教育统计学第五章 假设检验
教育与心理统计学 第五章 假设检验考研笔记-精品
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\
第五统计假设测验-精选
在理论上,当v 增大时,t 分布趋向于正态分布。
t 分布的密度函数为:
fν(t)π [ν [( ν ( 1 )/2 2 )] /!2 ]!(1 tν 2) (ν 2 1 )
( t ) (5·3)
t 分布的平均数和标准差为:
第五章 统计假设测验
第一节 统计假设测验的基本原理 第二节 平均数的假设测验 第三节 二项资料的百分数假设测验 第四节 参数的区间估计
第一节 统计假设测验的基本原理
一、统计假设的基本概念 二、统计假设测验的基本方法 三、两尾测验与一尾测验。 四、假设测验的两类错误
一、统计假设的基本概念 所谓统计假设(statistical hypothesis) 是指有关某一总体 参数的假设。例如假设某小麦新品种的产量和原地方品种 的产量一样,或者比旧地方品种更好。
于是应接受H0。如果新品种的平均产量为500kg,与总 体假设相差很大,那当然应否定H0 。但如果试验结果与 总体假设并不相差悬殊 , 就要借助于概率原理,具体做
法有以下两种:
1. 计算概率 在假设H 0 为正确的条件下,根据的抽样分布算出
获得 y =330kg的概率,或者说算得出现随机误差 y 0=30(kg)
第二类错误的概率为 值。值的计算方法就是计算
抽样平均数落在已知总体的接受区的概率(这里的已知总体 是假定的)。
例:已知总体的均值 0 =300,其平均数抽样标准误为15,
被抽样总体的平均数 315kg、标准误也为15,由此可以
画出这两个总体的分布曲线如图5.2,图中标出了已知总体的
接受区域在c1和c2之间。由于两个总体的平均数不同,这种可 能性正是第二类错误的概率值,其一般计算方法为:
第5章 区间估计与假设检验
分布(如t分布,F分布,正态分布, χ 2 分布等)。构造出统计
量以后,就可以利用样本数据计算出这个统计量的样本值,再 把这个样本值与给定某一显著水平的临界值进行比较,看它与 临界值是否有显著差别,从而作出判断,决定拒绝还是接受所 作的假设。
, βˆ2
+
δ
)
包含 β2 的概率
Pr(βˆ2 − δ ≤ β 2 ≤ βˆ2 + δ ) = 1−α (5.2.1)
这样的区间称为置信区间(confidence interval);1−α 称为置
信系数(confidence coefficient);而α 称为显著性水平(level of
significance)。置信区间的端点称置信限(confidence limits)也 称临界值(critical values)。
βˆ2 − δ 为置信下限(lower confidence limit)
βˆ2 + δ 为置信上限(upper confidence limit)
(5.2.1)式表示的是:随机区间包含真实 β2的概率为 1−α。
点估计与区间估计:
单一的点估计量可能不同于总体真值,即存在估计误差。点 估计既不能给出误差范围的大小,也没有给出估计的可靠程度。
进行统计假设检验,就是要制定一套步骤和规则,以使决定 接受或拒绝一个虚拟假设(原假设)。一般来说,有两种相互 联系、相互补充的方式:置信区间(confidence interval)和显 著性检验(test of significance)。
§5.6假设检验:置信区间的方法
应用统计学第5章 假设检验ppt课件
总体 (某种假设)
抽样
样本 (观察结果)
检验
(接受)
(拒绝)
小概率事件
小概率事件
未发生
整理版课件
发生
25
三.单边检验
1.单边检验与双边检验的不同 ➢假设:右边检验 -H0:μ≤μ0, H1:μ>μ0
左边检验-H0:μ≥μ0, H1:μ<μ0 ➢拒绝域:
设总体X∼N(μ, σ2), σ为未知,X1,X2,….,Xn是来自 X的样本.给定显著性水平.
在海湾战争的“沙漠风暴”行动中,也应用了相同的 分析。
整理版课件
12
假设检验分类:
参数的检验 分布的检验
参数的检验包括:
➢一个正态总体(均值和方差)的假设检验 ➢两个正态总体(均值和方差)的假设检验
假设检验形式:
双边检验(等号成立) 单边检验(不等号成立)
整理版课件
13
5.1 统计假设检验的基本问题
❖原假设一定要设为“≤或 ≥”.
❖拒绝域在图形的左侧或右侧大体上与原假 设H0中的不等式开口方向一致.
整理版课件
30
四.统计假设检验中的两类判断错误
❖第H称0生一判产类断者错,的误因风:此险零也度假称,设为记H“0为弃本α真是. 错真误的”,。而在做管出理了中否也定 其大小为: P{拒绝/H0真}=α
2 1
/
2 2
~F(n1―1,n2―1)
其中s12 和s22 分别是总体X和Y的样本方 差。
整理版课件
8
二. 样本特征数与总体特征数的关系
❖总体X的特征数:E(X)= μ
D(X)= σ2
❖样本特征数: X
1 n
n k 1
Xk
《假设检验检验》课件
数据分析中的假设检验
什么是假设检验
假设检验是一种统计方法,用于通过样本数据来推断总体参数的性质。它可以帮助我们判断一个观察结 果是由偶然因素引起的,还是真实存在的差异。
假设检验的步骤
1
2. 选择检验统计量
2
选择适合问题的检验统计量,如t值、
z值等。
3
4. 计算统计量
4
利用样本数据计算检验统计量的值。
5
6. 得出结论
6
根据决策,得出关于总体参数的结论。
1. 建立假设
确定原始假设和备择假设,描述总体 参数的状态。
3. 设定显著性水平
选择显著性水平,决定拒绝原始假设 的界限。
5. 做出决策
根据检验统计量的值和显著性水平, 决定是否拒绝原始假设。
常用的假设检验方法
单样本t检验
结论的解释
根据结果的解释,得出关于总体参数的结论,并提供相应的推论。
实例演示及应用场景
通过具体的实例演示,展示假设检验在各个领域的应用,如医学、市场研究、环境保护等。
总结与展望
假设检验是数据分析中重要的工具之一,它可以帮助我们做出科学的决策, 并推动各个领域的发展。未来,我们可以进一步研究和改进假设检验方法, 提高其效能和适用性。
用于比较一个样本的平均值 与已知值或者另一个样本的 平均值。
独立样本t检验
用于比较两个独立样本的平 均值是否存在显著差异。
相关样本t检验
用于比较两个相关样本的平 均值是否存在显著差异。
如何解读假设检验结果
拒绝原始假设
如
接受原始假设
如果检验结果的p值大于等于显著性水平,我们接受原始假设。
假设检验《统计学原理》课件
X=X1>X0
H0为伪
从上图可以看出,如果临界值沿水平方向右移,α将变小而β变大,即若减小 α错误,就会增大犯β错误的机会;如果临界值沿水平方向左移,α将变大而 β变小,即若减小β错误,也会增大犯α错误的机会,
a 错误和 错误的关系
在样本容量n一定的情况下,假设检验不能同时做到犯α和 β两类错误的概率都很小,若减小α错误,就会增大犯β错误 的机会;若减小β错误,也会增大犯α错误的机会,要使α和 β同时变小只有增大样本容量,但样本容量增加要受人力、 经费、时间等很多因素的限制,无限制增加样本容量就会 使抽样调查失去意义,因此假设检验需要慎重考虑对两类 错误进行控制的问题,
参数假设检验举例
例2:某公司进口一批钢筋,根据要求,钢筋的 平均拉力强度不能低于2000克,而供货商强 调其产品的平均拉力强度已达到了这一要 求,这时需要进口商对供货商的说法是否真 实作出判断,进口商可以先假设该批钢筋的 平均拉力强度不低于2000克,然后用样本的 平均拉力强度来检验假设是否正确,这也是 一个关于总体均值的假设检验问题,
假设检验的两类错误
正确决策和犯错误的概率可以归纳为下表:
假设检验中各种可能结果的概率
H0 为真
接受H0
1-α 正确决策
拒绝H0,接受H1
α 弃真错误
H0 为伪
β 取伪错误
1-β 正确决策
•假设检验两类错误关系的图示
以单侧上限检验为例,设H0 :X≤X0 , H1:X>X0
图a X≤X0 H0为真
a
H0值
样本统计量 临界值
观察到 的样本 统计量
5、假设检验的两类错误
根据假设检验做出判断无非下述四种情况:
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误, 假设检验是依据样本提供的信息进行判断,有犯错误的可 能,所犯错误有两种类型: 第一类错误是原假设H0为真时,检验结果把它当成不真而 拒绝了,犯这种错误的概率用α表示,也称作α错误 αerror 或弃真错误, 第二类错误是原假设H0不为真时,检验结果把它当成真而 接受了,犯这种错误的概率用β表示,也称作β错误 βerror 或取伪错误,
统计学中的假设检验
统计学中的假设检验统计学作为一门重要的学科,广泛应用于各个领域。
在实际问题的分析中,假设检验是统计学的基本方法之一,常用于从样本数据中推断总体参数、验证科学假设等。
本文将为大家介绍统计学中的假设检验方法及其应用。
什么是假设检验?假设检验是统计学中一种重要的推断方法,用于根据样本数据对总体参数作出推断或假设验证。
它将原始假设与备择假设进行比较,通过计算样本数据的统计量,以确定是否拒绝原始假设,从而得出结论。
假设检验的步骤假设检验通常包含以下步骤:1. 设立假设:在进行假设检验前,我们需要明确原始假设和备择假设。
原始假设通常是我们希望验证的假设,而备择假设则是与原始假设相对的假设。
2. 选择显著性水平:显著性水平是指我们对错误结果的容忍程度。
通常情况下,显著性水平取0.05,表示容忍5%的错误结果。
3. 计算统计量:根据样本数据计算出相应的统计量,例如 t 值、F 值、卡方值等。
4. 判断拒绝域:通过设定显著性水平和自由度,结合统计量的分布特性,确定拒绝域。
如果统计量落入拒绝域内,则拒绝原始假设;反之,则接受原始假设。
5. 得出结论:根据计算结果和拒绝域,得出针对原始假设的结论。
常见的假设检验方法1. 单样本 t 检验:用于比较一个样本与一个已知均值之间的差异,例如研究某个群体的平均水平是否与总体平均水平存在显著差异。
2. 独立样本 t 检验:用于比较两个独立样本之间的均值差异,例如比较男性和女性的平均身高是否存在显著差异。
3. 配对样本 t 检验:用于比较来自同一组被试的两个配对样本之间的差异,例如研究某种治疗方法前后的效果是否存在显著差异。
4. 卡方检验:用于比较实际观察频数与理论期望频数之间的差异,例如研究两个变量之间是否存在相关性。
假设检验的意义和应用假设检验在科学研究和实际应用中具有重要的意义:1. 推断总体:通过从样本中得出结论,推断总体的参数,例如总体均值、总体比例等。
2. 验证科学假设:通过对样本数据的分析,验证科学假设是否成立,从而推动科学研究的进展。
教育统计学中的检验(最后的)
类型:完全随机设计的方差分析(随机分 组,每组 分别接受一种处理)
多因素方差分析
基本原理:在教育和心理研究中,某一现 象的产生或变化是多因素共同作用的结果, 在这种情况下,需要对对多个变量的各个 水平间有无显著性差异的进行分析。
目的: 对两个或多个自变量之间的交互作 用, 进行评估。
(3) 确定P值, 作出统计推断结论
以 =n-1=36-1=35,查t界值表,t0.05/2,35=2.030,
t>t0.05/2,35 , P < 0.05,按 = 0.05水准拒绝H0,
接受H1 ,差异有统计学意义。可以认为从事铅作业
男性工人的血红蛋白含量不同于正常成年男性。 即从事铅作业男性工人的血红蛋白含量低于正常 成年男性。
患者编号
1 2 3 4 5 6 7 8 9 10
血红蛋白(g/L) 治疗前
98 102 83 101 96 94 113 81 74 83
治疗后
128 136 114 129 131 134 130 119 121 118
差值d
30 34 31 28 35 40 17 38 47 44 335
d2 900 1156 961 784 1225 1600 289 1444 2209 1936 11793
方差分析
基本原理:两个以上总体均值差异的检验。
目的: 分析哪些因素(实验处理还是误 差)对实验结果产生影响。
要求:总体正态分布 变异的可加性(变异的可分解性) 方差齐性
单因素方差分析
基本原理:在教育和心理研究中,对于实 验中只有一个自变量的数据进行方差分析, 称为单因素方差分析,也称作单向方差分 析。 目的:实验处理的作用下自变量对因变量 的影响。
假设检验的统计学名词解释
假设检验的统计学名词解释统计学是一门研究收集、整理、分析和解释数据的科学。
而在统计学中,假设检验是一种重要的统计方法,用于检验研究中的假设是否符合实际情况。
本文将对假设检验进行详细解释,并探讨其在统计学中的应用。
一、假设检验的概念和基本原理假设检验是通过对样本数据进行统计分析来对某个总体参数的假设进行验证的方法。
在进行假设检验时,我们首先提出一个原假设(H0)和一个备选假设(H1),然后根据样本数据的结果来判断哪个假设更加可信。
原假设通常是对问题的一种默认或无效的假设,而备选假设是我们希望证明的假设。
通过比较样本数据与原假设之间的差异,我们可以得出结论,支持或拒绝原假设。
二、假设检验的步骤和方法进行假设检验通常需要遵循以下步骤:1. 根据问题的实际背景,确定原假设和备选假设。
2. 收集样本数据,并计算样本统计量,如均值、标准差等。
3. 确定检验统计量,如t值、F值等。
这些统计量可以帮助我们评估样本数据与原假设的一致性。
4. 设置显著性水平α,即检验的临界值。
这个值表示我们在拒绝原假设时所允许的错误的概率。
5. 根据计算出的检验统计量和显著性水平,得出检验结果。
如果p值小于显著性水平,我们可以拒绝原假设;否则,我们接受原假设。
在假设检验中,常用的方法包括:1. 单个总体均值检验:用于检验一个总体均值是否等于一个给定的值。
2. 两个总体均值检验:用于比较两个总体均值是否存在显著差异。
3. 方差分析:用于比较两个或多个总体均值是否存在显著差异。
4. 卡方检验:用于检验观察值与理论值之间的差异是否显著。
5. 相关分析:用于分析两个变量之间是否存在相关性。
三、假设检验的应用领域假设检验在各个领域中都有广泛的应用,以下是其中几个典型的应用领域:1. 医学研究:用于判断某种治疗方法的有效性,比如新药是否比现有药物更好。
2. 工程质量控制:用于判断生产过程的稳定性和统计规律性。
3. 金融风险评估:用于评估投资组合的风险和收益。
《教育统计学》(教育学)作业参考答案
《教育统计学》作业参考答案(教育学专业)一、名词解释1. 分层抽样:按与研究内容有关的因素或指标先将总体划分成几个部分,然后从各部分(即各层)中进行单纯随机抽样或机械抽样,这种抽样方法称为分层抽样。
2. 描述统计:对已获得的数据进行整理、概括,显现其分布特征的统计方法称为描述统计。
3. 集中量:集中量是代表一组数据典型水平或集中趋势的量。
它能反映频数分布中大量数据向某一点集中的情况。
4. 统计表:统计表是用来表达统计指标与被说明的事物之间数量关系的表格。
5. 总体:总体是我们所研究的具有某种共同特性的个体的总和。
样本是从总体中抽出的作为观察对象的一部分个体。
6. 二列相关:当两个变量都是正态连续变量,其中一个变量被人为的划分为二分变量,表示这两个变量之间的相关,称为二列相关。
7. 参数:总体上的各种数字特征是参数。
业绩反映总体上各种特征的数量是参数。
8. 小概率事件:样本统计量(随机事件)在其抽样分布上出现的概率小于或等于事先规定的水平,则该事件为小概率事件。
9. 中位数:在一组安大小顺序排列的数据中,位于中央位置上的那个数称为中为数。
10. 统计量和参数:样本上的数字特征量是统计量。
总体上的各种数字特征量是参数。
11. 回归分析:把存在相关的两个变量,一个作为自变量,另一个作为因变量,并建立方程式,由自变量的值估计、预测因变量的值,这一过程称为回归分析。
12. 相关关系:两个变量间的不精确、不稳定的变化关系称为相关关系。
二、填空题1. 从变化方向上看,两个变量之间的相关类型有正相关、负相关、零相关。
2. 教育统计资料的来源有两个方面:经常性资料、专题性资料。
3. 表示间断变量的统计图有直条图和圆形图。
4. 假设检验一般有两个相互对立的假设,即零假设和备择假设。
5. 统计图的结构一般包括标题、图号、标目、图形、图注等。
6. 差异系数是标准差与平均数的百分比。
7. 统计数据按来源方式可分为点计数据和测量数据。
假设检验与显著性检验
假设检验与显著性检验在统计学中,假设检验和显著性检验是重要的概念。
假设检验用于根据样本数据对总体参数进行推断和判断,而显著性检验则是通过计算概率来评估研究结果的可信度。
本文将介绍假设检验和显著性检验的概念、步骤和应用,以帮助读者更好地理解和应用这两个统计学工具。
一、假设检验的概念和步骤假设检验是一种通过样本数据对总体参数提出假设的统计方法。
它主要分为零假设(H0)和备择假设(H1)。
零假设通常是我们试图证明或推断的结论,而备择假设则是与零假设相对立的假设。
在假设检验中,我们需要进行以下步骤:1. 确定假设:首先,我们需要明确研究对象的问题和需要测试的参数,然后提出零假设和备择假设。
2. 设定显著性水平:显著性水平(α)用于衡量研究结果的可信程度,常见的显著性水平包括0.05和0.01。
3. 选择合适的检验统计量:根据研究问题和参数类型,选择适合的检验统计量,例如t检验、z检验、卡方检验等。
4. 计算检验统计量的值:根据样本数据,计算所选检验统计量的值。
5. 判断决策准则:根据显著性水平,对检验统计量的值进行比较,判断是否拒绝或接受零假设。
6. 得出结论:基于比较结果,得出关于总体参数的结论,并解释实际意义。
二、显著性检验的概念和步骤显著性检验是通过计算概率来评估研究结果的可信度。
通常情况下,我们希望将研究结果与偶然因素产生的结果相区分开来。
因此,显著性检验通过计算概率值(p值)来衡量研究结果在假设条件下出现的概率,从而判断是否可以拒绝零假设。
显著性检验的步骤如下:1. 提出假设:与假设检验相同,首先需要确定零假设和备择假设。
2. 选择适当的检验统计量:根据研究问题和参数类型,选择合适的检验统计量。
3. 计算p值:根据样本数据和零假设,计算检验统计量的p值。
4. 判断决策准则:根据显著性水平(α)和p值的比较,决定是否拒绝或接受零假设。
5. 得出结论:基于决策结果,得出与研究结果相关的结论并解释其意义。
统计学假设检验ppt课件
统计检验过程
裁决
陪审团审判 实际情况
无罪
有罪
无罪
正确
错误
H0 检验
决策
实际情况 H0为真 H0为假
正确决策
未拒绝H0 (1 – a)
第Ⅱ类错
误(b)
有罪
错误
正确
拒绝H0
第Ⅰ类错 正确决策
误(a) (1-b)
假设检验中的两类错误
❖ 1. 第Ⅰ类错误(弃真错误)
原假设为真时拒绝原假设
b
第Ⅰ类错误的概率记为a a
解:设研究者想收集证据予以支持的假 设是“该城市中家庭拥有汽车的比率 超过30%”。建立的原假设和备择假设 为
H0 : 30% H1 : 30%
说明
1. 原假设和备择假设是一个完备事件组,而 且相互对立 在一项假设检验中,原假设和备择假 设必有一个成立,而且只有一个成立
2. 先确定备择假设,再确定原假设 3. 等号“=”总是放在原假设上 4. 因研究目的不同,对同一问题可能提出不
解:研究者抽检的意图是倾向于证实这 种洗涤剂的平均净含量并不符合说明书 中的陈述 。建立的原假设和备择假设为
H0 : 500 H1 : < 500
500g
提出假设
(例题分析)
❖ 【例】一家研究机构估计,某城市中家庭拥 有汽车的比率超过30%。为验证这一估计是 否正确,该研究机构随机抽取了一个样本进 行检验。试陈述用于检验的原假设与备择假
☺☺ ☺☺ ☺☺
提出假设
我认为人口的平 均年龄是50岁
作出决策
拒绝假设
别无选择!
抽取随机样本
☺x均=值20☺
原假设和备择假设
❖ 什么是原假设?(Null Hypothesis)
教育统计统计假设检验1.
2
统计假设检验的逻辑思想 提出假设 检验假设(根据已知在概率和抽样分布理论下进行运 算,看运算结果与提出的假设的符合程度而做出推断) 1、假设 假设检验一般提出两个相互对立的假设 虚无假设(原假设或零假设)指当前样本所属的总体 与假设总体无区别的假设,往往是研究着根据样本信息希 望拒绝的假设。用H0表示。 备择假设(研究假设)指当前样本所属的总体与假设 总体相反的假设,往往是研究着根据样本信息希望证实的 假设。用H1表示。 举例:
20
10名高三学生学习潜在能力与自学能力测验成绩等级相关计算表 学生 序号 (1) 1 2 3 学习潜在能力 X (2) 90 84 76 等级 (3) 1 2 3 自学能力 Y (4) 3 2 5 等级 (5) 2 1 3 等级差数 D (6) -1 1 0 差数平方 D2 (7) 1 1 0
4
为36名学生所在的真正水平总体的平均数, 是它 的代表值; 是目前该校五年级学生所在总体的平均数学成绩。
5
如果检验结果 成立,则说明这两个总体是一个 水平的总体,4分差距是由随机因素造成的;如果检验结 果拒绝 ,则说明这36名学生成绩与全校五年级学生 成绩不一致,不属于同一水平的总体。 H0成立与否,也就是要看一下这36名学生组成的这个 样本的平均成绩在其抽样分布上是否属于小概率事件。
练习:某小学两名领导对本校10名教师的工作情况 进行综合评定,每人的评定结果以等级记录。问这两位 领导对这10名教师的评定结果是否一致? 2、原假设为H0:
此时,r的抽样分布呈偏态,不过我们可以对其进行 转换,将r值转换成 Zr 值,由于 Zr 服从正态分布,故可 以采用Z检验,公式为:
22
例:29名学生期中与期末考试成绩的相关系数r=0.30, 问这一相关系数是否来自于全年级期中与期末考试成绩的 相关系数为0.64的总体? 练习:某小学三年级语文测试,随机抽取该年级39名 学生的期中与期末考试成绩的相关系数为r=0.25。问这一 相关系数是否来自全年级学生期中与期末语文考试成绩的 相关系数为0.34的总体? 3、其他相关系数的显著性检验 A、肯德尔和谐系数的显著性检验 肯德尔和谐系数的检验主要是检验相关系数是否来自 零相关的总体。可分为两种情况:
教育统计学第五章 假设检验
Z0.96
练习题2
Di
4.1 3.8
1.0
4.2
5 15.3 12.0
3.3
6 13.9 14.7 -0.8
7 20.0 18.1 1.9
8 16.2 13.8 2.4
9 15.3 10.9 4.4
作业(以下任选一道)
1、查阅近两年的心理学和教育学权威杂志各一套(例 如,可查阅这几个年度的《心理学报》和《教育研究》 各一套),对其论文中使用的统计方法进行一项描述
总体平均数的假设检验例题2
某心理学家认为一般司机的视反应时平均175毫 秒,有人随机抽取36名汽车司机作为研究样本进 行了测定,结果平均值为180毫秒,标准差25毫秒. 能否根据测试结果否定该心理学家的结论.(假定 人的视反应时符合正态分布)
X
总体平均数的假设检验例题3
某省进行数学竞赛,结果分数的分布不是正态, 总平均分43.5.其中某县参加竞赛的学生 168人,平均分45.1,标准差18.7,该县平均分 与全省平均分有否显著差异?
例
某数学教育家随机抽取49名高一学生进行 ****教学法的教学改革实验研究。已知这些 学生原来所在的总体数学的平均水平为80分, 标准差为10分。经过一学期的教学改革实验 之后,这49名学生在统考中的数学平均成绩 为83分。问:教学改革是否改变了学生的数 学水平。
例
某心理学家从南方地区的7岁儿童中随机抽取了36名 男童和34名女童,其平均身高的数据分别为:男童 125cm,女童127cm。以往资料显示,该地区7岁男童 身高的标准差为5cm,女童身高的标准差为6cm,能否 根据这次抽样测量的结果作出“该地区7岁男女儿童 身高有显著差异”的结论?
《统计假设检验》PPT课件
两均数差异越大,β值越小。
精选ppt
18
如何选择合适的α值
若一个试验耗费大,可靠性要求高,不允许反复,那么α值 应取小些;当一个试验结论的使用事关重大,容易产 生严重后果,如药物的毒性试验,α值亦应取小些。
对于一些试验条件不易控制,试验误差较大的试验,可将α 值放宽到0.1,甚至放宽到0.25。
在提高显著水平,即减小α值时,为了减否定小域犯Ⅱ型错误的概 否率定,域可适当增大接样受本域含量。增大样本含量可以同时降 低犯两类错误的可能性。
精选ppt
17
意两 图类
错 误 示
两类错误间的关系:
如图所示,图中左边曲线是H0为真时,x1 x2的分布密度曲
线;右边曲线是HA为真时,x1 的x2分布密度曲线( 1) 2
犯Ⅱ型错误可能性β的大小与α取值的大小、两均数差 异大小等因素有关:
当α值变小时, β值变大;反之亦然,也就是说Ⅰ型 错误α的降低必然伴随着Ⅱ型错误β的升高 ;
精选ppt
3
第一节 显著性检验的基本原理
一、显著性检验的意义
二、两种假设
三、显著水平与两类错误
四、双侧检验与单侧检验
五、显著性检验的基本步骤
精选ppt
4
一、显著性检验的意义
(一)为什么要进行显著性检验? 例1
某实验要求实验动物平均体重μ=10.00g, 现有
实验动物10只,平均体重 =x 10.23g, 已知总体
n
10
4.∵ HA: μ≠μ0,当∣u∣ >u0.025时拒绝H0 查正态分布表得,u0.025=1.96。 5. 做出推断及生物学解释:
∵ ∣u∣ <u0.025 ,P>0.05, ∴接受H0:μ=μ0 ,即可以认为这10只动物抽自总
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于平均数差异的显著性检验
一、两个总体都是正态分布,两个总体方差都已知。 (一)两个样本相互独立:(独立样本的Z检验) (二)两个相关样本:(相关样本的Z检验)
二、两个总体都是正态分布,两总体方差都未知。 (一)两个样本相互独立: 1.两个总体方差一致(独立样本的t检验) 2.两个总体方差不等,(柯克兰--柯克斯检验) (二)两个相关样本: 1.相关系数未知(相关样本的t检验) 2.相关系数已知(相关样本的t检验)
某幼儿园在儿童入园时对49名儿童进行 了比奈智力测验(Ó=16),结果平均智商 为106,一年后再对同组被试施测,结果平 均智商为110,已知两次测验结果的相关 系数为0.74,问能否说随着年龄增长与一 年的教育,儿童的智商有了显著的提高?
SE=1.71;Z=2.34
练习题3
在一项关于反馈对知觉判断的影响的研究中, 将被试随机分成两组,其中一组60人作为实验 组(每一次判断后将结果告诉被试),实验的 平均结果=80,标准差=18;另一组52人做 为控制组(实验过程中每一次判断后不让被试 知道结果),实验的平均结果=73,标准差 =15。试问实验组与控制组的平均结果有否显 著差异?
Sp2=283;SE=3.16;T=2.22
练习题4
为了比较独生子女与非独生子女在社会性方面 的差异,随机抽取独生子女25人,非独生子女 31人,进行社会认知测验,结果独生子女平均 数为25.3,标准差为6;非独生子女 平均数为 29.9,标准差为10.2。试问独生子女与非独 生子女的社会认知能力是否存在显著差异?
例
某数学教育家随机抽取49名高一学生进行 ****教学法的教学改革实验研究。已知这些 学生原来所在的总体数学的平均水平为80分, 标准差为10分。经过一学期的教学改革实验 之后,这49名学生在统考中的数学平均成绩 为83分。问:教学改革是Biblioteka 改变了学生的数 学水平。例
某心理学家从南方地区的7岁儿童中随机抽取了36名 男童和34名女童,其平均身高的数据分别为:男童 125cm,女童127cm。以往资料显示,该地区7岁男童 身高的标准差为5cm,女童身高的标准差为6cm,能否 根据这次抽样测量的结果作出“该地区7岁男女儿童 身高有显著差异”的结论?
Di
4.1 3.8
1.0
4.2
5 15.3 12.0
3.3
6 13.9 14.7 -0.8
7 20.0 18.1 1.9
8 16.2 13.8 2.4
9 15.3 10.9 4.4
作业(以下任选一道)
1、查阅近两年的心理学和教育学权威杂志各一套(例 如,可查阅这几个年度的《心理学报》和《教育研究》 各一套),对其论文中使用的统计方法进行一项描述
T’=-1.929;SE2=3.468;t’ a/2=2.049
练习题5
对9个被试进行两种夹角(15o,30o)的缪 勒—莱依尔错觉实验结果如下,问两种夹角的 情况下错觉量是否有 显著差异?
被试 1
2
3
4
15o 14.7 18.9
17.2 15.4
30o 10.6 15.1
16.2 11.2
练习题1
从某地区的六岁儿童中随机抽取男生30 人,测量身高,平均为114厘米;抽取女生 27人,平均身高为112.5厘米,根据以往积 累资料,该地区六岁男童身高的标准差为 5厘米,女童身高标准差为6.5厘米,能否 根据这一次抽样测量的结果下结论:该地 区六岁男女儿童身高有显著差异?
Z0.96
练习题2
Z1.84;SE1.793
两类错误
H0为真
接受H0 拒绝H0
正确 α错误
前提 H0为假 β错误 正确
总体平均数的假设检验例题1
全区统一考试物理平均分μo=50,标准差σo=10.某 校的一个班(n=41)平均成绩 X =52.5.问该班成 绩与全区平均成绩差异是否显著.
(总体正态,总体方差已知)
总体平均数的假设检验例题2
某心理学家认为一般司机的视反应时平均175毫 秒,有人随机抽取36名汽车司机作为研究样本进 行了测定,结果平均值为180毫秒,标准差25毫秒. 能否根据测试结果否定该心理学家的结论.(假定 人的视反应时符合正态分布)
X
总体平均数的假设检验例题3
某省进行数学竞赛,结果分数的分布不是正态, 总平均分43.5.其中某县参加竞赛的学生 168人,平均分45.1,标准差18.7,该县平均分 与全省平均分有否显著差异?
第五章 假设检验
Exercise
一、假设检验的一般步骤 二、单侧检验与双侧检验 三、两类错误 四、关于样本平均数差异的显著性检验
(两个样本的“t”检验) 五、相关系数的显著性检验 六、方差差异的显著性检验
单侧检验的例子
有人调查早期教育对儿童智力发展的影响,从 受过良好早期教育的儿童中随机抽取70人进行 韦氏儿童智力测验(µ0=100, Ô 0=15), 结果平均数为103.3,能否认为受过良好早期 教育的儿童智力高于一般水平?
性统计,并制作统计表或图。特别注意“ t 检验”被
使用的频率。
2、设计一项教育学研究,要求能够使用“t检验”分
析研究结果。写作提纲包括:一、研究的理论基础或 引起你研究兴趣的原因;二、研究目标;三、研究方 法和步骤;四、数据的整理和分析(计划)。