线段的垂直平分线、角平分线经典习题及答案讲课稿
最新线段的垂直平分线与角平分线及练习

线段的垂直平分线与角平分线知识点一:线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.知识点二:线段垂直平分线性质定理的逆定理线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC=BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.知识点三、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形. m图1DABCm图2DABCjik图3OBCA例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cmC .10cmD .12cm例2、如图,1)AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果△EBC的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度, 那么∠EBC 是例3、已知:在△ABC 中,D 是AB 上的点, AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
八年级数学《线段垂直平分线角平分线》练习材料

八年级数学《线段垂直平分线角平分线》练习材料一、基础概念1. 什么是线段的垂直平分线?线段的垂直平分线是指能够把线段平分为两个相等部分,并且与该线段垂直相交的线段。
2. 什么是角的平分线?角的平分线是指能够把角平分为两个相等的角的线段。
二、练题1. 判断下列命题的真假,并给出理由:a) 线段的垂直平分线一定经过该线段的中点。
b) 角的平分线一定过角的顶点。
c) 线段的垂直平分线与该线段垂直的两条线段一定相等长。
2. 在下图中,AD是线段BC的垂直平分线,求证AB=AC。
(图略)3. 如图,在AB和CD上分别取点E、F,如果角BEF等于角CDF,求证EF垂直于AD。
(图略)4. 在下图中,AD是角BCD的平分线,求证角BAD等于角CAD。
(图略)5. 如图,在角ACD的平分线DE上取点F,求证角ABF等于角CDF。
(图略)三、解答1. 解答:a) 假,线段的垂直平分线不一定经过该线段的中点,只有当线段的两边相等时才成立。
b) 真,角的平分线必定过角的顶点,因为平分线将角分为两个相等的角。
c) 真,线段的垂直平分线与该线段垂直的两条线段一定相等长,因为垂直平分线将线段分为两个相等的部分。
2. 解答:根据题意,AD是线段BC的垂直平分线,即AD垂直于BC,且BD=DC(垂直平分线将线段平分为两等分)。
因此,三角形ABD与三角形ACD的两条边相等(BD=DC),且有共同边AD,根据等腰三角形的性质可知,两个三角形相似。
根据三角形的性质可知,相似三角形的对应角相等,所以角BAD等于角CAD。
又因为BD=DC,所以三角形ABD与三角形ACD的两条边相等,根据等腰三角形的性质可知,两个三角形全等。
因此,AB=AC。
3. 解答:根据题意,角BEF等于角CDF,即相等角的两边互相平行。
由于AD是角ACD的平分线,根据平分线的性质可知,角ABE等于角ABD,角ADE等于角ADE。
因此,角ABD等于角ADE,即EF垂直于AD。
垂直平分线与角平分线典型题(经典辅导)

线段的垂直平分线与角平分线(1)知识要点详解1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C 在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.2、线段垂直平分线性质定理的逆定理(1)线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC =BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.3、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:图1图2若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.经典例题:例1 如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm课堂笔记:针对性练习::1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点 E ,如果△EBC 的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28 度,那么∠EBC 是例2. 已知: AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
第一章第04讲 线段的垂直平分线和角平分线(8类热点题型讲练)(解析版)

第04讲 线段的垂直平分线和角平分线(8类热点题型讲练)1.理解线段垂直平分线,角平分线的概念;2.掌握线段垂直平分线的性质定理及逆定理;3.能运用线段的垂直平分线的有关知识进行证明或计算;4.能够利用尺规作出三角形的垂直平分线和角平分线;5.会证明和运用“三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等”.角平分线的性质定理和判定定理的灵活运用.知识点01 线段的垂直平分线ìíî线段垂直平分线的:线段垂直平分线上的任意一点到这条线段两端点的距离相等;线段垂直平分线的:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上性质定理判.定定理知识点02 角的平分线ìïíïî角的平分线的:在角的平分线上的点到这个角两边的距离相等;角的平分线的:在一个角的内部(包括顶点)且到角两边距离相等的点,在这个角的平分线上.性质定理性质定理题型01 线段的垂直平分线的性质(1)求证:BE AC =(2)若35B Ð=°,则BAC Ð=【答案】(1)见解析(2)75°∵AD BC ^于点D ,且D 为线段∴AD 垂直平分CE ,∴AC AE =,∵EF 垂直平分AB ,∵AD BC ^,∴90ADB Ð=°,∴903555BAD Ð=°-°=°,∴553520EAD Ð=°-°=°,∵AC AE =,AD BC ^,∴20EAD CAD Ð=Ð=°,∴75BAC BAE EAD CAD Ð=Ð+Ð+Ð=°.故答案为:75°.【变式训练】1.(2023下·全国·八年级专题练习)如图,在ABC V 中,DM ,EN 分别垂直平分AC 和BC ,交AB 于M ,N 两点,DM 与EN 相交于点F .(1)若CMN V 的周长为15cm ,求AB 的长;(2)若70MFN Ð=°,求MCN Ð的度数.【答案】(1)15cmAB =(2)40MCN Ð=°【分析】此题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,解题的关键是熟练掌握以上知识的应用及整体思想的应用.(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AM CM =,BN CN =,然后求出CMN V 的周长AB =;(2)根据三角形的内角和定理列式求出 MNF NMF Ð+Ð,再求出A B ÐÐ+,根据等边对等角可得A ACM Ð=Ð,B BCN Ð=Ð,然后利用三角形的内角和定理列式计算即可得解;【详解】(1)解:∵DM 、EN 分别垂直平分AC 和BC ,∴AM CM =,BN CN =,∴CMN V 的周长CM MN CN AM MN BN AB =++=++=,∵CMN V 的周长为15cm ,∴15cm AB =;(2)解:∵70MFN Ð=°,∴18070110MNF NMF Ð+Ð=°-°=°,∵AMD NMF Ð=Ð, BNE MNF Ð=Ð,∴110AMD BNE MNF NMF Ð+Ð=Ð+Ð=°,∴909018011070A B AMD BNE Ð+Ð=°-Ð+°-Ð=°-°=°,∵AM CM =,BN CN =,∴A ACM Ð=Ð,B BCN Ð=Ð,∴()180218027040MCN A B Ð=°-Ð+Ð=°-´°=°.2.(2023上·全国·八年级专题练习)如图,在ABC V 中,EF 垂直平分AC ,交AC 于点F ,AD BC ^于点D ,BD DE =,连接AE .(1)若AE 平分BAC Ð,求C Ð的度数;(2)若ABC V 的周长为13cm ,5cm AC =,求CD 的长.【答案】(1)36°(2)4cm【分析】本题主要考查了等腰三角形的性质、角平分线、线段垂直平分线、三角形内角和定理等,解答本题的关键在于熟练掌握垂直平分线上的点到线段两端的距离相等及等腰三角形的性质本题即可求解.【详解】(1)解:AD BC BD DE ^Q ,=,EF 垂直平分AC ,∴AB AE EC ==,C CAE \ÐÐ=,∵AE 平分BAC Ð,∴BAE EAC ÐÐ=,∵AD BC ^于点D ,B D =D E ,∴AB AE =,∴2B AEB C EAC C ÐÐÐ+ÐÐ===,根据三角形内角和等于180°可得,180B AEB BAE Ð+Ð+а=,22180C C C \Ð+Ð+а=,36C \а=.(2)ABC QV 周长13cm ,5cm AC =,∴8cm AB BC +=,∴8cm AB BE EC ++=,即,228cm DE EC +=,∴4cm DE EC +=,∴4cm DC DE EC +==.题型02 线段的垂直平分线的判定(1)求证:AD (2)已知ABC Ð【详解】(1)证明:∴点A 在BC AD \垂直平分(2)解:V 【变式训练】1.如图,ABC V 为等边三角形,AD AB ^,4AD DC ==,AC BD ,相交于点E .(1)求证:BD 垂直平分AC ;(2)求BE 的长;(3)若点F 为BC 的中点,点P 在BD 上,则PC PF +的最小值为______.(直接写出结果).【详解】(1)证明:∵ABC V 是等边三角形,∴AB BC =;∵,,AB BC AD CD BD BD ===,∴()ABD CBD SSS V V ≌,∴ADB CDB Ð=Ð,∵,,AD DC ADB CDB DE DE =Ð=Ð=,∴()ADE CDE SAS V V ≌,∴,90AE EC AED DEC =Ð=Ð=°,∴BD 垂直平分AC ;(2)解:∵DB AC ^,∴BE 平分ABC Ð,∵60ABC BAC Ð=Ð=°,∴30ABD Ð=°,∵90BAD Ð=°,∴30DAE Ð=°,∵4=AD ,∴8,2BD DE ==,∴6BE BD DE =-=;(3)解:连接AF 交BD 于点P ,连接PC ,∵BD 是AC 的垂直平分线,∴A 、C 关于BD 对称,(1)求证:DB DE=;(2)过点A作AF BC∥,交ED延长线于点F,交①若12EM=,则BD= .题型03 线段的垂直平分线的实际应用【例题】如图,地面上有三个洞口A 、B 、C ,老鼠可以从任意一个洞口跑出,猫为能同时最省力地顾及到三个洞口(到A 、B 、C 三个点的距离相等),尽快抓到老鼠,应该蹲守在( )A .ABC V 三边垂直平分线的交点B .ABC V 三条角平分线的交点C .ABC V 三条高所在直线的交点D .ABC V 三条中线的交点【答案】A 【详解】解:∵猫所在的位置到A 、B 、C 三个点的距离相等,∴猫应该蹲守在ABC V 三边垂直平分线的交点处;故选A .【变式训练】1.如图,某一个城市在一块空地新建了三个居民小区,它们分别为、、A B C ,且三个小区不在同一直线上,要想规划一所中学,使这所中学到三个小区的距离相等.这所中学应建在( )A .ABC V 的三条中线的交点B .ABC V 三边的垂直平分线的交点C .ABC V 三条角平分线的交点D .ABC V 三条高所在直线的交点【答案】B 【详解】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则学校应建在ABC V 三条边的垂直平分线的交点处.故选:B .题型04 线段的垂直平分线的尺规作图【例题】如图,已知在ABC V 中,7AC =.(1)用尺规作BC 边的垂直平分线;(保留作图痕迹,不写作法)(2)BC 边的垂直平分线分别交AC BC 、于点D 、E ,连接BD ,若ABD △的周长是10,求AB .【详解】(1)解:如图,DE 即为所求;;(2)解:∵DE 是BC 边的垂直平分线,∴BD DC =,∵7AC =,∴7AD DC AD BD +=+=,∵ABD △的周长是10,∴10AB BD AD ++=.∴3AB =.【变式训练】1.某公司招收职工的试卷中有道题:如图,有三条两两相交的公路,为便于及时进行监控,防止违章,这个监控仪器应安装在什么位置可以使离三个路口的交叉点的距离相等你能找到这个监控安装的位置吗?(尺规作图,不写过程,保留作图痕迹)【详解】解:如图,点P 这个监控安装的位置..2.如图,已知点A 、点B 以及直线L .(1)用尺规作图的方法在直线L 上求作一点P ,使PA PB =.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,连接AP BP ,,若90APB Ð=°,过点A 作AM L ^于点M ,过点B 作BN L ^于点N .求证:MN AM BN=+【详解】(1)解:点P 如图所示,;(2)解:∵AM L ^,BN L ^,90APB Ð=°,∴90MAP APM NPB Ð=°-Ð=Ð,∵PA PB =,∴()AAS MAP NPB ≌△△,∴AM PN =,PM BN =,∴MN PN PM AM BN =+=+.题型05 角平分线的性质定理【例题】(2023上·江苏连云港·八年级校考阶段练习)已知:如图AC 平分BAD Ð,CE AB CF AD ^^,,垂足分别为E 、F ,且BC CD =.(1)求证:BCE DCF △≌△;(2)若106AD BE ==,,求AB 的长.【答案】(1)见解析(2)22【分析】本题考查了角平分线的性质,全等三角形的判定与性质,本题中求证BCE DCF △≌△和Rt Rt ACF ACE @△△是解题的关键.(1)先证明CE CF =,再根据HL 即可证明BCE DCF △≌△;(2)先求出6DF BE ==,再根据HL 即可证明Rt Rt ACF ACE ≌△△,进而可求出AB 的长.【详解】(1)AC Q 平分BAD Ð,CE AB ^于E ,CF AD ^于F ,90CFD \Ð=°,90CEB Ð=°,CE CF =,在Rt BCE V 和Rt DCF V 中,CE CF BC CD =ìí=î,Rt Rt (HL)BCE DCF \△≌△;(2)∵BCE DCF △≌△,6BE =,∴6DF BE ==.∵10AD =,∴10616AF =+=.在Rt ACF V 和Rt ACE V 中,CF CE AC AC=ìí=î,Rt Rt (HL)ACF ACE \△≌△,∴16AE AF ==,∴16622AB =+=.【变式训练】1)求证:AE 是DAB Ð2)已知4AE =,DE 【答案】(1)见解析2)12【分析】本题主要考查了三角形全等的判定和性质,角平分线的性质定理;(1)根据角平分线的性质得出∵90C Ð=°,∴EF AD ^,∵AE 是DAB Ð的平分线,∴EF EC =,(1)求证:BE CF =;(2)若67AF BC ==,,则ABC V 【答案】(1)证明见解析(2)19可.【详解】(1)证明:连接CD BD ,,∵D 在BC 的中垂线上,∴BD CD =,∵DE AB ^,DF AC ^,AD 平分BAC Ð,∴DE DF =,90BED CFD Ð=Ð=°,∴()Rt Rt HL BDE CDF V V ≌,∴BE CF =;(2)解:∵AD 平分BAC Ð,∴∠∠E A D FA D =,∵DE AB ^,DF AC ^,∴90AED AFD Ð=Ð=°,又∵AD AD =,∴()AAS AED AFD V V ≌,∴AE AF 6==,由(1)可知BE CF =,∴ABC V 的周长为:66719AC AB BC AF CF AE BE BC AF AE BC ++=-+++=++=++=,故答案为:19.题型06 角平分线的判定定理【例题】如图,A ,B 两点分别在射线OM ,ON 上,点C 在MON Ð的内部且CA CB =,CD OM ^,CE ON ^,垂足分别为D ,E ,且AD BE =.(1)求证:OC 平分MON Ð;(2)如果12AO =,4BO =,求OD 的长.【详解】(1)证明:由题意得:CD OM ^,CE ON ^,\90CDA CEB Ð=Ð=°,在Rt ACD △和Rt BCE V 中,AC BC AD BE=ìí=î,\()Rt Rt HL ACD BCE V V ≌,\CD CE =,Q CD OM ^,CE ON ^,\OC 平分MON Ð.(2)在Rt ODC △和Rt OEC △中,CD CE OC OC =ìí=î,\()L Rt Rt H ODC OEC ≌V V ,\OD OE =,设BE x =,Q 4BO =,\4OE OD x ==+,Q AD BE x ==,\4212AO OD AD x =+=+=,\4x =,\448OD =+=.【变式训练】1.如图,DE AB ^于E ,DF AC ^于F ,若,BD CD BE CF ==.(1)求证:AD 平分BAC Ð;(2)写出+AB AC 与AE 之间的等量关系,并说明理由.【详解】(1)证明:∵DE AB ^∴90E DFC Ð=Ð=°,(1)求证:OC 是AOB Ð的平分线;(2)若30AOB Ð=°,23PF =,PF 【详解】(1)证明:在Rt PDF V 和题型07 角平分线性质的实际应用【例题】三条公路将、、A B C 三个村庄连成一个如图的三角形区域,如果在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,那么这个集贸市场应建的位置是( )A .三条高的交点B .三条中线的交点C .三条角平分线的交点D .三边垂直平分线的交点【答案】C 【详解】解:在这个区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,根据角平分线的性质,集贸市场应建在A B C ÐÐÐ、、的角平分线的交点处,故选:C .【变式训练】1.如图是三条两两相交的笔直公路,某物流公司现要修建一个货物中转站,使它到三条公路的距离相等,这个货物中转站可选的位置有( )A .3个B .4个C .5个D .1个【答案】B 【详解】解:如图所示,分别作直线交点处的角平分线,根据角平分线的性质,可得点1234,,,P P P P 共4个点,故选:B .题型08 作角平分线(尺规作图)【例题】已知:如图,在ABC V 中,AB AC =,2B A Ð=Ð.(1)求作ABC Ð的平分线,交AC 于点P .(要求:尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,求ABP Ð的角度?【详解】(1)解:以点B 为圆心,适当长为半径画弧交BA ,BC 于两点,再分别以两点为圆心,适当长为半径画弧交于一点,连接点B 与该点所在直线交AC 于点P ,如图所示:BP 即为所求;(2)解:∵AB AC =,1.如图所示,某县计划在张村、李村之间建一座定点医疗站P,张、李两村坐落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定点P的位置.【详解】解:如图所示,点P即为所要求作的点.一、单选题A.4cm B.5cm【答案】C【分析】本题考查的知识点是垂直平分线的性质、等腰三角形的性质、含Q是AB的垂直平分线,DEAD DB cm\==,12\Ð=Ð=°,15DAE BA .3B .4C .5D .6【答案】A 【分析】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质是解题的关键.过点D 作DE OB ^于E ,根据角平分线上的点到角的两边距离相等可得DP DE =,再根据垂线段最短解答.【详解】解:如图,过点D 作DE OB ^于E ,OC Q 是AOB Ð的角平分线,DP OA ^,DP DE \=,由垂线段最短可得DQ DE ³,4DP =Q ,4DQ \³.故选:A .3.(2023上·江苏无锡·八年级校考阶段练习)在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在ABC V 的( )A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点【答案】C【分析】本题考查线段垂直平分线的性质定理的逆定理,熟练掌握垂直平分线的性质是解题的关键,利用要使游戏公平,凳子就需要放在到A 、B 、C 三名选手距离相等的位置即可得到答案.【详解】解:由题可得:要使游戏公平,凳子就需要放在到A 、B 、C 三名选手距离相等的位置,则凳子所在的位置是ABC V 的外接圆圆心,A .16°B .26【答案】B 【分析】本题考查了线段垂直平分线的性质,直角三角形斜边上的中线等于斜边的一半,三角形内角和定理, 根据90ACB Ð=°,直线116BDC Ð=°,结合CDE ÐA .①②【答案】D∵DM 是BC 的垂直平分线,∴DB DC =,在Rt BED △和Rt CFD V DE DF BD DC=ìí=î,【答案】80°/80度【分析】本题主要考查了线段垂直平分线的性质,等腰三角形的性质.根据线段垂直平分线的性质可得CD BD =,从而得到BCD B Ð=Ð的性质可得50A ADC Ð=Ð=°,即可求解.【答案】3【分析】此题考查了角平分线的性质定理,作DH AB ^于点H ,先求出即可得到点D 到的距离.∵8BC =,5BD =,∴3CD BC BD =-=,∵90C Ð=°,∴DC AC ^,【答案】20【分析】本题考查垂直平分线画图及性质,三角形周长公式.根据题意可知利用垂直平分线可知AD 【详解】解:∵分别以点【答案】50【分析】本题考查了角的等分线计算,正确理解定义是解题的关键.设分线的性质,角的平分线的判定,三角形内角和定理计算即可.【详解】设3ABC x Ð=,Ð∵点M N 、是ABC Ð与Ð∵点M N 、是ABC Ð与ACB Ð∴BN 平分MBC Ð,CN 平分∴,NE NG NF NG ==,∴NE NF =,∴MN 平分BMC Ð,150BMN BMC Ð=Ð=°,【答案】 15° 6【分析】本题考查了角平分线的判定与性质、三角形全等的判定与性质、三角形内角和定理,熟练掌握以上知识点,证明三角形全等是解此题的关键.(1)先证明Rt Rt BDE △≌△11.(2023上·河南南阳·八年级校考阶段练习)如图,在ABC V 中,AC 边的垂直平分线分别交BC AC 、于点E 、F ,连接AE ,作AD BC ^于点D ,且D 为BE 的中点.(1)试说明:AB CE =;(2)若32C Ð=°,求BAC Ð的度数.【答案】(1)见解析(2)84°【分析】本题主要考查的是三角形内角和定理,三角形外角的性质,线段垂直平分线的性质.(1)根据等腰三角形的判定得出AB AE =,根据垂直平分线的性质得出AE CE =,等量代换即可得出结论;(2)根据等边对等角得出32C EAC Ð=Ð=°,再根据三角形的外角的性质得出64AEB C EAC Ð=Ð+Ð=°,再根据等边对等角得出64B AEB Ð=Ð=°,根据三角形内角和定理得出52BAE Ð=°,进而得出答案.【详解】(1)∵D 为BE 的中点,∴BD DE =,∵AD BC ^,∴AB AE =,∵EF 是AC 的垂直平分线,∴AE CE =,∴AB CE =;(2)∵32C AE CE Ð=°=,,∴32C EAC Ð=Ð=°,∴64AEB C EAC Ð=Ð+Ð=°,∵AB AE =,∴64B AEB Ð=Ð=°,∴180180646452BAE B AEB Ð=°-Ð-Ð=°-°-°=°,∴523284BAC BAE EAC Ð=Ð+Ð=°+°=°.12.(2023上·河南周口·八年级校联考阶段练习)如图,已知ABC V 中,90C Ð=°,按下列要求作图(尺规作图,保留作图痕迹,不必写作法).(1)作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ;(2)连接CF ;(3)作BFC Ð的平分线,交BC 于点G .【答案】(1)见解析(2)见解析(3)见解析【分析】本题考查了作线段的垂直平分线,作角平分线,掌握基本作图是解题的关键.根据题意作AB 边的垂直平分线,交AC 于点E ,交AB 于点F ,连结CF ,作BFC Ð的平分线,交BC 于G .【详解】(1)解:如图,(2)解:如图,(3)解:如图,13.(2023上·河南信阳·八年级统考期中)如图,在ABC V 中,D 是BC 上一点,DF AC ^于点F ,连接EF ,AD 垂直平分EF .(1)求证:AD 是BAC Ð的平分线;(2)若ABC V 的周长为18,ABC V 的面积为24,6BC =,求DE 的长.【答案】(1)见解析(2)4【分析】本题主要考查了垂直平分线的性质,角平分线的判定定理,熟知垂直平分线的性质是解题的关键.(1)根据垂直平分线的性质得到DE DF =,然后利用角平分线的判定定理即可证明结论;(2)首先求出12AB AC +=,然后根据等面积法进行求解即可.【详解】(1)证明:∵AD 垂直平分EF ,(1)试问:BF 与CG 的大小如何?证明你的结论.(2)若104AB AC ==,,试求【答案】(1)BF CG =,证明见解析(2)7【分析】本题考查角平分线的性质,垂直平分线的性质,全等三角形的判定和性质:Q AE 平分BAC Ð,EF AB ^\EF EG =,Q D 为BC 的中点,DE BC ^\DE 垂直平分BC ,\EB EC =,在Rt BFE △和Rt CGE △中,∵AB AC =,∴()111809022B A A Ð=°-Ð=°-Ð∵MN 为AB 的垂直平分线,∴90BNM Ð=°,(1)若120ACB Ð=°,则MCN Ð的度数为 (2)若MCN a Ð=,则MFN Ð的度数为 ;(用含(3)连接FA FB FC 、、,CMN V 的周长为6cm 【答案】(1)60°(2)1902a °-Q DM EN ,分别垂直平分AC 和BC ,MA MC \=,NB NC =,Q CMN V 的周长为6cm ,6cm MC NC MN \++=,6cm MA NB MN \++=,即6cm AB =,Q FAB V 的周长为14cm ,14cm FA FB AB \++=,8cm FA FB \+=,Q DF EF ,分别垂直平分AC 和BC ,FA FC \=,FB FC =,28cm FC \=,4cm FC \=.17.(2023上·湖南衡阳·八年级校考期末)如图,90BAC Ð=°,CD 平分ACB Ð交AB 于D ,CM CD ^,点M 在AB 的垂直平分线上,AM 交BC 于O ,MG AC ^于点G ,MF BC ^于点F .(1)求证:BCM GCM Ð=Ð;(2)若2CG =,求BC AG -的长;(3)若点D 在BC 的垂直平分线上,试判断ABM V 的形状,并说明理由.【答案】(1)见解析;(2)2;(3)ABM V 是等边三角形,理由见解析.【分析】(1)由角平分线的性质可得ACD BCD Ð=Ð,由余角的性质可得结论;(2)由“AAS ”可证FCM GCM ≌V V ,可得MF MG =,2CF CG ==,由“HL ”可证Rt Rt BFM AGM ≌V V ,可得BF AG =,即可求解;(3)由线段垂直平分线的性质可求30DBC DCB ACD Ð=Ð=Ð=°,由等腰三角形的性质可求30MAG Ð=°,由三角形内角和定理可求解.【详解】(1)证明:∵CD 平分ACB Ð,∴ACD BCD Ð=Ð,∵CM CD ^,∴90DCM Ð=°,∴90ACD MCG Ð+Ð=°,90DCB BCM Ð+Ð=°,∴BCM GCM Ð=Ð;(2)∵BCM GCM Ð=Ð,90MFC MGC Ð=Ð=°,CM CM =,∴()AAS FCM GCM ≌V V ,∴MF MG =,2CF CG ==,∵点M 在AB 的垂直平分线上,∴AM BM =,且FM MG =,∴()Rt Rt HL BFM AGM ≌V V ,∴BF AG =,CBM MAG Ð=Ð,∴2BC AG BC BF CF -=-==;(3)∵点D 在BC 的垂直平分线上,∴BD CD =,∴DBC DCB Ð=Ð,且ACD DCB Ð=Ð,90DBC DCB ACD Ð+Ð+Ð=°,∴30DBC DCB ACD Ð=Ð=Ð=°,∵AM BM =,∴30MAB MBA ABC CBM CBM Ð=Ð=Ð+Ð=°+Ð,∵CBM MAG Ð=Ð,∴30MAB MAG Ð=°+Ð,∵90MAB MAG BAC Ð+Ð=Ð=°,∴30MAG Ð=°,∴60MAB MBA Ð=Ð=°,∴60AMB Ð=°,∴ABM V 是等边三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,角平分线的性质,线段垂直平分线的性质等知识,证明全等三角形是本题的关键.18.(2023上·新疆和田·八年级统考期末)数学活动:如图1,角的平分线的性质的几何模型,已知OP 平分AOB Ð,PA OA ^于点A ,PB OB ^于点B .(1)探究:如图2,点M 是OP 上任意一点(不与O 、P 重合),连接MA 、MB ,问题:请判断MA 与MB 的数量关系,并证明你的结论.(2)如图3,连接AB .问题:①OP 垂直平分AB 吗?请说明理由.②若30AOP Ð=°,6AB =,求AOB V 的周长.【答案】(1)MA MB =,证明见解析(2)①OP 垂直平分AB ,理由见解析;②18【分析】(1)证明()AAS OAP OBP V V ≌,则OA OB =,证明()SAS AOM BOM V V ≌,进而可得MA MB =.(2)①如图3,记AB 与OP 的交点为C ,由(1)可知()AAS OAP OBP V V ≌,则OA OB =,证明()AAS OAP OBP V V ≌,则AC BC =,90ACO BCO Ð=Ð=°,进而可得OP 垂直平分AB ;②由题意知60AOB Ð=°,可证AOB V 是等边三角形,则6OA OB AB ===,然后求AOB V 的周长即可.【详解】(1)解:MA MB =,证明如下:∵OP 平分AOB Ð,PA OA ^,PB OB ^,∴AOP BOP Ð=Ð,90OAP OBP Ð=Ð=°,又∵OP OP =,∴()AAS OAP OBP V V ≌,∴OA OB =,∵OM OM =,AOM BOM Ð=Ð,OA OB =,∴()SAS AOM BOM V V ≌,∴MA MB =.(2)①解:OP 垂直平分AB ,理由如下:如图3,记AB 与OP 的交点为C ,。
垂直平分线与角平分线(讲义及答案).

3 垂直平分线与角平分线(讲义)知识点睛垂直平分线相关定理:① 线段垂直平分线上的点到这条线段 ____________________ ; ② 到一条线段两个端点距离相等的点,在这条线段的垂直平 分线上.角平分线相关定理:① 角平分线上的点到这个角的 _____________________ ; ② 在一个角的内部,到角的两边距离相等的点在这个角的平 分线上•精讲精练如图,在△ABC 中,AB=AC, DE 垂直平分AB,交AC 于点 E,垂足为点D.若BE+CE=n. BC=8,则△ABC 的周氏为第2题图 ZC=90% ZA=30。
,DE 是线段 AB 的垂直平分线,交AB 于点、D,交AC 于点£.若DE" 则线段AC 的长为 _________ ・ 如图,在HABC 中,DE, GF 分别是AG BC 的垂直平分线,AD=8, BG=IO ・若AD 丄CD,则DG 的长为____________ •2. 第I 题图 如图,在RtAABC3如图,AD U BC 相交于点 0, OA=OC. ZA=ZC,BE=DE ・求证;OE 垂直平分BD ・如图,BD 平分ZABC. DE 丄4B 于点E, AB=8, BC=6・S AABC - 14,则 DE= ___________ .第6题图 如图,PC 丄04于点C, PD 丄OB 于点、D,且PC 二PD, 在射线OA 上,若ZAOB=60。
,ZOP 民80。
,则ZAEP 的度数 为 •如图,在△ABC 中,ZABC 的平分线与ZACB 的平分线相交 于点O, OD 丄AB, OE 丄AC.垂足分别为点D, E.求证:OD=OE ・点£C第5题图8 已知―如图,AABC的外角ZCBD和ZBCE的平分线相交于点F,求证:点F在ZDAE的平分线上-9 如图,直线y=x+4 -tj X轴、y轴分别交于点A, B,点C在x 轴正半轴上,且OC=OB,点D位于牙轴上点C的右侧,连接BC,ZBAO和ZBCD的平分线AP, CP相交于点P,连接肿, 则ZPBC的度数为__________________ -如图,在RtAABC 中,ZC=90%在AC 和上分别截取AE. AD.使AE=AD.再分别以点D, E 为圆心,大记 DE2的长为半径作弧,两弧在ZBAC 内交于点F,作射线AF 交边 BC 于点 G 若 CG=4. AB=IQ.如图,在△A3C 中,ZB=35。
沪教版 八年级数学 暑假同步讲义 第20讲 线段垂直平分线及角平分线(解析版) 培优

线段的垂直平分线和角平分线内容分析线段的垂直平分线和角平分线是八年级数学上学期第十九章第四节内容,主要对线段的垂直平分线和角平分线进行讲解,重点是线段的垂直平分线和角平分线定理的理解,难点是线段的垂直平分线和角平分线定理的运用.通过这节课的学习一方面为我们后期学习直角三角形提供依据,另一方面也为后面学习勾股定理奠定基础.知识结构模块一:线段的垂直平分线知识精讲一、线段的垂直平分线的性质及逆定理1、线段的垂直平分线上的任意一点到这条线段的两个端点的距离相等;注意:垂直平分线中的垂直是相互的,而平分则要看清楚到底是谁被平分.2、和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.2 / 15【例1】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=︒,DE 垂直平分AB 于点D ,交AC于点E .求证:DE CE =.【解析】连接BE∵DE 垂直平分AB 于点D , ∴EB AE =, ∴︒=∠=∠30ABE A∵︒=∠+∠90ABC A ,30A ∠=︒, ∴︒=∠60ABC ,∴︒=∠30EBC .可证BCE BDE ≌△△()S A A ..,则CE DE =.【总结】本题主要考查直角三角形的性质以及线段垂直平分线的性质.【例2】 已知:如图,在ABC ∆中,90ACB ∠=°,D 为BC 延长线上一点,E 是AB 上一点,EM 垂直平分BD M ,为垂足,DE 交AC 于点F .求证:E 在AF 的垂直平分线上.【解析】∵EM 垂直平分BD ,∴ED EB =,∴D B ∠=∠∵90ACB ∠=°,∴︒=∠+∠90B A ,︒=∠+∠90DFC D ∴DFC A ∠=∠ ∵AFE DFC ∠=∠, ∴AFE A ∠=∠,∴EF AE = ∴E 在AF 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例3】 如图,ABC ∆中,AD 是BAC ∠的平分线,点E 在BC 延长线上,且例题解析DEABCABACONNMGFEDC BABAE ACE ∠=∠.求证:点E 在AD 的垂直平分线上.【解析】∵AD 是BAC ∠的平分线,∴DAC BAD ∠=∠∵BAD DAE BAE ∠+∠=∠,DAC ADE ACE ∠+∠=∠,又BAE ACE ∠=∠ ∴DAE ADE ∠=∠ ∴ED EA =∴点E 在AD 的垂直平分线上.【总结】本题一方面考查三角形的外角性质,另一方面考查线段垂直平分线逆定理的运用.【例4】 已知:在ABC ∆中,90ACB ∠=,30A ∠=°,BD 平分B ∠交AC 于点D .求证:点D 在AB 的垂直平分线上.【解析】∵︒=∠+∠90ABC A ,30A ∠=︒,∴︒=∠60ABC ,∵BD 平分B ∠,∴︒=∠30DBA ∴ABD A ∠=∠,∴BD AD = ∴点D 在AB 的垂直平分线上.【总结】本题一方面考查直角三角形的性质,另一方面考查线段垂直平分线逆定理的运用.【例5】 已知:在ABC 中,ON 是AB 的垂直平分线, OA OC =.求证:点O 在线段BC 的垂直平分线.【解析】∵ON 是AB 的垂直平分线, ∴OB OA =∵OA OC =,∴OC OB = ∴点O 在线段BC 的垂直平分线.【总结】本题主要考查线段垂直平分线性质定理以及逆定理的运用.【例6】 如图,在△ABC 中,∠A =30°,DE 垂直平分AB ,FM 垂直平分AD ,GN 垂直平分BD .求证:AF = FG = BG . 【答案】见解析【解析】∵DE 垂直平分AB ,4 / 15GF ECBAEDCBA∴︒=∠=∠30DAB A ∵FM 垂直平分AD , ∴DF AF =, ∴FDA A ∠=∠,∴︒=∠+∠=∠60ADF A DFE 同理可得:︒=∠60DGB , ∴DFG △是等边三角形, ∴BG FG DF ==又∵DF AF =,BG DG =, ∴AF = FG = BG .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.【例7】 如图,在△ABC 中,∠B =22.5°,边AB 的垂直平分线交BC 于点D ,DF ⊥AC ,并与BC 边上的高AE 交于点G . 求证:EG = EC . 【答案】见解析【解析】∵边AB 的垂直平分线交BC 于点D ,∴DA DB =,∴︒=∠=∠5.22B BAD ∴︒=∠+∠=∠45BAD B ADC , ∴ADE △为等腰直角三角形, ∴AE DE =证得:()A S A ACE DGE ..≌△△, ∴EG = EC .【总结】本题主要考查等腰直角三角形的性质以及线段垂直平分线的性质.【例8】 如图,已知:△ABC 中,AB = CB ,点D 在线段AC 上,且AB = AD ,∠ABC =108°,过点A 作AE ∥BC ,交∠ABD 的平分线于E ,联结CE . 求证:BD 垂直平分EC .【解析】连接ED∵AB = CB ,∠ABC =108°,∴︒=∠=∠36BCA BAC ∵AB = AD ,∴︒=∠=∠72ADB ABD , ∴︒=︒-︒=∠3672108DBC∵BE 平分ABD ∠,∴︒=∠=∠36EBD ABE ∵AE ∥BC ,∴︒=︒-︒=∠72108180BAE , ∴BEA BAE ∠=∠,∴BE BA =又∵AB = CB ,∴BC BE =证得:()S A S BCD BED ..≌△△,∴CD DE =∵BE BA =,CD DE =,∴ BD 垂直平分EC .【总结】本题主要考查等腰三角形的性质以及线段垂直平分线的性质.二、 角平分线的性质定理和角平分线的性质定理的逆定理1、 角的平分线上的点到这个角两边的距离相等.2、 在一个角的内部(包括顶点)到这个角两边距离相等的点,在这个角的平分线上注意:角的平分线可以看作是在这个角的内部(包括顶点)到这个角两边距离相等的点的集合.【例9】 如图,//AD BC AC ,平分BAD ∠,BE 平分ABC ∠,交CD 于点E ,交AC 于点F .求证:点F 到EA EC 、的距离相等. 【答案】见解析【解析】∵AC 平分BAD ∠,∴DAC BAC ∠=∠∵BC AD ∥,∴DAC ACB ∠=∠ ∴BAC ACB ∠=∠,∴BC AB =证得:()S A S CBE BAE ..≌△△,∴CEB AEB ∠=∠ ∴点F 到EA EC 、的距离相等.【总结】本题主要考查角平分线的意义和逆定理的运用.例题解析知识精讲模块二:角平分线AFBDEC6 / 15FG EBPON CDM A 【例10】 如图,90B C ∠=∠=°,M 是BC 的中点,DM 平分ADC ∠.求证:AM 平分DAB ∠. 【答案】见解析【解析】过M 作MN ⊥AD ,垂足为N∵DM 平分ADC ∠,∴CM MN =∵M 是BC 的中点,∴MB CM =,∴MB MN = ∴AM 平分DAB ∠.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例11】已知:如图,//AD OB OC ,平分AOB P ∠,是OC 上一点,过点P 作直线MN ,分别交AD OB 、于点M 和N ,且MP NP =. 求证:点P 到AO 和AD 的距离相等. 【答案】见解析【解析】过P 作PE ⊥OB 于点E ,PF ⊥OA 于点F ,PG ⊥AD 于点G .∵OC 平分AOB ∠,∴PF PE =可证得:()S A A PGM PEN ..≌△△,则PG PE =,∴PG PF = ∴点P 到AO 和AD 的距离相等.【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例12】如图,AD 为ABC ∆的角平分线,//DE AC ,交AB 于E ,过E 作AD 的垂线交BC 延长线于F . 求证:B FAC ∠=∠.【解析】∵AD 为ABC ∆的角平分线,∴DAC BAD ∠=∠∵//DE AC ,∴DAC EDA ∠=∠ ∴EDA BAD ∠=∠,∴AE DE = ∵AD EF ⊥,∴EF 垂直平分AD , ∴FD FA =,∴FDA FAD ∠=∠∵DAC FAC FAD ∠+∠=∠,BAD B FDA ∠+∠=∠ ∴B FAC ∠=∠.【总结】本题主要考查线段垂直平分性质定理及平行线+角平分线可以得到等腰三角形这个基本模型的运用.CMA DBABC DEF【例13】 已知:如图,在等腰直角三角形ABC 中,90ACB ∠=°,D 为BC 的中点,且DE AB ⊥,垂足为点E ,过点B 作//BF AC 交DE 的延长线于点F ,联结CF .(1)求证:AD CF ⊥;(2)联结AF ,试判断ACF ∆的形状,并说明理由.【解析】(1)∵ABC △为等腰直角三角形,∴︒=∠=∠45CBA CAB ∵//BF AC ,∴︒=∠45ABF证得:FBE DBE ≌△△,则可得DB BF = ∵D 为BC 的中点,∴DB CD =,∴BF CD = 证得:()S A S BCF CAD ..≌△△,∴BCF CAD ∠=∠∵︒=∠+∠90ACF BCF ,∴︒=∠+∠90ACF CAD ,∴AD CF ⊥; (2)等腰三角形.由(1)可得:AF AD =,CF AD =,∴CF AF = ∴ACF △是等腰三角形.【总结】本题主要考查等腰直角三角形的性质,本题(1)中的全等是一个基本模型,要注意理解,在后期证明中也会经常用到.【例14】如图,AP BP 、分别平分MAB ∠和NBA ∠,PC PD 、分别垂直于AM BN 、,如果123AC cm CP cm BD cm ===,,,那么PD =_______,AB = _________.【答案】2cm ,4cm .【解析】过P 作PE ⊥AB 于E .∵AP BP 、分别平分MAB ∠和NBA ∠ ∴2===PD PE PC可证:()S A A PEA PCA ..≌△△,()S A A PDB PEB ..≌△△ 则CE AC =,BE BD = ∴431=+=+=EB AE AB【总结】本题主要考查角平分线的性质定理和逆定理的运用.【例15】如图,ABC ∆中,90C ∠=°,点O 为ABC ∆的三条角平分线的交点,OD BC ⊥,OE AC ⊥,OF AB ⊥,点D E F 、、分别为垂足,且1086AB BC CA ===,,,则点OPBCAM NDAEFABCDEF8 / 15GFEDCBA GFDA到三边AB AC 、和BC 的距离分别为_______. 【答案】2. 【解析】∵24862121=⨯⨯=⋅⋅=BC AC S ABC △ ∴ABC ABO OBC AOC S S S S =++△△△△111108624222OF OD OE =⨯⨯+⨯⨯+⨯⨯=∵点O 为ABC ∆的三条角平分线的交点, ∴OF OE OD == ∴2=OD【总结】本题一方面考查角平分线的性质定理,另一方面考查等积法的运用.【例16】如图,在ABC ∆中,90ACB ∠=°,AC BC =,AD 是BC 边上的中线,过C 作CF AD ⊥,E 为垂足,延长CE 交AB 于F .求证:ADC BDF ∠=∠. 【答案】见解析【解析】过B 作BG ∥AC 交CF 的延长线于G .证得:()A S A BCG CAD ..≌△△, ∴BG CD =,G ADC ∠=∠ ∵D 为BC 的中点, ∴DB CD =,∴BG BD =证得:()S A S GBF DBF ..≌△△,则可得G BDF ∠=∠ ∴ADC BDF ∠=∠【总结】本题一方面考查直角三角形的性质,另一方面考查全等的基本模型.【例17】如图,已知正方形ABCD 中,F 是CD 的中点,E 是BC 边上的一点,且AE DC CE =+.求证:AF 平分DAE ∠.EQ PDCBA 【答案】见解析【解析】连接EF 交AD 的延长线于G .可证得:()A S A ECF GDF ..≌△△,则DG CE =,FG EF = ∵BC AD =,AE DC CE =+ ∴AE AG =可证得:()S S S AGF AEF ..≌△△, ∴GAF EAF ∠=∠ 即AF 平分DAE ∠.【总结】本题主要考查利用中线倍长构造全等,总而证明角平分线的成立.【例18】已知:如图,正方形ABCD 的边长为1,AB AD 、上各有一点P Q 、,若APQ∆的周长为2.求PCQ ∠的度数. 【答案】45°.【解析】∵APQ ∆的周长为2,∴2=++PQ AP AQ .∵正方形ABCD 的边长为1,∴2=+++PB AP AD AQ ∴BP DQ PQ +=. 延长PB 至E ,使得BE =DQ可证:()S A S CBE CDQ ..≌△△,则CE CQ =,BCE DCQ ∠=∠ ∵BP DQ PQ +=,DQ BE =,∴EP PQ = 可证:()S S S CPE CPQ ..≌△△,∴PCE QCP ∠=∠ ∵︒=∠+∠90BCQ DCQ ,BCE DCQ ∠=∠, ∴︒=∠+∠90BCQ BCE ,即︒=∠90QCE 又∵︒=∠+∠90PCE QCP ,PCE QCP ∠=∠ ∴︒=∠45PCQ【总结】本题综合性较强,主要考查了全等的运用,以及截长补短辅助线的添加,最终目的是构造全等,在解题时要注意认真分析.【习题1】ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,且OC BC =,则A∠随堂检测10 / 15EODCBA=________. 【答案】30°【解析】∵ABC ∆的边长AC BC 、的中垂线交AB 于一点O ,∴OC OB OA ==∴OCB B ∠=∠,ACO A ∠=∠ ∵︒=∠+∠+∠+∠180ACO A OCB B ∴︒=∠+∠90OCB ACO ,即︒=∠90ACB ∵OC BC =∴OBC △为等边三角形,∴︒=∠60B ∵︒=∠+∠90A B ,∴︒=∠30A .【总结】本题主要考查线段垂直平分线性质以及等边三角形的性质.【习题2】 △ABC 中,AB = AC ,AC 的中垂线交AB 于E ,△EBC 的周长为20cm ,AB = 2BC ,则腰长为___________.【答案】cm 340.【解析】∵AC 的中垂线交AB 于E ,∴EC AE =∵△EBC 的周长为20cm ,∴20=+=++BC AB EC BC EB∵AB = 2BC ,∴340=AB【总结】本题主要考查线段垂直平分线性质以及等腰三角形的性质.【习题3】 如图所示,AB //CD ,O 为∠A 、∠C 的平分线的交点,OE ⊥AC 于E ,且OE =2, 则AB 与CD 之间的距离等于___________. 【答案】4【解析】过O 作OF ⊥AB 于F ,OG ⊥CD 于G∵O 为∠A 、∠C 的平分线的交点,∴2===OG OF OE , ∵AB //CD , ∴F 、O 、G 三点共线,∴4=FG . 【总结】本题主要考查角平分线性质以及平行线的性质. 【习题4】ABC ∆中,AD 平分BAC ∠,DE DF 、分别垂直于AB AC 、,垂足分别为E F 、,如果48ABC S ∆=,79AC AB ==,,则DF =______________. 【答案】6【解析】∵AD 平分BAC ∠,∴DF DE =∵487219212121=⨯⨯+⨯⨯=⋅⋅+⋅⋅=+=DF DE DF AC DE AB S S S ADC ABD ABC △△△MNABC ∴6=DF【总结】本题主要考查角平分线性质以及等积法的运用.【习题5】 已知:点A 和点D 都是线段BC 外一点,且AB = AC ,DB = DC ,E 是AD 上一点.求证:BE = CE .【答案】见解析【解析】∵AB = AC ,∴A 在线段BC 的垂直平分线上,∵DB = DC ,∴D 在BC 的垂直平分线上, ∴AD 是BC 的垂直平分线 ∵E 是AD 上一点 ∴BE = CE【总结】本题主要考查线段垂直平分线性质定理及其逆定理的运用.【习题6】 已知:如图,在ABC ∆中,90C ∠=°,30A ∠=°,MN 是AB 的垂直平分线.求证:12CM AM =.【答案】见解析. 【解析】∵MN 是AB 的垂直平分线,∴︒=∠=∠30MBA A∵90C ∠=°,30A ∠=°,∴︒=∠60CBA ,∴︒=︒-︒=∠303060CBM , ∴NBM CBM ∠=∠,∴MN CM =. 在直角△AMN 中,︒=∠30A ,则AM MN 21=,∴AM CM 21=. 【总结】本题主要考查线段垂直平分线性质以及直角三角形的性质.【习题7】 已知:如图,ABC ∆中,90A ∠=°,AB AC BD ==,ED BC ⊥.求证:AE DE DC ==. 【答案】见解析 【解析】连接BE可证:()L H BDE BAE .≌△△,∴DE AE = ∵90A ∠=°,AB AC =, ∴︒=∠45C ∵ED BC ⊥∴△DEC 为等腰直角三角形, ∴DC DE =BEACD12 / 15ABCDOEF∴AE DE DC ==【总结】本题一方面考查了直角三角形全等的判定方法,另一方面考查了等腰直角三角形的性质,由于部分学生还未学过(H .L )的判定定理,因此可选择性的讲解.【习题8】 如图,在ABC ∆中,BD 平分ABC ∠,EF 垂直平分BD 交CA 延长线于E .求证:EAB EBC ∠=∠. 【答案】见解析【解析】∵EF 垂直平分BD∴ED EB = ∴EDB EBD ∠=∠ ∵BD 平分ABC ∠, ∴ABD DBC ∠=∠∵ABD EDB EAB ∠+∠=∠,DBC EBD EBC +∠=∠ ∴EAB EBC ∠=∠【总结】本题一方面考查线段垂直平分线的性质定理,另一方面考查三角形外角性质的运用.【习题9】 已知:如图,在凹四边形ABCD 中,EO 垂直平分BC ,FO 垂直平分AD ,EO与FO 相交于点O ,且AB CD =. 求证:ABO DCO ∠=∠. 【答案】见解析 【解析】连接OD 、OA∵EO 垂直平分BC ∴OC OB = ∵FO 垂直平分AD ∴OD OA =可证:()S S S DOC AOB ..≌△△ ∴ABO DCO ∠=∠.【总结】本题主要考查线段垂直平分线以及角平分线性质定理的综合的运用.课后作业ABCDEF【作业1】 如图,Rt ABC ∆中,90C ∠=°,AD 平分BAC ∠,DE AB ⊥于E ,如果14DC cm AB cm ==,,那么ABD S ∆=___________.【答案】2【解析】∵AD 平分BAC ∠,DE AB ⊥,90C ∠=°, ∴1==DE CD∴2142121=⨯⨯=⋅⋅=DE AB S ABD △.【总结】本题主要考查角平分线性质定理的运用.【作业2】 如图,已知ABC ∆中,DE 是AC 的垂直平分线,5AC =,ABD ∆的周长为13,求ABC ∆的周长. 【答案】18【解析】∵DE 是AC 的垂直平分线,∴DC AD =∵ABD ∆的周长为13, ∴13=++AD BD AB ∴ABC ∆的周长为:AB AC BC AB AC BD DC AB AC BD AD ++=+++=+++13518=+=.【总结】本题主要考查线段垂直平分线性质定理的运用.【作业3】 如图,在ABC ∆中,已知点D 在BC 上,且DB AD BC +=.求证:点D 在AC的垂直平分线上. 【答案】见解析【解析】∵DB AD BC +=,BC DC DB =+∴DC AD =∴点D 在AC 的垂直平分线上.【总结】本题主要考查线段垂直平分线性质定理逆定理的运用,证明点在线段垂直平分线上. 【作业4】 如图,在ABC ∆中,AB AC =,120BAC ∠=°,AC 的垂直平分线DE 交BC 于D E ,为垂足,且18BC cm =,求DE 的长.【答案】3cm【解析】∵AB AC =,120BAC ∠=°,∴︒=∠=∠30C B∵AC 的垂直平分线DE 交BC 于D ∴DC AD =,︒=∠=∠30CAD C ,ABCEDAB C DD BACEADBEC14 / 15ED CBA ∴︒=︒-︒=∠9030120BAD在直角△BAD 中,︒=∠30B ,则BD AD 21= ∴182=+=+=DC DC DC BD BC ∴6=DC在直角△CED 中,︒=∠30C ,则321==DC DE .【总结】本题主要考查线段垂直平分线性质定理及其直角三角形性质的运用.【作业5】 如图,正方形ABCD 的边长为1,AE 是CAB ∠的平分线,交BC 于点E ,则点E 到AC 的距离为___________. 【答案】12-.【解析】过E 作EF ⊥AC ,垂足为F可得:△CEF 为等腰直角三角形, 则由勾股定理可得:EF CE 2=∵AE 是CAB ∠的平分线,EF ⊥AC ,90B ∠= ∴BE EF = 又∵1=+EB CE ∴12=+EF EF ∴12-=EF【总结】本题综合性较强,主要考查了角平分线的性质以及正方形的性质,还运用勾股定理计算线段长.【作业6】 如图,已知ABC ∆中,点E 是AB 延长线上的一点,AE AC AD =,平分BAC ∠,BD = BE .求证:2ABC C ∠=∠. 【答案】见解析【解析】由题意,易得:()S A S ACD AED ..≌△△则:C E ∠=∠∵BD = BE ,∴BDE E ∠=∠ ∴C E DBE E ABC ∠=∠=∠+∠=∠22ABCDE【总结】本题主要考查等边对等角以及三角形外角性质的运用,解题时注意分析,当看到证明一个角是另一个角的两倍时,通常都考虑采用外角性质证明.【作业7】 如图,在ABC ∆中,AD BC ⊥于D ,AC CD BD +=.求证:2C B ∠=∠. 【答案】见解析【解析】在BD 上截取一点E ,使得DE =DC∵DC DE =,AC CD BD += ∴AC BE =可证:AED ACD ≌△△,则AE AC =,AED C ∠=∠ ∴AE BE =,∴BAE B ∠=∠ ∴C B BAE B AED ∠=∠=∠+∠=∠22 ∴2C B ∠=∠【总结】本题一方面考查了截长补短辅助线的添加,主要是看到两条线段和等于第三条线段的模型,另一方面考查了证明一个角是另一个角的两倍的基本模型,通常都考虑采用外角性质证明.ABCD。
三角形线段垂直平分线和角平分线性质的应用讲课稿

三角形线段垂直平分线和角平分线性质的
应用
专项训练四:线段垂直平分线及角的平分线性质的应用名师点金:由线段垂直平分线及角平分线的性质可得两线段相等,实际应用中多与三角形结合,实现边的转化,也可将其作为全等三角形判定的条件,与三角形全等综合应用解决问题.
用线段的垂直平分线的性质求线段的长
1.如图,在△ABC中,AB,AC的垂直平分线分别交BC于点D,E,垂足分别为F,G,已知△ADE的周长为12 cm,则BC=________.
2.如图,AB比AC长2 cm,BC的垂直平分线交AB于D,交BC于E,△ACD的周长是14 cm,求AB和AC的长.
利用线段垂直平分线的性质求角的度数
3.如图,在直角三角形ABC中,∠C=90°,AB边的垂直平分线DE交BC于点D,交AB于点E,连结AD,AD将∠CAB分成两个角,且∠1∶∠2=2∶5,求∠ADC的度数.
利用角平分线的性质证线段相等
4.如图,已知∠AOB=90°,OM是∠AOB的平分线,将三角尺的直角顶点P 在射线OM上滑动,两直角边分别与OA,OB交于点C,D,证明:PC=PD.
利用角平分线证倍分关系(延长线段法)
5.如图,在△AOB中,AO=OB,∠AOB=90°,BD平分∠ABO,AE⊥BD,求证:BD=2AE.
利用角平分线证不等关系(截取法)
6.如图,AD为△ABC的中线,DE,DF分别是△ADB和△ADC的角平分线,求证:BE+CF>EF.。
人教版八年级数学上角平分线和线段垂直平分线(一)教案导学案教学设计同步练习课时作业试卷含答案解析

角平分线和线段垂直平分线【要点梳理】知识点1. 角的平分线的性质及判定定理:1.如图∵OP 平分∠AOB ,点P 在射线OP 上,PC ⊥OA 于C ,PD ⊥OB 于D∴ ( )2.∵PC ⊥OA 于C ,PD ⊥OB 于D ,PC = PD ,∴ ( ) 答案:PC=PD (角平分线上的点到角两边的距离相等) OP 平分∠AOB (到角两边距离相等的点在角的平分线上)知识点2. 线段的垂直平分线的性质及判定定理:1.线段垂直平分线性质:线段垂直平分线上的点与这条线段两个端点的 .2.线段垂直平分线的判定:与一条线段两个端点 的点,在这条线段的垂直平分线上.3.线段的垂直平分线是到这条线段两端点距离相等的点的集合.答案:1、距离相等 2、距离相等知识点3. 角的平分线和线段的垂直平分线的应用:1.三角形的三条 交于一点,并且这一点到三条边的距离相等。
2.三角形的 交于一点,这点到三角形三个顶点的距离相等。
3.如图,321l l l 表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可选择的地址有( )A 、一处B 、二处C 、三处D 、四处4.如图,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥AC ,垂足分别为E ,F .下列推理中正确的个数是 .①AD 上任意一点到点C ,B 的距离相等;②AD 上任意一点到AC ,AB 的距离相等;③BD =CD ,AD ⊥BC ;④∠BDE =∠CDF答案:1、角平分线2、三条边的垂直平分线3、A 4、4【例题选析】例1 如图4,AB=AD ,BC=CD ,AC 、BD 相交于点E .由这些条件可以得出若干结论,请你写出其中三个正确结论(不要添加字母和辅助线,不要求证明).答案:∠DAE=∠BAE;DE=BE; ∠DCE=∠BCEl 3l 2l 1P D C BOA F D E CB AG NC FB D E A例2.如图,∠A =∠B =90°,M 是AB 的中点,DM 平分∠ADC ,求证:CM 平分∠BCDMDB C A答案:如图:过点M 作MN 与CD 垂直,先用AAS 证明△AMD 与△NMD 全等,得MN=AM,由M 为AB 中点可知,AM=BM,所以BM=NM ,又因为CM 是公共边,根据HL 可证明△MBC 与△MNC 全等,所以CM 平分∠BCD 。
线段的垂直平分线、角平分线经典习题及答案#精选、

3.线段的垂直平分线4.角平分线例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小(3)你发现有什么样的规律性?试证明之.(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。
例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
AC DEBA B C NM AB C N M AB CN M例4:如图所示,在△ABC中,AB=AC,∠BAC=1200,D、F分别为AB、AC的中点,,,E、G在BC上,BC=15cm,求EG的长度。
⊥⊥DE AB FG ACAB E G C例5::如图所示,Rt△ABC中,,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。
求证:BE垂直平分CD。
CEFA D B例6::在⊿ABC中,点O是AC边上一动点,过点O作直线M N∥BC,与F,求证:OE=OF例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB⊥于,求证:BE=CF。
E,DF AC FAEB M CFD答案如下:例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;(2)同理得,∠M=35°;(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.证明:设∠A=α,则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB是线段CD的垂直平分线例4:解:作AH⊥BC于H,HC=15/2∵等腰∴∠ACB=∠ABC=30°∴AC=2EC/根号3EC=5根号3∵F为AC中点∴FC=5/2根号3∵FG⊥AC∴CG=5同理,BE=5∴EG=5例5:证明:∵DE⊥AB,∠ACB=90∴∠BDE=∠ACB=90∵BD=BC,BE=BE∴△BCE≌△BDE (HL)∴∠CBE=∠DBE∵BF=BF∴△BCF≌△BDF (SAS)∴∠BFC=∠BFD,CF=DF∵∠BFC+∠BFD=180∴∠BFC=∠BFD=90∴BE⊥CD∴BE垂直平分CD例6:解:∵MN∥BC,∴∠OEC=∠BCE,∠OFC=∠GCF,又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,∴∠OCE=∠OEC,∠OCF=∠OFC,∴EO=CO,FO=CO,∴EO=FO.例7:证明:连接DC,DB∵点D在BC的垂直平分线上∴DB=DC∵D在∠BAC的平分线上∴DE=DF∵∠DFC=∠DEB∴△DCF≌△DEB∴CF=BE最新文件仅供参考已改成word文本。
等腰三角形应用(垂直平分线、角平分线)人教版(含答案).docx

学生做题前请先回答以下问题问题1:垂直平分线相关定理:① 线段垂直平分线上的点 _____________________________ ;② 到一条线段两个端点 ________________ ,在这条线段的垂直平分线上.问题2:角平分线相关定理:① 角平分线上的点 __________________________ ;② 在一个角的内部, ______________________ 在这个角的平分线上.问题3:已知:如图,点P 在ZAOB 内部,PC10A 于点C, PD 丄0B 于点D,且PC=PD.求 证:点P 在ZAOB 的平分线上.你是怎么思考的?等腰三角形应用(垂直平分线、角平分线)人教iLcZ版一、单选题(共9道,每道分)1.如图,在RtA ABC 中,ZB 二90。
,ED 是AC 的垂直平分线,交AC 于点D,交BC 于点E.已 知ZBAE=10。
,则ZCED 的度数为( )答案:C 解题思路:A.400C.50° B.45°D.60°・.・刀£垂直平分.\AE=CE:.A C =A CAET Z5=90°・•・ ZC+Z C45=90°即:Z C+Z CAE^ZBAE=90Q丁 ZB 辽=10。
/.ZC=40° ・•・ ZCED=50。
故选C.试题难度:三颗星知识点:垂直平分线相关定理2.如图,在等腰三角形ABC 中,AB=AC=18, BC=10, AB 的垂直平分线DE 交AB 于点D,交 AC 于点E,连接BE,则ABEC 的周长为()A.19B.23C.28D.36答案:C解题思路:由DE 垂直平分川氏得BE=AE,而的周长为 BC+CE+BE=BC+CE+AE=BC+AC-题中条件.45=4C=18, 5C=10,则的周长为 BC^AC=28. 故选C.3.已知:如图,OA 垂直平分CP, OB 垂直平分PD,连接CD,交OA 于M,交OB 于N,若 A PMN 的周长是8cm,则下列说法不一定正确的是()难度:三颗星知识点:垂直平分线相关定理A.MC=MPB.PC=PDC.NP=NDD.CD=8cm答案:B 解题思路:线段垂直平分线上的点到线段的两个端点的距离相等,M在QP的垂直平分线Q4上,所以故A选项正确; N在DP的垂直平分线上,所以JVP三VD,故C选项正确;△PJfV的周长等于MP+MN+NP=CWMN+ND=CD=E,故D选项正确;但无法判断PC, PD是否相等,故B选项不一定正确.故选B.试题难度:三颗星知识点:垂直平分线相关定理4.如图,0P平分ZMON, PA丄ON于A,点Q是射线0M上一个动点,若PA=3,则PQ的最小值为()A.lB.2C.3D.4答案:C解题思路:要求PQ的最小值,根据垂线段最短, 可知当PQ1OM时,P0的值最小,如图所示,因为0P 平分AMON, E4丄ON, PO1OM, 根据角平分线上的点到这个角两边的距离相等可知, 此时PO=PA=3,所以PQ的最小值为3.故选C.试题难度:三颗星知识点:角平分线相关定理5.如图,在△ ABC屮,点D在BC上,DE1AB于E, DF1AC于F,且DE=DF,线段AD是(A.A ABC的高B.BC边的屮垂线C.A ABC的中线D.A ABC的角平分线答案:D解题思路:点D在ZB4C的內部,且DE1AB于E,QF丄川C 于F, DE=DF,根据在一个角的內部,到角两边距离相等的点在这个角的平分线上可知,AD平分A BAC,因此线段AD是A MC的角平分线. 故选D.试题难度:三颗星知识点:角平分线相关定理6.如图,AB〃CD, AP, CP分别平分ZBAC和ZACD, PE丄AC于E,则要求AB与CD之间的距离,只需测量出()A.PA的长度B.PC的长度C.PE的长度D.AB的长度答案:C 解题思路:由川p,存分别平分A BAC和考虑用角平分线性质定理.如图:过点F作FF丄且B于点F,延长FP交CD于点G.CD:.FGVCD即:线段FG的长度即为血与仞之间的距离TzlP 平分ZB4C, PFlAB f PE1AC・•・PE=PFTCP 平分ZACD, PElAC f PG LCD:.PE=PG,・•・ FG=2PE故要求且B与CD之间的距离,只需测量岀PE的长度即可. 故选C.试题难度:三颗星知识点:角平分线相关定理7.如图,在RtA ABC中,ZC=90°, AB的垂直平分线交AB于D,交AC于E,且BE平分ZABC,则下列说法错误的是()A.BE=AEB.CE=DEC.BE=2CED.ZA=45°答案:D解题思路:选项A :由DE垂直平分AB可得BE=AE,正确;选项B:由平分厶BC, EC丄BC, ED1BA, 可知CESE,正确;选项C:':AE=BE・•・Z A=Z DBETEE 平分ZABC:.乙CBE=ZDBE/.Z A=Z DBE=Z CBEVZC=90°/. ZA+ZDBE+ZCBE=90。
线段的垂直平分线、角平分线经典习题及答案

线段的垂直平分线、角平分线经典习题及答案由于A、B都在CD的垂直平分线上,所以直线AB是CD的垂直平分线。
证毕。
例4:解:连接EF,由于AB=AC,所以∠BAC=60°,∴∠DEG=30°,∠GFC=60°,又因为DE⊥AB,FG⊥AC,所以DEGF是一个菱形,且DG=GF=7.5cm,所以EG=2DGsin30°=7.5cm。
例5:证明:因为BD=BC,所以∠XXX∠CBD,又因为BE⊥CD,CF⊥BD,所以∠BEC=∠BCF,所以BE平分∠XXX,CF平分∠CBD,又因为∠XXX∠CBD,所以BE和CF都平分∠BCD,即BE垂直平分CD。
证毕。
例6:证明:连接OF,OE,MN,∵MN∥BC,∴∠EOF=∠ACB,又∠XXX∠EOM+∠MOF,∠XXX∠EOM+∠EOF,∴∠MOF=∠ACB-∠EOF,又因为EF是AC的角平分线,∴∠XXX∠EAF,又因为EF是AC的外角平分线,∴∠XXX∠XXX,∴∠MOF=∠ACB-∠XXX,又因为OE⊥AC,OF⊥AC,所以OE=OF,证毕。
例7:证明:连接AD,因为AD是∠A的平分线,所以∠EAD=∠FAD,又因为BD=BC,所以∠XXX∠DCB,又因为AD⊥DE,所以∠EDB=90°-∠XXX,又因为DF⊥CF,所以∠XXX°-∠DCB,所以∠EDB=∠XXX,又因为∠EAD=∠FAD,所以三角形ADE与三角形ADF全等,所以DE=DF,又因为BE⊥DE,CF⊥DF,所以BE=DEsin∠EDB=DFsin∠FDC=CF,证毕。
例4:根据题意,作AH垂直BC于点H,可以得到HC 的长度为15/2.由于△ABC是等腰三角形,所以∠ACB=∠ABC=30°。
根据正弦定理,可以求得AC的长度为5√3.由于F是AC的中点,所以FC的长度为5/2√3.根据勾股定理,可以得到CG和BE的长度都为5.因此,EG的长度也为5.例5:由于DE垂直于AB,而∠ACB=90°,所以∠BDE=∠ACB=90°。
垂直平分线与角平分线综合 练习题(带答案))

垂直平分线与角平分线综合 题集一、垂直平分线(1)(2)1.如图,中,,垂直平分,交于点,交于点,且.若,求的度数.若周长,,求长.【答案】(1)(2)..【解析】(1)(2)∵垂直平分,垂直平分,∴,∴,∵,∴,∴.∵周长,,∴,即,∴.【标注】【知识点】作三角形的高,中线和角平分线(1)(2)2.的两边和的垂直平分线分别交于点、.若,求的周长.若,求.【答案】(1)(2)..【解析】(1)(2)∵边、的垂直平分线分别交于、,∴,,∴的周长.∵的两边,的垂直平分线分别交于,,∴,,∴,.∵,①∴.∵,∴,即.②由①②组成的方程组.解得,故答案为:.【标注】【知识点】三角形的周长与面积问题3.在中,,,的垂直平分线交于,的垂直平分线交于.求证:.【答案】证明见解析.【解析】连接、,∵,,∴,∵的垂直平分线交于,的垂直平分线交于,∴,,∴,,,∵,∴,∴是等边三角形,∴,∴.【标注】【知识点】等边三角形的构造4.已知中,是的平分线,的垂直平分线交的延长线于.求证:.【答案】证明见解析.【解析】∵是的平分线,∴,∵是的垂直平分线,∴,,∵,,∴.【标注】【能力】推理论证能力【知识点】线段的垂直平分线的性质定理【知识点】角分线性质定理5.中,是线段的垂直平分线,垂足为点,是上一点,.求证:点在线段的垂直平分线上.【答案】(1)证明见解析.【解析】(1)连接,是线段的垂直平分线,,,,在的垂直平分线上.【标注】【知识点】线段的和差的证明【知识点】线段的垂直平分线的性质定理【知识点】线段的垂直平分线的判定定理【知识点】等边三角形的性质【思想】数形结合思想【能力】运算能力【能力】推理论证能力6.如图,四边形中,的垂直平分线与的垂直平分线交于点,且.求证:点一定在的垂直平分线上.【答案】证明见解析.【解析】连接、,∵点是、的垂直平分线的交点,∴,,又∵,∴,∴点一定在的垂直平分线上.【标注】【知识点】作线段的垂直平分线(1)(2)7.如图,已知等腰三角形中,,点、分别在边、上,且,连接、,交于点.判断与的数量关系,并说明理由.求证:过点、的直线垂直平分线段.【答案】(1)(2)相等,证明见解析.证明见解析.【解析】(1)(2).在和中,,∴≌,∴.∵,∴,由()可知,∴,∴,∵,∴点、均在线段的垂直平分线上,即直线垂直平分线段.【标注】【知识点】线段的垂直平分线的性质定理【知识点】SAS【知识点】全等三角形的对应边与角【能力】推理论证能力二、角平分线8.如图,平分,于,于,,.若,则.【答案】【解析】∵平分,,,∴,∵,,∴,即,解得.故答案为:.【标注】【知识点】角分线性质定理9.如图,在中,,平分,,,则点到的距离为.【答案】【解析】∵,,∴.∵平分,,∴点到的距离等于,即点到的距离等于.【标注】【知识点】角分线性质定理A. B. C. D.10.如图,的三边、、的长分别,,,是三条角平分线的交点,则( ).【答案】C 【解析】∵是三条角平分线的交点,∴点到各边的距离相等,即、、的高相等,∵、、的长分别,,,∴,故答案为.【标注】【知识点】与中线或等分线有关的等积变换A.B.C.D.11.如图,三条公路把、、三个村庄连成一个三角形区域,某地区决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( ).在、两边高线的交点处在、两边中线的交点处在、两内角平分线的交点处在、两边垂直平分线的交点处【答案】C 【解析】内角平分线上的点到,距离相等,内角平分线上的点到,距离相等,∴要到三条公路距离相等,应在,内角平分线交点处满足到,,距离相等.故选.【标注】【知识点】角分线性质定理A. B. C. D.12.如图,点是的两外角平分线的交点,下列结论:①;②点到、的距离相等;③点到的三边的距离相等;④点在的平分线上.以上结论正确的个数是().【答案】C【解析】如图,过点作于,作于,作于,∵点是的两外角平分线的交点,,,∴点在的平分线上,故②③④正确,只有点是的中点时,,故①错误,综上所述,正确的是②③④.【标注】【知识点】角分线性质定理【知识点】角平分线判定定理三、角分线的角度模型(1)(2)(3)(4)13.完成下列各题:如图 ,、分别是中和的平分线,则与的关系是 (直接写出结论).如图 ,、分别是两个外角和的平分线,则与的关系是 ,请证明你的结论.如图 ,、分别是一个内角和一个外角的平分线,则与的关系是 ,请证明你的结论.利用以上结论完成以下问题:如图,已知:,点 、 分别是射线、上的动点,的外角的平分线与角的平分线相交于点,猜想的大小是否变化?请证明你的猜想.图图图图【答案】(1)(2)(3)(4). ..的大小没有变化,证明见解析.【解析】(1)理由如下:如图 ,∵ ,,分别是,的角平分线,∴ ,∴.(2)(3)(4)图如图 ,∵ 平分 ,∴ ,同理可证: ,∴ ,∵ ,∴,∴ .图∵ 平分 , 平分 ,∴ ,∵ 是 的外角,∴ ,∵ 是 的外角,∴ ,∴.根据⑶可得: ,∵ ,∴ ,∴ 的大小不会变化始终为 .【标注】【知识点】三角形-内角角分线;三角形-外角角分线;三角形-内外角角分线(1)(2)(3)14.回答下列问题.探索发现:如图,在中,点是内角和外角的角平分线的交点,试猜想与之间的数量关系,并证明你的猜想.图迁移拓展:如图,在中,点是内角和外角的等分线的交点,即,,试猜想与之间的数量关系,并证明你的猜想.图应用创新:已知,如图,、相交于点,、、的角平分线交于点,,,则 .图【答案】(1),证明见解析.(2)(3),证明见解析.【解析】(1)(2)(3)∵点是内角和外角的角平分线的交点,∴,,∵是的外角,∴,∴∴∵是的外角,∴,∴.∵是的外角,∴,∴,∵,,∴,∵是的外角,∴,∴.∵、、的角平分线交于点,∴由()的结论知,,,∴,故答案为:.【标注】【知识点】三角形-内外角角分线(1)15.阅读下面的材料,并解决问题:已知在中,.如图(1),、的角平分线交于点,则可求得.如图(2),、的三等分线交于点、,则 .如图(3),、的等分线交于点、、……,则.;(用含的代数式)(2)(3)图图图如图,,、的三等分线交于点、,若,,求的度数;(要求写出解答过程)如图,,的三等分线分别与的平分线交于点,,若,,求的度数为 (不要求写出解答过程).【答案】(1)(2)(3); ;.【解析】(1)(2)(3)是的外角,,、是的三等分线,,在中,,又是的平分线,,.只需抓住加.则等分,下面两个小角之和为,.【标注】【知识点】三角形-内角角分线。
线段的垂直平分线的性质课件ppt

在平移变换中,垂直平分线上的 点到线段两个端点的距离相等, 且等于平移的距离。
旋转变换中应用
旋转不变性
垂直平分线在旋转变换下保持不变, 即旋转后的图形仍然保持垂直平分线 的性质。
旋转等角性
以垂直平分线上一点为旋转中心,旋 转任意角度后,所得图形与原图形关 于该点对称。
对称变换中应用
对称中心
思路拓展与延伸
拓展1
探究线段垂直平分线与三角形的关系。例如,已知三角形ABC 中,D是AB的中点,DE垂直于AC于点E,求证:DE是AB的垂 直平分线。
拓展2
将线段垂直平分线的性质应用于实际问题中。例如,在建筑 设计或工程测量中,如何利用线段的垂直平分线性质来确定 某点的位置或某线段的长度。
易错点提示与防范策略
THANKS
感谢观看
线段的垂直平分线是对称中心,即关于垂直平分线的对称点连线的中点就是垂 直平分线与线段的交点。
对称轴
线段的垂直平分线也是对称轴,即关于垂直平分线对称的两个图形是全等的。
05
典型例题解析与思路拓展
典型例题解析
例题1
已知线段AB和点C,D分别是AB,BC的中点,求证:CD是AB的垂直平分线。
解析
根据中点的定义,可知AC=CB,BD=DA。因为CD是AB的中线,所以CD垂直于AB。 又因为AC=CB,所以角ACD=角BCD,从而角ADC=角BDC。根据角平分线的性质, 可知CD平分角ADB,所以CD是AB的垂直平分线。
性质1
垂直平分线上的任意一点 到线段两端的距离相等。
性质2
线段的垂直平分线是其对 称轴,即线段关于垂直平 分线对称。
判定方法
判定定理
一条直线是某线段的垂直 平分线当且仅当该直线过 线段的中点且与该线段垂 直。
三角形的证明(垂直平分线-角平分线)(北师版)(含答案)

学生做题前请先回答以下问题问题1:线段垂直平分线的定理及其逆定理的内容分别是什么?答:线段垂直平分线定理:线段垂直平分线上的点到这条线段两个端点的距离相等;线段垂直平分线逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上.问题2:角平分线定理及其逆定理的内容分别是什么?答:角平分线定理:角平分线上的点到这个角的两边的距离相等;角平分线的逆定理:在一个角的内部,到角的两边距离相等的点在这个角的平分线上.问题3:什么是反证法?答:反证法:先假设命题的结论不成立,然后推导岀与定义、基本事实、已有定理或者已知条件相矛盾的结果,从而证明命题的结论一定成立•这种证明方法称为反证法.问题4:你能用反证法证明等腰三角形的底角必为锐角吗?答:证明:假设等腰三角形ABC的底角是钝角或直角,①妨设/ B和/ C是钝角,即/ B= / C> 90°,/•Z A+ / B+ / C》180。
这与三角形内角和定理相矛盾,因此Z B和Z C是钝角”的假设不成立;②妨设Z B和Z C是直角,即Z B= Z C=90,/•Z A+ Z B+ Z C=90 +90°+Z C- 180°这与三角形内角和定理相矛盾,因此Z B和Z C是直角”的假设不成立;•/等腰三角形的底角必为锐角.三角形的证明(垂直平分线,角平分线)(北师版)一、单选题(共11道,每道9分)1. 三条公路两两相交,交点分别为A,B,C,现计划建一个加油站,要求到三条公路的距离相等,则满足要求的加油站地址有()种情况.A. 1B.2C.3D.4 答案:D如图,V A ABC 內督平分线的交点到三角形三边的距离相等, /-A^c 內角平分线的交点満足条件.閒中 如图,点斥是△•田C 两条外角平分线的交点, 过点电作耳丘丄HC,灵D 丄,耳戸丄BC t — RD, RF"D 、-AA-4*■.■- F ;E 二 = F® ・-'-点£到 3C 三边的距离胡等, 同理点①耳到△朋c 三边的距离相等, 综上,到三条公路的距离相等的点有4个. 二可供选择的地址有4个. 故选D试题难度:三颗星知识点:角平分线的性质定理2. 如图,已知△ ABC,求作一点P ,使点P 到/ BAC 两边的距离相等,且 PA=PB 下列确定点 的是()A. P 是/ BAC 与/ B 两角平分线的交点B. P 是/ BAC 的角平分线与AB 的垂直平分线的交点P 的方法正确C. P是AC, AB两边上的高的交点D. P是AC, AB两边的垂直平分线的交点答案:B解题思路:由点P到£BAC的两边的距离相等,可知点户在3C的角平分线匕因为RAPR,则点P一定在线段血的垂直平分线上,综上可知,点P是Z^JC的角平分线勻AB的垂直平分线的交点. 故选B试题难度:三颗星知识点:角平分线的性质定理3. 如图,在厶ABC中,AB=10, BC=15, AC=20,点0是厶ABC内角平分线的交点,则厶ABO, △ BCO, △ CAO的面积比是()A.1 : 1 : 1B.1:2: 3C.2:3: 4D.3: 4: 5答案:C解题思路:如图’过点0分别作0D丄府于点D 0迟丄配于点& QF丄M于点F.T点O是厶個:內角平分线的交点,/, OD=OE=OF r* S'“no=亍£仍、QD ‘ $Lsco =石BC、0E-45=10, BC^15t JC=20,…;匸Eg '见cic? ~J4B Z£C~-1C —10~ 15:20 = 2 :3;4 ,故选C试题难度:三颗星知识点:角平分线的性质定理4. 如图,AD是厶ABC的角平分线,DF丄AB,垂足为F, DE=DG △ ADG和厶AED的面积分别为50和39,则△ EDF的面积为()A.11B.5.5C.7D.3.5答案:B解题思路:如图,过点□作DH L AC于点乩B\'AD平分^BAC, DF丄卫5,5E=DF,丁DE=DG,(HL) i、g - s■ ' J 厶D£F 一?''AD-AD./-RrAjDFi2RtA.4D27(HL),r g -S■'UJF —心-細昌1设 $厶2XF = X J则$^DGH ~ x!…L±EW二‘° -一丫1 5—CF—^ + 39)/- 5Q-XF+妙*» x = 5«S t故选B试题难度:三颗星知识点:全等三角形的判定和性质ZF = 9(T 4-1/J4 5. 已知△ ABC,( 1)如图1,若点P是/ ABC和/ ACB的角平分线的交点,贝U :三尸二丄乙4(2)如图2,若点P是/ABC和外角/ACE的角平分线的交点,贝U 】;"二州-L厶(3)如图3,若点P是外角/ CBF和/ BCE的角平分线的交点,贝U :.圏1 图2 S3上述结论正确的有()个.A.1B.2C.3D.0答案:C解题思路:K CO L<K Z <■配(0轻•玛N T H GL N京<N卡汗7-:T XI E蛊72477 為葩、亠%\|亠\| 百\I C+『\I =+7Z■益U cq『7+P \I "H U P \I :-•亚似E爲也吐s岂『X.1 3“权(C轻 + 当6"亠\|“金£N l ®2M K ZF I bG <Z 7I O 0S 与 7十C N <£2&\|+寸\|&7:-|><7N F 丿06M-T N十rz -:N -s⑶如图,T点P杲外角乙CRF和£BCE的角平分线的交点,•:上Z3=Z4,■;ZC5F=Z J+Z J4C^,乙RCE二乙Q/ABC,/.ZCBF+ZSCE^J+Z J CJ+Z^ZJS^ISO^Z SJ,即* 2Z1+2Z3^]BOHZ.4, ■/Z1-Z3+ZP=18O C,二2上1十2上3二360亠2上只.-180c+Zy4=360a-2ZA 即!乙F=90c--Z^,故(3)对综上.三个结论都正确.故选C试题难度:三颗星知识点:角平分线的性质定理6.如图,AC=AD, BC=BD 则有()A.AB垂直平分CDB.CD垂直平分ABC.AB与CD互相垂直平分D.CD平分/ ACB答案:A解题思路: 由题意AC=AD.根据到线段两端点距离相等的点在线段的垂直平分线上.得到舄3两点在CD的垂直平分线上,又因为两点确定一条直线,可知心垂言平分CD 故选A试题难度:三颗星知识点:线段垂直平分线的判定定理7. 如图,在△ ABC中,AB的垂直平分线分别交BC, AB于点D,E, AE=4cm, △ ADC的周长为9cm,则△ ABC的周长是()A.IOcmB.12cmC.13cmD.17cm答案:D解题思路:由题可知.QE垂直平分血.:.AD=BD r AE^BE,*/ AADC的周长为9.即卫D二9’.■.^C+^C=9,\'AE=4r/■J^C+SC=17)即号C1的周长为Hom 故选D试题难度:三颗星知识点:线段垂直平分线的性质8. 已知:如图,在△ ABC中,/ BAC=110°, DF, EG分别是AB, AC的垂直平分线,则 / DAE等于()A.50 °B.40C.30 °D.20答案:B解题思路:如图,•: DF, EG牺i|是佃"C的垂直平分练/ ・AD=BDi AE=CE f・—M Z2=ZC,-:Z^AC=110°r.\Z^+ZC=70°,-■-Zl+Z2=70%・'・Z:DM=4F・故选B试题难度:三颗星知识点:线段垂直平分线的性质9. 如图,在△ DAE中,/ DAE=30°,线段AE, AD的中垂线分别交直线DE于B, C两点, 则/ BAC的度数是()A.80 °B.90C.100 °D.120答案:D解题思路:如图,-••线段AE, AD的中垂线分别交于2 C两点,…血BE, AC=CD,Z4=Zl+Z^d£,在占中,ZZUE+/3+N4Lg严,-'-Zl+Z2nZDJ£=180o5即Z^JC+2ZZ).4£=180&,TZDA£=3y,/.Z^C=120\故选D试题难度:三颗星知识点:线段垂直平分线的性质10•已知A,B两点在线段EF的中垂线上,且 / EAF=100; / EBF=70;贝U / AEB等于()A.95 °B.15 °C.95 或15 °D.170 或30 °答案:C解题思路:由题可知,AB垂宜平分线段E斤二AE之F、B£=BF, •••ZJTdFG NEEOGFG TZEd/MOCP, ZEBF=7^, ■■-Z.l£C-40=?Z5£C=55D, 二厶应=15。
线段的垂直平分线、角平分线经典习题及答案备课讲稿

3.线段的垂直平分线4.角平分线例1: (1 )在厶ABC 中,AB = AC , AB 的垂直平分线交 AB 于N ,交BC 的延长线于 M , / A = 400,求/ NMB 的大小(2) 如果将(1)中/ A 的度数改为700,其余条件不变,再求/ NMB 的大小(3) 你发现有什么样的规律性?试证明之(4) 将(1)中的/ A 改为钝角,对这个问题规律性的认识是否需要加以修改例2:在厶ABC 中,AB 的中垂线 DE 交AC 于F ,垂足为 D ,若AC=6 , BC=4,求△ BCF 的周长。
例3:如图所示,AC=AD , BC=BD , AB 与CD 相交于点E 。
求证:直线 AB 是线段CD 的垂直平分线。
ANB例4 :如图所示,在△ ABC 中,AB=AC ,/ BAC=120 °, D 、F 分别为AB 、AC 的中点, DE AB , FG AC , E 、G 在 BC 上,BC=15cm ,求 EG 的长度。
例5::如图所示,Rt △ ABC 中,,D 是AB 上一点,BD=BC ,过D 作AB 的垂线交 AC 于 点E ,CD 交BE 于点F 。
求证:BE 垂直平分 CD 。
例6::在"ABC 中,点0是AC 边上一动点,过点 0作直线 MN// BC ,与/ACB 的角平分线交于点 E ,与/ ACB 的外角平分线交于点 F ,求证:OE=OFA例7、如图所示,AB>AC , A 的平分线与BC 的垂直平分线相交于 D ,自D 作DE AB 于E , DF AC 于F ,求证:BE =CF 。
答案如下:B AC例1:解:(1)vZ B= 1/2 (180°-/A) =70°, •••/ M=20 ;(2)同理得,/ M=35 ;(3)规律是:/ M的大小为/ A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于/ A的一半.证明:设/ A=a ,则有/ B= 1/2 (180°-a), / M=90 - 1/2 (180°-a) = 1/2 a( 4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.例2:解:连接BF,由线段的垂直平分线的性质可得,FB = FA又因为AC = AF+CF =6,所以BF+CF= 6A BCF 的周长=BC+CF+BF = 4+6= 10例3:证明:因为AC=AD所以A在线段CD的垂直平分线上又因为BC=BD所以B在线段CD的垂直平分线上所以直线AB 是线段CD 的垂直平分线例4:解:作AH 丄BC 于H , HC=15/2•••等腰•••/ ACB= / ABC=30••• AC=2EC/根号3EC=5 根号3••• F为AC中点••• FC=5/2 根号3••• FG 丄AC••• CG=5同理, BE=5••• EG=5例5:证明:v DE 丄AB,/ ACB = 90•••/ BDE = Z ACB = 90 v BD=BC,BE=BE •••△ BCEBDE ( HL) •••/ CBE = Z DBE v BF= BF•••△BCF BDF (SAS ) •••/ BFC = Z BFD , CF = DF vZ BFC+ / BFD = 180 •••/ BFC = Z BFD = 90••• BE 丄CD••• BE垂直平分CD例6:解::MN // BC,•••/ OEC=Z BCE,/ OFC=Z GCF, 又已知CE平分/ BCO, CF平分/ GCO,•••/ OCE=/ BCE,/ OCF- / GCF,:丄 OCE=/OEC,/ OCF=/OFC,••• EO=CO, FO=CO,••• EO=FO.例7 :证明:连接DC, DB•••点D在BC的垂直平分线上••• DB=DCv D在/ BAC的平分线上••• DE=DFv/DFC=/DEB•••△ DCF DEB••• CF=BE。
线段的垂直平分线与角平分线及练习

线段的垂直平分线与角平分线知识点一:线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若点C在直线m 上,则AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称.知识点二:线段垂直平分线性质定理的逆定理线段垂直平分线的逆定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上.定理的数学表示:如图2,已知直线m 与线段AB 垂直相交于点D ,且AD =BD ,若AC=BC ,则点C 在直线m 上.定理的作用:证明一个点在某线段的垂直平分线上.知识点三、关于三角形三边垂直平分线的定理(1)关于三角形三边垂直平分线的定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.定理的数学表示:如图3,若直线,,i j k 分别是△ABC 三边AB 、BC 、CA 的垂直平分线,则直线,,i j k 相交于一点O ,且OA =OB =OC.定理的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部;若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部.反之,三角形三边垂直平分线的交点在三角形内部,则该三角形是锐角三角形;三角形三边垂直平分线的交点在三角形的边上,则该三角形是直角三角形;三角形三边垂直平分线的交点在三角形外部,则该三角形是钝角三角形.图1图2例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cmC .10cmD .12cm例2、如图,1)AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果△EBC的周长是24cm ,那么BC=2) 如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果BC=8cm ,那么△EBC 的周长是3) 如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E ,如果∠A=28度, 那么∠EBC 是例3、已知:在△ABC 中,D 是AB 上的点, AB=AC ,DB=DC ,E 是AD 上一点,求证:BE=CE 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.线段的垂直平分线
4.角平分线
例1:(1)在△ABC 中,AB =AC ,AB 的垂直平分线交AB 于N ,交BC 的延长线于M ,∠A =040,求∠NMB 的大小
(2)如果将(1)中∠A 的度数改为070,其余条件不变,再求∠NMB 的大小
(3)你发现有什么样的规律性?试证明之.
(4)将(1)中的∠A 改为钝角,对这个问题规律性的认识是否需要加以修改
例2:在△ABC 中,AB 的中垂线DE 交AC 于F ,垂足为D ,若AC=6,BC=4,求△BCF 的周长。
例3:如图所示,AC=AD ,BC=BD ,AB 与CD 相交于点E 。
求证:直线AB 是线段CD 的垂直平分线。
A
C D
E
B
A B C N
M A
B C N M A
B C
N M
例4:如图所示,在△ABC中,AB=AC,∠BAC=1200,D、F分别为AB、AC的中点,,,E、G在BC上,BC=15cm,求EG的长度。
⊥⊥
DE AB FG AC
A
B E G C
例5::如图所示,Rt△ABC中,,D是AB上一点,BD=BC,过D作AB的垂线交AC于点E,CD交BE于点F。
求证:BE垂直平分CD。
C
E
F
A D B
例6::在⊿ABC中,点O是AC边上一动点,过点O作直线M N∥BC,与
F,求证:OE=OF
例7、如图所示,AB>AC,∠A的平分线与BC的垂直平分线相交于D,自D作DE AB
⊥于,求证:BE=CF。
E,DF AC F
A
E
B M C
F
答案如下:
例1:解:(1)∵∠B= 1/2(180°-∠A)=70°,∴∠M=20°;
(2)同理得,∠M=35°;
(3)规律是:∠M的大小为∠A大小的一半,即:AB的垂直平分线与底边BC 所夹的锐角等于∠A的一半.
证明:设∠A=α,
则有∠B= 1/2(180°-α),∠M=90°- 1/2(180°-α)= 1/2α.
(4)改为钝角后规律成立.上述规律为:等腰三角形一腰的垂直平分线与底边相交所成的锐角等于顶角的一半.
例2:解:连接BF,由线段的垂直平分线的性质可得,FB=FA又因为AC=AF+CF =6,所以BF+CF=6△BCF的周长=BC+CF+BF=4+6=10
例3:证明:因为AC=AD
所以A在线段CD的垂直平分线上
又因为BC=BD
所以B在线段CD的垂直平分线上
所以直线AB是线段CD的垂直平分线
例4:解:作AH⊥BC于H,HC=15/2
∵等腰
∴∠ACB=∠ABC=30°
∴AC=2EC/根号3EC=5根号3
∵F为AC中点
∴FC=5/2根号3
∵FG⊥AC
∴CG=5
同理,BE=5
∴EG=5
例5:证明:
∵DE⊥AB,∠ACB=90
∴∠BDE=∠ACB=90
∵BD=BC,BE=BE
∴△BCE≌△BDE (HL)
∴∠CBE=∠DBE
∵BF=BF
∴△BCF≌△BDF (SAS)
∴∠BFC=∠BFD,CF=DF
∵∠BFC+∠BFD=180
∴∠BFC=∠BFD=90
∴BE⊥CD
∴BE垂直平分CD
例6:解:∵MN∥BC,
∴∠OEC=∠BCE,∠OFC=∠GCF,
又已知CE平分∠BCO,CF平分∠GCO,∴∠OCE=∠BCE,∠OCF═∠GCF,
∴∠OCE=∠OEC,∠OCF=∠OFC,
∴EO=CO,FO=CO,
∴EO=FO.
例7:证明:
连接DC,DB
∵点D在BC的垂直平分线上
∴DB=DC
∵D在∠BAC的平分线上
∴DE=DF
∵∠DFC=∠DEB
∴△DCF≌△DEB
∴CF=BE。