机械设计基础之回转构件的平衡

合集下载

机械设计基础-第八章平衡和调速

机械设计基础-第八章平衡和调速

显然,动能变化量相同时,飞轮的转动惯量越大,角速度 波动越小。
南京航空航天大学 机电学院
College of Mechanical and Electrical Engineering
Nanjing University of Aeronautics and Astronautics
2、非周期性速度波动
南京航空航天大学 机电学院
College of Mechanical and Electrical Engineering
Nanjing University of Aeronautics and Astronautics
措施:安装转动惯量较大的回转件——飞轮(转动惯量较大 的盘形零件)。 原理:盈功时飞轮储存能量,飞轮的动能增加,使主轴 角速度上升的幅度减小; 亏功时飞轮释放其能量,飞轮动能减少,使主轴 角速度下降的幅度减小
南京航空航天大学 机电学院
College of Mechanical and Electrical Engineering
Nanjing University of Aeronautics and Astronautics
机械设计基础

第八章 调速和平衡
南京航空航天大学 机电学院
College of Mechanical and Electrical Engineering
南京航空航天大学 机电学院
College of Mechanical and Electrical Engineering
南京航空航天大学 机电学院
College of Mechanical and Electrical Engineering
Nanjing University of Aeronautics and Astronautics

机械设计基础之回转构件的平衡

机械设计基础之回转构件的平衡

机械设计基础之回转构件的平衡机械设计中的回转构件是指能够实现旋转运动的结构部件。

这种构件广泛应用于各种机械设备中,如汽车引擎、风力发电机、轮船推进器、工业机器人等等。

在回转构件的设计过程中,为了实现高效的工作和保证结构的牢固性,平衡性是一个至关重要的因素。

本文将通过介绍回转构件的平衡问题,来探讨在机械设计中如何确保回转构件的平衡性。

回转构件的平衡问题首先涉及到的是转动的动力学基础。

当回转构件作为一种转动运动机构时,其所受到的转矩必须与其自身的惯性矩平衡,这样才能保证结构的平稳和结构件的寿命。

因此,在回转构件的设计过程中,必须要考虑到转动的动力学特性,确保所选用的轴承、齿轮、润滑等各项参数都能够满足平衡要求。

在回转构件的平衡问题中,另外一个关键因素是重量的分布。

回转结构件的每一个部分都需要在设计之初就考虑到其质量分布和相对位置。

不同的部分之间的质量必须有序排列和平衡分布,这样方能保证回转构件的平衡性。

多数情况下,为了减轻重量和提高效率,回转构件都会采用空腔结构和零件压缩来减轻重量。

然而,这也意味着在平衡时需要更加关注整个构件的质量分布情况,以便在特定工况下获得最佳的平衡效果。

除了动力学特性和质量分布,回转构件的设计还需具备精确的加工能力和材料选用。

任何零件的偏差都会对平衡性产生影响,而高品质的材料和加工质量则可以保证回转构件的精度和公差,避免不必要的摆动和噪声,并确保设备运转的平稳性。

回转构件的平衡性也可以理解为对接触面的均衡力的平衡。

对于传动合适不良、负载过大的回转构件来说,核心问题就是对接触面的均衡力的平衡。

这也就需要在回转构件设计中加以考虑,并制定相应的计算方式和模型,以精准掌握平衡问题,实现高效的转动运动。

综上所述,回转构件的平衡在机械设计中是一个至关重要的因素。

在回转构件的设计中,我们需要关注其动力学特性、质量分布、加工精度和材料选用,考虑对接触面的均衡力等多方面的问题,来确保回转构件的平衡性和稳定性。

机械设计基础之回转构件的平衡

机械设计基础之回转构件的平衡

机械设计基础之回转构件的平衡回转构件是机械设计中常见的一种构件类型,它具有旋转运动的特点。

在机械设计中,回转构件的平衡是一个十分重要的问题。

平衡是指在回转构件旋转运动过程中,构件各部分的质量分布均匀,使得构件在高速旋转时不会产生过大的离心力和不平衡力,从而保证机械的正常运行和使用寿命。

1. 平衡的基本原理回转构件的平衡主要是通过调整构件的质量分布来实现的。

平衡要求构件质量的中心轴线与构件旋转轴线重合,以保持构件的稳定。

平衡可分为静平衡和动平衡两种情况。

•静平衡:在静止条件下,构件的重心要与轴线保持对称分布。

这时,构件旋转时只会产生离心力,不会产生不平衡力。

静平衡是最基本的平衡要求。

•动平衡:在运动状态下,构件的质量分布要满足一定的条件。

除了重心与轴线保持对称分布外,构件其他部分的质量分布也要满足一定的规律。

这样可以减小构件在高速旋转时产生的不平衡力,提高机械的使用寿命。

2. 平衡的方法和措施2.1 质量补偿法质量补偿法是最常用的平衡方法之一。

它通过在回转构件上增加或减少质量,来实现平衡。

有两种常见的质量补偿方法:质量块法和钻孔法。

•质量块法:在构件上增加质量块来实现平衡。

质量块的大小和位置应根据构件具体情况进行合理选择。

在计算时,通常使用静平衡方程来确定质量块的质量和位置,使得构件满足平衡条件。

质量块的安装一般采用焊接、螺栓等方式固定在构件上。

•钻孔法:在构件上钻孔来减小构件的质量,从而实现平衡。

钻孔的位置和直径应根据构件的质量分布情况和平衡要求来确定。

在计算时,通常使用动平衡方程来确定钻孔的直径和位置,使得构件满足平衡条件。

钻孔后,需要对构件进行动平衡试验,进一步进行微调。

2.2 弹簧平衡法弹簧平衡法是一种自调整的平衡方法。

它通过在回转构件上安装弹簧,使得构件在旋转时,弹簧可以自动调节和补偿不平衡力。

弹簧平衡法的优点是简单易行,不需要对构件进行大幅度改动。

弹簧平衡法的基本原理是利用弹性形变,将构件的不平衡力转化为弹簧的伸缩变形。

杨可桢《机械设计基础》(第5版)笔记和课后习题(回转件的平衡)

杨可桢《机械设计基础》(第5版)笔记和课后习题(回转件的平衡)

第8章 回转件的平衡8.1 复习笔记一、回转件平衡的目的机械中有许多构件是绕固定轴线回转的,这类作回转运动的构件称为回转件(或称转子)。

1.不平衡的原因由于回转件的结构不对称、材质不均匀或是制造不准确等因素,使回转件在转动时产生离心力系的不平衡,使离心力系的合力和合力偶矩不等于零。

2.不平衡的危害(1)在运动副中产生附加的动压力,从而增大构件中的内应力和运动副中的摩擦,加剧运动副的磨损,降低机械效率和使用寿命;(2)使机械产生周期性振动,降低工作可靠性和精度、零件材料的疲劳损坏以及令人厌倦的噪声。

3.回转件平衡的目的调整回转件的质量分布,使转子工作时的离心力达到平衡,以消除附加动压力,尽可能减轻有害振动,改善机构工作性能。

二、回转件的平衡计算根据组成回转件各质量的不同分布,可分两种情况。

1.质量分布在同一回转面内轴向尺寸很小的回转件(B/D <0.2),将其质量看作是分布在同一平面内,如风扇叶轮、飞轮、砂轮等。

对于这类转子,利用在刚性转子上重心的另一侧加上一定的质量,或在重心同侧去掉一些质量,使质心位置落在回转轴线上,从而使离心惯性力达到平衡,即平衡条件为:b 0=+∑=i F F F式中,F 、b F 、i F ∑分别表示总离心力、平衡质量的离心力、原有质量的离心力。

写成质径积的形式为:b b 0=+∑=i i me m r m r特点:若重心不在回转轴线上,则在静止状态下,无论其重心初始在何位置,最终都会落在轴线的铅垂线的下方,这种不平衡现象在静止状态下就能表现出来,故称为静平衡。

静平衡的条件:分布于回转件上各个质量的质径积的向量和为零,即:b b 0+∑=i i m r m r2.质量分布不在同一回转面内 对于轴向尺寸较大(B/D ≥0.2)的回转件,如内燃机中的曲轴和凸轮轴、电机转子、机床主轴等,其质量的分布不能再近似地认为是位于同一回转面内,而应看作分布在垂直于轴线的许多互相平行的回转平面内,离心惯性力将形成一个不汇交空间力系,因此必须使各质量产生的离心力的合力和合力偶都等于零,才能达到平衡,即平衡条件为:0F ∑= 0M ∑=平衡方法:对于动不平衡的转子,无论其具有多少个偏心质量以及分布在多少个回转平面内,只要将各不平衡质量产生的惯性力分别分解到两个选定的平衡基面内,则动平衡即转化为在两平衡基面内的静平衡计算问题。

机械设计基础回转件的平衡PPT学习教案

机械设计基础回转件的平衡PPT学习教案

F1
F2'
l2" l
F2
F2"
l2' l
F2
F3'
l3" l
F3
F3"
l3' l
F3
第9页/共19页
T' F’2
m’2 m’1
m’3
F’1
F’3l’1F2 2r2 r1m1 F1 l’3
l’2
T” F”2 m”2
r3
m”3 m”1F”1
m3
F”3
F3
l”3 l”2
l”1
l
m1'
l1" l
m1
m1"
经过计算,在理论上是平衡的转子,由于制造误差、 材质不均匀、安装误差等因素,使实际转子达不到预 期的衡量。只有通过实验方法予以平衡。
第12页/共19页
§12-3 刚性转子的平衡实验
一 、 静 平 衡 实验 导轨式平衡架
特 点 : 结 构 简单、 精度高 ,但两 刀口平 行、调 整困难 ,且要 求两轴 端直径 相同。 一般要 经过多 次实验 才能找 准,工 作效率 低,不 适合批 量生产 。
第7页/共19页
适用对象:轴向尺寸较大(B/D≥0.2)的转子,如内燃 机中的曲轴和凸轮轴、电机转子、机床主轴等都必须 按动平衡来处理。 理由:此类转子由于质量分布不在同一个平面内,离 心惯性力将形成一个不汇交空间力系,故不能按静平 衡处理。 任意空间力系的平衡条件为:∑Fi = 0, ∑Mi=0
不平衡,可在
个校正平面上适当地加上或去
除平衡质量就能获得平衡第。17页/共19页
回转件运转过程中由周期性波动引起的振动和由 回转件不平衡引起的振动一样吗?产生这些振动 的原因是什么?并说明能否在理论上和实践上消 除这两种振动。

考研备考期末复习 机械设计基础 第08章回转件的平衡

考研备考期末复习  机械设计基础 第08章回转件的平衡

转子的动平衡实验一般需在专用的动平
衡机上进行。详细原理及实验设备参考
动平衡实验。
4 12
13
6
14
13
11 5
7 89
10 15
机械设计基础 — 回转件的平衡
3、现场平衡——整机现场动平衡法
静平衡精度太低,平衡时间长; 动平衡试验机虽能较好地对转子本身进行平衡,但是对 于转子尺寸相差较大时,往往需要不同规格尺寸的动平衡机, 而且试验时仍需将转子从机器上拆下来,这样明显是既不经 济,也十分费工(如大修后的汽轮机转子)。特别是动平衡机无 法消除由于装配或其它随动元件引发的系统振动。
使转子在正常安装与运转条件下进行平衡通常称为“现 场平衡”。现场平衡不但可以减少拆装转子的劳动量,不再 需要动平衡机;同时由于试验的状态与实际工作状态二致, 有利于提高测算不平衡量的精度,降低系统振动。国际标准 ISOl940一1973(E)“刚体旋转体的平衡精度”中规定,要求 平衡精度为G0.4的精密转子,必须使用现场平衡,否则平衡 毫无意义。
m1 F1
r3
m3
F3
l2
l3
l1
Fi mi ri 2
机械设计基础 — 回转件的平衡
刚性转子的动平衡计算分析-2
F2 F3 F1
L
F2 m2 r2
r1
m1 F1
r3 m3 F3
l2
l1 Fi mi ri 2
F2
F3 F1 l3
Fi
Fi
li L
Fi
Fi
L li L
在Ⅰ、Ⅱ两面上按静平衡的方法进行平衡即可。
rb r4
惯性力不平衡
mb
m4
设加一平衡质量mb,方位rb,圆盘处于平衡,则:

《机械设计基础》实验报告

《机械设计基础》实验报告

广西科技大学鹿山学院实验报告课程名称:指导教师:班级:姓名:学号:成绩评定:指导教师签字:年月日实验一机构运动简图的测绘与分析一、实验目的:1、根据各种机械实物或模型,绘制机构运动简图;2、学会分析和验证机构自由度,进一步理解机构自由度的概念,掌握机构自由度的计算方法;3、加深对机构结构分析的了解。

二、实验设备和工具;1、缝纫机头;2.学生自带三角板、铅笔、橡皮;三、实验原理:由于机构的运动仅与机构中所有构件的数目和构件所组成的运动副的数目、类型、相对位置有关,因此,在绘制机构运动简图时,可以撇开构件的形状和运动副的具体构造,而用一些简略符号(见教科书有关“常用构件和运动副简图符号”的规定)来代替构件和运动副,并按一定的比例尺表示运动副的相对位置,以此表明机构的运动特征。

四、实验步骤及方法:l、测绘时使被测绘的机械缓慢地运动,从原动件开始,仔细观察机构的运动,分清各个运动单元,从而确定组成机构的构件数目;2、根据相联接的两构件的接触特征及相对运动的性质,确定各个运动副的种类;3、选定投影面,即多数构件运动的平面,在草稿纸上徒手按规定的符号及构件的连接次序,从原动件开始,逐步画出机构运动简图。

用数字1、2、3、……。

分别标注各构件,用英文字母A、B、C、,……分别标注各运动副;4、仔细测量与机构运动有关的尺寸,即转动副间的中心距和移动副导路的方向等,选定原动件的位置,并按一定的比例画出正式的机构运动简图。

五、实验要求:l、对要测绘的缝纫机头中四个机构即a.压布、b走针、c.摆梭、d.送布,只绘出机构示意图即可,所谓机构运动示意图是指只凭目测,使图与实物成比例,不按比例尺绘制的简图;2、计算每个机构的机构自由度,并将结果与实际机构的自由度相对照,观察计算结果与实际是否相符;3、对绘制的机构进行结构分析(高副低代,分离杆组;确定机构级别等)。

六、思考题:1、一个正确的机构运动简图应能说明哪些内容?2、机构自由度的计算对测绘机构运动简图有何帮助?实验二齿轮范成实验一、实验目的1、掌握用范成法切制渐开线齿轮齿廓的基本原理;2、了解渐开线齿轮产生根切现象的原因和用变位修正来避免根切的方法;3、分析比较标准齿轮和变位齿轮的异同点。

机械设计基础课件:回转件的平衡 -

机械设计基础课件:回转件的平衡 -
2、動平衡的條件:轉子上各個品質所產生的空間慣性力系的合力及合力偶均 為零。
3、對於動不平衡的剛性轉子,只要分別在選定的兩個平面內各加適當的平 衡品質,就能達到完全平衡。即要使轉子達到動平衡,所需加的平衡品質的 最少數量為2。故動平衡又稱雙面平衡。
4、由於動平衡同時滿足靜平衡的條件,故經過動平衡的轉子一定靜 平衡;反之,經過靜平衡的轉子不一定是動平衡的。
8.3 回轉件的平衡試驗 8.3.1 回轉件的靜平衡試驗
• 刀口式靜平衡架
隨遇平衡
靜平衡實驗(續)
• 滾輪式靜平衡架
c
Q
8.3.1 回轉件的動平衡試驗
1. 電機 2. 帶傳動 3. 萬向聯軸節 4. 試件 5-6. 感測器 7. 解算電路 8. 選頻放大器 9. 儀錶 10. 整形放大器 11. 鑒相器 12. 光電頭 13. 整形放大器 14. 相位標記 15. 相位表
平面1
mi'ri' mb' rb' 0
平面2
mi''ri'' mb''rb'' 0
F1’
F1
m1’,
r1’
m1
m2’, r2’
F2’
F1’’
m1’’, r1’’
m2
m2’’,
F2 r2’’
F2’’
動平衡設計圖示
II F2 II
FII
mb II
I F2I
平衡平面
3
F2
m2 2
1
r2
r3
m3
F1I
由於回轉件結構不對稱或品質分佈不均勻,以及製造和安裝誤差等原 因,使回轉件的質心偏離其回轉軸線,當回轉件轉動時,其偏心品質 會產生離心慣性力。當機器運轉時,構件產生的離心慣性力將會在運 動副中引起附加的動壓力。

机械设计基础实验指导书

机械设计基础实验指导书

《机械设计基础》实验指导书《机械设计基础》课题组编景德镇陶瓷学院机电学院机设教研室2006年5月目录实验一:机构和机械传动的陈列演示实验二、低碳钢拉伸时力学性能的测定实验三、平面机构运动简图测绘实验四、渐开线齿廓的范成实验实验五、减速器的拆装实验六、渐开线直齿圆柱齿轮的参数测定实验七、轴系结构组合设计实验八、机械传动测试实验实验九、回转体动平衡实验实验一:机构和机械传动的陈列演示一、实验目的1、“机械基础”是高校工科有关专业的一门重要的技术基础课,主要研究机械中的常用机构和通用零件的工作原理、结构特点、基本的设计理论和计算方法,是一门实践性很强的课程。

学生在学习这门课程中必须做到理论联系实际。

通过本实验学生可以初步了解机构及机械零件的组成,建立一定的工程背景知识。

2、通过本实验使学生更具体的了解本课程的具体内容,初步了解平面机构和机械传动及通用零部件结构特点、组成、运动和传动特点。

3、增加学生的感性认识,培养他们对机械基础课程学习的兴趣,使学生对于学习本科程的具体内容及学习方法做到心中有数。

二、实验步骤1、实验室有两种模型陈列柜:一组为机械原理部分,另一组为机械设计部分。

首先让同学观看机械原理部分(平面机构的结构、组成、运动特点),然后观看机械传动部分。

实验时让平面机构和机械传动动起来,老师对每一部分进行介绍。

2、观看通用零部件。

因每种零部件上都有说明。

所以这一部分可以采取教师介绍的方法和同学自己观看的办法,让学生初步了解各种通用零部件的结构特点及用处。

三、实验设备模型陈列柜,分机械原理部分和机械设计部分。

机械原理部分有:第一柜:机器的组成及特征;第二柜:平面连杆机构;第三柜:平面连杆机构的应用;第四柜:齿轮的基本参数;第五柜:齿轮机构;第六柜:凸轮机构;第七柜:组合机构;第八柜:周转轮系功用;第九柜:停歇和间歇运动机构;第十柜:空间机构机械设计部分有:第十一柜:机座及箱体;第十二柜:润滑与密封;第十三柜:齿轮传动;第十四柜:滑动轴承;第十五柜:滚动轴承;第十六柜:轴的类型及轴上零件应用;第十七柜:联轴器;第十八柜:轴的典型结构及轴上零件固定方法;第十九柜:铆接、焊接、胶接、过盈配合;第二十柜:离合器;第二十一柜:常用标准件及键联接第二十二柜:常用标准件及螺纹联接;第二十三柜:键、销及其联接;第二十四柜:常用标准件及螺旋传动;第二十五柜:典型滚动轴承的组合设计;第二十六柜:齿轮与蜗杆结构;第二十七柜:带传动;第二十八柜:带的张紧装置及初拉力控制;第二十九柜:链传动;第三十柜:弹簧。

《机械设计基础》第七章 刚性回转件的平衡

《机械设计基础》第七章 刚性回转件的平衡

机械设计基础
7.2 刚性回转件的平衡计算 • 7.2.1 静平衡计算 • 静平衡计算适用于轴向尺寸很小的回转件 (宽径比B/D小于0.2) • 如图7-1(a)所示,已知同一回转面内的不 r3 , r2 、 平衡质量 m1 、m2 、m3,以及其向径 r 、 求要使回转件达到静平衡,求应加的平衡质 量 mb 以及向径 rb 。
机械设计基础
7.2.2 动平衡的计算 • 对轴向尺寸较大的回转件,其动平衡的条件是:回转件 上各个质量的离心力的向量和等于零,而且离心力所引起的 力偶矩的向量和也等于零。
图7-1 动平衡向量图解法
机械设计基础•源自对于动不平衡的回转件,所以要达到完全平衡,必须分 别在任选的两个回转面(即平衡平面或校正平面)内的相应 位置处各加上适当的平衡质量,使回转件的离心力系的合力 和合力偶矩都为零,才能达到完全的平衡。而动平衡计算的 任务是计算出为满足回转构件的惯性力和惯性力偶矩平衡应 加平衡质量的大小和方位。
1
机械设计基础
m2 r2 , • 如图7-1(b)所示,依次作已知向量 、 m r 和 r 、 mr mr mr mb rb组成的首尾相连的多边形的封闭向量。根 即是由 m 、 据回转件的结构特点确定的 大小,即可求出平衡质量的大 rb 小。 •
1 1
3 3
1 1
2 2
3 3
图7-1 静平衡向量图解法
机械设计基础
• 2.动平衡 • 对于轴向尺寸比较大的回转件(宽径比B/D大于0.2), 例如多缸发动机的曲轴和机床主轴等,其质量的分布不能再 近似地认为分布在同一平面内,而应看作分布于垂直轴线的 许多相互平行的回转面内。这种不平衡称为动不平衡。而通 过加平衡质量(或减质量),使回转构件达到惯性力和惯性 力偶矩的平衡,称为动平衡。

机械设计基础课件08回转件的平衡

机械设计基础课件08回转件的平衡
当回转件平衡后,e=0,即总质心与回转轴线重合,此时 回转件质量对回转轴线的静力矩也为零mge=0,这说明该回 转件可以在任意位置保持静止,而不会自行转动,我们将这种 平衡称为静平衡(工业上也称单面平衡)。
求平衡质量的大小和向径的方法有三种:解析法、图解法和 试验法。解析法精确,图解法直观,试验法实用。下面由例题 简述解析法和图解法的具体求解方法。
式中P、Pb和Pi分别表示总离心力、平衡质量的离心力和原有质量离心力的 合力。代入离心力计算式,并消除ω后,可得
式中,m、e为回转件的总质量和总质心向径,mb、rb为平衡质量及其质心 的向径,mi、ri为原有各质量及其质心的向径。
由上式可知,当回转速度ω一定时,离心力的大小和方向只 与各个质量的大小和向径有关,我们把质量与向径的乘积称为 质径积。
为了使转子达到动平衡,通常采用动平衡试验法,即将回 转件在动平衡试验机上运转,然后在两个选定的平面内分别找 出所需的质径积的大小和方位,通过逐步调整,最终使转子达 到动平衡。
显然动平衡条件中包含了静平衡条件,也就是说动平衡的转子一定也是静平衡的,
但静平衡的转子不一定是动平衡的。
为了使转子达到动平衡,通常采用动平衡试验法,即将回转件在动平衡试验机 上运转,然后在两个选定的平面内分别找出所需的质径积的大小和方位,通过逐步 调整,最终使转子达到动平衡。
上述动平衡机的结构和测试方法都比较简陋,因而灵敏度
和平衡精度都较低。目前已有大量的机电一体的动平衡机,关 于这些动平衡机的详细情况,请读者参阅有关的文献和资料。
导轨式静平衡加简单可靠,其精度也能满足一般机械生 产的需要。
8.2.2 质量分布不在同一回转面内
对于轴向尺寸较大的回转件,即称为轴类零件,如电动机的转子、机床 主轴等,其质量分布不能近似地认为是位于同一回转面内。这类回转件转 动时产生的离心力不再是平面力系,而是空间力系。因此,单靠在某一回 转面内加一平衡质量的静平衡方法不能使这类回转件转动时达到平衡。

机械设计基础第18章机械的平衡和调速

机械设计基础第18章机械的平衡和调速
19
18.3 机械速度波动的调节 18.3.1 机械速度波动产生原因及调节方法
机械在外力(驱动力和各种阻力)作用下运转时,若每 一瞬时驱动力所作驱动功Wd与各种阻力所作的阻抗功Wr相 等,机械就能保持匀速运转。多数机械在工作时,并不能保 证任一瞬时驱动功Wd与阻抗功Wr总是相等。当Wd > Wr时, 驱动力作功有盈余,出现盈功。盈功转化为动能,促使机械 动能增加,机械转速加快。当Wd < Wr时,驱动力作功不足, 出现亏功。亏功需动能补偿,导致机械动能减小,机械转速 减慢。盈功和亏功统称为盈亏功。
态。回转构件的离心惯性力系的合力等于其质量与加速度的 乘积。因而只有当质心位于回转轴线上时,才能使质心加速 度在任何瞬时都为零,从而满足静平衡条件。
把回转构件放在摩擦力很小的两个 水平刀口上,如果回转构件是静不平衡 的,其质心必定不在回转轴线上。在重 力G作用下,回转构件将会转动,直到 其质心C位于最下方时才会静止。由于 这种不平衡状态可以通过静态试验显示 出来,所以称为静不平衡。
机械速度波动可以分为周期性速度波动和非周期性速度 波动。
21
周期性速度波动是由于机械动能增减呈周期性变化,造
成机械主轴角速度 随之作周期性的波动。 主轴角速度从某一数
值变回到原值所经历的时 间为一个运动周期T。
22
在整个运动周期 中,驱动力所作的功与 阻力所作的功是相等 的,但在一个运动周期 中的任意瞬时却不一定 相等。运动周期T通常 对应于机械主轴回转一 转(如冲床)、两转(如四 冲程内燃机)或数转(如 轧钢机)的时间。
18.1.1 机械平衡的目的
机械平衡的目的就是消除或尽量减小惯性力的不良影响, 以改善机械的工作性能,提高机械效率,延长机械的使用寿 命等。机械的平衡问题在设计高速、重型及精密机械时具有 特别重要的意义。

第8章平衡

第8章平衡

第八章 转子的平衡8.1 考点提要8.1.1 重要概念及术语静平衡,动平衡,长径比,质径积 8.1.2 动平衡和静平衡的区别对于轴向长度和直径的比值(长径比)小于或等于0.2的转子,可以被视为一个薄片圆盘,不平衡质量都看作在一个端面上。

这样的圆盘上如果有不平衡的偏心质量,则不需要输入动力转矩,只要用手松开转子,转子就会转动,直至不平衡质量的重心在正下方为止。

由于不需要输入动力就可以看出不平衡,所以称为静不平衡。

对于轴向长度和直径的比值(长径比)大于0.2的转子,即使实现了静平衡,由于不平衡质量分布在轴类构件的不同端面上,在输入力矩后会产生不平衡的力偶,这种现象称为动不平衡。

8.1.3. 静平衡的校正对与质量分布在同一回转面的圆盘,只要进行力平衡,在圆盘上增加一个配重,使各不平衡质量产生的离心力互相抵消即可实现平衡。

设圆盘上有n 个不平衡质量,某个不平衡质量的半径为i r ,某个不平衡质量i m ,配重质量b m ,配重半径b r ,则所有离心力的矢量和应为零:0)(21=+∑= i ni i b b r m r m约去角速度得:01=+∑=i ni i bb r m r m既质量和半径的乘积(质径积)的矢量和为零。

图8.1 静平衡的校正建立坐标系,如图8.1所示(图中有三个不平衡质径积,一个配平衡的质径积),把各向量对X,Y 轴方向投影得:∑=+0cos cos θθb b b i i i r m r m ∑=+0sin sin θθb b b i i i r m r m 得:∑∑-+-=22)sin ()cos (θθi i i i i i b b r m r m r m (8-1)∑-∑-=θθθii i i i i b r m r m cos sin (8-2) 角度再根据坐标系中X ,Y 坐标方向分量的正负号确定象限并调整即可。

8.1.4. 动平衡的校正把轴向各个不平衡质量保持方向不变,向两个准备安装配重的校正面利用力矩相等的原则分解, 以图8.2为例:221)()()(L r m L L r m i i A i i =+ 121)()()(L r m L L r m i i B i i =+这样就把i i r m 分解为校正面上的A i i r m )(和B i i r m )(,方向不变。

机械设计基础之回转构件的平衡

机械设计基础之回转构件的平衡

.机械设计基础之回转构件的平衡-----------------------作者:-----------------------日期:.DOC资料..DOC资料.教案用纸附页.DOC资料.教案用纸附页.DOC资料..DOC资料.教学容、方法和过程附记在两配重平面处,分别悬浮支承,逐端调平衡。

3、硬支承动平衡试验机的工作原理采用压力传感器将转子振动的加速度放大显示,并根据显示的情况,在两配重的平面添加重径积,直到震动消除的方法来实现动平衡。

四、作业布置教材 P108~P109 7-1、7-3、7-2、7-5.DOC资料..DOC资料.教 学 容、方 法 和 过 程附 记3.轴上零件的周向固定表8-3 轴上零件的轴向固定方法及应用4.轴的结构工艺性教案用纸附页.DOC资料..DOC资料.表8-4零件倒圆与倒角(摘自GB6403.8—86)5.提高轴的强度的措施 (1)改善轴的受载情况为了减小轴所承受的弯矩,传 动件应尽量靠近轴承,并尽可能不 采用悬臂的支撑形式,力求缩短支 撑跨距及悬臂长度。

教 案 用 纸 附 页图8-5 导向圆锥图8-6 砂轮越程图8-7 螺纹退刀槽图8-8 轴上零件的合理布置 图8-9 轴上零件的合理设计.DOC 资料.教 学 容、方 法 和 过 程附 记(2)减少应力集中的措施为了减少直径突变处的应力集中,提高轴的疲劳强度,应适当增大轴肩处的圆角半径。

图8-10 减小轴肩应力集中的措施图8-11 减小过盈配合处应力集中的措施三、 最小轴径的确定1.计算法按转矩初步计算轴端直径的 强度条件是:2.经验法对于与电机轴联接的轴,可取轴径,d 电为电机伸出轴的轴端直径。

四、作业布置教材 P121 8-2、8-3、8-4图8-12 键槽加工 []30.2T d ττ=≤[][]333339550100.20.2T P P An n ττ⨯=⨯=≥d (0.8~1.0)d d =电教案用纸附页教学容、方法和过程附记轴的结构主要与下列因素有关:①载荷的性质、大小、方向及分布情况;②轴上零件的数目和布置情况;③零件在轴上的定位及固定方法;④轴承的类型及尺寸;⑤轴的加工工艺及装配方法等。

机械设计基础8回转件的平衡

机械设计基础8回转件的平衡

如果想用Fb’, Fb’’ 来取代Fb ,
则:
Fb Fb Fb Fb l Fb l
l l l ,代入上式得:



l Fb Fb l l Fb Fb l
消去等式两边的公因子2得:
l mb rb mb rb l l mb rb mb rb l
Fb
me mb rb mi ri 0
对于所需平衡面上不能安装平衡质量的回转件,可另选 两个回转面安装平衡质量。 例:已知,一曲轴的回转平面如图所示,试在距原平衡面为 l’,l’’ 的两侧T’,T’’面上配平衡质量。 解: 设在T’,T’’面上分别配上平衡质量mb’, mb’’,向径分别为 rb’, rb’’,且mb’, mb’’都处于经过mb的质心且包含回转轴线的平 面内。 那么产生离心力 Fb’, Fb’’ Fb 为 互相平行的力。
F1
F --- ---- 总离心力,
Fi ----
原有质量离心力的合力
Fb
即:
得:
me 2 mb rb 2 mi ri 2 0 me mb rb mi ri 0
m --- 总质量
e ----总质心的向径 mb --- 平衡质量
F1
rb ---平衡质心的向径
l l m1 1 m1 m1 1 m1 l l l2 l2 m2 m2 m2 m2 l l l3 l3 m3 m3 m3 m3 l l
对回转面T’,平衡方程为:
mb rb m1 r1 m2 r2 m3 r3 0
设:不平衡质量m1, m2分布在相距为l 的两个回转平面内, 而且, m1 = m2,r1 =-r2, 该回转件的质心虽然在回转轴上, 且满足:m1r1 +m2r2 = 0 静平衡条件; 但由于m1,m2不在同一个回转面内,回转 件回转时会产生力偶,回转件仍处于动

机械设计基础课件第八章回转件的平衡

机械设计基础课件第八章回转件的平衡
机械设计基础课件第八章 回转件的平衡
回转件是指在运动中具有旋转不对称性的机械零件,回转件的平衡性是机械 设计中非常关键的问题。
回转件的定义
常见的回转件
钻孔加工机,车削加工机,制动盘,离合器曲 轴等等。
重心与惯性矩
回转件的平衡与其重心位置和惯性矩有关,理 解这些概念有助于确定平衡条件。
特殊的回转件
手表的自动上弦装置,自行车的飞轮等,这些 回转件的平衡问题需要特殊考虑。
平衡的概念与判定条件
1 平的定义
指回转件在运动过程中,不外力不产生力矩。
2 判定条件
回转件的平衡需要满足两个条件:对重心的合外力与合外力矩均为零。
3 举个例子
一辆自行车,骑行过程中不会翻倒,就是因为车轮的平衡可以满足平衡条件。
平衡解法的基本原理
1
受力分析
分解合外力,计算受力点至重心的距离
2
力矩计算
动平衡
回转件在运动状态下的平衡状态,即回转件所受 合外力矩仍然为零。
静平衡与动平衡的判定条件
1
静平衡的判定条件
寻找合力的作用点和力矩的方向,可用物理方法求解。
2
动平衡的判定条件
刚体转动惯量必须大于等于对象所受扭矩的一部分,常用解析法求解。
3
复杂的案例
比如飞机的旋翼系统、燃气轮机的转子系统等,需要结合实验证验验证平衡性。
实例分析与课后习题
实例分析
分析一些实际的产品的平衡性,如汽车发动机的销轴、建筑杆塔的吊臂等等。
课后习题
巩固所学知识,设计一些有挑战性的习题帮助学生掌握平衡原理。
计算受力点的力矩,与重心至该点的距离相乘
3
平衡条件
平衡条件为合外力与合外力矩均为零,利用方程组求解

《机械设计基础》第8章 回转件的平衡

《机械设计基础》第8章 回转件的平衡

D
它们的质量可以视为分 布在垂直于轴线的同一回转 面内,如其质心不在回转轴 线上,则其偏心质量产生的 惯性力不平衡。这种不平衡 现象在回转件静态时就会表 现出来,故称为静不平衡。
F=me 2 m e
B
D
F=me 2 m e
B
回转件的静平衡,就是利用在回转件上增加或除去一 平衡质量的方法,使其质心回到回转轴线上,从而使回转 件的惯性力得到平衡(即∑F = 0)的一种平衡措施。 其平衡的原理:利用理论力学平面汇交力系的平衡理论。
2)分别把每个偏心质量
mi用两个平面上的质量
mi′和mi″来代替; 分解公式为: mi′= mi li″/l
图8-4 a)
mi″= mi li′/l
其中 li′为mi到平衡基面T′的距离, li″为mi到平衡基面
T″的距离, l=li′+li″为两平衡基面平面汇交力
质量不能再近似地认为是分布在同一回转面内,而应该看 作是分布在垂直轴线的多个相互平行的回转面内。
如图所示的发动机曲轴, 其不平衡质量m1、m2、m3是 分布在3个回转面内。
这类回转件转动时所产生的离心力系不再是平面汇交 力系,而是空间力系。因此,单靠在某一回转面内加一平 衡质量并不能消除这类回转件转动时的不平衡。
图8-1
∴ ∑miω2ri+ mbω2rb=0 即∑miri+ mbrb=0——静平衡条件:质径积的向量和为0。
式中:miri称为质径积,是矢量。它相对地表达了各 质量在同一转速下的离心力的大小和方向。
mbrb的大小和方向可根据图解法来求。
求解步骤如下:
1)写出质径积的矢量平衡方程式:
m1r1+ m2r2+ …+mbrb=0 2)计算各偏心质量的质径积的大小;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教案用纸附页
教案用纸附页
教案用纸附页
教案用纸附页4.轴的结构工艺性
教案用纸附页
5.提高轴的强度的措施
(1)改善轴的受载情况
为了减小轴所承受的弯矩,传
图8-5 导向圆
图8-6 砂轮越图8-8 轴上零件的合理布
图8-7 螺纹退刀槽图8-9 轴上零件的合理设计
教案用纸附页
图8-11 减小过盈配合处应力集中的措施
三、最小轴径的确定
图8-12 键槽加
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页
图8 - 3 轴的结构
2.轴上零件的轴向定位及固定
轴上零件的轴向定位和固定方式常用的有轴肩、轴环、锁紧挡圈、套筒、圆螺母和止动垫圈、弹性挡圈、轴端挡圈及圆锥面等。

其特点
教案用纸附页。

相关文档
最新文档