第十章《分式》单元测试

合集下载

北京课改版数学八上第十章《分式》单元测试

北京课改版数学八上第十章《分式》单元测试

第十章分式单元测试一.单选题(共10题;共30分)1.要使分式有意义,则x应满足的条件是()A. x≠1B. x≠-1C. x≠0D. x> 12.下列分式中的最简分式(不能再约分的)是()A. B. C. D.3.函数中,自变量x 的取值范围是()A. x>1B. x<1C. x≠1D. x≠-14.当分式方程=1+中的a取下列某个值时,该方程有解,则这个a是()A. 0B. 1C. -1 D. -25.下列代数式、、、、、、中,分式的个数是()A. 1B. 2C. 3 D . 46.分式方程的解是()A. -3B. 2C. 3D. -27.方程的根是()A. =1B. =-1C.D.8.分式方程﹣2=的解是()A. x=±1B. x=﹣1+C. x=2D. x=﹣19.甲乙两人同时加工一批零件,已知甲每小时比乙多加工5个零件,甲加工100个零件与乙加工80个零件所用的时间相等,设乙每小时加工x个零件,根据题意,所列方程正确的是()A. =B. =C. ﹣5=D. =10.把分式方程﹣1= 化为整式方程,正确的是()A. 2(x+1)﹣1=﹣xB. 2(x+1)﹣x(x+1)=﹣xC. 2(x+1)﹣x(x+1)=﹣1D. 2x﹣x(x+1)=﹣x二.填空题(共8题;共24分)11.计算:+ =________.12.化简的结果是________13.计算x n+1÷()n•(﹣),结果等于________.14.分式的值为零的条件是________15.计算:﹣=________ .16.已知关于x的方程=2的解是非正数,则n的取值范围是________ .17.化简:=________.18.计算:=________.三.解答题(共6题;共42分)19.解方程:=1.20.有一项工程,若甲队单独做,恰好在规定日期完成,若乙队单独做要超过规定日期3天完成;现在先由甲、乙两队合做2天后,剩下的工程再由乙队单独做,也刚好在规定日期完成,问规定日期多少天?21.列方程解应用题甲、乙两个清洁队共同参与了城中垃圾场的清运工作,甲队单独工作2天完成总量的三分之一,这时增加了乙队,两队又共同工作了1天,总量全部完成,那么乙队单独完成总量需要多少天?22.A、B两种机器人都被用来搬运化工原料,A型机器人比B型机器人每小时多搬运20千克,A型机器人搬运1000千克所用时间与B型机器人搬运800千克所用时间相等,两种机器人每小时分别搬运多少化工原料?23.“母亲节”前夕,某商店根据市场调查,用3000元购进一批盒装花,上市后很快售完,接着又用5000元购进第二批这种盒装花.已知第二批所购花的盒数是第一批所购花的盒数的2倍,且每盒花的进价比第一批的进价少5元.求第一批进了多少盒盒装花.24.计算:当m为何值时,关于x的方程2x+1 + 51−x = mx2−1 会产生增根?答案解析一.单选题1.【答案】B【考点】分式有意义的条件【解析】【分析】根据分母不等于0列式计算即可得解.【解答】根据题意得,x+1≠0,解得x≠-1.故答案为:x≠-1.【点评】本题考查的知识点为:分式有意义,分母不为0.2.【答案】A【考点】最简分式【解析】【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】A、该分式的分子、分母都不能再分解,且不能约分,是最简分式,故本选项符合题意;B、该分式的分子、分母中含有公因式(a+2),它不是最简分式,故本选项不符合题意;C、该分式的分子、分母中含有公约数2,它不是最简分式,故本选项不符合题意;D、该分式的分子、分母中含有公因式(a+1),它不是最简分式,故本选项不符合题意;故选:A.【点评】本题考查了最简分式的定义.分式的化简过程,首先要把分子、分母分解因式.3.【答案】D【考点】分式有意义的条件【解析】【分析】根据分式有意义的条件是分母不为0;分析原函数式可得关系式x+1≠0,解可得答案.【解答】根据题意得:x+1≠0;解得x≠-1;故答案为D.【点评】求解析法表示的函数的自变量取值范围时:当函数表达式是分式时,要注意考虑分式的分母不能为04.【答案】D【考点】解分式方程,分式方程的增根【解析】【分析】方程两边都乘以x+1得出方程①,分别把0、1、-1、-2代入①后看看方程是否有解即可.【解答】方程两边都乘以x+1得:x-1=x+1+a①,A、把a=0代入①得:x-1=x+1,-1=1,此时①无解,即分式方程也无解,故本选项错误;B、把a=1代入①得:x-1=x+1+1,-1=2,此时①无解,即分式方程也无解,故本选项错误;C、把a=-1代入①得:x-1=x+1-1,-1=0,此时①无解,即分式方程也无解,故本选项错误;D、把a=-2代入①得:x-1=x+1-2,x-1=x-1,即不论x为何值,方程左右两边都相等,此时①有解,即分式方程也有解,故本选项正确;故选D.【点评】本题考查了分式方程的解得应用,主要考查学生的辨析能力,题目比较典型,难度适中.5.【答案】C【考点】分式的定义【解析】【分析】分式的定义:分母中含有字母的代数式叫分式。

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科版初中数学八年级下册《第10章 分式》单元测试卷

苏科新版八年级下学期《第10章分式》单元测试卷一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.52.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.04.已知﹣=5,则分式的值为()A.1B.5C.D.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.7.化简的结果是()A.1B.C.D.08.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.29.下列分式中,最简分式是()A.B.C.D.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)211.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b612.已知,则的值为()A.1B.0C.﹣1D.﹣213.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x 16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5 17.方程=的解是()A.﹣B.C.﹣D.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0 19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2 20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?28.今年我区的葡萄喜获丰收,葡萄一上市,水果店的王老板用2400元购进一批葡萄,很快售完;老板又用5000元购进第二批葡萄,所购件数是第一批的2倍,但进价比第一批每件多了5元.(1)第一批葡萄每件进价多少元?(2)王老板以每件150元的价格销售第二批葡萄,售出80%后,为了尽快售完,决定打折促销,要使第二批葡萄的销售利润不少于640元,剩余的葡萄每件售价最少打几折?(利润=售价﹣进价)苏科新版八年级下学期《第10章分式》单元测试卷参考答案与试题解析一.选择题(共21小题)1.下列各式中,分式的个数是().A.2B.3C.4D.5【分析】判断分式的依据是看代数式的分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:,的分母中均不含有字母,因此它们是整式,而不是分式;a+的分子不是整式,因此不是分式.,,的分母中含有字母,因此是分式.故选:B.【点评】本题考查了分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式,A叫做分式的分子,B叫做分式的分母.注意π不是字母,是常数,所以不是分式,是整式.2.使分式有意义的x的取值范围是()A.x≠1B.x≠2C.x≠1且x≠2D.x可为任何数【分析】分式有意义的条件是分母≠0,即x2﹣3x+2≠0,解得x.【解答】解:∵x2﹣3x+2≠0即(x﹣1)(x﹣2)≠0,∴x﹣1≠0且x﹣2≠0,∴x≠1且x≠2.故选:C.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.3.若分式的值为0,则x的值是()A.±3B.﹣3C.3D.0【分析】分式的值等于零,分子等于零,且分母不等于零.【解答】解:依题意,得x2﹣9=0且x+3≠0,解得,x=3.故选:C.【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.已知﹣=5,则分式的值为()A.1B.5C.D.【分析】已知等式左边通分并利用同分母分式的减法法则变形,整理后代入原式计算即可得到结果.【解答】解:已知等式整理得:=5,即x﹣y=﹣5xy,则原式===1,故选:A.【点评】此题考查了分式的值,熟练掌握运算法则是解本题的关键.5.一件工作,甲单独完成需要a天,乙单独完成需要b天,如果甲、乙二人合作,那么每天的工作效率是()A.a+b B.+C.D.【分析】合作的工作效率=甲的工作效率+乙的工作效率,据此可得.【解答】解:∵甲单独完成需要a天,乙单独完成需要b天,∴甲的工效为,乙的工效为,∴甲、乙二人合作每天的工作效率是+,故选:B.【点评】本题主要考查列代数式,解题的关键是熟练掌握工程问题中关于合作的工作效率的相等关系.6.不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是()A.B.C.D.【分析】首先判断出分式的分子、分母的最高次项的系数分别为﹣1、﹣5,它们都是负数;然后根据分式的基本性质,把分式的分子、分母同时乘以﹣1,使分子、分母的最高次项的系数都为正即可.【解答】解:==∴不改变分式的值,使分子、分母的最高次项的系数都为正,正确的变形是.故选:C.【点评】此题主要考查了分式的基本性质的应用,要熟练掌握,解答此题的关键是要明确:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变.7.化简的结果是()A.1B.C.D.0【分析】将分子利用平方差公式分解因式,再进一步计算可得.【解答】解:原式=====1,故选:A.【点评】本题主要考查约分,解题的关键是掌握平方差公式分解因式和约分的定义.8.若=﹣,则a﹣2b的值是()A.﹣6B.6C.﹣2D.2【分析】先去分母,得4x=(a﹣b)x+(﹣2a﹣2b),再根据对应相等求出a、b 的值,代入计算即可.【解答】解:化简得,4x=(a﹣b)x+(﹣2a﹣2b),∴a﹣b=4,﹣2a﹣2b=0,解得a=2,b=﹣2,∴a﹣2b=2﹣2×(﹣2)=6,故选:B.【点评】本题考查了通分以及解二元一次方程组,是基础知识要熟练掌握.9.下列分式中,最简分式是()A.B.C.D.【分析】根据最简分式的定义对各选项逐一判断即可得.【解答】解:A、==,不符合题意;B、==,不符合题意;C、是最简分式,符合题意;D、==,不符合题意;故选:C.【点评】本题主要考查最简分式,解题的关键是掌握一个分式的分子与分母没有公因式时,叫最简分式.10.张萌将分式进行通分,则这两个分式的最简公分母为()A.2(x+y)(x﹣y)B.4(x+y)(x﹣y)C.(x+y)(x﹣y)D.4(x+y)2【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式的分母分别是2x+2y=2(x+y)、4x﹣4y=4(x ﹣y),故最简公分母是4(x+y)(x﹣y).故选:B.【点评】本题考查了最简公分母的定义及求法.通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.一般方法:①如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.②如果各分母都是多项式,就可以将各个分母因式分解,取各分母数字系数的最小公倍数,凡出现的字母(或含字母的整式)为底数的幂的因式都要取最高次幂.11.计算(a2b)3•的结果是()A.a5b5B.a4b5C.ab5D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.12.已知,则的值为()A.1B.0C.﹣1D.﹣2【分析】解决本题首先将已知条件转化为最简形式,再把所求分式通分、代值即可.本题考查了分式的加减运算.【解答】解:把已知+=去分母,得(a+b)2=ab,即a2+b2=﹣ab∴+===﹣1.故选C.【点评】分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.13.张阿姨,李阿姨到农贸市场买大米,第一次,张阿姨买了100千克大米,李阿姨买了100元的大米;第二次,张阿姨还是买了100千克大米,李阿姨还是买了100元的大米.下列说法正确的是()A.如果米价下降张阿姨买的合算B.如果米价上涨张阿姨买的合算C.无论米价怎样变化李阿姨买的合算D.无法判断谁买的合算【分析】先设第一次大米的单价为a,第二次大米的单价为b,分别计算两人两次所卖大米的平均单价,求出单价,再比较两者的差,根据结果来比较大小.【解答】解:设第一次大米的单价为a,第二次大米的单价为b,张阿姨两次购买的平均单价为,李阿姨两次购买的平均单价为则﹣=≥0.所以无论米价怎样变化都是李阿姨买的合算.故选:C.【点评】本题考查了分式的混合运算,解题的关键是求出两人两次所买大米的平均单价,再比较单价的大小.14.已知+=3,则代数式的值为()A.3B.﹣2C.﹣D.﹣【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理得到a+2b =6ab,代入原式计算即可得到结果.【解答】解:+==3,即a+2b=6ab,则原式===﹣,故选:D.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.下列方程是分式方程的是()A.B.C.x2﹣1=3D.2x+1=3x【分析】依据分式方程的定义进行判断即可.【解答】解:A、﹣=0是一元一次方程,故A错误;B、=﹣2是分式方程,故B正确;C、x2﹣1=3是一元二次方程,故C错误;D、2x+1=3x是一元一次方程,故D错误.故选:B.【点评】本题主要考查的是分式方程的定义,熟练掌握分式方程的定义是解题的关键.16.若关于x的分式方程无解,则m的值为()A.﹣1.5B.1C.﹣1.5或2D.﹣0.5或﹣1.5【分析】去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.【解答】解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选:D.【点评】本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.17.方程=的解是()A.﹣B.C.﹣D.【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论解答可得.【解答】解:两边都乘以2(x+2),得:2(2x﹣1)=x+2,解得:x=,当x=时,2(x+2)≠0,所以x=是分式方程的解,故选:D.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.18.用换元法解方程,若设=y,则原方程可化为()A.y2﹣7y+6=0B.y2+6y﹣7=0C.6y2﹣7y+1=0D.6y2+7y+1=0【分析】观察方程的两个分式具备的关系,若设=y,则原方程另一个分式为6×.可用换元法转化为关于y的方程.去分母、整理即可.【解答】解:把=y代入原方程得:y+6×=7,方程两边同乘以y整理得:y2﹣7y+6=0.故选:A.【点评】换元法解分式方程时常用方法之一,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.19.若分式方程有增根,则a的值是()A.﹣2B.0C.2D.0或﹣2【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出未知字母的值.【解答】解:方程两边都乘(x+a)(x﹣2),得x+a+3(x﹣2)(x+a)=(a﹣x)(x﹣2),∵原方程有增根,∴最简公分母(a+x)(x﹣2)=0,∴增根是x=2或﹣a,当x=2时,方程化为:2+a=0,解得:a=﹣2;当x=﹣a时,方程化为﹣a+a=2a(﹣a﹣2),即a(a+2)=0,解得:a=0或﹣2.当a=﹣2时,原方程可化为+3=,化为整式方程得,1+3(x﹣2)=﹣x﹣2,即:x=,不存在增根,故不符合题意,当a=0时,原方程可化为,化为整式方程得,x+3x(x﹣2)=﹣x(x﹣2),解得x=或x=0,此时,有增根为x=0,∴a=0符合题意,故选:B.【点评】增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.20.小明坐滴滴打车前去火车高铁站,小明可以选择两条不同路线:路线A的全程是25千米,但交通比较拥堵,路线B的全程比路线A的全程多7千米,但平均车速比走路线A时能提高60%,若走路线B的全程能比走路线A少用15分钟.若设走路线A时的平均速度为x千米/小时,根据题意,可列分式方程()A.=15B.=15C.=D.【分析】若设走路线A时的平均速度为x千米/小时,则走路线B时的平均速度为1.6x千米/小时,根据路线B的全程比路线A的全程多7千米,走路线B 的全程能比走路线A少用15分钟可列出方程.【解答】解:设走路线A时的平均速度为x千米/小时,根据题意,得﹣=.故选:D.【点评】本题考查了由实际问题抽象出分式方程,找到关键描述语,找到合适的等量关系是解决问题的关键.21.甲志愿者计划用若干个工作日完成社区的某项工作,从第三个工作日起,乙志愿者加盟此项工作,且甲、乙两人工效相同,结果提前3天完成任务,则甲志愿者计划完成此项工作的天数是()A.8B.7C.6D.5【分析】工效常用的等量关系是:工效×时间=工作总量,本题的等量关系为:甲工作量+乙工作量=1,根据从第三个工作日起,乙志愿者加盟此项工作,本题需注意甲比乙多做2天.【解答】解:方法1、设甲志愿者计划完成此项工作需x天,故甲的工效都为:,由于甲、乙两人工效相同,则乙的工效为甲前两个工作日完成了,剩余的工作量甲完成了,乙在甲工作两个工作日后完成了,则+=1,解得x=8,经检验,x=8是原方程的解.故选:A.方法2、设甲志愿者计划完成此项工作需a天,则一天完成工作总量的,由于甲、乙两人工效相同,则乙的一天完成工作总量的,甲实际工作了(a﹣3)天,乙比甲少工作两天,实际工作了(a﹣5)天,即用甲的工作量加乙的工作量=1,建立方程×(a﹣3)+×(a﹣5)=1,∴a=8,故选:A.【点评】本题主要考查分式方程的应用,还考查了工效×时间=工作总量这个等量关系.二.解答题(共7小题)22.下面是售货员与小明的对话:根据对话内容解答下列问题:(1)A、B两种文具的单价各是多少元?(2)若购买A、B两种文具共20件,其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,共有几种购买方案.【分析】(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,根据用80元购买A种文具的数量是用120元购买B种文具的数量的2倍,列方程求解;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,根据其中A种文具的数量少于B种文具的数量,且购买总费用不超过260元,列不等式求出a的取值范围,结合a为正整数,确定购买方案.【解答】解:(1)设A种文具的单价为x元,则B种文具单价为(25﹣x)元,由题意得,=,解得:x=10,经检验,x=10是分式方程的解,且符合题意,25﹣x=15答:种文具的单价为10元,则B种文具单价为15元;(2)设学校购进A种文具a件,则购进B种文具(20﹣a)件,由题意得,解得:8≤a<10,∵a是正整数,∴a为8或9∴共有两种购买方案.【点评】本题考查了分式方程和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.23.两列火车分别行驶在两平行的轨道上,其中快车车长100米,慢车车长150米,当两车相向而行时,快车驶过慢车某个窗口(快车车头到达窗口某一点至车尾离开这一点)所用的时间为5秒.(1)求两车的速度之和及两车相向而行时慢车驶过快车某个窗口(慢车车头到达窗口某一点至车尾离开这一点)所用的时间;(2)如果两车同向而行,慢车的速度不小于8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为多少秒?【分析】(1)快车驶过慢车某个窗口等量关系为:两车的速度之和×所用时间=快车车长;慢车驶过快车某个窗口等量关系为:两车的速度之和×所用时间=慢车车长;(2)等量关系为:两车速度之差×时间=两车车长之和.【解答】解:(1)设快,慢车的速度分别为x米/秒,y米/秒.根据题意得x+y==20,即两车的速度之和为20米/秒;设慢车驶过快车某个窗口需用t1秒,根据题意得x+y=,∴t1=.即两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒.答:两车的速度之和为20米/秒,两车相向而行时,慢车驶过快车某个窗口所用时间为7.5秒;(2)所求的时间t2=,∴,依题意,当慢车的速度为8米/秒时,t2的值最小,t2=,∴t2的最小值为62.5秒.答:从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需时间至少为62.5秒.【点评】找到相应的等量关系是解决问题的关键;难点是得到相应的车速和路程.24.某工厂计划生产一种创新产品,若生产一件这种产品需A种原料1.2千克、B种原料1千克.已知A种原料每千克的价格比B种原料每千克的价格多10元.(1)为使每件产品的成本价不超过34元,那么购入的B种原料每千克的价格最高不超过多少元?(2)将这种产品投放市场批发销售一段时间后,为拓展销路又开展了零售业务,每件产品的零售价比批发价多30元.现用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,那么这种产品的批发价是多少元?(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)【分析】元,根据每件产品的成本价不超过34元,即可得出关于x的一元一次不等式,解之取其中的最大值即可得出结论;(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据数量=总价÷单价结合用10000元通过批发价购买该产品的件数与用16000元通过零售价购买该产品的件数相同,即可得出关于a的分式方程,解之经检验后即可得出结论.【解答】解:(1)设B种原料每千克的价格为x元,则A种原料每千克的价格为(x+10)元,根据题意得:1.2(x+10)+x≤34,解得:x≤10.答:购入B种原料每千克的价格最高不超过10元.(2)设这种产品的批发价为a元,则零售价为(a+30)元,根据题意得:=,解得:a=50,经检验,a=50是原方程的根,且符合实际.答:这种产品的批发价为50元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出分式方程.25.济南在创建全国文明城市的进程中,高新区为美化城市环境,计划种植树木30000棵,由于志愿者的加入,实际每天植树比原计划多20%.结果提前10天完成任务,求原计划每天植树多少棵.【分析】设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),根据题意可得,实际比计划少用10天,据此列方程求解.【解答】解:设原计划每天种树x棵,则实际每天栽树的棵数为(1+20%),由题意得,﹣=10,解得:x=500,经检验,x=500是原分式方程的解,且符合题意.答:原计划每天种树500棵.【点评】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.26.在某校举办的2012年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200个以上可以按折扣价出售;购买200个以下(包括200个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050元;若多买35个,则按折扣价付款,恰好共需1050元.设小王按原计划购买纪念品x个.(1)求x的范围;(2)如果按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同,那么小王原计划购买多少个纪念品?【分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【解答】解:(1)根据题意得:0<x≤200,且x∈N;(2)设小王原计划购买x个纪念品,根据题意得:×5=×6,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【点评】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.27.一项工程,甲队单独完成比乙队单独完成需少用9天,甲队单独做3天的工作乙队单独做需要4天,(1)甲、乙两队单独完成此项工程各需几天?(2)该项工程先由甲、乙两队合作,再由甲队单独完成,若完成此项工程不超过18天,甲乙两队至少合作几天?【分析】(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据甲队单独做3天的工作乙队单独做需要4天,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设甲乙两队合作y天,根据完成此项工程不超过18天,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其中的最小值即可得出结论.【解答】解:(1)设甲队单独完成此项工程需x天,则乙队单独完成此项工程需(x+9)天,根据题意得:=,解得:x=27,经检验,x=27是原方程的解,且符合题意,∴x+9=36.答:甲队单独完成此项工程需27天,乙队单独完成此项工程需36天.(2)设甲乙两队合作y天,根据题意得:+≥1,解得:y≥12.。

沪教版七年级上册数学第十章 分式 含答案

沪教版七年级上册数学第十章 分式 含答案

沪教版七年级上册数学第十章分式含答案一、单选题(共15题,共计45分)1、化简的结果是()A.a 2B.C.D.2、将分式中的m、n都扩大为原来的3倍,则分式的值( )A.不变B.扩大3倍C.扩大6倍D.扩大9倍3、分式的值等于0时,x的值为()A.x=±2B.x=2C.x=﹣2D.x=4、下列四个数中最大的数是()A. B. C. D.5、把方程去分母正确的是()A. B. C.D.6、关于x的方程﹣=0有增根,则m的值是()A.2B.-2C.1D.-17、若把分式中的x和y都扩大3倍,那么分式的值()A.扩大3倍B.缩小3倍C.缩小6倍D.不变8、化简的结果是()A.a+bB.a-bC.a 2-b 2D.19、下列解方程过程中,变形正确的是()A.由5x-1=3,得5x=3-1B.由,得C.由3- =0,得6-x+1=0D.由=1,得2x-3x=110、下列计算,正确的是()A. B. C. D.11、若x=3是分式方程- =0的根,则a的值是( )A.5B.-5C.3D.-312、若分式的值为1,则x的值为()A.1B.﹣2C.+1D.213、下列各式中,分式的个数有()、、、、、、.A. 个B. 个C. 个D. 个14、下列式子中是分式的是()A. B. C. D.15、下面是某同学在一次数学测验中解答的填空题,其中答对的是()A.若x 2=4,则x=2B.若3x 2=6x,则x=2C.x 2+x-k=0的一个根是1,则k=2D.若分式的值为零,则x=2或x=0二、填空题(共10题,共计30分)16、分式方程有增根,则的值为________。

17、依据流程图计算需要经历的路径是________(只填写序号),输出的运算结果是________.18、计算:(sin30°)﹣1﹣(2016)0+|1﹣|=________ .19、计算(﹣1)2+()﹣1﹣50=________.20、若ab=1,x=,y=,则xy=________。

第十章 分式数学七年级上册-单元测试卷-沪教版(含答案)

第十章 分式数学七年级上册-单元测试卷-沪教版(含答案)

第十章分式数学七年级上册-单元测试卷-沪教版(含答案)一、单选题(共15题,共计45分)1、分式的计算结果是()A. B. C. D.2、若-=,则z等于( )A.x-yB.C.D. .3、解方程1-,去分母,得()A.1-x-3=3xB.6-x-3=3xC.6-x+3=3xD.1-x+3=3x4、观察下面的变形规律,,,,……回答问题:若,则x的值为( )A.100B.98C.1D.5、若分式的值为1,则x的值是()A.1B.2C.-1D.-26、÷化简结果为().A. B. C. D.7、下列计算错误的是()A. B. =-1 C. = D.8、已知x≠0,则等于()A. B. C. D.9、解分式方程时,去分母后变形为()A.2+(x+2)=3(x-1)B.2-x+2=3(x-1)C.2-(x+2)=3(1- x)D.2-(x+2)=3(x-1)10、满足方程的x的值是()A.x=2B.x=﹣2C.x=0D.无解11、计算得()A.x 5B.C.D.x 1512、解分式方程,分以下四步,其中,不正确一步是()A.方程两边分式的最简公分母是(x﹣1)(x+1)B.方程两边都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=113、下列约分正确的是()A. B. C. D.14、如果分式的值为0,则x的值是A.1B.0C.-1D.±115、下列运算正确的是()A. B. C. D.二、填空题(共10题,共计30分)16、化简: =________.17、如果分式有意义,那么实数x的取值范围是________.18、当x=________时,分式无意义.19、当分式的值等于零时,x=________.20、计算:的结果是________21、若要使分式有意义,则x的取值范围是________ .22、若,则的值为________23、(﹣2)﹣2=________.24、若分式的值为0,则x=________.25、分式当x ________时,分式的值为零.三、解答题(共5题,共计25分)26、计算:(π﹣1)0+ + ﹣.27、解分式方程:= .28、计算:,29、一艘船由A到B顺水航行每小时走v1千米,由B到A逆水航行每小时走v2千米,求此船在A、B间往返一次平均每小时走多少千米?30、问题探索:(1)已知一个正分数(m>n>0),如果分子、分母同时增加1,分数的值是增大还是减小?请证明你的结论.(2)若正分数(m>n>0)中分子和分母同时增加2,3…k(整数k>0),情况如何?(3)请你用上面的结论解释下面的问题:建筑学规定:民用住宅窗户面积必须小于地板面积,但按采光标准,窗户面积与地板面积的比应不小于10%,并且这个比值越大,住宅的采光条件越好,问同时增加相等的窗户面积和地板面积,住宅的采光条件是变好还是变坏?请说明理由.参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、B5、D7、C8、D9、D10、D11、B12、D13、C14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

2020-2021学年苏科版八年级下册数学 第十章 分式 单元综合测试(含解析)

第十章分式单元综合测试一.选择题1.在中,是分式的有()A.1个B.2个C.3个D.4个2.若分式有意义,则x满足的条件是()A.x=5B.x≠5C.x=0D.x≠03.下列分式中,最简分式是()A.B.C.D.4.下列约分正确的是()A.=x3B.=0C.=x+y D.=x﹣y5.如果把分式中的x,y同时扩大为原来的4倍,那么该分式的值()A.不变B.扩大为原来的4倍C.缩小为原来的D.缩小为原来的6.化简+的结果是()A.x+y B.x﹣y C.D.7.化简÷的结果是()A.x+3B.x﹣3C.3﹣x D.﹣6x8.如果a2+a﹣1=0,那么代数式(1﹣)÷的值是()A.3B.1C.﹣1D.﹣39.为有效解决交通拥堵问题,营造路网微循环,某市决定对一条长860m的道路进行拓宽改造.为了减轻施工对城市交通造成的影响,实际施工时,每天改造道路的长度比原计划增加10%,结果提前6天完成任务.求实际每天改造道路的长度与实际施工天数.珍珍同学根据题意列出方程﹣=6;文文同学根据题意列出方程=×(1+10%).已知两人的答案均正确,则下列说法正确的是()A.x,y代表相同的含义B.x表示实际每天改造道路的长度C.y表示实际施工天数D.表示实际每天改造道路的长度10.如果关于x的不等式组有且只有四个整数解,且关于x的分式方程=﹣8的解为非负数,则符合条件的所有整数a的个数为()A.1B.2C.3D.4二.填空题11.若分式的值为0,则x=.12.化简:=.13.分式与的最简公分母为.14.计算:=.15.计算:=.16.计算的结果等于.17.方程=﹣2的解是.18.要使的值和的值互为相反数,则x的值是.19.如果方程+=0不会产生增根,那么k的取值范围是.20.某校要建立两个计算机教室,为此要购买相同数量的A型计算机和B型计算机.已知一台A 型计算机的售价比一台B型计算机的售价便宜400元,如果购买A型计算机需要224000元,购买B型计算机需要240000元.求一台A型计算机和一台B型计算机的售价分别是多少元.设一台B型计算机的售价是x元,依题意列方程为.三.解答题21.已知x=﹣4时,分式无意义,x=2时,此分式的值为零,求分式的值.22.约分:(1)(2)23.计算:.24.计算下列各式:(1)•;(2)÷(x﹣2)•.25.解方程:=1.26.某超市用4000元购进某种牛奶,面市后供不应求,超市又用1万元购进第二批这种牛奶,所购数量是第一批的2倍,但单价贵了2元.(1)第一批牛奶进货单价为多少元?(2)超市销售两批牛奶售价相同,两批全部售完后要求获利不少于4000元,则售价至少为多少元?27.我们定义:如果两个分式A与B的差为常数,且这个常数为正数,则称A是B的“雅中式”,这个常数称为A关于B的“雅中值”.如分式A=,B=,A﹣B=﹣()===2,则A是B的“雅中式”,A关于B的“雅中值”为2.(1)已知分式C=,D=,判断C是否为D的“雅中式”,若不是,请说明理由,若是,请证明并求出C关于D的“雅中值”;(2)已知分式P=,Q=,P是Q的“雅中式”,且P关于Q的“雅中值”是2,x为整数,且“雅中式”P的值也为整数,求E所代表的代数式及所有符合条件的x的值之和;(3)已知分式M=,N=(a,b,c为整数),M是N的“雅中式”,且M关于N的“雅中值”是1,求a﹣b+c的值.参考答案一.选择题1.解:的分母中含有字母,属于分式,其他的属于整式.故选:B.2.解:∵分式有意义,∴x﹣5≠0,∴x≠5,故选:B.3.解:A、=,所以A选项不符合;B、=,所以B选项不符合;C、==,所以C选项不符合;D、为最简分式,所以D选项符合.故选:D.4.解:A、原式=x4,所以A选项错误;B、原式=1,所以B选项错误;C、为最简分式,所以C选项错误;D、原式==x﹣y,所以D选项正确.故选:D.5.解:x,y同时扩大为原来的4倍,则有==•,∴该分式的值是原分式值的,故选:D.6.解:原式=﹣===x﹣y.故选:B.7.解:原式=•=x﹣3.故选:B.8.解:原式=(﹣)÷=•==,∵a2+a﹣1=0,∴a2+a=1,则原式==3,故选:A.9.解:若设原计划每天改造道路x米,则实际每天改造道路(1+10%)x米,根据题意,可列方程﹣=6;若设实际施工天数为y天,则原计划施工的天数为(y+6)天,根据题意,可列方程=×(1+10%);所以x,y代表不同的含义,表示计划每天改造道路的长度.故选:C.10.解:,不等式组化简为,由不等式组有且只有四个整数解,得到,2<解得:6≤a<10,即整数a=6,7,8,9,,分式方程去分母得:ax﹣28=﹣8(4﹣x)解得:x=,由分式方程的解为非负数以及分式有意义的条件,a﹣8<0,解得:a<8,故a=6和7.故选:B.二.填空题11.解:由题意得:x2﹣1=0,且1﹣x≠0,解得:x=﹣1.故答案为:﹣1.12.解:原式==.故答案为.13.解:分式与的分母为2x2y和6xy2,系数的最小公倍数是6,再取x2和y2,可得最简公分母为6x2y2,故答案为6x2y2.14.解:原式=+=+=+==.故答案为:.15.解:原式=[﹣]•=﹣•=﹣•=﹣2(a+3)=﹣2a﹣6.故答案为:﹣2a﹣6.16.解:原式=•=.故答案为:.17.解:去分母得:2x=3﹣2(2x﹣2),去括号得:2x=3﹣4x+4,移项合并得:6x=7,解得:x=,检验:把x=代入得:2x﹣2=﹣2=≠0,则x=是分式方程的解.故答案为:x=.18.解:根据题意可得:+=0,去分母得:x﹣5+2x﹣4=0,解得:x=3,经检验,x=3是原分式方程的解,故答案为3.19.解:+=0,去分母得,2k+x=0,当x=﹣2时,会产生增根,把x=﹣2代入整式方程得,2k﹣2=0,解得k=1,∴解方程+=0时,不会产生增根,实数k的取值范围为k≠1.故答案是:k≠1.20.解:设一台B型计算机的售价是x元,则一台A型计算机的售价是(x﹣400)元,依题意得:=.故答案为:=.三.解答题21.解:∵分式无意义,∴2x+a=0即当x=﹣4时,2x+a=0.解得a=8∵分式的值为0,∴x﹣b=0,即当x=2时,x﹣b=0.解得b=2∴.22.解:(1)=;(2)原式==.23.解:原式====.24.解:(1)原式=;(2)原式=••=.25.解:方程两边同乘以(x+3)(x﹣1)得:2x(x﹣1)﹣24=(x+3)(x﹣1),整理得:2x2﹣2x﹣24=x2+2x﹣3,则x2﹣4x﹣21=0,(x﹣7)(x+3)=0,解得:x1=7,x2=﹣3,检验:当x=﹣3时,(x+3)(x﹣1)=0,故x=﹣3是方程的增根,当x=7时,(x+3)(x﹣1)≠0,故x=7是原方程的根.26.解:(1)设第一批牛奶进货单价为x元,则第二批牛奶进货单价为(x+2)元,依题意可得:=2×,解得x=8.经检验x=8是方程的解,答:第一批牛奶进货单价为8元;(2)设售价为y元,依题意可得:×(y﹣8)+2××(y﹣10)≥4000,解得y≥12.答:售价至少为12元.27.(1)C是D的“雅中式”,理由如下,==.即:C不是D的“雅中式”.(2).∵P是Q的雅中式.又∵P关于Q的雅中值为2.∴E﹣2x2﹣6x=2(9﹣x2).∴E=6x+18.∴P===.∵P的值也为整数,且分式有意义.故3﹣x=±1,或3﹣x=±2,或者3﹣x=±3,或3﹣x=±6,∴x的值为:﹣3,0,1,2,4,5,6,9.∵x≠±3.∴x的值为:﹣3,0,1,2,4,5,6,9.符合条件的x的值之和为:0+1+2+4+5+9=27.(3)∵M是N的“雅中式”,且M关于N的“雅中值”是1.=1.整理得:(﹣b﹣c+a+4)x+bc﹣5a=0.由上式子恒成立,则:.消去a得:bc﹣5b﹣5c+20=0.∴b(c﹣5)﹣5(c﹣5)=5.∴(b﹣5)(c﹣5)=5.∵a、a、c的整数.∴b﹣5、c﹣5也是整数.当b﹣5=1、c﹣5=5时,b=5,c=10,此时a=12.∴a﹣b+c=16.当b﹣5=5、c﹣5=1时,b=10,c=6,此时a=12.∴a﹣b+c=8.当b﹣5=﹣1、c﹣5=﹣5时,b=4,c=0,此时a=0.∴a﹣b+c=﹣4.当b﹣5=﹣5、c﹣5=﹣1时,b=0,c=4,此时a=0.∴a﹣b+c=4.综上:a﹣b+c的值为:16或8或﹣4或4.。

分式单元测试题(含答案)

分式单元测试题(含答案)

分式测试题一、选择题(共8题,每题有四个选项,其中只有一项符合题意。

每题3分,共24分):1.下列运算正确的是( )A.x10÷x5=x2B.x-4·x=x-3C.x3·x2=x6D.(2x-2)-3=-8x62. 一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.A.11a b+ B.1abC.1a b+D.aba b+3.化简a ba b a b--+等于( )A.2222a ba b+-B.222()a ba b+-C.2222a ba b-+D.222()a ba b+-4.若分式2242xx x---的值为零,则x的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y-+的值,把分子、分母中各项系数化为整数,结果是( )A.2154x yx y-+B.4523x yx y-+C.61542x yx y-+D.121546x yx y-+6.分式:①22 3a a ++,②22a ba b--,③412()aa b-,④12x-中,最简分式有( )A.1个B.2个C.3个D.4个7.计算4222x x xx x x⎛⎫-÷⎪-+-⎝⎭的结果是( )A. -12x+B.12x+C.-1D.18.若关于x的方程x a cb x d-=-有解,则必须满足条件( )A. a≠b ,c≠dB. a≠b ,c≠-dC.a≠-b , c≠d C.a≠-b , c≠-d9.若关于x的方程ax=3x-5有负数解,则a的取值范围是( )A.a<3B.a>3C.a≥3D.a≤310.解分式方程2236111x x x+=+--,分以下四步,其中,错误的一步是( )A.方程两边分式的最简公分母是(x-1)(x+1)B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C.解这个整式方程,得x=1D.原方程的解为x=1二、填空题:(每小题4分,共20分)11.把下列有理式中是分式的代号填在横线上.(1)-3x;(2)yx;(3)22732xyyx-;(4)-x81;(5)35+y;(6)112--xx;(7)-π-12m;(8)5.023+m.12.当a时,分式321+-aa有意义.13.若x=-1,则x+x-1=__________.14.某农场原计划用m天完成A公顷的播种任务,如果要提前a天结束,那么平均每天比原计划要多播种_________公顷.15.计算1201(1)5(2004)2π-⎛⎫-+-÷-⎪⎝⎭的结果是_________.16.已知u=121s st--(u≠0),则t=___________.17.当m=______时,方程233x mx x=---会产生增根. 18.用科学记数法表示:12.5毫克=________吨.19.当x时,分式xx--23的值为负数. 20.计算(x+y)·2222x yx y y x+--=____________.三、计算题:(每小题6分,共12分)2123651x x x x x+----; 22.2424422x y x y x x y x y x y x y ⋅-÷-+-+.四、解方程:(6分) 23.21212339x x x -=+--。

苏科版数学八年级下册第10章《分式》单元测试

苏科版数学八年级下册第10章《分式》单元测试

分式单元测试一 选择1 下列运算正确的是( ) A -40=1 B (-3)-1=31 C (-2m-n )2=4m-n D (a+b )-1=a -1+b -12 分式28,9,12zyx xy z x x z y -+-的最简公分母是( ) A 72xyz 2B 108xyzC 72xyzD 96xyz 23 用科学计数法表示的树-3.6×10-4写成小数是( )A 0.00036B -0.0036C -0.00036D -36000 4 若分式6522+--x x x 的值为0,则x 的值为( )A 2B -2C 2或-2D 2或35计算⎪⎭⎫⎝⎛-+÷⎪⎭⎫ ⎝⎛-+1111112x x 的结果是( ) A 1 B x+1 C x x 1+ D 11-x6 工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x 人挖土,其它的人运土,列方程 ①3172=-x x ②72-x=3x ③x+3x=72 ④372=-xx上述所列方程,正确的有( )个A 1B 2C 3D 47 在ma y x xy x x 1,3,3,21,21,12+++π中,分式的个数是( )A 2B 3C 4D 5 8 若分式方程xa xa x +-=+-321有增根,则a 的值是( ) A -1 B 0 C 1 D 2 9 若3,111--+=-ba ab b a b a 则的值是( ) A -2 B 2 C 3 D -3 10 已知k ba cc a b c b a =+=+=+,则直线y=kx+2k 一定经过( ) A 第1、2象限 B 第2、3象限 C 第3、4象限 D 第 1、4象限 二 填空1 一组按规律排列的式子:()0,,,,41138252≠--ab a b a b a b a b ,其中第7个式子是 第n 个式子是2 7m =3,7n =5,则72m-n=3 ()2312008410-+⎪⎭⎫⎝⎛--+-=4 若2222,2ba b ab a b a ++-=则= 三 化简1 ()d cd b a cab 234322222-∙-÷2 111122----÷-a a a a a a3⎪⎭⎫⎝⎛---÷--225262x x x x四 解下列各题 1 已知b ab a b ab a b a ---+=-2232,311求 的值 2 若0<x<1,且xx x x 1,61-=+求 的值五 (5)先化简代数式()()n m n m mnn m n m n m n m -+÷⎪⎪⎭⎫ ⎝⎛+---+222222,然后在取一组m,n 的值代入求值六 解方程 112332-=-x x 2 1412112-=-++x x x七 2008年5月12日,四川省发生8.0级地震,我校师生积极捐款,已知第一天捐款 4800元,第二天捐款6000元,第二天捐款人数比第一天捐款人数多50人,且两天人均捐款数相等,那么两天共参加捐款的人数是多少?分式(二) 一、选择题: 1.已知230.5x y z==,则32x y z x y z +--+的值是( )A .17 B.7 C.1 D.132.一轮船从A 地到B 地需7天,而从B 地到A 地只需5天,则一竹排从B 地漂到A 地需要的天数是( )A .12 B.35 C.24 D.473.已知226a b ab +=,且0a b >>,则a ba b+-的值为( ) A .2 B .2± C .2 D .2±二、填空题:4. 若关于x 的分式方程3232-=--x m x x 无解,则m 的值为__________. 5.若分式231-+x x 的值为负数,则x 的取值范围是__________.6. 已知2242141x y y x y y +-=-+-,则的24y y x ++值为______.三、解答题: 7. 计算: ()3322232n mn m --⋅8. 计算(1)168422+--x x xx (2)m n n n m m m n n m -+-+--29. 先化简,后求值:222222()()12a a a a a b a ab b a b a b -÷-+--++-,其中2,33a b ==- 10. 解下列分式方程.1412112-=-++x x x11. 计算: (1)1111-÷⎪⎭⎫ ⎝⎛--x xx (2)4214121111x x x x ++++++-12.已知x 为整数,且918232322-++-++x x x x 为整数,求所有符合条件的x 的值.13.先阅读下面一段文字,然后解答问题:一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款.现有学生小王购买铅笔,如果给初三年级学生每人买1支,则只能按零售价付款,需用()12-m 元,(m 为正整数,且12-m >100)如果多买60支,则可按批发价付款,同样需用()12-m 元.设初三年级共有x 名学生,则①x 的取值范围是 ;②铅笔的零售价每支应为 元;③批发价每支应为 元.(用含x 、m 的代数式表示).14. A 、B 两地相距20 km ,甲骑车自A 地出发向B 地方向行进30分钟后,乙骑车自B 地出发,以每小时比甲快2倍的速度向A 地驶去,两车在距B 地12 km 的C 地相遇,求甲、乙两人的车速.分式(三) 一、填空题1、在有理式22xy ,πx ,11+a ,y x +1,122-m 中属于分式的有 .2、分式3-x 的值为0,则x= .3、分式x x 2-和它的倒数都有意义,则x 的取值范围是 .4、当_____=x 时,x --11的值为负数;当x 、y 满足 时,)(3)(2y x y x ++的值为32; 5、若分式y x y-3的值为4,则x,y 都扩大两倍后,这个分式的值为 6、当x= 时,分式11+x 与11-x 互为相反数.7、若分式方程=-1x m 1-x -11有增根,则m= .8、要使方程=-11x a x -2有正数解,则a 的取值范围是9、+++)2)(1(1 x x )3)(2(1++x x +)2007)(2006(1.....+++x x =_____________10、若=a 3b 4=c 5,则分式222cb a ac bc ab +++-=____________二、选择题11、已知m 、n 互为相反数,a 、b 互为倒数,|x|=2,则ab x xnm -++2的值为( ) A 、2 B 、3 C 、4 D 、5 12. 下列式子:(1)yx y x y x -=--122;(2)c a b a a c a b --=--;(3)1-=--b a a b ; (4)yx yx y x y x +-=--+-中正确的是 ( ) A 、1个 B 、2 个 C 、3 个 D 、4 个 13. 下列分式方程有解的是( )A 、+23=162-x B 、012=+x x C 、02= D 、11=14. 若分式mx x ++212不论m 取何实数总有意义,则m 的取值范围是( )A 、m ≥1B 、m >1C 、m ≤1D 、m <115、晓晓根据下表,作了三个推测:①3-x-1x (x>0)的值随着x 的增大越来越小;②3-x-1x(x>0)的值有可能等于2;③3-x-1x (x>O)的值随着x 的增大越来越接近于2.则推测正确的有( )A 、0个B 、1个C 、2个D 、3个 16. 已知分式xyyx -+1的值是a ,如果用x 、y 的相反数代入这个分式所得的值为b ,则a 、b 关系( )A 、相等B 、互为相反数C 、互为倒数D 、乘积为-1 三、解答题17、化简:[22222a b a ab b -+++2ab÷(1a +1b )2]·2222a b ab -+.18、当21,23-==b a 时,求⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-+-b a ab b a b a ab b a +44的值.19、A 玉米试验田是边长为a 米的正方形减去一个边长为1米的正方形蓄水池后余下部分,B 玉米试验田是边长为(a -1)米的正方形,两块试验田的玉米都收获了500千克.(1)那种玉米的单位面积产量高?(2)高的单位面积产量是低的单位面积产量的多少倍?四、探索题 20、观察以下式子:1112122132+→=+>,5527544264+→=+<,3354355555+→=+>, 773722232+→=+<.请你猜想,将一个正分数的分子分母同时加上一个正数,这个分数的变化情况,并证明你的结论.21、甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.谁的购货方式更合算?22、一个批发兼零售的文具店规定:凡一次购买铅笔300枝以上,(不包括300枝),可以按批发价付款,购买300枝以下,(包括300枝)只能按零售价付款.小明来该店购买铅笔,如果给八年级学生每人购买1枝,那么只能按零售价付款,需用120元,如果多购买60枝,那么可以按批发价付款,同样需要120元, ①这个八年级的学生总数在什么范围内?②若按批发价购买6枝与按零售价购买5枝的款相同,那么这个学校八年级学生有多少人?分式(一)参考答案一 CACBC CBBA B二 1 -()nn n a ba b 137201,--, 2 9/5, 3 2, 4 53三 1 ac1, 2 1-a a , 3 32+-x四 1 提示:将所求式子的分子、分母同时除以ab 。

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分式 苏科版数学八年级下册综合检测(含答案)

第10章 分 式综合检测(满分100分,限时60分钟)一、选择题(本题共8题,每题3分,共24分)1.下列式子中,是分式的为( )A.12―a B.xπ―3 C.-x3 D.x2+y2.下列判断错误的是( )A.当a≠0时,分式2a 有意义B.当a=2时,分式3a ―62a +1的值为0C.当a>2时,分式a ―2a 2的值为正数D.当a=-2时,分式a +2a 2―4的值为03.(2022江苏扬州广陵期中)把分式x 2x ―3y 中的x 和y 都扩大为原来的3倍,则分式的值( )A.不变  B.扩大为原来的3倍C.缩小为原来的13 D.扩大为原来的9倍4.(2022江苏无锡月考)若式子x 2+1x ―1 2xx ―1的运算结果为x-1,则在“ ”中添加的运算符号为( )A.+B.-C.×D.÷5.(2022江苏泰州月考)下列运算正确的是( )A.1a +1b =2a +b B.―a +ba ―b =-1C.a÷b·1b =a D.ab =a ―1b ―16.(2021四川成都中考)分式方程2―x x ―3+13―x=1的解为( )A.x=2B.x=-2C.x=1D.x=-17.(2020黑龙江齐齐哈尔中考)若关于x 的分式方程3xx ―2=m2―x +5的解为正数,则m 的取值范围为( )A.m<-10B.m≤-10C.m≥-10且m≠-6D.m>-10且m≠-68.(2022山东泰安中考)某工程需要在规定时间内完成,如果甲工程队单独做,恰好如期完成; 如果乙工程队单独做,则多用3天,现在甲、乙两队合作2天,剩下的由乙队单独做,恰好如期完成,求规定时间.如果设规定时间为x 天,下面所列方程中错误的是( )A.2x +xx +3=1B.2x=3x +3+×2+x ―2x +3=1D.1x +x x +3=1二、填空题(每题3分,共24分)9.(2022江苏南京鼓楼期中)请你写出一个值恒为正数的分式: .10.(2022江苏南京三十九中期中)分式2xx ―2和3x 2―2x 的最简公分母是 . 11.(2022浙江温州中考)计算:x 2+xyxy+xy ―x 2xy = .12.若不改变分式的值,使分子与分母的最高次项的符号为正,则―1―2x ―x 2―x 2+1= . 13.(2022四川内江中考)对于非零实数a,b,规定a￿b=1a―1b,若(2x-1)￿2=1,则x 的值为 .14.(2021浙江宁波镇海期末)已知1x ―1y=2,则―x+xy+y2x+7xy―2y= .15.(2022黑龙江齐齐哈尔中考)若关于x的分式方程1x―2+2x+2=x+2mx2―4的解大于1,则m的取值范围是 .16.(2022江苏盐城月考)已知ab=1,且a≠b.若P=aa+1+bb+1,Q=1a+1+1b+1,则P Q(填“>”“<”“=”“≤”或“≥”).三、解答题(共52分)17.(10分)解分式方程:(1)(2022江苏苏州中考) xx+1+3x=1;(2)(2021江苏连云港中考)x+1x―1―4x2―1=1.18.(2022江苏江阴期中)(10分)先化简―÷a2+aa2―2a+1,再从-1,0,1,2四个数中选一个恰当的数作为a的值代入求值.19.【新素材·青春仪式】(2022江苏扬州中考)(10分)某中学为准备十四岁青春仪式,原计划由八年级(1)班的4个小组制作360面彩旗,后因1个小组另有任务,其余3个小组的每名学生要比原计划多做3面彩旗才能完成任务.如果这4个小组的人数相等,那么每个小组有学生多少名?20.(2021四川广安中考)(10分)国庆节前,某超市为了满足人们的购物需求,计划购进甲、乙两种水果进行销售.经了解,甲种水果和乙种水果的进价与售价如下表所示:甲乙进价(元/千克)x x+4售价(元/千克)2025已知用1 200元购进甲种水果的质量与用1 500元购进乙种水果的质量相同.(1)求x的值;(2)若超市购进这两种水果共100千克,其中甲种水果的质量不低于乙种水果质量的3倍,则超市应如何进货才能获得最大利润,最大利润是多少?21.(12分)阅读下列材料:方程x+1x=2+12有两个解,它们是x 1=2,x 2=12;关于x 的方程:x+1x =c +1c 有两个解,它们是x 1=c,x 2=1c ;x-1x=c ―x +―1x=c +x 1=c,x 2=-1c ;x+2x =c +2c 的解是x 1=c,x 2=2c ;x+3x =c +3c 的解是x 1=c,x 2=3c ;……(1)请观察上述方程与解的特征,比较关于x 的方程x+m x=c +mc (m≠0)与它们的关系,猜想它的解是什么,并利用“方程的解”的概念进行验证;(2)请利用上题的结论解关于x 的方程:x+2x ―1=a +2a ―1.答案全解全析1.A A.12―a的分母中含有字母,是分式,符合题意;B、C不是分式,不符合题意;D选项不符合AB的形式,不是分式.故选A.2.D 当a=-2时,a2-4=0,分式a+2a2―4无意义,所以D选项错误,符合题意.故选D.3.B 将x,y扩大为原来的3倍,即将x,y分别用3x,3y代替,有(3x)23x―3×3y=3x2x―3y,∴分式的值扩大为原来的3倍,故选B.4.B ∵x2+1x―1―2xx―1=x2+1―2xx―1=(x―1)2x―1=x-1,∴在“ ”中添加的运算符号为-.故选B.5.B A.1a +1b=a+bab,不符合题意;B正确;C.a÷b·1b =a·1b·1b=a b2,不符合题意;D.运算错误,不符合题意.故选B.6.A 2―xx―3―1x―3=1,2-x-1=x-3,解得x=2,检验:当x=2时,x-3=2-3=-1≠0,∴x=2是分式方程的解,故选A.7.D 去分母得3x=-m+5(x-2),解得x=m+102,∵方程的解为正数,∴m+102>0且m+102-2≠0,解得m>-10且m≠-6.故选D.8.D+×2+x―2x+3=1,整理得2x +xx+3=1或2x=1―xx+3或2x=3x+3.∴A、B、C选项均正确,故选D.9.答案不唯一.如1x2+1解析 此题是一个开放性试题,答案不唯一.10.x(x-2)解析 第一个分式的分母为x-2,第二个分式的分母分解因式为x(x-2),∴最简公分母是x(x-2).11.2解析 x 2+xyxy +xy ―x 2xy=2xy xy =2.12.x 2+2x +1x 2―1解析 原式=―(1+2x +x 2)―(x 2―1)=x 2+2x +1x 2―1.13.56解析 由题意得12x ―1―12=1,等式两边同时乘2(2x-1)得2-2x+1=2(2x-1),解得x=56,经检验,x=56是原方程的根,∴x=56.14.1解析 ∵1x―1y =2,∴y ―x xy =2,∴y-x=2xy,x-y=-2xy,∴原式=y ―x +xy2(x ―y )+7xy=2xy +xy ―4xy +7xy=3xy 3xy =1.15.m>0且m≠1解析 方程两边同时乘(x+2)(x-2)得x+2+2(x-2)=x+2m,整理得2x=2m+2,解得x=m+1,∵分式方程的解大于1,∴m+1>1,且m+1≠2,m+1≠-2,解得m>0,且m≠1,∴m 的取值范围是m>0且m≠1.16.=解析 P-Q=aa +1+bb +1―+=ab +a +ab +b ―(a +b +2)(a +1)(b +1)=2ab ―2(a +1)(b +1).∵ab=1,且a≠b,∴2ab-2=0,∴P-Q=0,∴P=Q.17.解析 (1)方程两边同乘x(x+1),得x 2+3(x+1)=x(x+1),解得x=-32.经检验,x=-32是原方程的解.(2)去分母得(x+1)2-4=x 2-1,整理得2x=2,解得x=1,经检验,x=1是分式方程的增根,故此方程无解.18.解析 ―÷a 2+a a 2―2a +1=2a ―(a ―1)a (a ―1)÷a (a +1)(a ―1)2=a +1a (a ―1)×(a ―1)2a (a +1)=a ―1a 2,因为a≠1、-1、0,所以a 只能取2,所以原式=14.19.解析 设每个小组有学生x 名,根据题意,得3603x―3604x=3,解这个方程,得x=10,经检验,x=10是原方程的根.答:每个小组有学生10名.20.解析 (1)由题意可知1 200x=1 500x +4,解得x=16,经检验,x=16是原方程的解.(2)设购进甲种水果m千克,利润为y元,则购进乙种水果(100-m)千克,由题意可知y=(20-16)m+(25-16-4)(100-m)=-m+500,∵甲种水果的质量不低于乙种水果质量的3倍,∴m≥3(100-m),解得m≥75,即75≤m<100.在y=-m+500中,-1<0,∴y随m的增大而减小,∴当m=75时,y最大,最大为-75+500=425,∴购进甲种水果75千克,乙种水果25千克才能获得最大利润,最大利润为425元.21.解析 (1)关于x的方程x+mx=c+m c(m≠0)的解是x1=c,x2=m c.验证:当x=c时,方程左边=c+mc ,方程右边=c+mc,左边=右边,∴方程成立;当x=mc 时,方程左边=mc+c,方程右边=c+mc,左边=右边,∴方程成立.故关于x的方程x+mx=c+m c(m≠0)的解为x1=c,x2=m c.(2)由关于x的方程x+2x―1=a+2a―1,得x-1+2x―1=a―1+2a―1,∴x-1=a-1或x-1=2a―1,∴x1=a,x2=a+1a―1.。

苏科版数学八年级下《第10章分式》单元测试题有答案

苏科版数学八年级下《第10章分式》单元测试题有答案

第10章 分式 测试题 (时间: 满分:120分) (班级: 姓名: 得分: ) 一、选择题(每小题3分,共24分) 一、选择题(每小题3分,共30分) 1.下列各式:51(1– x ),34-πx ,222y x -,x x 25,其中分式有( ) A .1个B .2个C .3个D .4个 2.如果分式13-x 有意义,则x 的取值范围是( ) A .全体实数 B .x ≠1 C .x =1 D .x >13.下列约分正确的是( )A .313m m m +=+B .212y x y x -=-+C .123369+=+a b a bD .yx a b y b a x =--)()( 4.若x ,y 的值均扩大为原来的2倍,则下列分式的值保持不变的是( )A .yx 23 B . 223y x C .y x 232 D .2323y x 5.计算x x -++1111的正确结果是( ) A .0 B .212x x - C .212x - D .122-x 6.在一段坡路,小明骑自行车上坡时的速度为v 1千米/时,下坡时的速度为v 2千米/时,则他在这段坡路上、下坡的平均速度是( )A .221v v +千米/时 B .2121v v v v +千米/时 C .21212v v v v +千米/时 D .无法确定 7.若关于x 的方程xm x m x -+-+333=3的解为正数,则m 的取值范围是( ) A .m <29 B .m <29且m ≠23 C .m >49- D .m >49-且m ≠43- 8.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求提前5天交货,每天多做x 件才能按时交货,则x 满足的方程为( )A .54872048720=-+x B .x +=+48720548720C .572048720=-xD .54872048720=+-x 9.对于实数a ,b ,定义一种新运算“⊗”为:a ⊗b=21a b-,这里等式右边是通常的实数运算.例如:81311312-=-=⊗.则方程142)2(--=-⊗x x 的解是( ) A .x=4B .x=5C .x=6D .x=7 10.张华在一次数学活动中,利用“在面积一定的长方形中,正方形的周长最短”的结论,推导出“式子x +x1(x >0)的最小值是2”.其推导方法如下:在面积是1的长方形中,设长方形的一边长为x ,则另一边长是x 1,长方形的周长是2(x +x 1);当长方形成为正方形时,就有x =x1(x >0),解得x =1,这时长方形的周长2(x +x 1)= 4最小,因此x +x 1(x >0)的最小值是2.模仿张华的推导,你求得式子x x 92+(x >0)的最小值是( )A .1B .2C .6D .10二、填空题(每小题4分,共32分)11.分式x 21,221y ,xy 51-的最简公分母为____________. 12.约分:①b a ab 2205=____________,②96922+--x x x =____________. 13.用科学记数法表示:0.000 002 016=____________.14.要使15-x 与24-x 的值相等,则x =____________. 15.计算:(a 2b )-2(a -1b -2)-3=____________.16.若关于x 的方程12123++=+-x m x x 无解,则m 的值为____________. 17.已知1424122-+-+=-y y y y x x ,则y 2+ 4y + x 的值为____________. 18.如果记 221x y x =+ = f (x ),并且f (1)表示当x =1时y 的值,即f (1)=2211211=+;f (12)表示当x =12时y 的值,即f (12)=221()12151()2=+;那么f (1)+ f (2)+f (12)+f (3)+f (13)+…+ f (n )+f (1n)= ____________.(结果用含n 的式子表示)三、解答题(共58分)19.(每小题6分,共12分)计算:(1)224816x x x x --+; (2)2m n m n n m m n n m-++---. 20.(每小题6分,共12分)解下列方程:(1)1123x x =-; (2)2124111x x x +=+--. 21.(10分)先化简,再求值:2222a a a b a ab b ⎛⎫- ⎪--+⎝⎭÷222a a a b a b ⎛⎫- ⎪+-⎝⎭+1,其中a=23,b = –3.22.(10分)已知x 为整数,且222218339x x x x ++++--为整数,求所有符合条件的x 的值.23.(14分)甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校,乙同学骑自行车去学校.已知甲步行的速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲、乙两同学同时从家出发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?附加题(15分,不计入总分)24.一列按一定顺序和规律排列的数:第1个数是112⨯; 第2个数是123⨯;第3个数是134⨯; …… 对任何正整数n ,第n 个数与第(n +1)个数的和等于2(2)n n +. (1)经过探究,我们发现:112⨯=1112-,123⨯=1123-,134⨯=1134-, 设这列数的第5个数为a ,那么a >1156-,a =1156-,a <1156-,哪个正确? 请你直接写出正确的结论;(2)请你观察第1个数、第2个数、第3个数,猜想这列数的第n 个数(即用正整数n 表示第n 个数),并且证明你的猜想满足“第n 个数与第(n+1)个数的和等于2(2)n n +”; (3)设M 表示211,212,213,…,212016这2016个数的和,即M =211+212+213+…+212016, 求证:2016403120172016M <<.参考答案一、1. A 2. B 3. C 4. A 5. C 6. C 7. B 8.D 9. B 10.C二、11. 10xy 2 12.①a 41 ②33-+x x 13.2.016×10-6 14.6 15.4b a 16. -5 17. 2 18. 21-n 三、19.解:(1)224816x x x x --+=2(4)(4)4x x x x x -=--; (2)2m n m n n m m n n m -++---=2m n m n m n m n m n m n m --+=----. 20.解:(1)方程两边乘3x (x -2),得3x =x -2.解得x =-1.检验:当x =-1时,3x (x -2)≠0.所以,原分式方程的解为x =-1.(2)方程两边乘(x +1)(x -1),得x -1+2(x +1)=4.解得x =1.检验:当x =1时,(x +1)(x -1)=0,因此x =1不是原分式方程的解.所以,原分式方程无解.21.解:原式=2()()1()ab a b a b a b ab -+-⋅+--=1a b a b ++-=2a a b-. 当a=23,b =-3时,原式=411. 22.解:原式=2(3)2(3)2182(3)(3)(3)(3)(3)x x x x x x x x --++++=+-+-=23x -. ∵x 为整数,且23x -为整数,∴x-3=±2或x-3=±1,解得x=1或x=2或x=4或x=5.∴所有符合条件的x的值为1、2、4、5.23.解:(1)设乙骑自行车的速度为x米/分,则甲步行的速度是12x米/分,公交车的速度是2x米/分,根据题意,得60012x+30006002x-=3000x-2.解得x=300.经检验,x=300是原方程的解.答:乙骑自行车的速度为300米/分.(2)300×2=600(米).答:当甲到达学校时,乙同学离学校还有600米.24.解:(1)由题意知第5个数a=156⨯=1156-.(2)∵第n个数为1(1)n n+,第(n+1)个数为1(1)(2)n n++,∴1(1)n n++1(1)(2)n n++=2(1)(2)n nn n n++++=()()()2112nn n n+++=2(2)n n+,即第n个数与第(n+1)个数的和等于2(2) n n+.(3)∵112-=112⨯<211=1,12-13=123⨯<212<112⨯=1-12,13-14=134⨯<213<123⨯=12-13,…,12015-1 2016=120152016⨯<212015<120142015⨯=12014-12015,12016-1 2017=120162017⨯<212016<120152016⨯=12015-12016,∴1-12017<211+212+213+…+212015+212016<122016-,即20162017<211+212+213+…+212015+212016<40312016.∴20162017<M<40312016.。

苏科版数学八年级下册《第10章分式》单元自测卷含答案

苏科版数学八年级下册《第10章分式》单元自测卷含答案

第10章 分式 单元自测卷(满分:100分 时间:90分钟)一、选择题(每题3分,共30分)1.下列各式:11,,,1,,52235a n a a b y m b x π++-其中分式有 ( ) A .2个B .3个C .4个D .5个 2.把分式3xy x y-中的x 和y 都扩大2倍,则分式的值 ( ) A .不变 B .扩大为原来的2倍 C .缩小为原来的 D .扩大为原来的4倍3.要使分式2939x x -+的值为0,你认为x 可取的数是 ( ) A .9B .±3C .-3D .3 4.若241()142w a a+=--,则w=( ) A.2(2)a a +≠- B. 2(2)a a -+≠ C. 2(2)a a -≠ D. 2(2)a a --≠- 5.化简的结果是( )6.下列计算错误的是 ( )A .0.220.77a b a b a b a b ++=--B .3223x y x x y y =C .1a b b a -=--D .123c c c+= 7.(2014.孝感)分式方程2133x x x =--的解为 ( ) A .x =-16 B .x =23 C .x =1 D .x =568.关于x 的方程12n m x x +--=0可能产生的增根是 ( ) A .x =1B .x =2C .x =1或2D .x =-1或2 9.若()()412121a m n a a a a -=++-+-,则 ( ) A .m =4,n =-1 B .m =5,n =-1 C .m =3,n =1 D .m =4,n =110.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+1x);当矩形成为正方形时,就有x=1x(x>0),解得x=1,这时矩形的周长2(x+1x)=4最小,因此x+1x(x>0)的最小值是2.模仿张华的推导,你求得式子29xx+(x>0)的最小值是( )A.2 B.1 C.6 D.10二、填空题(每题2分,共14分)11.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是_______米.12.代数式11x-有意义时,x应满足的条件为x_______.13.计算:2422xx x+=--_______.14.如果实数x、y满足方程组30233x yx y+=⎧⎨+=⎩,那么代数式12xyx y x y⎛⎫+÷⎪++⎝⎭的值为_______.15.若关于x的分式方程2213m xx x+-=-无解,则m的值为_______.16.若1171m n m+=+,则n mm n+的值为_______.17.化简(1+)÷的结果为_________.三、解答题(共56分)18.(8分)计算:(1)22211x xx x--+;(2)22691933m m m mm m m⎛⎫-+--÷⎪-++⎝⎭19.(8分)解方程:(1)15121x x =-+ (2)11322y y y-+=--20.(10分)已知关于x 的方程233x m x x=---的解是一个正数,求m 的取值范围.21.(10分)先化简,再求值:2214244x x x xx x x +--⎛⎫-÷ ⎪--+⎝⎭,其中x 是不等式3x +7>1的负整数解.22.(10分)已知三个数x 、y 、z 满足2xy x y =-+,43yz y z =+,43zx z x =-+,求xyz xy yz zx ++的值.23.(10分)某汽车销售公司经销某品牌A 款汽车,随着汽车的普及,其价格也在不断下降,今年5月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年5月份A款汽车每辆售价为多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万元且不少于99万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为8万元,为打开B款汽车的销路,公司决定每售出一辆B 款汽车,返还顾客现金a万元,要使(2)中所有的方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?参考答案一、1.B 2.B 3.D 4.D 5.D 6.A 7.B 8.C 9.C 10.C二、11.a b a+ 12.≠±1 13.x +2 14.1 15. -或-32 16.5 17.x ﹣1三、18.(1)1x x - (2)31m -- 19.(1)x =2 (2)无解 20.m<6且m ≠3 21.x =-1 3 22.-423.(1)9万元 (2)有5种进货方案(3)(2)中所有的方案获利相同,此时购买A 款汽车6辆,B 款汽车9辆对公司更有利 12。

苏科版初二数学第二学期第十章《分式》测试题(含答案)

苏科版初二数学第二学期第十章《分式》测试题(含答案)

第十章《分式》测试题一、选择题(每小题3分,共30分)1. 下列各式:()115x -,43x π-,222x y -,1x ,25x x,其中分式的个数为( ) A. 2 B. 3 C. 4 D. 52. 分式21+x 在实数范围内有意义,则x 的取值范围是( ) A .x >-2 B .x <-2 C .x =-2 D .x ≠-23. 若分式24x x-的值为0,则 x 的值是( ) A. 0 B. 2 C. -2 D. 2或-24. 下列各式与x y x y-+相等的是( )A. ()()55x y x y -+++ B. 22x y x y -+ C. ()()55x y x y -+ D. 2222x y x y -+ 5. 计算1x x +-1x的结果是( ) A .1 B .x C .1x D .2x x + 6. 分式方程1x x ++12x -=1的解是( ) A .x=1B .x=﹣1C .x=3D .x=﹣3 7. 老师设计了接力游戏,用合作的方式完成分式化简.规则:每人只能看到前一人所给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( )A .只有乙B .甲和丁C .乙和丙D .乙和丁 8. 若b a 11-=21,则b a ab -的值是( ) A. 2 B. -2 C. 21 D. -21 9. 已知关于x 的方程22-+x m x =3的解是正数,则m 的取值范围为( ) A. m <-6 B. m >-6 C. m >-6且m≠-4 D. m≠-410. 某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A .3030101.5x x -=B .3036101.5x x-= C .3630101.5x x -= D .3036101.5x x += 二、填空题(每小题3分,共18分)11. 计算:211m m m m--÷= . 12. 若分式方程x m x x -=--223无解,则m= . 13. 当x= 时,分式12-x x 的值比分式xx 1-的值大1. 14.小刚同学不小心弄污了练习本上的一道题,这道题是:“化简21x x x ⎛⎫÷ ⎪-⎝⎭#”,其中“▲”处被弄污了,但他知道这道题的化简结果是11x x +-,则“▲”处的式子为 .15. 某市道路改造中,需要铺设一条长为1200米的管道,为了尽量减少施工对交通造成的影响,实际施工时,工作效率比原计划提高了25%,结果提前8天完成任务.设原计划每天铺设管道x 米,根据题意列出方程为 . 16. 观察下列方程及其解:①x+x 2=3,②x+x 6=5,③x+x 12=7.(①由x+x21⨯=1+2,得x=1或x=2,②由x+x 32⨯=2+3,得x=2或x=3,③由x+x 43⨯=3+4,得x=3或x=4.)找出其中的规律,求关于x 的方程x+23n n x +-=2n+4(n 为正整数)的解是 .三、解答题(共52分)17. (每小题3分,共6分)计算:(1)22244155a b a b ab a b+⋅-; (2)213111a a a a a a a ++⎛⎫-÷ ⎪-++⎝⎭. 18. (每小题3分,共6分)解方程:(1)31x --2x =0; (2)21x x +-231x -=2. 19. (6分)已知M=()()229633a a a a a -+++. (1)化简M ;(2)若正方形ABCD 的边长为a ,且它的面积为9,求M 的值.20. (8分)从徐州到南京可乘列车A 与列车B ,已知徐州至南京里程约为350 km ,A 车与B 车的平均速度之比为10:7,A 车的行驶时间比B 车少1 h ,那么两车的平均速度分别为多少?21. (8分)先化简,再求值:2212112x x x x x x +⎛⎫-÷ ⎪--+⎝⎭,其中x 的值从不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,的整数解中选取.22. (8分)某校利用暑假进行田径场地的改造维修,项目承包单位派遣一号施工队进场施工,计划用40天时间完成整个工程:当一号施工队工作5天后,承包单位接到通知,有一大型活动要在该田径场内举行,要求比原计划提前14天完成整个工程,于是承包单位派遣二号与一号施工队共同完成剩余工程,结果按通知要求如期完成整个工程.(1)若二号施工队单独施工,完成整个工程需要多少天?(2)若此项工程一号、二号施工队同时进场施工,完成整个工程需要多少天?23.(10分)解方程:①21x +-11x +=1;②31x +-21x +=1;③41x +-31x +=1;④51x +-41x +=1;… (1)直接写出方程①②③④的解;(2)请你用一个含正整数n 的式子表示上述规律,并直接写出它的解;(3)解关于x 的方程1a x +-1b x +=1(a ≠b ),然后直接写出1001x +-781x +=1的解.附加题(20分,不计入总分) 24. 对x ,y 定义一种新运算T ,规定:T (x ,y )=2ax by x y++(其中a ,b 均为非零常数),这里等式右边是通常的四则运算,例:T (0,1)=01201a b b ⨯+⨯=⨯+.已知T (1,-1)=-2,T (4,2)=1.(1)求a ,b 的值;(2)若T (m ,m +3)=-1,求m 的值.参考答案一、1. A 2. D 3. D 4. C 5. A 6. A 7. D 8. B 9. C 10. B 二、11. m 12. 1 13.13 14.(x +1)2 15. ()120012008125%x x -=+ 16. x=n+3或x=n+4 提示:将方程x+23n n x +-=2n+4变形为x-3+23n n x +-=2n+4-3. 则x-3+()13n n x +-=n+(n+1).将x-3看做一个整体,由题中规律得x-3=n 或x-3=n+1,解得x=n+3或x=n+4.三、17. 解:(1)原式=()()()24155a b a b ab a b a b +⋅+-=12a a b -. (2)原式=()()()()()21113111311311a a a a a a a a a a a a a a +--++⋅=⋅=+-+-+-. 18. 解:(1)方程两边同乘x (x ﹣1),得3x ﹣2(x ﹣1)=0,解得x=﹣2.经检验:x=﹣2是原分式方程的解.因此原方程的解为x=﹣2. (2)方程两边同乘(x +1)(x -1),得2x (x -1)-3=2(x +1)(x -1),解得x =-12. 经检验:x =-12是原方程的解. 因此原方程的解为x =-12. 19. 解:(1)M=()()3633a a a a a -+++=()33a a a ++=1a . (2)因为正方形ABCD 的边长为a ,且它的面积为9,所以a= 3.所以M=1a =13. 20. 解:设A 车的平均速度为10x km/h ,则B 车的平均速度为7x km/h.根据题意,得3503501710x x -=,解得x=15. 经检验,x=15是所列分式方程的解. 则10x=150,7x=105.答:A 车的平均速度为150 km/h ,B 车的平均速度为105 km/h .21. 解:2212112x x x x x x +⎛⎫-÷ ⎪--+⎝⎭=()()()211211x x x x x x x ---⋅-+=()()()()21111x x x x x x -+-⋅-+=21x x -. 解不等式组()110221x x x ⎧+>⎪⎨⎪-≤⎩,, 得﹣2<x≤2,则x 的值可以为﹣1,0,1,2. ∵当x=﹣1,0,1时,分式无意义,∴x=2.∴原式=2122-=14-. 22. 解:(1)设二号施工队单独施工需要x 天.根据题意,得 +=1,解得x=60.经检验,x=60是原分式方程的解.答:若由二号施工队单独施工,完成整个工程需要60天.(2)根据题意,得1÷(140+160)=24(天). 答:若由一、二号施工队同时进场施工,完成整个工程需要24天.23. 解:(1)①x =0;②x =0;③x =0;④x =0.(2)11n x ++-1n x +=1,它的解为x =0. (3)去分母,得a -b =x +1.移项、合并同类项,得x =a -b -1.又因为a ≠b ,所以x +1≠0,故x =a -b -1是该分式方程的解. 分式方程1001x +-781x +=1的解为x =100-78-1,即x =21. 24. 解:(1)根据题中的新定义,得T (1,-1)=21a b --=a -b =-2, ① T (4,2)=4282a b ++=1,即2a +b =5. ② 由①+②,得3a =3,即a =1. 把a =1代入①得b =3.(2)根据题中新定义,得T (m ,m +3)=3923m m m m ++++=4933m m ++=-1,解得m =-127. 经检验m =-127是分式方程的解.。

苏教版八年级下册第十章分式单元测试基础版

苏教版八年级下册第十章分式单元测试基础版
(1)今年A型车每辆的售价为多少元?(用列方程的方法解答)
A型车
B型车
进货价格(元)
1 100
1 400
销售价格(元)
今年的销售价格
2 000
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B两种型号车的进货价格和销售价格如下表:
18.解方程: +1= .(5分)
19.王师傅检修一条长600米的自来水管道,计划用若干小时完成.在实际检修过程中,每小时检修的管道长度是原计划的1.2倍,结果提前2小时完成任务.王师傅原计划每小时检修管道多少米?
20.阅读并完成下列问题:
方程x+ =2+ 的解是x1=2,x2= ;方程x+ =3+ 的解是x1=3,x2= ;……
(1)该种干果的第一次进价是每千克多少元?
(2)超市销售这种干果共盈利多少元?
10.甲车行驶30千米和乙车行驶40千米所用的时间相同,已知乙车每小时比甲车多行驶15千米.设甲车的速度为x千米/时,依题意列方程,正确的是( )
A. = B. = C. = D. =
11.若关于x的分式方程 = 有增根,则m的值为________.
(x+1)(x-1)· +(x+1)(x-1)·
=(x+1)(x-1)· ,②2(x-1)+3(x+1)=6,③5x+1=6,④
5x=5,⑤x=1.⑥
A.由①到②这一步 B.由③到④这一步 C.由⑤到⑥这一步 D.由④到⑤这一步
5.动车的开通为扬州市民的出行带来了方便.从扬州到合肥,路程为360 km,某趟动车的平均速度比普通列车快50%,所需时间比普通列车少1小时,求该趟动车的平均速度.

北京课改版数学八上第十章《分式》检测题含答案

北京课改版数学八上第十章《分式》检测题含答案

第 10章分式检测题(满分: 100 分,时间: 90 分钟)一、选择题 (每小题 3 分,共 30 分)1.下列各式中,分式的个数为()x y , a , x ,3a , 1 , 1xy ,2 1.3 2x 1π 1 b2x y 2x 2 x 3A.5B.4C.3D.22.下列各式正确的是( )A.ccB. cca ba ba b abC.ccD.cca ba ba bab3.下列分式是最简分式的是()A.m1 B.xyyC. x 2y 2 D.61m 1m3xyx y32m4.将分式x 2中 x 、 y 的值同时扩大到原来的 2 倍,则分式的值()xyA. 扩大到原来的 2 倍B. 缩小到原来的1C.保持不变D. 无法确定2 5.若分式x 21的值为零,则 x 的值为 ()x 1A.-1或 1B.0C.1D.- 126.( 2018?南京中考)计算 a 3? 1 的结果是()aA. aB. a 3C. a 6D. a 97.对于下列说法,错误的个数是()① 2 xy是分式;②当 x时,x21x31 x 1成立;③当 x 3时,分式 的值是零;πx 1x 3④ a b1 a 1 a ;⑤a a2a;⑥ 2 x?3 3 .b xy xy x2A.6B.5C.4D.38.计算11 11的结果是() x 1x 21A.1B. x1C.x 1xxD.1x9.下列各式变形正确的是()A.x y x y2a 2babx yx yB.dcdcC.0.2a 0.03b2a 3ba b b a0.4c 0.05d4c 5dD.cc bb10.( 2018?辽宁锦州中考)为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款.已知第一次捐款总额为4 800 元,第二次捐款总额为5 000 元,第二次捐款人数比第一次多 20 人,而且两次人均捐款额恰好相等, 如果设第一次捐款人数是x 人,那么 x 满足的方程是()A. 4 800= 5 000B. 4 800=5 000C. 4 800 =5 000D. 4 800 =5 000xx 20x x 20 x 20xx 20x二、填空题 (每小题 3 分,共 24 分)11.(2018?江苏盐城中考)使分式x1的值为零的条件是x =.2 x152; (3)(a212.将下列分式约分: (1) x=; (2)7m n = b )2 =.8x 235mn 2(b a )13.计算 2a 3 b 6ab 2=.c 3b 2c 214.分式xy , y, xy的最简公分母为.2xy3x 2 6xy 215.若 3m 4nmn m 2________.0 ,则n mnm 2 n 2m16.若x y z ,则 x y_________.34 02 y5x 3 z17.( 2018?江苏苏州中考)方程1 5的解为.x 12 x118.某人上山的速度为 a 千米/时, 按原路下山的速度为b 千米/时, 则此人上、 下山的平均速度为 _________千米/时 .三、解答题 (共 46 分)19.( 6 分)约分:( 1)a 2 4;(2) m 22m 124a1 m2 .a 420.( 5 分)通分:1,x21.2 x 1x2x 21.( 10 分)计算与化简:( 1)2x2?2 y;( 2)a2a 1a2 1 ;(3)2a1;y x4a 4 a24a2 4 a 2( 4)a1 ;( 5) ( x22)2y x?1a 4 yxy.a1x(2 y x)22.( 6 分)( 2018?江苏宿迁中考)先化简,再求值:11x24x 4,其中 x 3 .x 1x2123.( 6 分)若11 2 ,求2x3xy 2y的值 .x y x2xy y24.( 6 分)当x 3时,求11222x2的值.x 2 x x 4x 4 2 x25.( 7 分)( 2018?江苏徐州中考)为改善生态环境,防止水土流失,某村计划在荒坡上种1 000 棵树.由于青年志愿者的支援,每天比原计划多种25%,结果提前 5 天完成任务,原计划每天种多少棵树?参考答案1.C解析:由分式的定义,知a , 3a , 1 y 为分式,其他的都不是分式 .2x 1 b2x2.B解析:ccccca b ab ab ,故 A 不正确;a ba b ,故 B 正确;ccc ,故 C 不正确; c cc c ,故 D 不正确. a ba ba b a b a b a b a b 3.C解析:m 1m 1 1 ,故 A 不是最简分式; xy y y( x 1) x 11 m( m 1) 3 xy3xy ,故B 不是3 x最简分式;61m61,故 D 不是最简分式; C 是最简分式 .32m324.A解析:因为(2 x)24 x 22x 22x 2 ,所以分式的值扩大到原来的 2 倍 .x y2x 2 y 2( x y) x y5.C解析:若分式 x21的值为零,则 x 21 0 且 x 1 0 ,所以 x1 .x 16.A解析:原式a 3 ? 1 2 a ,故选 A .a7.B解析: 2 xy不是分式,故①不正确;当x 1 时, x 2 1 x 1成立,故②正确;当πx 1x 3时,分式x 3x 的分母 x3故④不正确;a a a(x y) xyxy正确 .3 0 ,分式无意义,故③不正确;a 1 a 1abb ?b 2 ,bb,故⑤不正确; 2 x?34 2x 3x 45x,故⑥不2 x2 x 2 x1 111x x 2x ? x 2 1 (x 1)(x 1) x 18.C 解析:9.D解析:0.2a 0.03b 0.4c 0.05d正确 .x 1x y( x x y( x100(0.2a100(0.4c x2y )y)0.03b)0.05d)1 x 1 x 21 x 1x 2x(x 1)x.x y2b 2(a b),故 B 不正确;x ,故 A 不正确;2aycd c d20a3ba b (a b) b a40c,故 C 不正确;c(b c)c,故 D5db b10.B 解析: 第一次有 x人捐款, 则第二次有 ( x20) 人捐款 .根据题意, 得4 800=5 000,xx 20故选 B .11.-1解析:由题意,得 x1 0 ,解得 x1 .经检验当 x1 时,x1 0 .2x112.( 1) x 3( 2) m ( 3)1解析: (1) x 5x 3 ? x 2 x 3 ;(2) 7m 2n 7mn? m 85n8x 28x 28 35mn 27 mn? ( 5n)m ; (3) (a b) 2(a b)2 1 .(b 2(a 25n a)b)a 22a 3 b 6ab 22a 3b c 2a 213.3c解析:3b 2c 23 26ab 23.3bc c b 3b c2 214. 6x y15.9解析:因为3m4n0 ,所以 m4 n ,73所以mnm 2m(m n)n(m n )m 2nm nm 2 n 2( m n)(m n)( m n)( m n)(m n)( m n )m2 mn mn 22n 2229mn mnn .(m n)( m n)(mn)( m n)447 27nn nnn33916. 7解析:设xy z k 0 则 x 3k , y4k , z5k ,10 3 4 5所以 x y3k 4k 7k 7 .x 2 y3z 3k 8k 15k 10k1017.2解析:方程两边都乘(x 1)(2 x 1) ,得 2 x 1 5( x 1) .解得 x 2 .检验:当 x2 时,( x 1)(2x1)(2 1) (2 2 1)5 0 ,所以,原方程的解是x 2 .18. 2ab解析:设上山的路程为x 千米,则此人上山所用的时间为x小时,此人下山所a ba用的时间为 x小时,所以此人上、 下山的平均速度为2x2 xb) 2ab(千米/时) .bx x x(a aba baba 24(a 2)( a 2) a 219.解:( 1) a 2 4a 4 (a 2) 2 a 2 .( 2) m 2 2m 1 ( m 1)2 (1 m) 2 1 m1 2(1 m)(1 m) (1 m)(1 m) 1 .m m 20.解:因为1 与 1 的最简公分母是 x(x 1)2 ,x 2 x x 2 2x 1所以 1 1 x 1 ;1 1 xx 2 x x( x 1) x(x 2 2 2 x 1 (x 2x( x 2 .1) x 1) 1) 21. 1)原式 4 解:( . y( 2 )原式a 1 2 ? (a 2)( a 2) (a a 2.(a 2) (a 1)(a 1) 1)(a 2)32a a 2 2a a 2a 21 ( )原式 (a 2)( a 2)(a 2)( a 2) (a 2)(a2) (a 2)(a 2)a2.( 4)原式a 2 a 1 a 2 (a 1)(a 1) a 2 a 2 1 1 .a 11 a 1 a 1 a 1( 5)原式( x 2 y)( x 2y) ? xy ? 1y .2 y)x 2 y x( xx 2 (x1)( x 1) x 122.解:原式x 1 ? ( x 2) 2x 2 .当 x 3 时,原式314 .3223.解:因为112,所以 x y2xy . x y所以2x3xy2y2x y 3 xy 4 xy3xy xy1.( x y) 2 xyx2xy y 2 xy 2 xy4xy424.解:原式112x2 2 x( x2) 2x22xx 21? x2 2 x( x12? x(x 2) 2x22)21x211.22x4 2 x4x22x当 x 3 时,原式11 . 2325.解:设原计划每天种树x 棵,则实际每天植树 (125%) x 棵 .根据题意,得1 000 1 000=5 . x(125%) x解得 x40.经检验, x40是原方程的解.答:原计划每天种树40 棵.。

八下第10章-分式-整章水平测试(打印)doc

八下第10章-分式-整章水平测试(打印)doc

5.若分式方程x= 2 + 有增根,则 a 的值为【】A . 180 6.已知 x- = 1无解,则 a = .f (1) + f (2) + f ( ) + f (3) + f ( ) + ⋅ ⋅ ⋅ + f (n ) + f ( ) = _________(结果用含 n 的代数式表示,n 为八下第八章 分式 整章水平测试ax - 4 x - 4A .4B .2C .1D .07.某厂去年产值是 m 万元,今年产值是 n 万元( m < n ),则今年的产值比去年的产值增加的百分比是【】A . m - n n - m n n - m ⨯ 100%B . ⨯ 100%C . ( + 1) ⨯ 100%D . ⨯ 100%n m m 10m9.已知 3x + 4 A B = -x 2 - x - 2 x - 2 x + 1,其中 A 、B 为常数,则 4A -B 的值为【 】A .13B .9C .7D .510.几名同学租一辆面包车前去旅游,面包车的租价为 180 元,出发时又增加了两名同学,结果每个同学比原来少摊了 3 元钱车费,设参加游览的同学共 x 人,则所列方程为【】180 180 180 180180 180 180- = 3 B . - = 3C . - = 3D . - = 3x x + 2 x + 2 xx x - 2 x - 2 x二、填一填,要相信自己的能力!(每题 3 分,共 30 分)1x 25.若 + x = 3 ,则x x 4 + x 2 + 1= _____ ____.y z2 x + y - z== ,则 = .23 4 3x - 2 y + z7.若关于 x 的分式方程x - a 3x - 1 x8.观察下面一列有规律的数:1 2 3 4 5 6 , , , , , ,…… 3 8 15 24 35 48 根据规律可知第 n 个数应是( n 为正整数).9.一位工人师傅加工 1500 个零件后,把工作效率提高到原来的 2.5 倍,因此再加工 1500 个零件时,较前提早了 18 个小时完工,问这位工人师傅提高工作效率的前后每小时各加工多少个零件?设提高工作效率前每小时加工 x 个零件,则根据题意可列方程为____________________.10.如果记 y = x 2 12 1 = f ( x ) ,并且 f (1) 表示当 x = 1时 y 的值,即 f (1) = = 1 + x 2 1 + 12 2,那么1 1 12 3 n正整数).三、做一做,要注意认真审题!(本大题共 46 分)-= 38.若关于x的方程2ax+3=的解为x=1,则a应取【】.1.(10分)(1)计算:(x-1-2.(8分)解方程:8x+3)÷;x+1x+1(1)x-212321 -=1;(2).x+2x2-4x-1x+1x2-13.(10分)要使关于x的方程x+1x a-=x+2x-1x2+x-2的解是正数,求a的取值范围.4.(10分)A、B两地相距40km,甲骑自行车从A地出发1小时后,乙也从A地出发,用相当于甲的1.5的速度追赶,当追到B地时,甲比乙先到20分钟,求甲、乙两人的速度.四、探索创新,再接再厉!(本题14分)某开发公司生产的960件新产品需要精加工后才能投放市场。

沪教版七年级上册数学第十章 分式 含答案

沪教版七年级上册数学第十章 分式 含答案

沪教版七年级上册数学第十章分式含答案一、单选题(共15题,共计45分)1、下列各式:,,,,,其中分式的个数有()A.5个B.4个C.3个D.2个2、如果分式的值为0,那么x为()A.-2B.0C.1D.23、已知﹣=,则的值为()A. B. C.2 D.-24、下列各式中,正确的是()A. B. =a+b C. D.5、使代数式有意义的x的取值范围为()A.x>2B.x≠0C.x<2D.x≠26、若分式有意义,则x的取值范围是()A.x>5B.x≠﹣5C.x≠5D.x>﹣57、若m等于它的倒数,则分式的值为()A. B.1 C. 或1 D.以上都不对8、计算的结果为()A.1B.xC.D.9、下列运算中,正确的是()A. =±2B. =﹣3C.(﹣1)0=1D.﹣|﹣3|=310、在xy,,(x+y),这四个有理式中,分式是()A.xyB.C. (x+y)D.11、分式方程 +1=去分母后得到的方程是()A.3x=0B.x 2-3x-2=0C.x 2-3x+4=0D.x 2-2=012、若分式的值为零,则x的取值为()A.0B.-3C.3D.3或-313、化简的结果是()A. B. C. D.14、若方程有一个根是x=1,则m的值是()A. B. C. D.15、下列关于x的方程,是分式方程的是()A. B. C. D.二、填空题(共10题,共计30分)16、计算的结果是________17、分式方程的解是________.18、若关于x的方程=的解为正数,则m的取值范围是________ .19、当x=________时,分式的值为0.20、解关于x的方程(其中m为常数)产生增根,则常数m的值等于________.21、要使式子有意义,则x的取值范围为________.22、a、b为实数,且ab=1,设P= ,Q= ,则P________Q (填“>”、“<”或“=”).23、要使方式的值是非负数,则x的取值范围是________.24、分式方程去分母时,两边都乘以________.25、计算:()÷()=________.三、解答题(共5题,共计25分)26、先化简,再求值:,其中.27、计算:(﹣2015)0+|1﹣|﹣2cos45°++(﹣)-228、先化简,再求值:•+,其中x是从﹣1、0、1、2中选取的一个合适的数.29、先化简÷(-),然后再从-2<x≤2的范围内选取一个合适的x的整数值代入求值30、当m为何值时,解方程会产生增根?参考答案一、单选题(共15题,共计45分)1、D2、D3、B4、D5、D6、C7、C8、A9、C10、D11、B12、C13、A14、D15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、28、29、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十章《分式》单元测试题
一、选择题:(本题共10小题,每小题3分,共30分)
1.在1x ,12,22x x +,3xy π,3x y +,11x
+中,分式的个数有…………………………( ) A .1个; B .2个; C .3个; D .4个;
2. (2018•莱芜)若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是………………( )
A .2x x y +-;
B .22y x ;
C .3223y x ;
D .()
222y x y -; 3. 若分式211
x x -+的值为0,则x 的值为………………………………( ) A .0; B .1; C .-1; D .±1;
4. 下列分式是最简分式的………………………………………………………………( )
A .223a a b ;
B .23a a a -;
C .22
a b a b ++;D .222a ab a b --; 5.下列计算中错误的是……………………………………………………………( )
A .0.220.77a b a b a b a b ++=--;
B .3223x y x x y y =;
C .1a b b a -=--;
D .123c c c
+=; 6. 解分式方程22311x x x
++=--时,去分母后变形为……………………………………( ) A .()()2231x x +-=-; B .()2231x x -+=-;
C .()()2231x x -+=-;
D .()()2231x x -+=-; 7. 若关于x 的分式方程121
m x -=-的解为非负数,则m 的取值范围是…………………( ) A .m >-1; B .m ≥1; C .m >-1且m ≠1; D .m ≥-1且m ≠1; 8. 若关于x 的分是方程2233x m x x
++=--有增根,则m 的值是…………………………( ) A .m=-1; B .m=0;
C .m=3;
D .m=0或m=3; 9. 已知
1112a b -=,则ab a b -的值是………………………………………………………( ) A . 12; B .12-; C .2 ; D .-2;
10.某工厂新引进一批电子产品,甲工人比乙工人每小时多搬运30件电子产品,已知甲工人搬运300件电子产品所用的时间与乙工人搬运200件电子产品所用的时间相同.若设乙工人每小时搬运x 件电子产品,可列方程为…………………………………( )
A .30020030x x =+;
B .30020030x x =-;
C .30020030x x =+;
D .30020030
x x =-;
二、填空题:(本题共8小题,每小题3分,共24分)
11. 代数式1
1x -有意义时,x 应满足的条件为 .
12.化简:226
9x x +-= . 13. 1xy ,34y
x ,1
6xyz 的最简公分母是 .
14.当m = 时,解分式方程533x m
x x -=--会出现增根.
15. 如果实数x ,y 满足方程组30233x y x y +=⎧⎨+=⎩,那么代数式1
2xy
x y x y ⎛⎫+÷ ⎪++⎝⎭的值为
. 16.对于非零的两个实数a 、b ,规定1
1
a b b a ⊕=-,若2⊕(2x -1)=1,则x 的值为 .
17.若1
3m m +=,则221
m m += .
18. 若关于x 的方程213
4416m m x x x ++=-+-无解,则m 的值为 .
三、解答题:(本题满分76分)
19.计算:(本题满分15分)
(1)223224a b a c bc ⎛⎫÷- ⎪-⎝⎭; (2)2
2211x x x x --+; (3)2451
2111a a a a a a -⎛

⎛⎫
+-÷- ⎪ ⎪---⎝⎭⎝⎭
20. (本题满分15分)解方程:
(1)1
1322y
y y -+=--; (2)222234
1x x x x x +=-+-;
21. (本题满分5分)先化简,再求值:(2018.安顺)2282442x x x x x ⎛⎫÷-- ⎪-+-⎝⎭,其中2x =;
22. 本题满分6分)已知关于x 的分式方程
233x k x x -=--有一个正数解,求k 的取值范围.
23. (本题满分6分)当k 为何值时,分式方程
()6311x k x x x x +=---有解?
24. (本题满分6分) 已知
234221
x A B x x x x +=----+,其中A ,B 为常数,求4A-B 的值.
25. (本题满分6分) 若数a 使关于x 的不等式组()()111132231x x x a x ⎧-≤-⎪⎨⎪-≤-⎩
有且仅有三个整数解,且使关于y 的分式方程
312122y a y y
++=--有整数解,试求满足条件的所有a 的值
26. (本题满分8分)班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:
(1)大巴与小车的平均速度各是多少?
(2)苏老师追上大巴的地点到基地的路程有多远?
27. (本题满分9分)为配合“一带一路”国家倡议,某铁路货运集装箱物流园区正式启动了2期扩建工程.一项地基基础加固处理工程由A、B两个工程公司承担建设,已知A工程公司单独建设完成此项工程需要180天,A工程公司单独施工45天后,B工程公司参与合作,两工程公司又共同施工54天后完成了此项工程.
(1)求B工程公司单独建设完成此项工程需要多少天?
(2)由于受工程建设工期的限制,物流园区管委会决定将此项工程划包成两部分,要求两工程公司同时开工,A工程公司建设其中一部分用了m天完成,B工程公司建设另一部分用了n天完成,其中m,n均为正整数,且m<46,n<92,求A、B两个工程公司各施工建设了多少天?。

相关文档
最新文档