应用回归分析-第6章课后习题参考答案

合集下载

第6章 相关与回归分析习题解答

第6章 相关与回归分析习题解答

第六章 相关与回归分析思考与练习一、判断题1.产品的单位成本随着产量增加而下降,这种现象属于函数关系。

答:错。

应是相关关系。

单位成本与产量间不存在确定的数值对应关系。

2.相关系数为0表明两个变量之间不存在任何关系。

答:.错。

相关系数为零,只表明两个变量之间不存在线性关系,并不意味着两者间不存在其他类型的关系。

3.单纯依靠相关与回归分析,无法判断事物之间存在的因果关系。

答:对,因果关系的判断还有赖于实质性科学的理论分析。

4.圆的直径越大,其周长也越大,两者之间的关系属于正相关关系。

答:错。

两者是精确的函数关系。

5.总体回归函数中的回归系数是常数,样本回归函数中的回归系数的估计量是随机变量。

答:对。

6.当抽取的样本不同时,对同一总体回归模型估计的结果也有所不同。

答:对。

因为,估计量属于随机变量,抽取的样本不同,具体的观察值也不同,尽管使用的公式相同,估计的结果仍然不一样。

二、选择题1.变量之间的关系按相关程度分可分为:b 、c 、da.正相关;b. 不相关;c. 完全相关;d.不完全相关; 2.复相关系数的取值区间为:aa. 10≤≤R ;b.11≤≤-R ;c.1≤≤∞-R ;d.∞≤≤-R 1 3.修正自由度的决定系数a 、b 、da.22R R ≤; b.有时小于0 ; c. 102≤≤R ;d.比2R 更适合作为衡量回归方程拟合程度的指标 4.回归预测误差的大小与下列因素有关:a 、b 、c 、da 样本容量;b 自变量预测值与自变量样本平均数的离差c 自变量预测误差;d 随机误差项的方差三、问答题1.请举一实例说明什么是单相关和偏相关?以及它们之间的差别。

答:例如夏季冷饮店冰激凌与汽水的消费量,简单地就两者之间的相关关系进行考察,就是一种单相关,考察的结果很可能存在正相关关系,即冰激凌消费越多,汽水消费也越多。

然而,如果我们仔细观察,可以发现一般来说,消费者会在两者中选择一种消费,也就是两者之间事实上应该是负相关。

应用回归分析课后习题

应用回归分析课后习题
2.16* 表 2.8 是 1985 年美国 50 个州和哥伦比亚特区公立学校中教师的人均年工资 y(美元) 和对学生的人均经费收入 x(美元)。 (1)绘制 y 对 x 的散点图,可以用直线回归描述两者之间的关系吗? (2)建立 y 对 x 的线性回归。 (3)用线性回归的 Plots 功能绘制标准残差的直方图和正态概率图,检验误差项的正态性假 设。
使用其中的一个。
2.12* 如果把自变量观测值都乘以 2,回归参数的最小二乘估计 ˆ0 和 ˆ1 会发生什么变化?
#;
.
如果把自变量观测值都加上 2,回归参数的最小二乘估计 ˆ0 和 ˆ1 会发生什么变化?
2.13 如果回归方程 yˆ ˆ0 ˆ1x 相应的相关系数 r 很大,则用它预测时,预测误差一定较小。
#;
.
第三章 习题
3.1 写出多元线性回归模型的矩阵表示形式,并给出多元线性回归模型的基本假设。 3.2 讨论样本量 n 与自变量个数 p 的关系,它们对模型的参数估计有何影响?
3.3 证明ˆ 2 1 SSE 是误差项方差 2 的无偏估计。 n p 1
3.4 一个回归方程的复相关系数 R=0.99,样本决定系数 R2 0.9801 ,我们能判断这个回归
2.15 一家保险公司十分关心其总公司营业部加班的程度,决定认真调查一下现状。经过 10
周时间,收集了每周加班工作时间的数据和签发的新保单数目,x 为每周签发的新保单数目,
y 为每周加班工作时间(小时)。见表
周序 1
2
3
4
5
6
7
8
9
10

X
825 215 1070 550 480 920 1350 325 670 1215

《应用回归分析》课后习题部分答案-何晓群版

《应用回归分析》课后习题部分答案-何晓群版

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=6.1σ∧=(5)由于211(,)xxN L σββ∧t σ∧==服从自由度为n-2的t 分布。

因而/2||(2)1P t n αασ⎡⎤⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(p t t ααβββ∧∧∧∧-<<+=1α-可得195%β∧的置信度为的置信区间为(7-2.3537+2.353 即为:(2.49,11.5)2201()(,())xxx Nn L ββσ-∧+t ∧∧==服从自由度为n-2的t 分布。

因而/2|(2)1P t n αα∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦即0/200/2()1p βσββσα∧∧∧∧-<<+=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()ni i nii y y r y y ∧-=-=-==≈-∑∑(7)由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

(8)t σ∧==其中2221111()22n ni i i i i e y y n n σ∧∧====---∑∑ 7 3.661==≈/2 2.353t α= /23.66t t α=>∴接受原假设01:0,H β=认为1β显著不为0,因变量y 对自变量x 的一元线性回归成立。

应用回归分析课后答案

应用回归分析课后答案

应用回归分析课后答案第二章一元线性回归2.14 解答:EXCEL结果:SUMMARY OUTPUT回归统计Multiple R0.944911R Square0.892857Adjusted R Square0.857143标准误差0.597614观测值5方差分析df SS MS F Significance F回归分析18.9285718.928571250.015392残差3 1.0714290.357143总计410Coefficients标准误差t Stat P-value Lower 95%Upper 95%下限95.0%上限95.0% Intercept-0.214290.6962-0.307790.778371-2.4299 2.001332-2.4299 2.001332 X Variable 10.1785710.03571450.0153920.0649130.292230.0649130.29223RESIDUAL OUTPUT观测值预测Y残差1 1.571429-0.571432 1.5714290.4285713 3.357143-0.357144 3.3571430.6428575 5.142857-0.14286SPSS结果:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=1330 6.13σ∧=≈ (5)由于211(,)xxN L σββ∧1112()/xxxxL t L ββσσ∧∧-==服从自由度为n-2的t 分布。

应用回归分析第四版课后答案

应用回归分析第四版课后答案

假设 3、随机误差项ε与解释变量 X 之间不相关:
Cov(Xi, εi)=0
i=1,2, …,n
假设 4、ε服从零均值、同方差、零协方差的正态分布
εi~N(0, 2 )
i=1,2, …,n
2.3 证明(2.27 式),ei =0 ,eiXi=0 。
n
n
Q (Yi Yˆi )2 (Yi (ˆ0 ˆ1 X i ))2
方法。
答:普通最小二乘估计就是寻找参数的估计值使离差平方和达极小。其中每个平 方项的权数相同,是普通最小二乘回归参数估计方法。在误差项等方差不相关的 条件下,普通最小二乘估计是回归参数的最小方差线性无偏估计。然而在异方差 的条件下,平方和中的每一项的地位是不相同的,误差项的方差大的项,在残差 平方和中的取值就偏大,作用就大,因而普通最小二乘估计的回归线就被拉向方 差大的项,方差大的项的拟合程度就好,而方差小的项的拟合程度就差。由 OLS
X 2n

X kn
量的观测值矩阵; β(k 1)1


0 1

2
k




为总体回归参数向量;
μ
n1



1 2 n

为随机误差项向量。
多元回归线性模型基本假定:课本 P57
第四章
4.3 简述用加权最小二乘法消除一元线性回归中异方差性的思想与
法。
答:运用加权最小二乘法消除多元线性回归中异方差性的思想与一元线性回
归的类似。多元线性回归加权最小二乘法是在平方和中加入一个适当的权数 wi ,
以调整各项在平方和中的作用,加权最小二乘的离差平方和为:

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

第六章相关与回归分析习题一、填空题1.现象之间的相关关系按相关的程度分为、和;按相关的形式分为和;按影响因素的多少分为和。

2.两个相关现象之间,当一个现象的数量由小变大,另一个现象的数量,这种相关称为正相关;当一个现象的数量由小变大,另一个现象的数量,这种相关称为负相关。

3.相关系数的取值范围是。

4.完全相关即是关系,其相关系数为。

5.相关系数,用于反映条件下,两变量相关关系的密切程度和方向的统计指标。

6.直线相关系数等于零,说明两变量之间;直线相关系数等1,说明两变量之间;直线相关系数等于—1,说明两变量之间。

7.对现象之间变量的研究,统计是从两个方面进行的,一方面是研究变量之间关系的,这种研究称为相关关系;另一方面是研究关于自变量和因变量之间的变动关系,用数学方程式表达,称为。

8.回归方程y=a+bx中的参数a是,b是。

在统计中估计待定参数的常用方法是。

9. 分析要确定哪个是自变量哪个是因变量,在这点上它与不同。

10.求两个变量之间非线性关系的回归线比较复杂,在许多情况下,非线性回归问题可以通过化成来解决。

11.用来说明回归方程代表性大小的统计分析指标是。

二、单项选择题1.下面的函数关系是( )A销售人员测验成绩与销售额大小的关系B圆周的长度决定于它的半径C家庭的收入和消费的关系D数学成绩与统计学成绩的关系2.相关系数r的取值范围( )A -∞<r<+∞B -1≤r≤+1C -1<r<+1D 0≤r≤+13.年劳动生产率z(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )A增加70元B减少70元C增加80元D减少80元4.假设要证明两变量之间线性相关程度是高的,则计算出的相关系数应接近于( )A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程y =a+b x。

《应用回归分析》课后习题答案

《应用回归分析》课后习题答案
1.7构造回归理论模型的基本依据是什么?
答:选择模型的数学形式的主要依据是经济行为理论,根据变量的样本数据作出解释变量与被解释变量之间关系的散点图,并将由散点图显示的变量间的函数关系作为理论模型的数学形式。对同一问题我们可以采用不同的形式进行计算机模拟,对不同的模拟结果,选择较好的一个作为理论模型。
df
均方
F
显著性
组间
(组合)
1231497.500
7
175928.214
5.302
.168
线性项
加权的
1168713.036
1
1168713.036
35.222
.027
偏差
62784.464
6
10464.077
.315
.885
组内
66362.500
2
33181.250
总数
1297860.000
9
由于 ,拒绝 ,说明回归方程显著,x与y有显著的线性关系。
.212
.586
1.708
a.因变量: y
(6)可以看到P值最大的是x3为0.284,所以x3的回归系数没有通过显著检验,应去除。
去除x3后作F检验,得:
Anovab
模型
平方和
df
均方
F
Sig.
1
回归
12893.199
2
6446.600
11.117
.007a
残差
4059.3.500
.724
.433
.212
.586
1.708
a.因变量: y
(2)
所以三元线性回归方程为
模型汇总
模型
R

应用回归分析整理课后习题参考答案

应用回归分析整理课后习题参考答案

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n 假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解: 得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =021112)ˆ()ˆ(ini i ni i i e X Y Y Y Q β∑∑==-=-=0)ˆ(2ˆ111=--=∂∂∑=ii ni i eX X Y Q ββ)()(ˆ1211∑∑===ni i ni ii X Y X β01ˆˆˆˆi ii i iY X e Y Y ββ=+=-0100ˆˆQQββ∂∂==∂∂2.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i n i X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

应用回归分析(第三版)何晓群 刘文卿 课后习题答案 完整版

应用回归分析(第三版)何晓群 刘文卿 课后习题答案 完整版

第二章 一元线性回归分析思考与练习参考答案2.1 一元线性回归有哪些基本假定?答: 假设1、解释变量X 是确定性变量,Y 是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性: E(εi )=0 i=1,2, …,n Var (εi )=σ2 i=1,2, …,n Cov(εi, εj )=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X 之间不相关: Cov(X i , εi )=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布 εi ~N(0, σ2 ) i=1,2, …,n 2.2 考虑过原点的线性回归模型 Y i =β1X i +εi i=1,2, …,n误差εi (i=1,2, …,n )仍满足基本假定。

求β1的最小二乘估计 解:21112)ˆ()ˆ(i ni i n i ii e X Y Y Y Q β∑∑==-=-=得:2.3 证明(2.27式),∑e i =0 ,∑e i X i =0 。

证明:∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.4回归方程E (Y )=β0+β1X 的参数β0,β1的最小二乘估计与最大似然估计在什么条件下等价?给出证明。

答:由于εi ~N(0, σ2 ) i=1,2, …,n所以Y i =β0 + β1X i + εi ~N (β0+β1X i , σ2 ) 最大似然函数:使得Ln (L )最大的0ˆβ,1ˆβ就是β0,β1的最大似然估计值。

01ˆˆˆˆi ii i iY X e Y Y ββ=+=-})],([21exp{)2()(),,(2010122/21210i i ni n i i ni X Y Y f L βββσπσσββ+--=∏=∑=-=2010122210)],([21)2ln(2)},,({i i ni X Y n L Ln βββσπσσββ+---=∑=0100ˆˆQQββ∂∂==∂∂同时发现使得Ln (L )最大就是使得下式最小,∑∑+-=-=nii i ni X Y Y Y Q 121021))ˆˆ(()ˆ(ββ上式恰好就是最小二乘估计的目标函数相同。

2020年智慧树知道网课《应用回归分析》课后章节测试满分答案

2020年智慧树知道网课《应用回归分析》课后章节测试满分答案

第一章测试1【多选题】(2分)当一个经济问题的回归模型通过了各种统计检验,且模型具有合理的经济意义时,该回归模型就可用于A.经济变量的因素分析B.模型的显著性检验C.进行经济预测D.给定被解释变量值来控制解释变量值2【判断题】(2分)常用的样本数据有时间序列数据和横截面数据。

A.错B.对3【多选题】(2分)随机误差项主要包括以下哪些因素的影响?A.其他随机因素B.样本采集过程中的测量误差C.由于人们认识的局限性或时间、费用、数据质量等的约束未引入回归模型但又对回归被解释变量有影响的因素D.理论模型的设定误差4【判断题】(2分)变量间具有密切关联而又不能由某一个或某一些变量确定另外一个变量的关系称为变量间的统计关系。

A.对B.错5【单选题】(2分)进行回归分析时,假定相关的两个变量()。

A.都不是随机变量B.一个是随机变量,一个不是随机变量C.都是随机变量D.随机或非随机都可以第二章测试1【单选题】(2分)总体平方和SST、残差平方和SSE、回归平方和SSR三者之间的关系是()。

A.SSE=SSR-SSTB.SST=SSR+SSEC.SSR=SST+SSED.SSE=SSR+SST2【单选题】(2分)反映由模型中解释变量所解释的那部分离差大小的是()。

A.残差平方和B.总体平方和C.回归平方和D.样本平方和3【多选题】(2分)古典线性回归模型的普通最小二乘估计量的特性有()。

A.无偏性B.不一致性C.最小方差D.线性4【判断题】(2分)一元线性回归分析中的回归平方和SSR的自由度是1。

A.错B.对5【单选题】(2分)进行相关分析时,假定相关的两个变量()。

A.一个是随机变量,一个不是随机变量B.随机或非随机都可以C.都是随机变量D.都不是随机变量第三章测试1【判断题】(2分)在多元线性回归模型中,进行方程的显著性检验时,检验的原假设为。

A.错B.对2【判断题】(2分)对于多元线性回归模型,参数β的最小二乘估计为,则是β的无偏估计。

最新应用回归分析-第6章课后习题参考答案

最新应用回归分析-第6章课后习题参考答案

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。

如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

《应用回归分析》课后题答案解析

《应用回归分析》课后题答案解析

(8) t
1
2
/ Lxx
1
Lxx
2
其中
1 n2
n i1
ei 2
1 n2
n i1
( yi
2
yi )
0.0036 1297860 8.542 0.04801
t /2 1.895
t 8.542 t /2
接受原假设 H 0: 1 0, 认为 1 显著不为 0,因变量 y 对自变量 x 的一元线性回归成立。
( yi
2
yi )
1 n-2
n i=1
( yi
( 0 1
2
x))
=
1 3
( 10-(-1+71))2 (10-(-1+7 (20-(-1+7 4))2 (40-(-1+7
2))2 (20-(-1+7 5))2
3))2
1 16 9 0 49 36
3
110 / 3
1
330 6.1
《应用回归分析》部分课后习题答案
第一章 回归分析概述
变量间统计关系和函数关系的区别是什么 答:变量间的统计关系是指变量间具有密切关联而又不能由某一个或某一些变量 唯一确定另外一个变量的关系,而变量间的函数关系是指由一个变量唯一确定另 外一个变量的确定关系。
回归分析与相关分析的联系与区别是什么 答:联系有回归分析和相关分析都是研究变量间关系的统计学课题。区别有 a. 在回归分析中,变量 y 称为因变量,处在被解释的特殊地位。在相关分析中,变 量 x 和变量 y 处于平等的地位,即研究变量 y 与变量 x 的密切程度与研究变量 x 与变量 y 的密切程度是一回事。b.相关分析中所涉及的变量 y 与变量 x 全是随机 变量。而在回归分析中,因变量 y 是随机变量,自变量 x 可以是随机变量也可以 是非随机的确定变量。C.相关分析的研究主要是为了刻画两类变量间线性相关的 密切程度。而回归分析不仅可以揭示变量 x 对变量 y 的影响大小,还可以由回归 方程进行预测和控制。

第六章 多元回归分析:其他问题

第六章 多元回归分析:其他问题
量的异常值(极端观测值)不太敏感。
• 对于大正整数变量(以年度量的变量除外),通常都可以取对
数。
含有交互项的模型
• 例3:房价的决定方程
= 0 + 1 sqrft + 2 + 3 × + 4 ℎ +
– 房间数对房价的偏效应:2 + 3
总体方差的无偏估计量。
• 值得注意的是,两个无偏估计量的比并非一个无偏估计量,因
此修正R-平方并不比R平方好。
• 修正R-平方的优势:为在模型中另外增加自变量施加了惩罚。
2
– 在模型中增加自变量,R2不可能下降,因为SSR不会上升;但2 不
一定,因为SSR下降时n-k-1也会下降。
– 通过代数运算可以得到:如果我们在回归方程中增加一个新自变
,即 = 1的概率(响应概率/成功概率)是自变量
的线性函数; = 0 =1- = 1 也是自变量的线
性函数。
– 在以上模型中,在保持其他因素不变的情况下, 度
量了因 的变化而导致响应概率的变化。
∆ = 1 = ∆
例8 已婚妇女劳动力参与状况
116.974
1.049
0.0656
1.049
观测个数
1388
1388
1388
R2
0.0298
0.0298
0.0298
SSR
557485.51
2177.6778
557485.51
SSE
20.063
1.2539
20.063
intercept
标准化系数
• 在工资方程中包括考试分数时,相比较分数的水平值的提高对
测值的关系

应用回归分析第四版答案

应用回归分析第四版答案

应用回归分析第四版答案【篇一:应用回归分析人大版前四章课后习题答案详解】应用回归分析(1-4章习题详解)(21世纪统计学系列教材,第二(三)版,何晓群,刘文卿编著中国人民大学出版社)目录1 回归分析概述 ....................................................................................................... (6)1.1 变量间统计关系和函数关系的区别是什么? (6)1.2 回归分析与相关分析的区别与联系是什么? (7)1.3回归模型中随机误差项?的意义是什么? (7)1.4线性回归模型的基本假设是什么? (7)1.5 回归模型的设置理论根据是什么?在回归变量设置中应该注意哪些问题? (8)1.6收集,整理数据包括哪些内容? (8)1.7构造回归理论模型的基本根据是什么? (9)1.8为什么要对回归模型进行检验? (9)1.9回归模型有哪几个方面的应用? (10)1.10为什么强调运用回归分析研究经济问题要定性分析和定量分析相结合? (10)2 一元线性回归 ....................................................................................................... . (10)2.1一元线性回归模型有哪些基本假定? (10)2.2考虑过原点的线性回归模型足基本假定,求ny??*x??i1ii,i?1,2,...n 误差?1,?2,...?n仍满?1的最小二乘估计。

.............................................................................. 11 n2.3证明?e?o,?xe?0. .................................................................................. . (11)i?1ii?1ii2.4回归方程e(y)????x的参数?,?o101的最小二乘估计与最大似然估计在什么条件下等价?给出理由? (12)2.5证明??0是??0的无偏估计。

统计学原理-第六章--相关与回归分析习题

统计学原理-第六章--相关与回归分析习题

A+1 B 0 C 0.5 D [1]5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( )A线性相关还是非线性相关B正相关还是负相关C完全相关还是不完全相关D单相关还是复相关6.某校经济管理类的学生学习统计学的时间()与考试成绩(y)之x间建立线性回归方程y c=a+b。

经计算,方程为y c=200—0.8x,该方程参数x的计算( )A a值是明显不对的B b值是明显不对的C a值和b值都是不对的 C a值和6值都是正确的7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )A 8B 0.32C 2D 12.58.进行相关分析,要求相关的两个变量( )A都是随机的B都不是随机的C一个是随机的,一个不是随机的D随机或不随机都可以9.下列关系中,属于正相关关系的有( )A合理限度内,施肥量和平均单产量之间的关系B产品产量与单位产品成本之间的关系C商品的流通费用与销售利润之间的关系D流通费用率与商品销售量之间的关系10.相关分析是研究( )A变量之间的数量关系B变量之间的变动关系C变量之间的相互关系的密切程度D变量之间的因果关系11.在回归直线y c=a+bx,b<0,则x与y之间的相关系数( )A =0B =lC 0<<1D -1<<0r r r r12.在回归直线yc=a+bx中,b表示( )A当x增加一个单位,,y增加a的数量B当y增加一个单位时,x增加b的数量C当x增加一个单位时,y的均增加量D当y增加一个单位时,x的平均增加量13.当相关系数r=0时,表明( )A现象之间完全无关B相关程度较小C现象之间完全相关D无直线相关关系14.下列现象的相关密切程度最高的是( )A某商店的职工人数与商品销售额之间的相关系数0.87B流通费用水平与利润率之间的相关关系为-0.94C商品销售额与利润率之间的相关系数为0.51D商品销售额与流通费用水平的相关系数为-0.8115.估计标准误差是反映( )A平均数代表性的指标B相关关系的指标C回归直线的代表性指标D序时平均数代表性指标三、多项选择题1.下列哪些现象之间的关系为相关关系( )A家庭收入与消费支出关系B圆的面积与它的半径关系C广告支出与商品销售额关系D单位产品成本与利润关系E在价格固定情况下,销售量与商品销售额关系2.相关系数表明两个变量之间的( )A线性关系B因果关系C变异程度D相关方向E相关的密切程度3.对于一元线性回归分析来说( )A两变量之间必须明确哪个是自变量,哪个是因变量B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值C可能存在着y依x和x依y的两个回归方程D回归系数只有正号E 确定回归方程时,尽管两个变量也都是随机的,但要求自变量是给定的。

应用回归分析,第6章课后习题参考答案

应用回归分析,第6章课后习题参考答案

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。

如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X的列向量(即X1,X2,X p)不相关。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

应用回归分析-课后习题答案-何晓群.doc

应用回归分析-课后习题答案-何晓群.doc

第二章 一元线性回归2.14 解答:(1)散点图为:(2)x 与y 之间大致呈线性关系。

(3)设回归方程为01y x ββ∧∧∧=+1β∧=12217()ni ii nii x y n x yxn x --=-=-=-∑∑0120731y x ββ-∧-=-=-⨯=-17y x ∧∴=-+可得回归方程为(4)22ni=11()n-2i i y y σ∧∧=-∑ 2n 01i=11(())n-2i y x ββ∧∧=-+∑=2222213⎡⎤⨯+⨯+⨯⎢⎥+⨯+⨯⎣⎦(10-(-1+71))(10-(-1+72))(20-(-1+73))(20-(-1+74))(40-(-1+75)) []1169049363110/3=++++=1330 6.13σ∧=≈ (5)由于211(,)xxN L σββ∧1112()/xxxxL t L ββσσ∧∧-==服从自由度为n-2的t 分布。

因而1/2()|(2)1xx L P t n αββασ∧⎡⎤-⎢⎥<-=-⎢⎥⎣⎦也即:1/211/2(xxxxp t t L L ααβββ∧∧∧∧-<<+=1α-可得11195%333333β∧的置信度为的置信区间为(7-2.353,7+2.353)即为:(2.49,11.5)2201()(,())xxx N n L ββσ-∧+00002221()1()()xxxxt x x n L n L σσ∧∧--∧∧==++服从自由度为n-2的t 分布。

因而00/22(2)11()xx P t n x n L αασ∧-∧⎡⎤⎢⎥⎢⎥<-=-⎢⎥⎢⎥⎢⎥+⎢⎥⎣⎦即220/200/21()1()()1xxxxx x p t t n L n L βσββσα--∧∧∧∧-+<<++=- 可得195%7.77,5.77β∧-的置信度为的置信区间为()(6)x 与y 的决定系数22121()490/6000.817()nii nii y y r y y ∧-=-=-==≈-∑∑(7)ANOV Ax平方和df均方 F 显著性组间(组合) 9.000 2 4.500 9.000 .100 线性项加权的 8.167 1 8.167 16.333 .056 偏差.833 1 .833 1.667.326组内 1.000 2 .500总数10.0004由于(1,3)F F α>,拒绝0H ,说明回归方程显著,x 与y 有显著的线性关系。

应用回归分析第四版课后习题答案_全_何晓群_刘文卿

应用回归分析第四版课后习题答案_全_何晓群_刘文卿

实用回归分析第四版第一章回归分析概述1.3回归模型中随机误差项ε的意义是什么?答:ε为随机误差项,正是由于随机误差项的引入,才将变量间的关系描述为一个随机方程,使得我们可以借助随机数学方法研究y与x1,x2…..xp的关系,由于客观经济现象是错综复杂的,一种经济现象很难用有限个因素来准确说明,随机误差项可以概括表示由于人们的认识以及其他客观原因的局限而没有考虑的种种偶然因素。

1.4 线性回归模型的基本假设是什么?答:线性回归模型的基本假设有:1.解释变量x1.x2….xp是非随机的,观测值xi1.xi2…..xip是常数。

2.等方差及不相关的假定条件为{E(εi)=0 i=1,2…. Cov(εi,εj)={σ^23.正态分布的假定条件为相互独立。

4.样本容量的个数要多于解释变量的个数,即n>p.第二章一元线性回归分析思考与练习参考答案2.1一元线性回归有哪些基本假定?答:假设1、解释变量X是确定性变量,Y是随机变量;假设2、随机误差项ε具有零均值、同方差和不序列相关性:E(εi)=0 i=1,2, …,nVar (εi)=σ2i=1,2, …,nCov(εi,εj)=0 i≠j i,j= 1,2, …,n假设3、随机误差项ε与解释变量X之间不相关:Cov(X i, εi)=0 i=1,2, …,n假设4、ε服从零均值、同方差、零协方差的正态分布εi~N(0, σ2) i=1,2, …,n2.3 证明(2.27式),∑e i =0 ,∑e i X i=0 。

证明:∑∑+-=-=niiiniXYYYQ12121))ˆˆ(()ˆ(ββ其中:即: ∑e i =0 ,∑e i X i =02.5 证明0ˆβ是β0的无偏估计。

证明:)1[)ˆ()ˆ(1110∑∑==--=-=ni i xxi n i i Y L X X X Y n E X Y E E ββ )] )(1([])1([1011i i xx i n i i xx i ni X L X X X n E Y L X X X n E εββ++--=--=∑∑==1010)()1(])1([βεβεβ=--+=--+=∑∑==i xx i ni i xx i ni E L X X X nL X X X n E 2.6 证明 证明:)] ()1([])1([)ˆ(102110i i xxi ni ixx i ni X Var L X X X n Y L X X X n Var Var εβββ++--=--=∑∑== 222212]1[])(2)1[(σσxx xx i xx i ni L X n L X X X nL X X X n +=-+--=∑=2.7 证明平方和分解公式:SST=SSE+SSR证明:2.8 验证三种检验的关系,即验证: (1)21)2(r r n t --=;(2)2221ˆˆ)2/(1/t L n SSE SSR F xx ==-=σβ 01ˆˆˆˆi i i i iY X e Y Y ββ=+=-())1()1()ˆ(222122xx ni iL X n X XX nVar +=-+=∑=σσβ()()∑∑==-+-=-=n i ii i n i i Y Y Y Y Y Y SST 1212]ˆ()ˆ[()()()∑∑∑===-+--+-=ni ii ni i i i ni iY Y Y Y Y Y Y Y 12112)ˆˆ)(ˆ2ˆ()()SSESSR )Y ˆY Y Y ˆn1i 2ii n1i 2i +=-+-=∑∑==0100ˆˆQQββ∂∂==∂∂证明:(1)ˆt======(2)2222201111 1111ˆˆˆˆˆˆ()()(())(()) n n n ni i i i xxi i i iSSR y y x y y x x y x x Lβββββ=====-=+-=+--=-=∑∑∑∑2212ˆ/1ˆ/(2)xxLSSRF tSSE nβσ∴===-2.9 验证(2.63)式:2211σ)L)xx(n()e(Varxxii---=证明:0112222222ˆˆˆvar()var()var()var()2cov(,)ˆˆˆvar()var()2cov(,())()()11[]2[]()1[1]i i i i i i ii i i ii ixx xxixxe y y y y y yy x y y x xx x x xn L n Lx xn Lβββσσσσ=-=+-=++-+---=++-+-=--其中:222221111))(1()(1))(,()()1,())(ˆ,(),())(ˆ,(σσσββxxixxiniixxiiiniiiiiiiiLxxnLxxnyLxxyCovxxynyCovxxyCovyyCovxxyyCov-+=-+=--+=-+=-+∑∑==2.10 用第9题证明是σ2的无偏估计量证明:2221122112211ˆˆ()()()22()111var()[1]221(2)2n ni ii in niii i xxE E y y E en nx xen n n Lnnσσσσ=====-=---==----=-=-∑∑∑∑第三章2ˆ22-=∑neiσ1.一个回归方程的复相关系数R=0.99,样本决定系数R 2=0.9801,我们能判断这个回归方程就很理想吗? 答:不能断定这个回归方程理想。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第6章多重共线性的情形及其处理思考与练习参考答案6.1 试举一个产生多重共线性的经济实例。

答:例如有人建立某地区粮食产量回归模型,以粮食产量为因变量Y,化肥用量为X1,水浇地面积为X2,农业投入资金为X3。

由于农业投入资金X3与化肥用量X1,水浇地面积X2有很强的相关性,所以回归方程效果会很差。

再例如根据某行业企业数据资料拟合此行业的生产函数时,资本投入、劳动力投入、资金投入与能源供应都与企业的生产规模有关,往往出现高度相关情况,大企业二者都大,小企业都小。

6.2多重共线性对回归参数的估计有何影响?答:1、完全共线性下参数估计量不存在;2、近似共线性下OLS估计量非有效;3、参数估计量经济含义不合理;4、变量的显著性检验失去意义;5、模型的预测功能失效。

6.3 具有严重多重共线性的回归方程能不能用来做经济预测?答:虽然参数估计值方差的变大容易使区间预测的“区间”变大,使预测失去意义。

但如果利用模型去做经济预测,只要保证自变量的相关类型在未来期中一直保持不变,即使回归模型中包含严重多重共线性的变量,也可以得到较好预测结果;否则会对经济预测产生严重的影响。

6.4多重共线性的产生于样本容量的个数n、自变量的个数p有无关系?答:有关系,增加样本容量不能消除模型中的多重共线性,但能适当消除多重共线性造成的后果。

当自变量的个数p较大时,一般多重共线性容易发生,所以自变量应选择少而精。

6.5 自己找一个经济问题来建立多元线性回归模型,怎样选择变量和构造设计矩阵X才可能避免多重共线性的出现?答:请参考第三次上机实验题——机场吞吐量的多元线性回归模型,注意利用二手数据很难避免多重共线性的出现,所以一般利用逐步回归和主成分回归消除多重共线性。

如果进行自己进行试验设计如正交试验设计,并收集数据,选择向量使设计矩阵X 的列向量(即X 1,X 2, X p )不相关。

6.6对第5章习题9财政收入的数据分析多重共线性,并根据多重共线性剔除变量。

将所得结果与逐步回归法所得的选元结果相比较。

附5.9 在研究国家财政收入时,我们把财政收入按收入形式分为:各项税收收入、企业收入、债务收入、国家能源交通重点建设收入、基本建设贷款归还收入、国家预算调节基金收入、其他收入等。

为了建立国家财政收入回归模型,我们以财政收入y (亿元)为因变量,自变量如下:x 1为农业增加值(亿元),x 2为工业增加值(亿元),x 3为建筑业增加值(亿元),x 4为人口数(万人),x 5为社会消费总额(亿元),x 6为受灾面积(万公顷)。

据《中国统计年鉴》获得1978—1998年共21个年份的统计数据,见表5.4(P167)。

由定性分析知,所有自变量都与y 有较强的相关性,分别用后退法和逐步回归法作自变量选元。

解:逐步回归法Coefficients a715.30990.5747.898.000.179.004.99440.739.0001010.840136.0277.431.000.308.048 1.706 6.367.000-.405.152-.714-2.665.016865.929103.7258.348.000.639.086 3.5417.439.000-.601.119-1.059-5.057.000-.361.086-1.493-4.216.001(Constant)x5(Constant)x5x1(Constant)x5x1x2Model 123B Std. Error UnstandardizedCoefficients BetaStandardizedCoefficients tSig.Dependent Variable: ya.回归方程为:y=865.929—0.601x1-0.361x2+0.639x5但是回归系数的解释不合理。

解:(1)分析数据的多重共线性。

直接进行Y 与四个变量的线性回归方程,并做多重共线性的诊断,由SPSS 分析得相应输出结果如下: a 方差扩大因子法,由表1中VIF 值, 可知x1,x2,x3,x5的方差扩大因子远大于10,这几个自变量之间存在很高的线性相关性,即回归方程存在严重的多重共线性。

b.特征根和条件数判定法。

输出结果如表2:表1表2其中最大的条件数k 7=290.443,说明自变量间存在严重的多重共线性,这与方差扩大因子法的结果一致。

其中x0,x2,x4,x5在第五行同时较大,表明其间存在多重共线性。

(2)消除多重共线性。

下面根据多重共线性剔除变量。

先剔除VIF 值最大的自变量2x ,得:Coefficients a-1503.1751546.931-.972.347-.717.163-1.264-4.391.001.004268.990-.801.467-.526-1.713.107.003305.769.029.017.102 1.695.111.08511.701.487.078 2.701 6.238.000.002609.067-.010.008-.026-1.177.258.6161.624(Constant)x1x3x4x5x6Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,VIF 的值中,除了6x 以外,其余的均大于10,故回归方程依然存在严重的多重共线性。

继续剔除VIF 值最大的自变量5x ,得:Coefficients a-3011.2042804.617-1.074.299-.075.233-.131-.321.753.006161.9881.515.521.995 2.909.010.009112.777.040.031.141 1.286.217.08611.573.002.015.007.167.869.6521.533(Constant)x 1x 3x 4x 6Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,VIF 的值中,除了6x 以外,其余的均大于10,故回归方程还存在严重的多重共线性。

继续剔除VIF 值最大的自变量1x ,得:Coefficients a-2349.3381848.340-1.271.2211.351.096.88714.119.000.2494.018.032.019.113 1.705.106.222 4.509.003.014.009.234.818.6731.485(Constant)x3x4x6Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.由上表可以看出,所有自变量的VIF 值都小于10,故回归方程的多重共线性已经被消除。

但自变量6x 没有通过T 检验,说明不显著,剔除6x 后再做回归分析得:Coefficients a-2358.8091798.722-1.311.2061.351.093.88714.505.000.2494.018.034.017.1191.939.068.2494.018(Constant)x 3x 4Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,得到的回归方程为34ˆ 1.3510.0342358.809yx x =+- 回归方程的多重共线性虽然被消除,但是模型的自变量4x 的t 检验P 值为0.068>0.05,说明在95%的置信度下4x 对y 的线性影响不显著。

模型只剩下x 3,Coefficients a1123.404112.01710.029.0001.508.050.99030.316.000(Constant)x 3Model 1B Std. Error Unstandardized Coefficients BetaStandardizedCoefficients tSig.Dependent Variable: ya.(3)所得结果与逐步回归结果比较。

对逐步回归选出的三个自变量做多重共线性的分析,得到:Coefficients a865.929103.7258.348.000-.601.119-1.059-5.057.000.005188.019-.361.086-1.493-4.216.001.002537.151.639.0863.5417.439.000.001971.012(Constant)x 1x 2x 5Model 1B Std. E rror Unstandardized Coefficients BetaStandardizedCoefficients tSig.Tolerance VIFCollinearity Statistics Dependent Variable: ya.从上表可以看出,尽管用逐步回归的方法选出的自变量为125,,x x x ,但是回归方程还是存在多重共线性。

但是根据多重共线性剔除变量后,模型只剩下x 3,损失了很多信息,得到的模型 国家财政收入只与x 3建筑业增加值有关,显然不符合建模的初衷。

(4)主成分回归法标准化所有自变量,做主成分分析得输出结果如下:由上表,第一个主成分包含有原始6个变量近85.546%的信息量,故只选此一个主成分。

Component Matrix(a)主成分 Component1Zscore(x1) .991 Zscore(x2) .985 Zscore(x3) .983 Zscore(x4) .929 Zscore(x5) .990 Zscore(x6).610由上表得第一个主成分表达式为:Z1=(0.991x1*+0.983x3*+0.929x4*+0.990x5*+0.610x6*+0.985x5*)/5.133,即:*118839.0*192870.0*180986.0*191506.0*191896.0*193064.06543211x x x x x x Z +++++=作Y*与Z1的最小二乘估计,输出结果如下:Coefficients a,b.984.040.98424.325.000REGR factor score1 for analy sis 1Model 1B Std. ErrorUnstandardizedCoefficients BetaStandardized Coefficients t Sig.Dependent Variable: Zscore(y )a. Linear Regression through the Originb.得主成分回归的回归方程为:()*118839.0*192870.0*180986.0*191506.0*191896.0*193064.0984.0*654321x x x x x x Y +++++=NMinimum Maximum Mean Std. Deviationx1 21 1018.40 14599.60 5473.9000 4597.02194 x2 21 1607.00 33429.80 10351.7619 10778.83808 x3 21 138.20 5262.00 1510.2619 1712.26984 x4 21 96259.00 124810.00110744.0476 9211.51254 x5 21 2239.10 46405.90 14964.0429 14452.56642 x6 21 31890.00 55470.00 45293.5238 6967.40751 y211132.309876.003400.44292608.15723根据标准化的均值和标准差还原变量后最终方程为:y= -6175.44+0.1078x1+0.0457x2+0.2870x3+0.0504x4+0.0342x5+0.0438x6忽略此处..。

相关文档
最新文档