第六讲 交通流体理论

合集下载

《交通流理论 》课件

《交通流理论 》课件

数值模拟法
定义:通过计 算机程序模拟 交通流现象的
方法
优点:可以模拟 复杂的交通流现 象,包括车辆之 间的相互作用、
道路条件等
缺点:需要较 高的计算能力 和技术水平, 且可能存在误

应用:用于研 究交通流的基 本规律、优化 交通设计和控
制等方面
交通流分析与评价方法
交通流流量分析
交通流量定义:单位时间内通过道路某一断面的车辆数 交通流量分类:基本流量、设计流量、实际流量 交通流量调查方法:路边调查、断面调查、连续调查
交通信号优化:通过调整交通 信号的配时方案,减少车辆在 路口的等待时间和延误
智能交通系统应用:利用智能 交通系统技术,实时监测交通
状况,调整交通流分配
交通流控制策略
交通信号控制:通过调整交通信号灯的配时方案,优化交通流分配,减少 拥堵和事故发生率。
智能交通系统:利用先进的技术手段,实时监测交通流量、车速等参数, 为交通管理部门提供决策支持,实现交通流优化与控制。
交通流分析与评价方法在交 通安全与控制中的应用
交通流分析与评价方法介绍
交通流分析与评价方法在环境 保护与可持续发展中的应用
交通流数据的采集与处理
交通流分析与评价方法的发 展趋势与挑战
交通流优化与控制策略
交通流优化方法
道路设计优化:优化道路布局 和设计,提高道路通行能力和 安全性
交通管理优化:加强交通管理, 提高交通运行效率和管理水平
交通组织优化:通过合理规划道路网络、优化交通标志标线等措施,提高 道路通行效率,减少交通冲突。
公共交通优先:通过设置公交专用道、提高公交服务质量等措施,鼓励市 民选择公共交通出行,减少私家车使用,从而优化交通流。

公共基础(力学)第六章流体力学讲义

公共基础(力学)第六章流体力学讲义

流体力学第1节流体主要物理性质及力学模型流体主要物理性质:能够对流体静止和机械运动产生影响的性质一、流动性二、质量、密度三、粘性四、压缩性与膨胀性流体的主要物理性质一. 流体的流动性流体具有易流动性,不能维持自身形状,静止流体几乎不能承受拉力和剪切力。

流体的流动性受粘滞性制约。

二. 流体的质量和密度对于匀质流体,单位体积流体所具有的质量为流体的密度。

4℃水的密度为:流体的重度:三. 流体的粘滞性1)粘滞性定义:流体在运动状态下,抵抗剪切变形的能力。

平板试验说明了流体的粘滞性:两相邻液流层静止状态:两相邻液流层相对运动状态每个流体层,受到的摩擦力均与本身的相对运动方向相反,内摩擦力的作用:阻碍流体的相对运动(2) 牛顿内摩擦定律由内摩擦力的特征整理出牛顿内摩擦力的数学表达式:式中:T——内摩擦力,N;τ——单位面积上的内摩擦力(即粘滞切应力)N/m2 ;μ——动力粘滞系数,与流体种类、温度有关, Pa·s;du/dy——速度梯度,s;A——接触面积, m2 。

凡符合牛顿内摩擦定律的流体,即τ与du/dy呈过坐标原点的正比例关系的流体称为牛顿流体。

(3)粘滞系数动力粘滞系数μ:是一个反映液体粘滞性大小的量。

运动粘滞系数ν:因为ν具有运动学量纲,故称为运动粘滞系数。

题6-1 运动粘滞系数与动力粘滞系数的关系,两个系数的单位例6-1(2005年)已知空气的密度为ρ为 1.205kg/m3 , 动力粘度(动力黏滞系数)μ为1.83×10-5Pa •s,那么它的运动粘度(运动黏滞系数)v 为()A 2.2 × 10-5 s/ ㎡B 2.2 × 10-5㎡ / sC 15.2 × 10-6s/ ㎡D 15.2 × 10-6㎡ / s解:运动黏度答案:D例题(2011年)空气的粘性系数μ与水的粘性系数μ分别随温度的降低而()A 降低、升高B 降低、降低C 升高、降低D 升高、升高解:液体的粘性系数μ随温度的变化规律与我们日常生活中粘滞性和流动性的概念是一致的,例如:油的温度降低,流动性变差,粘滞性增大;这一特性是大家都了解到生活常识,由此可以判断:液体温度降低粘滞性增大、流动性降低;而气体的粘性特征与液体相反,即使不了解粘滞性的机理,也可以通过常识性知识去判断选择。

交通流理论-流体理论

交通流理论-流体理论

(5 - 8 )
在流量—密度相关曲线上, 在流量—密度相关曲线上,集 散波的波速就是割线的斜率、微弱波 散波的波速就是割线的斜率、 流量和密度非常接近) (流量和密度非常接近)的波速就是 切线的斜率。如图所示, 切线的斜率。如图所示,当车流从低 密度低流量的A 密度低流量的A状态转变的高密度高 流量的B状态时, 流量的B状态时,集散波的波速是正 的,即波沿道路前进。当车流从低流 即波沿道路前进。 量高密度的C 量高密度的C状态转变到高流量而密 度较低的B状态时, 度较低的B状态时,集散波的波速是 负的,即波沿道路后退。 负的,即波沿道路后退。从A状态到 状态的波是集结波。而从B状态到A B状态的波是集结波。而从B状态到A 状态的波是消散波,两者都是前进波。 状态的波是消散波,两者都是前进波。 状态到C状态的波是集结波, 从B状态到C状态的波是集结波,从C 状态到B状态的波为消散波, 状态到B状态的波为消散波,两者都 是后退波。 是后退波。
(5-3)
q = ku
∂k ∂ ( ku ) + = 0 ∂t ∂x
(5-4)
上式表明,当车流量随距离而降低时, 上式表明,当车流量随距离而降低时,车流密度则随 时间而增大。 时间而增大。
二、车流波动理论 交通车流和一般的流体一样, 交通车流和一般的流体一样,当道路具有瓶颈形 式路段,车流发生紊乱拥挤现象, 式路段,车流发生紊乱拥挤现象,会产生一种与车流 方向相反的波,好像声波碰到障碍物时的反射一样, 方向相反的波,好像声波碰到障碍物时的反射一样, 阻止车流前进,降低车速。如图5 阻止车流前进,降低车速。如图5-1。
第五节
交通流的流体力学模拟理论
2、车流连续性方程的建立 假设车辆顺次通过断面I II的时间间隔为 的时间间隔为Δ 假设车辆顺次通过断面I和II的时间间隔为Δt,两断 面的间距为Δ 面的间距为Δx。

交通流理论 - 课件

交通流理论 - 课件
对应于前面车辆的加速或减速刺激,即相对速度是正还是负或者车头间 距是增大还是减小,跟驰车辆的反应具有不对称性。 为了在跟驰模型中反映出这种不对称性,把跟驰理论的基础模型改写成 如下形式:
������ሷ ������+������ ������ + ������ = ������������ ������ሶ ������ ������ − ������ሶ ������+������ ������ + ������
2/39
第三节 稳态流分析
一、何为稳态流?
满足局部稳定性和渐进稳定性要求,即不发生恒幅和增幅波动的交 通流为稳态流。 本节将利用单车道车辆跟驰模型讨论稳态流的特性,针对不同的交通 流状态对跟驰模型进行必要的扩充和修正,并由此推导相应的速度— 间距(或速度—密度)、流量—密度关系式。
3/39
一、线性跟驰模型分析
15/39
积分常数的确定依赖于具体的m和l值(l≥0,m≥0),而且与两个边界 条件(1)������ → ∞时,������ → ������������;(2)s=L时,u=0的满足情况有关(各参数含 义同前),下面分几种情况进行讨论。
(1)������ > 1,0 ≤ ������ < 1的情况,两边界条件均满足,积分常数a、b的值可 由下式求得:
两边进行积分得:
−������ ������ሶ������+1 ������ = ������������ ������ − ������������+1 (������) + ������
因为有: ������ሶ������+1 ������ =v, ������������ ������ − ������������+1 ������ = 1Τ������

《交通流理论 》课件

《交通流理论 》课件
介观车辆行为模型
研究车辆在行驶过程中的群体行为和相互作用,揭示交通流 的内在机制。
交通流模型的比较与选择
适用范围
根据研究目的和场景选择合适的交通流模型,宏观模型适用于整体交通状况分析和预测,微观模型适用于个体车辆行 为研究和模拟,介观模型适用于揭示交通流内在机制和规律。
精度与计算成本
不同模型的精度和计算成本各不相同,需根据研究需求进行权衡和选择。
交通安预防提供理论支持。
02
交通流模型
宏观交通流模型
80%
平均速度-流量模型
描述交通流中车辆的平均速度与 流量之间的关系。
100%
交通流密度-流量模型
研究交通流密度与流量之间的关 系,用于描述交通流的拥堵状况 。
80%
宏观交通流模拟模型
通过模拟整个交通网络的运行情 况,预测交通流的变化趋势。
数据需求
不同模型所需的数据类型和数据量也不同,需根据可获取的数据情况进行选择。
03
交通流特性分析
交通流的流量特性
流量定义
交通流量是指在单位时间内通过道路某一断面的 车辆数。
流量变化
交通流量在不同时间段和不同道路条件下会有所 变化,通常呈现早晚高峰现象。
流量影响因素
交通流量受到多种因素的影响,如道路状况、交 通规则、车辆类型、驾驶员行为等。
微观交通流模型
车辆跟驰模型
描述单个车辆在行驶过程中与 前车的跟随行为。
车辆换道模型
研究车辆在行驶过程中换道的 决策过程和换道行为对交通流 的影响。
微观交通流模拟模型
模拟单个车辆在道路上的行驶 行为,用于评估交通设施和交 通管理措施的效果。
介观交通流模型
流体动力学模型
将交通流视为流体,通过流体动力学理论描述交通流的运动 特性。

交通工程学——交通流理论

交通工程学——交通流理论
统中正在接受服务(收费)和排队的统称。
29
二、排队论的基本概念
排队系统的三个组成部分: 输入过程:是指各种类型的“顾客(车辆或行人)”按怎样的规律到达。 输入方式包括:
泊松输入、定长输入、爱尔朗输入 排队规则:是指到达的顾客按怎样的次序接受服务。排队规则包括:
等待制、损失制、混合制 服务方式: 指同一时刻多少服务台可接纳顾客,每一顾客服务了多 少时间。服务时间分布包括:
28
二、排队论的基本概念
“排队”与“排队系统” 当一队车辆通过收费站,等待服务(收费)的车辆和正在被服务
(收费)的车辆与收费站构成一个“排队系统”。 等候的车辆自行排列成一个等待服务的队列,这个队列则称为“排
队”。 “排队车辆”或“排队(等待)时间”都是指排队的本身。 “排队系统中的车辆”或“排队系统消耗时间”则是在指排队系
由λ=360/3600=0.1
P(ht ) e t 同样P,(h车10头) 时e距小0.1于1010s的0.概37率为:
P(ht) 1 et 0.63
19
二、连续性分布
由上例可见,设车流的单向流量为Q(辆/h),则λ=Q/3600,
于是负指数公式可改写成:
Qt
P(ht) e 3600
负指数M分布的1 均值M和方差D分别为:
基本公式:
P(k )
(t)k
k!
e t
式中: P(k) —在计数间隔t 内到达 k 辆车的概率; λ —平均到车率(辆/s) ; t —每个计数间隔持续的时间(s) 。
5
一、离散型分布
令mP=λ(kt,)则:mk!k e m
递推公式:
P(0) em
P( k 1)
m k 1
P( k )

第3节---交通流理论

第3节---交通流理论
nT 1 q T h nL 1 k L s
1 h nT 1 s nL T hi nT i 1 L si nL i 1
nL nT
s vg h
3种观测方式
地点观测、移动观测、区间观测
x x x
t 地点观测
固定地点,一段时 间内进行的观测 连续时间 离散空间
t 移动观测
t
Time-Space Diagram
N t , x
N (t , x) :累积车辆台数
固定地点
t
x
:时间 :空间位置
t
交通流的流体力学理论基础(2)
流体力学的近似表现
1 维坐标空间 x:道路前进方向上的个地点的位置 到时刻 t 为止,通过道路某一横断面 x 的累积车辆台 数: N (t , x)
v2 v1 Qw 1 1 k 2 k1
1,2分别代表前后两种车流的状态,v代表车速,k代表 密度
3 种波速的比较
交通量q
空间平均速度
黑色
微弱波速度
绿色,红色
(q1 , k1 ) (q2 , k 2 )
集散波速度
浅蓝色
密度k q-k曲线
应用实例(Signal Control)(1)
qg k g vg
vs k g v g
g 1 n
1 n k g q g q kvs k g 1 g 1
n
Fundamental Diagram(q-k Curve)
交通流量不能超 过在临界密度所 对应的最大值 一个交通流量对 应两个状态
非拥挤区域和拥挤区域
城市道路与交通规划
第三节:交通流理论 3.1 交通流理论基本概念

6.交通流理论

6.交通流理论
第六章 交通流理论
一、交通流概述 二、交通流中各参数之间的关系 三、交通流统计分析特性 四、排队论及其应用 五、跟驰理论简介 六、流体力学模拟理论
一 交通流理论概述
交通流理论是使用物理学和数学的定律来描述交通特 性的一门边缘科学,是交通工程学的基础理论。 性的一门边缘科学,是交通工程学的基础理论。 概率论数理统计理论——微观的研究对各个车辆行驶 微观的研究对各个车辆行驶 概率论数理统计理论 微观 规律,找出交通流变化规律。 规律,找出交通流变化规律。 流体力学方法——宏观的研究整个交通流体的演变过 宏观的研究整个交通流体的演变过 流体力学方法 宏观 求出交通流拥挤状态的变化规律。 程,求出交通流拥挤状态的变化规律。 动力学跟踪理论——建立道路上行驶车辆流动线性微 动力学跟踪理论 建立道路上行驶车辆流动线性微 分方程式来分析跟驰车辆行驶情况和变化规律。 跟驰车辆行驶情况和变化规律 分方程式来分析跟驰车辆行驶情况和变化规律。
损失时间
启动损失时间:当信号灯变为绿灯时,车辆由停止状态开始运动, 启动损失时间:当信号灯变为绿灯时,车辆由停止状态开始运动,前几 辆车的车头时距是大于h 对于前几辆车,应增加其车头时距, 辆车的车头时距是大于ht 的,对于前几辆车,应增加其车头时距,从 而得到一个增量值,称为启动损失时间, 而得到一个增量值,称为启动损失时间,记为 l1
K=0 →V=Vf K=Kj→V=0 K=Km→V=Vm Q→Qmax
二、交通流中各参数之间的关系
1959年,格林柏(Greenberg)提出了用于密度很大时对数模 年 格林柏( ) 型:
V = Vm ln(
Kj K
)
格林柏模型 的适用范围
二、交通流中各参数之间的关系
1961年安德伍德(Underwood)提出了用于密度很小时的指数 年安德伍德( 年安德伍德 ) 模型: 模型:

交通流理论

交通流理论

将以上关系代入回波的基本方程中得到的回波速度为:
K1V f (1 1 ) K 2V f (1 2 ) VW K1 K 2
简化上式可得到回波速度,用 V f 1 (1 2 )
(1)密度接近相等的波 如图所示,如果断面S两 侧标准化密度大致相等, 若一侧密度η1=η时,另一 侧密度η2=η+Δη,则
车流波动理论
道路与铁道工程 苑广友
引言: 1.流体力学建立
1995年,英国学者把交通流比拟为一种流体,对一条很长的 公路隧道,研究了高密度车流情况下的交通流规律,提出了流 体动力学模拟理论。
把车流密度的变化,比拟成水波的起伏而抽象为车流波。 当车流因道路或者交通状况的改变而引起密度的改变时, 在车流中产生车流的传播,通过分析车流的传播速度,以 寻求车流流量和密度、速度之间的关系,并描述车流拥挤 —消散过程。该理论又可称为车流波动理论。
基本方程的推广应用
根据格林息尔兹的模型,停车产生的波和发车产生的波等回波的 特性如下: K Vi V f (1 i ) 当 Kj 假设

i
Ki Kj

Vi V f (1 i ) V1 V f (1 1 ) V2 V f (1 2 )
式中:ηi --相对于堵塞密度的密度值,称为标准化密度 η1 、η2 -- 密度变化的分界断面两侧的标准化密度值
(V1 VW ) K1t (V2 VW ) K 2t (V1 VW ) K1 (V2 VW ) K 2
整理得
VW
V1 K1 V2 K 2 K1 K 2
将q1=K1V1,q1=K1V1 代入上式得
VW
q1 q2 K1 K 2

交通流理论基础知识优秀课件

交通流理论基础知识优秀课件

车速调查
① 地点车速
人工量测法 测速雷达仪
测速雷达枪
② 区间车速(行驶车速) 汽车牌照法、流动车测定法
四、交通流理论
研究方法
概率论方法 交通跟驰理论 流体力学方法
概率论方法——离散型分布(泊松分布)
通过道路某一点的车 辆数常服从泊松分布。
p(x) mx em x!
泊松分布
x——时间段t内通过的车辆数 p(x)——时间段t内通过x辆车的概率 m——时间段t内通过车辆数的平均值。
设计通行能力: N 设计 N 可能 c
道路分类 αc
道路分类系数αc
快速路
主干路
次干路
0.75
0.80
0.85
支路 0.90
城市道路路段及交叉口服务水平划分标准
服务水平
A
B
C
D
E
F
V/C
<0.4
0.4~0.6 0.6~0.75 0.75~0.9 0.9~1.0
>1.0
交通影响评价时,负荷度(V/C)处于B级或C级水平,说明交通影响 区路段及交叉口对其项目开发所产生的交通有一定的承受能力。
C——车头间最小间隔(1~1.5s); T——平均车头间隔(s)。
例7
在一处不设信号灯管制的交叉口,次要道路上的车辆为能横穿主要道
路上的车流,需要主要道路上的车流中出现大于或等于6s的车头时距,
如果主要道路上的流量为1200(veh/h),问车头时距大于或等于6s的
交通量的时间变化规律
时变 日变 月变 年变
某市五一路客车流量时变图
交通量的空间变化规律
路段分布 车道分布
车道序号 α3
车道序修正系数

第六讲 交通流体理论

第六讲 交通流体理论
uw
交通流回波现象
7
2、集散波的定义
列队行驶的车辆在信号灯交叉口遇到红灯后, 即陆续停车排队而集结成密度高的队列;绿灯启 亮后,排队的车辆又陆续起动而疏散成一列具有 适当密度的车队。
车流中密度经过了由低到高,再由高到低两 个过程,车流中两种不同密度部分的分界面经过 一辆辆车向车队后部传播的现象,称为车流的波 动。车流波动沿道路移动的速度,称为波速。
2
物理特性 连续体 离散元素
变量
动量 状态方程 连续性方程
运动方程
交通流与流体流的比拟
流体动力学系统
交通流系统
单向不可压缩流体 单车道不可压缩车流
分子
车辆
质量m 速度v 压力p
密度k 速度u 流量q
mv
ku
P=cmt
m (mv) 0 t x dv c2 m 0 dt m x
q=ku
k (ku) 0 t x
或 qk22
q1 k1
0 0
qk22
q1 k1
0 0
前一种情况交通流从高流量、低密度、较高速度
进入低流量、高密度、较低速度状态。由于此时
交通波向后运动,所以上游交通流状态将受到影
响而变差。
后一种情况交通流从高密度、低流量、低速度状 态进入到低密度、高流量、高速度状态。由于交 通波向后运动,将对上游交通状况有所改善,如 前方阻碍解除时会出现这种状况。
[q (q q)]t [k (k k)]x
或: k q 0
t x
取极限可得: k q 0 t x
又: q ku
故:
k (ku) 0 t x
上式表明,当车流量随距离而降低时,车流密度则随 时间而增大。
5
如果路段上有交通的产生或离去,那么守 恒方程采用如下更一般的形式:

交通流理论

交通流理论
信号交叉口附近车道的通行能力是饱和交通流量、损失时间、 绿信比的函数
Chapter 4 道路交通流理论 东南大学
1
交通流理论的研究方法
流体动力学理论
宏观方

— 连续介质模型、波动理论
气体动理论
法 — 概率模型
中观方
随机服务系统理论(排队论)
模拟理论
微观方2
空间平均速度与时间平均速度的关系
速度是vi的车辆、在区间S内的旅行时间ti
n
n
测定区间距离
vs
由于信号周期对交叉口的交通流的阻隔,前几辆车的超过饱和
车头时距的部分的和,称为启动损失时间
l1 = ∑ti
在假设绿灯时间得到充分利用的前提下,净损失时间是指末辆 车通过停止线到绿灯信号再次开始之间的时间
25
信号交叉口间断流交通拥挤的解析
饱和交通流量是指,在给定的车道上在‘可用时间’内通过 最大车辆数。‘可用时间’当然不包括红灯时间、启动损失时 间、净损失时间
Kj 速度为零时的密度
Qm Km Vm 临界值
Km
Kj
Vf
Vf
Vm
速度
密度
Kj
Qm
9
Vf
密度 速度
流量
Q
Kj 10
交通流要素函数关系的导出
Q KV V Vf aK
交通量(密度)
Q KV K(Vf aK) aK2 Vf K
交通量(速度)
பைடு நூலகம்
V Vf aK
K
1 a
V
1 a
V
f
Page 83
K
V Vf e Km
……
6
K-V曲线的解释
② 能够比较自由的行走,速度逐渐变慢

交通流理论PPT(讲课)

交通流理论PPT(讲课)

向旭 2009年11月
北京建筑工程学院
向旭 2009年11月
北京建筑工程学院
交通流理论
二、车流连续性方程
设车流顺次通过断面Ⅰ和Ⅱ的时间间隔为△t,两断面得间 距为△x。车流在断面Ⅰ的流入量为Q、密度为K;同时,车 流在断面Ⅱ得流出量为:(Q+△q), (K-△K),其中: △K 的前面加一负号,表示在拥挤状态,车流密度随车流量增加 而减小。 △x Q (K-△K,Q+△Q ) △t Q K Q+△Q K-△K (K,Q)
(K1,Q1)
K
向旭 2009年11月
北京建筑工程学院
交通流理论
三、车流波动状态
•当Q2>Q1 、K2>K1时,产生一个集结波, w为正值,集结波在 波动产生的那一点,沿着与车流相同的方向,以相对路面为w 波动产生的那一点,沿着与车流相同的方向,以相对路面为w 的速度移动。 Q (K1,Q1)
(K2,Q2)
Q
(K2,Q2)
(K1,Q1)
K
向旭 2009年11月
北京建筑工程学院
交通流理论
四、停车波和起动波
1、模型变化 通过速度— 通过速度源自密度模型分析交通模型ui = u f (1 − Ki / K j )
设标准化密度
ηi = Ki / K j
则, u1 = u f (1 −η1 ) u2 = u f (1 −η2 ) uf为自由流速度,将上两式带入下式 uf为自由流速度,将上两式带入下式
uw = u f [1 − (η1 + 1)] = −u f η1
向旭 2009年11月
北京建筑工程学院
交通流理论
四、停车波和起动波
2、起动波 当车辆起动时,k1为阻塞密度,则 当车辆起动时,k1为阻塞密度,则

交通流理论(详细版)

交通流理论(详细版)
第四章 交通流理论
目录
1 1 2 3 4 5
§4-1 概述 §4-2 交通流的统计分布特性 §4-3 排队论的应用 §4-4 跟驰理论简介 §4-5 流体动力学模拟理论
2
§4-1 概述
一、概念
• 交通流理论,是一门用以解释交通流现象 交通流理论 或特性的理论,运用数学 物理 数学或物理 数学 物理的方法, 从宏观 微观 宏观和微观 宏观 微观描述交通流运行规律。
=e

360×7.5 3600
= 0.4724
对于 Q=360辆/h的车流,1h车头时距次数为360, 其中h≥7.5s的车头时距为可以安全横穿的次数: 360 × 0.4724 = 170 (次)
28
§4-2 交通流的统计分布特性
当Q = 900辆/h时,车头时距大于7.5s的概率为:
P( h≥7.5 ) = e

Qt 3600
=e

900×7.5 3600
= 0.1534
1h内车头时距次数为900,其中h≥7.5s的车头时 距为可以安全横穿的次数:
900 × 0.1534 = 138
(次)
29
目录
1 1 2 3 4 5
§4-1 概述 §4-2 交通流的统计分布特性 §4-3 排队论的应用 §4-4 跟驰理论简介 §4-5 流体动力学模拟理论
30
§4-3 排队论的应用
一、引言
1. 定义 定义: • 排队论是研究服务系统因“需求”拥挤而产生等待 行列(即排队)的现象,以及合理协调“需求”与“服 务"关系的一种数学理论,是运筹学中以概率论 为基础的一门重要分支,亦称"随机服务系统理 论"。 • 【食堂、医院、超市、银行、买火车票等等】

交通流理论ppt课件

交通流理论ppt课件
可编辑课件
1nti 100% T0
17
时间占有率与交通密度
时间占有率可以代替交通密度吗?
Ot
1 T
Q i1
ti
100(%)
ti li /vi
平均车长 l
l Q1
Ot
1 vi 10% 0lQ10(0%)
T
vs
时间占有率与交通密度成正比例
可编辑课件
18
连续流与间断流 Page 80
连续流
道路上行驶的车流不因外界因素干扰而停车 在没有停车或让路一类的交通标志的高速公路上 在没有信号交叉口之间的乡村路段上
计数间隔被分割成n个区间
t/n
λ
计数间隔 t
p
可编辑课件
38
负指数分布 1
基本公式
计数间隔t内没有车辆到达的概率为 P(0) = e-λt
在无车辆到达的时间间隔t内,上次车到达和下次车到达之间,
车头时距至少有t秒,换句话说,P(0)也是车头时距等于或大于t
秒的概率,于是
P( h ≥ t )=e-λt
• 密度-速度关形式的多样性
• 自由流是…
Vm
• 交通量是密度、速度的函数
• 在临界点处…
Qmax
是交通模拟模型的理论基础
可编辑课件
13
xs
1 N
N i1
xi
1 N
N 1
xi
ts
1 M
M
ti
i1
1 M
t M
1
i
可编辑课件
车头间距 space headway
车头时距 time headway
交通量(速度)
VVf aK Ka1Va1Vf
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
况。
11
uw=0的情形,此时只有q2-q1=0 。 这是一种流量相同、速度和密度不同的两种交通
流状态的转换。 当交通流量不大,道路由多车道变为少车道或反
之,都会出现这种状态。或者交通流停止运行状 态,如信号交叉口遇红灯时。 此时的交通波发生在瓶颈处,既不前移,也不后 退。
12
uw<0,意味着:
或 qk22
q1 k1
0 0
qk22
q1 k1
0 0
前一种情况交通流从高流量、低密度、较高速度
进入低流量、高密度、较低速度状态。由于此时
交通波向后运动,所以上游交通流状态将受到影
响而变差。
后一种情况交通流从高密度、低流量、低速度状 态进入到低密度、高流量、高速度状态。由于交 通波向后运动,将对上游交通状况有所改善,如 前方阻碍解除时会出现这种状况。
du k( du )2 k 0 dt dk x 3
第二节 车流连续性方程
假设车辆顺次通过断面1和断面2的时间间 隔为Δt,间距为Δx。车流在断面1的流入量 为q,密度为k。车流在断面2的流出量为 q+Δq,密度为k-Δk。
站1
站2
x
4
根据物质守恒定律:流入量-流出量=Δx内
车辆数的变化,即:
13
4、停车波和启动波
应用格林希尔治线性模型分析 交通波模型。
已知格林希尔治线性模型的表达式为:
ui u f (1 ki / k j )
为了便于推导,密度标准化,即令:
i ki / k j
uw
[k1u f
(11)
k1
k2u f k2
(12 )]
uw u f [1 (1 2 )] ? 此为标准化密度波速公式
第六讲 交通流体理论
1
第一节 概述
1955年,英国学者莱特希尔(Lighthill)和 惠特汉(Whitham)将交通流比拟为一种流 体,研究了在车流密度高的情况下的交通 流规律,提出了流体动力学模拟理论。
Richads也提出了类似的交通流理论。 这种描述交通流的一阶连续介质模型,被
称为LW理论或LWR理论。
2
物理特性 连续体 离散元素
变量
动量 状态方程 连续性方程
运动方程
交通流与流体流的比拟
流体动力学系统
交通流系统
单向不可压缩流体 单车道不可压缩车流
分子
车辆
质量m 速度v 压力p
密度k 速度u 流量q
mv
ku
P=cmt
m (mv) 0 t x dv c2 m 0 dt m x
q=ku
k (ku) 0 t x
8
3、车流波速方程
假设一条路上有两个相邻的不同交通流密度区域, 由交通流量守恒可知,在时间t内通过界面S的车 数N可以表示如下:
N ur1k1t ur2k2t
其中 ur1 u1 uw
(u1 uw )k1 (u2 uw )k2
ur2 u2 uw
因此 u2k2 u1k1 uw (k2 k1)
uw
交通流回波现象
7
2、集散波的定义
列队行驶的车辆在信号灯交叉口遇到红灯后, 即陆续停车排队而集结成密度高的队列;绿灯启 亮后,排队的车辆又陆续起动而疏散成一列具有 适当密度的车队。
车流中密度经过了由低到高,再由高到低两 个过程,车流中两种不同密度部分的分界面经过 一辆辆车向车队后部传播的现象,称为车流的波 动。车流波动沿道路移动的速度,称为波速。
交通流从低流量、高密度、低速度区进入到高流 量、低密度、高速度区, 波速为正,为前进波。
停车波或启动波都是后退波 。 交通波动理论可用于分析车流拥挤-消散过程。
17
第四节交通波理论应用
——信号交叉口车辆集结与消散分析
18
1 交通波的生成
wAB
qB kB
qA kA
q k
图1 交通流状态
若ωAB>0,则为前进波;若ωAB=0,则为静止波;若ωAB<0,则为后退波。
由q=ku, 得
uw
q k
or
uw
dq dk
9
4、交通波模型的意义
交通波描述了两种交通状态的转化过程, 代表了转 化的方向和进程。
uw>0,表明波面的运动方向与交通流的运动方向 相同;
uw=0,表明波面维持在原地不动; uw<0,则说明波的传播方向与交通流的运动方向
相反。
10
uw>0,意味着:

qk22
q1 k1
0 0
前一种情况表示交通流从低流量、低密度、高速度区进入 到高流量、高密度、低速度区,但两种交通流界面向下游 运动,即高密度区并未向上游扩展,如当两条4车道支路 汇集到一条6车道主路时会出现这种状况。
后一种情况表示的是交通流从高流量、高密度、低速度进 入低流量、低密度、高速度区,下游交通状态变好,但因 交通波向前运动,并不改善上游交通状态,如当交通流从 一条6车道的主干道分入两条4车道的支路时会出现这种状
14
停车波
假设车队以区间平均速度u1行驶,在交叉口停车 线遇到红灯停车,此时k2= kj ,即η2 =1,有:
uw u f [1 (1 1)] u f1
由于车辆运动时而产生的波,以uf η1的速度向后 方传播。经过t秒以后,将形成一列长度为uf η1 t 的排队车辆。
15
起动波
当车辆起动时, k1= kj ,即η1 =1
[q (q q)]t [k (k k)]x
或: k q 0
t x
取极限可得: k q 0 t x
又: q ku
故:
k (ku) 0 t x
上式表明,当车流量随距离而降低时,车流密度则随 时间而增大。
5
如果路段上有交通的产生或离去,那么守 恒方程采用如下更一般的形式:
q k g(x,t) x t
u2 u f (12 )
2
1 ( u2 uf
)
uw u f [1 (2 1)] u f2 (u f u2 )
由于刚刚起动车速u2很小,同uf相比可忽略不记。 因此,排队等待车辆从一开始起动,就产生了
起动波,该波以接近uf 的速度向后传播。 16
交通流从低流量、低密度、高速度区进入到高流 量、高密度、低速度区, 波速为负,为后退波。
上式的g(x,t)是指车辆的产生(离去)率(每 单位长度、每单位时间内车辆的产生或离 去数)。
6
第三节交通波动理论
1、交通流回波现象
交通车流和一般的流体一样,当道路具有瓶颈形 式路段,车流发生紊乱拥挤现象,会产生一种与车流 方向相反的波,好像声波碰到障碍物时的反射一样, 阻止车流前进,降低车速。
相关文档
最新文档