2)恒 成立. 证明 令f(x)=arctanx+arccotx,则有

f ( ) 1 1
1 1
已知x>0,所以ξ>0,ξ/(1+ξ)>0,从而f′(ξ)>0,且f(0)=0,于是
f(x)>0 即
x>ln(1+x)
3.1.3 定理3.3(柯西(Cauchy)定理) 如果函数f(x)与g(x)都在闭区 间[a,b]上连续,在开区间(a,b)内可导,且g′(x)≠0,则在开 区间(a,b)内至少存在一点ξ,使得
(2) 如果函数f(x)在区间(a,b)内的个别点的导数等于零, 在其余点的导数同号,则不影响函数在该区间内的单调性. 如: y=x3,在x=0处的导数等于零,而在其余点的导数都大于零, 故它在(-∞,+∞)内单调递增.
(3) 有的函数在整个定义域上并不具有单调性,但在其各 个子区间上却具有单调性. 如:y=x2+1,在区间(-∞,0)内单 调递减,在区间(0,+∞)内单调递增,并且分界点 x=0 处有 f′(0)=0(通常把导数为零的点称为驻点).
注 (1) 极值是一个局部概念,是相对于极值点附近的某 一邻域而言的; 最值是一个整体概念,是针对整个区间而言 的.

经济数学基础微积分课件 常微分方程

经济数学基础微积分课件 常微分方程

例2 验证函数 y e x e x 是不是方程
y 2 y y 0的解.
解 求 y e x e x 的导数,得 y e x e x , y e x e x
将y、y及y 代入原方程的左边,有
e x e x 2e x 2e x e x e x 0 即函数 y e x e x 不满足原方程,
前页 后页 结束
M1(x) N1(x)
d
x
N2(y) M 2( y)
d
y
0
将(9.2.3)式两边积分后,
(9.2.3)
M1(x) N1(x)
d
x
N2(y) M 2( y)
d
y
C
(C为任意常数)
可验证,此结果即用隐式给出的方程(9.2.3)的通解.
约定:
在微分方程这一章中不定积分式表示被积函数的一
y e p(x)d x q(x)e p(x)d x d x C
即为所求(9.3.1)的通解.
前页 后页 结束
例1 求微分方程 dy 2xy 2xe x2 的通解. dx
解 p(x) 2x, q(x) 2xex2
代入公式
y e2xd x 2xex2 e2xd x d x C
常微分方程
9.1 常微分方程的基本概念 9.2 可分离变量的微分方程 9.3 一阶微分方程与可降阶
的高阶微分方程 9.4 二阶常系数微分方程 9.5 常微分方程的应用举例
结束
9.1 常微分方程的基本概念
定义一 含有未知函数的导数(或微分)的方程称为 微分方程。
常微分方程:未知函数是一元函数的微分方程 偏微分方程:未知函数是多元函数的微分方程 定义二 在微分方程中,所出现的未知函数的最高阶

《经济数学基础》第一篇第一章--函数

《经济数学基础》第一篇第一章--函数

例如: y x, y x3,
y
1 x2
x2
1
y x x2
2
y 3 x2 x3
归纳幂函数的性质:
1 xn xm xnm 如:x3 x5 x8
2
1 xn
xn
如: x13=x3
3
xn
xm
xn xm
xnm
如: x2= 1
x3
x5 x3
n
3
4 m xn x m 如:y 5 x3 x 5
x 3
x
2
x 3
x 3 接下来将: x 2 写成区间的形式
x 3
x
-3 -2
3
得到定义域: D (3,2) (2,3]
三. 计算函数的值
就是将自变量的值代入函数的表达式中, 计算出因变量(函数)的值来。
关键是对函数记号f x的理解: (1) f x0 表示函数f x在x x0处的值;
x 1
解:1gx x2 x, f x gx.
2gx x 2 xx 0; f x xx R
即D f Dg, f x gx.
3 gx x2 1 x 1 x 1
x 1
f x x 1 x R 即D f Dg, f x gx.
例 4.2 判断下列函数是否相同:
1 f x ln x2, gx 2 ln x; 2 f x ln x3, gx 3ln x;
要注意:所有函数可以分为 奇函数、偶函数和非奇非偶函数。
通过图像可以看出: •奇函数的图像是关于原点对称的, •偶函数的图像是关于y轴对称的。
通过定义,我们可以证明得到下面的结论:
•奇+奇=奇, •偶+偶=偶, •奇×奇=偶, •偶×偶=偶, •奇×偶=奇, •奇+偶=非奇非偶函数, • f(x) + f(-x) 为偶函数, f(x) - f(-x) 为奇函数。

经济数学微积分课件

经济数学微积分课件
f(x ) A x x 0成立, xl ixm 0 xx0.
例4 证明 limx212. x1 x1
证 函数在点x=1处没有定义. f(x)Axx2112 x1 任给 0, 要f(使 x )A , 只要取 ,
当 0xx 0 时 ,就有xx2112,
x2 1 lim 2.
x1 x1
例5 证 :当 x 明 0 0 时 ,x l x i0 m x x 0 .
x0
x0
x0 x
点 x0的去 邻 心 ,域 体x接 现x0 近 程.度
① 定 义 1 设 函 数 f (x) 在 点 x0的 某 一 去 心 邻 域 内 有 定 义 , 对 于 任 意 给 定 的 正 数 (不 论 它 多 么
小 ),总 存 在 正 数 ,使 得 当 x 满 足 不 等 式
记 作 lim f ( x ) A 或 f ( x ) A(当 x ) x
"X"定义limf(x)A x
0 , X 0 , 使 x X 时 , 恒 当 f ( x ) A 有 .
2. 另两种情形:
10.x 情形 : limf(x)A x
0 , X 0 , 使 x X 时 , 恒 当 f ( x ) A 有 .
定 : x l x 0 if 理 ( m x ) A f ( x 0 ) f ( x 0 ) A .
例6 验证limx 不存.在 x0 x
y
证 limxlimx
x x x0
x0
lim (1)1 x 0
1
o
x
1
x lim
limx
lim11
x x x0
x0
x0
左右极限存在但不相等, limf(x)不存. 在 x0

龚德恩 经济数学基础 第一分册 微积分课件chapter 8.7

龚德恩 经济数学基础 第一分册 微积分课件chapter  8.7





D
D {( x, y) | 0 x 1, x y 1}
xdxdy , D由y轴y x , y 1所围. y 1
1 1 x 0
解 原式 dx
xdy
1 x

1
( x x )dx
3 2
0 1 0
x y | dx
1 x
2 x 2 x ) |1 4 ( 0 3 5 15

2
2y
2
f ( x , y )dx
0
4
dx x f ( x , y )dy
2
x
o
x
( 3)
1 dx2 x
2
2 x x2
f ( x , y )dy
解 积分区域为 D : 1 x 2,2 x y 2 x x 2
或 1 x 2,2 x y ,
x 2 y 2 2 x 0 1 x 2, x y 2, ( x 1)2 y 2 1
1 dx2 x
2 x x2
( 4)
1 dx 0
e
ln x
f ( x , y )dy .
交换下列二次积分的积分次序
(1) dy f ( x , y )dx
0 0 1 y
0 y 1, 解 二重积分的积分区域为D 0 x y 如下图所示: y

0 dy0

第二步 : 近似 在第i个小区域上任取一点 i , i ),用以 ( f ( i , i )为高的小平顶柱体代替 小曲顶柱体
Vi f ( i ,i ) i
n n i 1 i 1
(i 1,n)

经济数学基础--微积分第一章

经济数学基础--微积分第一章

解 u , v 分别是中间变量,故 y u2 tan 2v tan 2x2 .
经济应用数学基础——微积分
第一章 第二节 第 12 页
极 限 的 概 念
极限的概念
• 1.2.1 数列的极限 • 1.2.2 函数的极限
经济应用数学基础——微积分
第一章 第二节


1 数列的极限
的 概

先给出数列的定义:在某一对应规则下,当 n(n N ) 依次取 1, 2, 3, , n, 时,对应的实
函数的自变量 x 是指 x 的绝对值无限增大,它包含以下两种情况: (1) x 取正值,无限增大,记作 x ; (2) x 取负值,它的绝对值无限增大(即 x 无限减小),记作 x .
定义1.2.3 : 如果当 x 无限增大(即 x )时,函数 f (x) 无限趋近于一个确定
的常数 A ,那么就称 f (x) 当 x 时存在极限 A ,称数 A为当 x 时函数 f (x) 的极限,
径.在上述领域中除去领域的中心点 a
称为点 a
的去心
领域,记为
0
U(a,
),
0
即 U(a,) x 0 x a , 如右图所示.
第 19 页
经济应用数学基础——微积分
第一章 第二节 极 限 的 概 念
注意:
在定义中,“设函数 f (x) 在点 x0 的某个去心领域内有定义”反映我们关心的 是函数 f (x) 在点 x0 附近的变化趋势,而不是 f (x) 在 x0 这一孤立点的情况.在定义 极限lim f (x) 时, f (x) 有没有极限,与f (x) 在点 x0 是否有定义并无关系.
例1.1.3 求函数 y 4x 1 的反函数. 解 由v 4x 1 ,可解得 x y 14 . 交换 x 和 y 的次序,得 y 14(x 1) ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

经济数学微积分学习讲义合川电大兰冬生知识点一:5个基本函数1,常数函数,c y = (c 是常数)例如:3=y ,1-=y ,这些函数可以看成是x 隐含,例如3=y 可看成30+=x y 。

2,幂函数,αx y =(α是一个数) 形如2x y =,3x y =,5x y =是幂函数,注意:仅仅是这种形式是幂函数,其他的任何一点形式变化都不是,2x y =是幂函数,22x y =就不是幂函数,只能是下面x ,上面(指数)是一个数!以下基本函数均如此3,指数函数,x a y =,(a 是一个数) 例如:x y 2=,x y 23⋅=不是指数函数。

4,对数函数x y a log =,这里要求x 必须大于零,我们的考试常常拿来考“求定义域”这里我们只认识两个特殊的对数函数,一个是x y ln =,他是x y e log =的简写,e 是一个数,718.2=e ,和我们知道的14.3=π一样,另一个是x y lg =,他是x y 10log =的简写。

5,三角函数x y sin =,x y cos =,特别注意的是x y sin 2=,x y 2sin =,都不是三角函数。

● 这5个基本函数是我们要学习的函数的主要构成细胞。

● 例如:12sin 232+++=x x e y x ,二次函数,由幂函数,常数函数构成632-+=x x y 。

知识点二:极限1,什么是数列?数列就是按照“一定规律排列的一组数”,我们常见的是无限数列。

数学符号记为:}{n a例如:数列:1,2,4,8,16,32,……,发展规律依n 2 变化,,4,3,2,1,0=n …… 1,21,41,81,……,发展规律依n 21变化,,4,3,2,1,0=n …… 2,极限学习极限,一个非常重要的认识就是“分母越大,分数越小” 数列的极限,就是指数列的一个趋近值,(即是指一串数的趋近值)例如:1,21,31,41,……,分母由1,2,3,4,……变化,当分母无限大时,1000001,1000000001,……,最后,这个无限数列趋近于0,这里,我们简单描述这个变化,∞→n01→n分母越大,分数越小 →是趋近,∞是无穷大的意思,无穷大是指非常非常大,无法计量。

是指数轴的最远端。

用极限式写为:1=n 例如:1,21,41,81,……,这个数列由n 21,n 取0,1,2,3,4,……得到,∞→n∞→n 2021→n分母越大,分数越小 用极限式写为1lim =∞→n例:求极限11lim+∞→nn 分析:∞→n01→n 111→+n所以,解为解:11lim +∞→nn =1 例:求极限n n n 32lim +∞→分析:n n n 32lim +∞→可变为n n n n 32lim +∞→,继续n n 32lim +∞→∞→n03→n分子是数,分母是无穷大,一个固定数与无穷大相比,固定数显得太小太小,忽略不计, 232→+n不是所有数列都有极限,极限存在是指数列趋近于一个固定数,不趋近一个数,说极限不存在。

例如:∞→n 时,∞→n 2,所以n n 2lim ∞→不存在,极限存在,称数列收敛,不存在,称为发散。

函数的极限,就是把前面的n 看成是可取任何数的x 就可以了。

例如:求极限xx x 32lim+∞→,分析:理解为∞→x 时,?32→+xxx x x x x x 323232+=+=+ ∞→x 03→x 分母越大,分数越小 232→+x所以232lim =+∞→x x x函数在某一点的极限 如图:函数xy 1=函数在这一点1=x 不取值,x 的取值可无限靠近1,于是就有函数在一点的极限,xx 1lim 1→这个极限的意思是:1→x 当x 无限靠近1时,也说x 趋近1 ?1→x x1趋近于多少 从图上看得出y 值x 1趋近于1函数在一点的极值记为:A x f x x =→)(lim 0,A 是函数)(x f y =在点0x 处的极限值,是一个趋近值。

例:求极限11lim 21--→x x x ,这是一类直接带入分母为0的极限,这类极限需要分解因式约去为0分母,然后直接带入求值。

分析:直接带入,分母为0,于是对分子分解因式,11)1)(1(112+=--+=--x x x x x x ,所以,11lim 21--→x x x =lim 1→xx 考题分析:计算极限22412lim 54x x x x x →---+。

解:37)1)(4()3)(4(lim 4512lim 4224=--+-=+---→→x x x x x x x x x x 计算极限22256lim 68x x x x x →-+-+。

解:2143lim )4)(2()3)(2(lim 8665lim 22222=--=----=+-+-→→→x x x x x x x x x x x x x 计算极限)4421(lim 22---→x x x 解 )4421(lim 22---→x x x =)44)2)(2(2(lim 22--+-+→x x x x x = )2)(2(2lim2-+-→x x x x = 41)2(1lim2=+→x x *:求函数在某一点的极限:1,带入分母不为0,就直接带入求值。

2,带入分母为0,先分解因式,约掉为0分母,然后带入求值。

关于∞→x 求极限的一般方法 比较分子和分母最高次项系数,1,分子最高次项指数小于分母最高次项指数,极限为0 2,分子最高次项指数等于分母最高次项指数,极限为系数比 3,分子最高次项指数大于分母最高次项指数,极限不存在例:求极限lim →x 分析:当∞→x 时,3x 远比2x 大。

比3x 指数小的,都可以视为0,因此,这个极限分母远比分子大,极限值是0。

也可以对11lim 32++-∞→x x x x 分子分母同除以3x ,得11lim 32++-∞→x x x x =33211111lim xx x x x ++-∞→,当∞→x 时,01→x ,012→,013→。

所以,此题极限是0.例:求极限lim →x 分析,比3x 指数小的,都可以视为0,常数直接去掉。

所以此题极限是最高次项系数比32,也可以分子分母同除以3x 。

解:12322lim 33-++-∞→x x x x x =32例:求极限122lim 23-+∞→x x x分析,显然,分子最高次数为3,当∞→x 时,分子远大于分母,次极限不存在。

归纳为如下:⎪⎪⎩=++++++----∞→b xb x b a x a x a m m m m m n n n n x lim 011011解此类题只看最高次项,直接写答案。

考题举例:求极限22235lim 321x x x x x →∞--+-解:22235lim 321x x x x x →∞--+-=32求极限 ))32)(1()23()21(lim 625--++-∞→x x x x x x解:23))32)(1()23()21(lim 625-=--++-∞→x x x x x x两个重要极限:(这两个是公式,直接使用!)1,1sin lim 0=→x x x ,或 1sin lim 0=→x xx ,考试常现,希望注意,现以考题作讲解。

公式应理解为[[][]1sin lim=,或[][]1lim =,括号[]里面填任何变量都可以,例:求极限x lim 0→分析:通过变形,达到[]内相同,x x x 5sin lim 0→=555sin lim 0⋅→xxx ,因为,0→x 时05→x ,所以x x x 5sin lim 0→=x x x 55sin 5lim 0→=x lim 05→例,求极限0sin lim x x xx→-分析:0sin lim x x x x →-=x lim →也可以0sin lim x x x x →-=x x lim 0→ 例,xxx 5sin 3sin lim0→ 解:原式=5311535sin 33sin lim535355sin 33sin lim 00=⨯=⨯=⨯→→x x xx x x x x x总结:极限的运算遵循 也遵循乘法可分原则2,e xx x =+∞→)11(lim 或 e z z z =+∞→1)1(lim这个公式e xx x =+∞→)11(lim 都要理解成[][][]e =+∞→)11(lim ,只要[]里一样,极限值就是e 718.2=e次类考得少,只举一个简例, 例求极限xx x)211(lim +∞→ 分析:x x x )211(lim +∞→=212)211(lim ⎥⎦⎤⎢⎣⎡+∞→x x x =21212)11(lim e x =⎤⎡+知识点: 无穷大量与无穷小量,此考点经常考,其实简单,极限值是0的就是无穷小量,极限值是0的就是无穷小量。

极限值是无穷大的就是无穷大量。

考题举例例:1,已知xxx f tan 1)(-=,当 0→x 时,)(x f 为无穷小量. 2,已知xxx f sin 1)(-=,当 0→x 时,)(x f 为无穷小量. 3,设()1sin xf x x=-,当( A )时,f(x)为无穷小量. A .x →0 B .x →1 C .x →-∞ D .x →+∞ 4,当+∞→x 时,下列变量为无穷小量的是( D )A .)1ln(x +B . 12+x xC .21e x - D . xxsin5,已知1tan )(-=xxx f ,当( A )时,)(x f 为无穷小量.A. x →0B. 1→xC. -∞→xD. +∞→x6,当1x →时,变量( D)为无穷小量。

A .11x - B .sin xxC .5xD .ln x7,当0x →时,变量( D )是无穷小量。

A .13xB .sin xx C .ln(2)x +D .1sin x x函数的连续x 可以再一段数上面都取得到,称函数在这一段数上面连续,例如,xy 1=在21<<x 这一段数上面连续,但在11<<-x 这段数上面不连续,因为x 取不到0. 以下用考题来分析,1,函数sin ,0(),0xx f x x k x ⎧≠⎪=-⎨⎪=⎩ 在x = 0处连续,则k = ( B ).A .-2B .-1C .1D .22.函数sin ,0(),0xx f x x k x ⎧≠⎪=⎨⎪=⎩ 在x = 0处连续,则k = ( C ).A .-2B .-1C .1D .23. 函数⎪⎩⎪⎨⎧=≠+=0,10,1sin )(x x k xx x f 在x = 0处连续,则=k ( A ). A. 1 B. 0 C. 2 D.1-4.函数⎪⎩⎪⎨⎧=≠+-=0,0,211)(x k x xxx f 在x = 0处连续,则k = ( B ). 5.若函数21, 0(), 0x x f x k x ⎧+≠=⎨=⎩,在0x =处连续,则k = ( B ).A . 1-B .1C .0D .26.已知211()11x x f x x a x ⎧-≠⎪=-⎨⎪=⎩,若f(x)在(-∞,++∞)内连续,则a= 2 .7.已知⎪⎩⎪⎨⎧=≠--=1111)(2x a x x x x f ,若f x ()在x =1处连续,则=a 2 .此类题目就是对上面一个式子求当x 不等于那个数时的极限。

相关文档
最新文档